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Article 

The Hidden Mathematics to Treat Cancer 

Ismail A Mageed 

Sheffield Institute of Education, Charles St, Sheffield City Centre, Sheffield S1 2LX; c4031056@hallam.shu.ac.uk 

Abstract: Mathematics is essential in cancer research and treatment because it helps scientists analyze 

complex data, such as genetic mutations in tumors, to understand cancer progression and estimate 

how long it has been developing. Mathematical models are used to improve treatment strategies, like 

determining  the  best  combination  of  drugs  to  combat  resistant  cancer  cells  and  optimizing 

immunotherapy approaches, such as CAR‐T cell therapy. By applying these mathematical concepts, 

researchers can enhance the effectiveness of cancer treatments and tailor them to individual patients’ 

needs. Mathematical models, such as differential equations, are essential tools in cancer research for 

understanding and predicting how tumors grow over time. Models like the Gompertz and logistic 

growth models describe  the dynamics of  tumor growth, helping researchers simulate how cancer 

cells multiply, interact, and respond to various treatments. By using these models, scientists can gain 

insights  into  cancer  progression  and  improve  treatment  strategies,  ultimately  enhancing  patient 

outcomes. Dosimetry is a crucial aspect of radiation therapy that uses mathematical calculations to 

determine the right amount of radiation needed to effectively target tumors while protecting healthy 

tissues from damage. Advanced treatment planning software employs algorithms and simulations 

to figure out the best angles and intensities for delivering radiation, ensuring that the treatment is 

both effective and safe for the patient. This mathematical approach helps optimize cancer treatment 

by  maximizing  tumor  destruction  and  minimizing  side  effects.  Pharmacokinetics  and 

pharmacodynamics  are  important  concepts  in  understanding  how  drugs  work  in  the  body. 

Pharmacokinetics  focuses  on  how  a  drug  is  absorbed,  distributed, metabolized,  and  eliminated, 

which helps determine the best dosage and timing for chemotherapy. On the other hand, response 

models use  statistical methods  to predict how  tumors will  react  to  specific  chemotherapy drugs, 

allowing  doctors  to  create  personalized  treatment  plans  that  are more  effective  for  individual 

patients. Mathematics plays a crucial role in designing clinical trials for cancer treatments by helping 

researchers determine how many patients to include (sample size), how to randomly assign them to 

different treatment groups (randomization methods), and how to analyze the results statistically to 

see  if  the  treatments  are  effective. Additionally,  survival  analysis  techniques,  like Kaplan‐Meier 

estimation and Cox proportional hazards modeling, are used to study patient survival data, allowing 

researchers  to  identify  which  factors  influence  how  long  patients  live  after  treatment.  These 

mathematical  tools  are  essential  for  ensuring  that  clinical  trials  are well‐structured  and  that  the 

findings are reliable. Bioinformatics  is a  field  that uses mathematical and statistical  techniques  to 

analyze  genomic  data,  which  includes  information  about  a  person’s  DNA.  In  cancer  research, 

bioinformatics  helps  identify  genetic mutations  and  biological  pathways  that  contribute  to  the 

disease, allowing scientists to understand how cancer develops and progresses. This information is 

crucial  for developing  targeted  therapies, which are  treatments designed  to specifically attack  the 

mutations found in cancer cells, improving treatment effectiveness. The current exposition offers new 

insights  into  the  cancer  research  community,  as well  as  providing  open  problems which  offer 

bridging the gaps to gain more knowledge about the influential role of mathematics to advance next 

generation cancer treatment. 
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clinical trials and biostatistics; genomic data analysis; immunotherapy and systems biology; tumor 

biomarker research 
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1. Introduction 

Recent  advancements  [1]  in  technology  have  significantly  improved  our  understanding  of 

epitranscriptomics, which studies the chemical modifications of RNA, particularly messenger RNA 

(mRNA). Over the last ten years [1], researchers have focused on how these mRNA modifications, 

especially N6‐methyladenosine (m6A), play important roles in cancer development by influencing 

key processes like tumor growth, invasion, and the tumor environment. 

Schematic 1 (c.f., [1]) shows different modifications of messenger RNA (mRNA) and the proteins 

involved  in these processes, which are important  in cancer. The m6A modification, highlighted  in 

red,  has  specific  “writers”  like METTL3, METTL14,  and METTL16  that  add  this modification, 

“erasers” like FTO that remove it, and “readers” that interpret its effects. Other modifications, such 

as m1A and m5C, also have their own sets of writers, and the diagram indicates which types of cancer 

are associated with each modification. 

 

Schematic 1. 

Figure  2  (c.f.,  [1]) provides  a visual  summary of how different  components  related  to m6A 

influence cancer growth, showing which are considered oncogenes (cancer‐promoting)  in red and 

tumor suppressors (cancer‐fighting) in green, along with their specific cancer targets. This highlights 

the complexity of understanding how these modifications affect cancer development and treatment. 
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Figure 2. 

The “m6A epitranscriptome” [1] refers to a specific chemical modification of messenger RNA 

(mRNA)  that  plays  a  crucial  role  in  regulating  gene  expression  and  has  implications  for  cancer 

research. The timeline of major discoveries highlights how scientists have progressively understood 

this modification and its effects on cancer, as depicted in Figure 3 (c.f., [1]). 
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Figure 3. 

By 2010, obesity was projected to affect 150 million adults and 15 million children in Europe [2], 

leading to various health  issues  like diabetes, heart disease, and cancer. A study published  in  the 

New England Journal of Medicine compared the long‐term survival of nearly 10,000 patients who 

underwent gastric bypass surgery  to a similar number of severely obese  individuals who did not 

have the surgery. The results [2]showed that the surgery significantly reduced overall mortality by 

46%, especially for conditions  like coronary artery disease and diabetes, although it also led to an 

increase in non‐disease‐related deaths, such as suicides and accidents. 

Hereditary diffuse gastric cancer (HDGC) is a rare type of stomach cancer that is passed down 

through families due to mutations in the CDH1 gene [3], which is important for cell adhesion and 
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tumor suppression. Because HDGC is often diagnosed at a late stage [3], it can lead to poor outcomes 

and  is also  linked  to an  increased risk of breast cancer. Guidelines recommend genetic  testing  for 

CDH1 mutations and may suggest preventive surgery [3], while ongoing research is exploring new 

treatment options, including immunotherapy and advanced endoscopic techniques. 

Figure  4  (c.f.,  [3])  visualizes  the  treatments  available  for  hereditary  diffuse  gastric  cancer 

(HDGC), which  are  categorized  into  current  and  potential  options.  The  current  treatments  [3], 

highlighted  in blue,  include established  therapies  that are already being used  to manage HDGC, 

while the potential treatments, highlighted in yellow, represent newer or experimental therapies that 

may be developed in the future. Additionally [3], it mentions specific biological terms like microRNA 

(miRNA) and transforming growth factor‐beta (TGF‐β), which are important in understanding the 

cancer’s biology and treatment strategies. 

 

Figure 4. 

In a visual nutshell, Figure 5 (c.f.,[4]) summarizes some potentail treatments, the gut microbiota, 

which consists of the various microorganisms living in our intestines, can influence the development 

of cancer through several mechanisms. These include causing inflammation [4], damaging DNA, and 

altering gene  expression, which  can  lead  to  tumor growth. Additionally  [4],  certain bacteria  can 

produce  substances  that promote  cancer or  change  the environment  in  the gut  to  support  tumor 

development, highlighting the complex relationship between our gut health and cancer risk. 

Observing Figure 6 (c.f., [4]), the “gut‐organ axis” refers to the complex interactions between the 

gut microbiota and various organs in the body, which can influence each other’s functions and overall 

health. Research suggests that disruptions in this axis may play a role in the development of certain 

diseases,  including  cancers  and  conditions  related  to  radiation  damage.  Understanding  these 
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interrelationships  can  help  scientists  explore  new ways  to  improve  health  and  treat diseases  by 

focusing on the gut microbiome’s impact on other organs. 

 

Figure 6. 

The  relationship  between  gut  microbiota  [4],  cancer,  and  radiotherapy  is  complex  and 

multifaceted. Gut microbiota, which are the beneficial bacteria in our intestines, can influence cancer 

development and treatment outcomes, including how effective radiotherapy is. While some studies 

[4] show that a healthy gut microbiota can improve the effectiveness of radiotherapy, as depicted in 

Figure 7(c.f., [4]). 
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Figure 7. 

Areca nut [5], the fruit of the Areca catechu palm, is commonly chewed by around 600 million 

people, especially  in South Asia, as part of cultural  traditions. However  [5],  it has been  linked  to 

serious  health  issues,  including  oral  cancer,  and  is  classified  as  a  Group  I  carcinogen  by  the 

International Agency  for Research on Cancer. While  there are regulations  for  tobacco products  in 

India  [5],  there are  currently no  similar  laws  for areca nut, despite  its harmful  effects on health, 

including potential oral diseases and other systemic issues. 

The lack of awareness about the dangers of areca nut has led to its widespread consumption in 

India [5], where it is commonly served at social events and available in restaurants. To protect the 

health of  the over  100 million users  [5],  there  is  a pressing need  for  strict  regulations,  including 

banning its sale and advertising, as well as implementing awareness programs to inform the public 

about its harmful effects. Policymakers [5] must recognize areca nut as a dangerous substance to help 

reduce its use and prevent related health issues. 

Prostate cancer is the second most common cancer in men [6], and its risk increases with age, 

certain ethnic backgrounds, and family history. Early detection is important [6], but overtreatment is 

a concern, so active surveillance is recommended for patients with a longer life expectancy who have 

localized  disease. Guidelines  suggest  various management  strategies  [6],  including  surgery  and 

radiotherapy, while emphasizing the need for careful monitoring of prostate‐specific antigen (PSA) 

levels after treatment to detect any potential recurrence. 

The  authors  [7]  investigated  the  protective  effects  of  a methanol  extract  from Anacardium 

occidentale nut  shells against  skin damage  caused by ultraviolet  (UV)  radiation. Chronic UV  [7] 

exposure can  lead  to serious skin  issues,  including aging and cancer. The results showed that the 

extract helped prevent skin damage and promoted recovery in treated animals [7], suggesting it may 

have potential as a natural remedy for UV‐induced skin problems. 

A representative photomicrograph (X 100 magnifications) [7] refers to a detailed image taken 

under a microscope that shows the skin and liver tissues of the experimental animals in the study. 

Figure  8  (c.f.,  [7]) helps  researchers visually  compare  the  effects of different  treatments on  these 
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tissues, allowing them to observe changes such as normal tissue structure or signs of damage, like 

severe wrinkling or congestion. The findings from these images contribute to understanding how the 

treatments impact the health of the skin and liver in the experimental groups. 

 

Figure 8. 

Cashew  nutshell  liquid  (CNSL)  [8]  is  an  inexpensive  source  of  natural  compounds  called 

phenols, which have various uses,  including  in sunscreens. The study  [8]  looked at how different 

solvents affect the amount of these compounds extracted from CNSL, as well as their ability to protect 

against UV radiation (measured as sun protection factor, or SPF). 

The  results  showed  that  solvents  like  acetone  [8],  chloroform,  and methanol were  the most 

effective for extracting CNSL with high levels of phenols and good SPF values, while hexane was the 

least effective. 

In [9], the authors aimed to advance the field of “intellectology,” which studies different types 

of minds and their interactions. They used set theory to explore how minds can combine or interact, 
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such as when two minds with different intelligence levels unite, and what that means for their overall 

intelligence.  The  paper  [9]  also  discussed  various  concepts  of  grouped  minds,  like  collective 

intelligence, and how these ideas can help us understand the potential for minds to work together or 

merge. 

Minds [9] can be defined using four key parameters: a unique identifier, intelligence, age, and 

time of embodiment, which refers to when a mind is actively demonstrating intelligence. It discussed 

how combining minds could potentially create a new mind with higher  intelligence [9], a concept 

known as emergentism, while also exploring the idea that a mind in a smaller subset could be more 

intelligent  than a  larger superset  if  it discovers better algorithms  for processing  information. This 

raises  questions  about  the motivations  for  simulating minds,  suggesting  that  a  simulating mind 

might aim to enhance its own intelligence by creating and observing other minds. 

This explains two types of complements  in set theory [9]: absolute and relative. The absolute 

complement  consists  of  all  elements  not  in  a  given  set, while  the  relative  complement  includes 

elements in one set that are not in another. In the context of intelligence [9], the discussion focuses on 

how the loss of a highly intelligent individual, like Einstein, affects the overall intelligence of a group, 

considering  whether  the  group  can  absorb  and  retain  that  individual’s  knowledge  after  their 

departure. 

Mathematics employs a higher level of intellectualties to answer questions, as reasoned by [10]. 

NIOAs [11], or Nature‐Inspired Optimization Algorithms, are techniques used to solve real‐world 

problems  effectively,  and  they  have  shown promising  results. NIOAs  [11]  can  be  classified  into 

different  categories  based  on  their  inspirations,  such  as  Evolutionary Algorithms  (which mimic 

natural selection), Bio‐inspired algorithms (based on biological processes), and others that draw from 

physics, chemistry, mathematics, and human behavior, as depicted in Figure 9 (c.f., [11]). 

 

Figure 10. 

The  flowchart  depicting  the  mechanism  of  AOA  (Additive  Operator  Algorithm)  visually 

represents the steps involved in the algorithm’s process, is portrayed by Figure 11 (c.f., [11]). It shows 

how  the  algorithm  explores  and  exploits  solutions  to  find  the  best  outcome  by  using  specific 

mathematical operations, like addition and subtraction, based on the defined rules. This helps users 

understand how the algorithm works and the sequence of actions taken during its execution. 
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Figure 11. 

Figure  12  (c.f.,  [11])  showcases  the  “utilization  proportion  of  different  strategies  for  the 

enhancement of the AOA” refers to how much each strategy  is used to  improve the AOA (which 

stands  for a  specific optimization algorithm).  In  the  context provided  [11], various  strategies  like 

hybridization, opposition‐based  learning, and  chaotic  random number methods are  employed  to 

make  the AOA more effective  [11], and  the percentages  indicate how  frequently each  strategy  is 

applied  in  the optimization process. This helps  researchers understand which methods  are most 

beneficial for enhancing the algorithm’s performance. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 January 2025 doi:10.20944/preprints202501.0605.v1

https://doi.org/10.20944/preprints202501.0605.v1


  11  of  56 

 

Figure 12. 

Viral outbreaks like COVID‐19 create an urgent need for evidence to guide quick responses [12], 

and  mathematical  models  are  crucial  in  predicting  how  the  virus  spreads  and  the  effects  of 

interventions. These models help policymakers make informed decisions and have become widely 

discussed  in  the media  [12],  leading  to a greater public understanding of  concepts  like  the basic 

reproduction number (R0) and the idea of “flattening the curve.” As a result [12], citizens are not just 

passive recipients of information; they actively engage with these models, contributing to a new form 

of citizen science that empowers them to understand and respond to the pandemic. 

Collective behavior models [13] are used to study how individuals interact and change, which 

can  explain  various  phenomena  in  nature  and  society,  like  chemical  reactions,  animal  decision‐

making, and human social behavior. One important framework for these models is reaction kinetics 

[13], which provides a way to describe these interactions mathematically. While simpler models can 

give general insights, more complex models that account for real‐world factors like population size 

and spatial effects are necessary for a deeper understanding of these systems. 

Interactive manipulation of a model view via a controller allows users to engage with a graphical 

representation of their model analysis. When users change certain parameters [13], they can see how 

these changes affect the model in real‐time, making it easier to understand complex concepts. This 

hands‐on approach helps researchers and educators visualize the impact of different variables and 

enhances the exploration of the model’s behavior, as depicted in Figure 13 (c.f., [13]). 
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Figure 13. 

Phase  portraits  are  graphical  representations  that  show  how  a  system  behaves  over  time, 

particularly in terms of its fixed points, as illustrated by Figure 14 (c.f.,[13]), which are specific states 

where the system remains unchanged. In the context provided, the upper‐left shows oscillations in 

predator‐prey dynamics  (Lotka‐Volterra  equations), while  the  upper‐right  illustrates  a  repeating 

cycle  in a model called the Brusellator. The  lower sections depict different behaviors [13], such as 
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stable states and noise effects, with various parameters affecting how the system evolves, indicated 

by the shading that represents the speed of flow and the stability of the fixed points. 

Figure 14. 

Bifurcation analysis is a mathematical method used to study how small changes in a system’s 

parameters  can  lead  to  significant  changes  in  its  behavior  [13].  In  the  context  of  the  honeybee 

swarming model, this analysis shows how the decision‐making of bees can shift from one stable state 

to another [13], such as when they choose a new location to swarm. The different types of bifurcations, 

like pitchfork and saddle‐node bifurcations [13], illustrate how these decision‐making processes can 

become unstable or change dramatically based on factors like signaling strength and option quality 

differences(See Figure 15 (c.f., [13])). 
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Figure 15. 

Figure 16 (c.f., [13]) visualizes numerical simulations of a honeybee swarming model, which is a 

type of nonlinear decision‐making model that examines how honeybees make collective decisions. It 

highlights how different types of noise, such as finite‐population noise and spatial noise, affect the 

behavior  of  the model.  The  simulations  show  how  these  noise  factors  influence  the  swarming 

dynamics, with visual representations indicating the paths of individual bees and their interactions 

within the group. 

 

Figure 16. 

The educational revolution is creating significant challenges for schools [14], requiring them to 

prepare  students  to adapt  to  rapid  changes  in  society. This means  that  education must  focus on 

improving both hard skills [14], like mathematical knowledge, and soft skills, such as critical thinking 

and  problem‐solving. The  research  [14]  aimed  to develop  a  new  teaching  framework  called  the 

humanist ethno‐metaphorical mathematics  learning model, which  combines  cultural perspectives 

and metaphorical  thinking  to enhance  students’ mathematical abilities and better equip  them  for 

future challenges. 

The relationship between teacher and student competence is crucial for effective learning in the 

classroom,  is  illustrated  by  Figure  17  (c.f.,  [14]).  Teachers  need  to  facilitate  a  student‐centered 

environment where they encourage students to express their ideas, ask questions [14], and develop 

skills like critical thinking and self‐confidence. This interaction helps build both the hard skills (like 
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mathematical knowledge) and soft skills (like resilience and creativity) that students need to succeed 

in a rapidly changing world. 

 

Figure 17. 

Ethnomathematics is the study of how different cultural groups develop and use mathematical 

ideas, techniques [14], and practices in their daily lives. It recognizes that there are various ways to 

understand and do mathematics based on cultural backgrounds [14], making it more relatable and 

accessible,  especially  for  indigenous  populations.  By  integrating  cultural  perspectives  into 

mathematics  [14],  ethnomathematics  aims  to  create  a  more  inclusive  and  ethical  approach  to 

mathematical knowledge that respects diverse traditions and values. 

The Humanist  ethno‐metaphorical mathematics  learning model,  as  in  Figure  18  (c.f.,  [14]), 

combines  cultural  understanding  and  metaphorical  thinking  to  enhance  how  students  learn 

mathematics. This approach [14] recognizes that traditional mathematical teaching can feel rigid and 

disconnected from real‐life experiences, especially for indigenous populations. By using metaphors 

that relate to students’ cultural backgrounds and everyday lives, this model aims to make abstract 

mathematical  concepts more  relatable  and  easier  to understand, ultimately  improving both  their 

mathematical skills and self‐confidence. 
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Figure 18. 

The metaphorical thinking concept refers to the ability to understand and express ideas by using 

metaphors(See Figure 19 (c.f., [14])), which are comparisons that help explain complex concepts in 

simpler  terms.  In  the  context  of  innovative mathematics  learning,  this  type  of  thinking  allows 

students  to  connect  mathematical  ideas  to  their  everyday  experiences,  making  learning  more 

relatable and meaningful. By using metaphorical thinking, teachers can design activities that engage 

students and encourage them to explore mathematical concepts creatively. 

 

Figure 19. 
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Microbial model systems are widely used in research areas like evolution and ecology because 

they help scientists study how different species interact [15], particularly in terms of competition and 

coexistence. The authors [15] explored how these microbial models relate to mathematical models, 

examining how they can sometimes produce different results when studying the same phenomena. 

They [15] suggested that using these models together can provide valuable insights and improve our 

understanding of complex biological systems. 

Figure 20 (c.f., [15]) shows how different models interact with each other in scientific research, 

particularly  in  the  context  of  studying  ecological  and  evolutionary  dynamics.  It  emphasizes 

“comparative modeling,” where one model is used to evaluate and improve another, rather than just 

focusing on how models represent real‐world systems. This approach helps researchers understand 

complex biological interactions, such as competition and coexistence among species, by comparing 

mathematical models with experimental data from simpler systems, like microorganisms. 

 

Figure 20. 

The current exposition contributs to: 

 Offering a plethora of mathathematical applications to advance cancer treatment. 

 The provision of several emerging open problem to enrich the existing knowledge within the 

research community to a next generation cancer treatment. 

The path map for this study is 
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2. The Influential Mathematics to Revolutionize Oncology 

The  current  section  is delving  into  a panoramic view of  the  impactful mathematical  role  to 

advance oncology. 

2.1. Modeling Tumor Growth 

A  key  feature  of  cancer  is  the uncontrolled  growth  of  cells  [16–28],  known  as  aberrant  cell 

proliferation. Researchers  study  various  factors  that  contribute  to  this  growth,  including  genetic 

changes, metabolic alterations, and the impact of treatments and the immune system. Recently [16–

28], mathematical and computational models have been used to simulate and predict how tumors 

grow  over  time  and  space,  which  helps  in  understanding  their  development  and  response  to 

treatments by using real biological data for validation. 

Most  importantly  [16],  various mathematical modeling  strategies  used  to  understand  and 

predict how tumors respond to treatments like chemotherapy and radiation therapy. These models 

consider  factors  such  as  the mechanical  properties  of  tissues  [16],  nutrient  availability,  and  the 

tumor’s microenvironment, which  can  all  affect  tumor  growth  and  treatment  effectiveness.  By 

integrating patient‐specific data [16], these models aim to improve personalized treatment plans for 

cancer patients. 

Mathematical modeling [17] is an important tool used in both physical sciences and life sciences, 

including  cancer  research.  Researchers,  like  Misra  and  his  team,  have  developed  various 

mathematical models to study different aspects of biology, such as how tumors grow and respond to 

treatments. These models help health care professionals as well as  researchers understand  tumor 

dynamics and optimize cancer therapies, ultimately improving treatment outcomes for patients. 

In scientific research [17], different mathematical functions are created to understand how things 

grow, which is important in fields like ecology and epidemiology. When studying tumor growth [17], 

researchers use  first‐order  ordinary differential  equations  to model  how  the  volume  of  a  tumor 

changes over time, starting from an initial size. The growth of tumors is typically described using 

either exponential growth models [17], which assume unlimited growth, or logistic growth models, 

which account for limitations in resources that eventually stabilize the tumor size. 

The commonly used exponential growth differential equations are mathematical models  that 

describe  how  a  tumor’s  volume  changes  over  time. These  equations(See  Figure  21),  such  as  the 

Malthusian model and the Gompertz model, help researchers understand tumor growth patterns by 

relating the rate of change of tumor volume (𝒅𝑽/𝒅𝒕) to factors like the current volume (𝑽) and growth 

parameters (𝒓,𝒂,𝒃). While these models can accurately describe growth for a period, they eventually 

become unrealistic because they suggest that tumor volume can increase indefinitely, which is not 

possible due to limited resources. 
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Figure 21. 

Exponential models can effectively describe tumor growth for a limited period, but they have a 

flaw:  if  the growth  rate  remains positive,  the  tumor volume would  theoretically keep  increasing 

without limit, which isn’t realistic. Tumors can only grow to a certain size because they depend on 

limited resources for cell growth. Once these resources are exhausted, the tumor volume stabilizes, a 

situation better represented by logistic models that account for these constraints. 

The Von Bertalanffy model describes tumor growth by assuming that the growth rate is related 

to the surface area of the tumor, which is where nutrients enter, while the death rate is related to the 

tumor’s overall size. The associated first order differential equation 

𝒅𝑽

𝒅𝒕
ൌ 𝒂 𝑽

𝟐
𝟑 െ 𝒃𝑽    (1)

In the context of the Von Bertalanffy model for tumor growth, the parameter “𝒂” represents the 
growth rate of the tumor, indicating how quickly the tumor can grow when resources are available. 

The parameter “𝒃” signifies the growth deceleration rate, which accounts for factors that slow down 

the  tumor’s  growth  as  it  increases  in  size,  such  as  limited  nutrients  or  space.  Together,  these 

parameters  help  describe  how  a  tumor’s  volume  changes  over  time,  balancing  growth  and 

limitations. The model predicts  that  the  tumor volume will  stabilize  at  a  certain  level,  𝑽 ൌ  ሺ
𝒂

𝒃
ሻ
𝟐
𝟑 , 

depending on the initial volume; if the initial volume is too high, it will decrease over time until it 

reaches this stable point. 

The graph of  the Von Bertalanffy model, as depicted  in Figure 22(c.f.,  [17])  illustrates how a 

population or volume (𝑽) changes over time (𝒕), starting from zero days. In this model, the parameters 

a and b represent specific growth rates, with a set at  𝟏.𝟔 ൈ 𝟏𝟎⁻⁷ 𝒎³/day and b at 0.2×10⁻⁷ m³/day. The 

constant 𝑲, calculated as 
𝒂

𝒃
, indicates the carrying capacity or maximum volume that the population 

can reach, showing how the growth stabilizes over time. 
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Figure 22. 

The generalized form of the logistic equation describes how a population or quantity (𝑽) changes 
over time (𝒕) based on its growth rate (𝒂) and certain parameters (𝜶,𝜷,𝜸) that influence the growth 

behavior. By adjusting  the values of  these parameters, we can derive different models,  including 

exponential growth and the standard logistic model. This flexibility allows researchers to represent 

various  growth  patterns  in  real‐world  scenarios,  such  as  population  dynamics  or  resource 

consumption, as characterized by the differential equation: 

𝒅𝑽

𝒅𝒕
ൌ 𝒂 𝑽𝜶 ൬𝟏 െ ቀ

𝑽

𝑲
ቁ
𝜷
൰
𝜸

    (2)

The generalized logistic model is depicted in Figure 23 (c.f., [17]), as a mathematical framework 

used to study the growth of a quantity, such as tumor volume, over time. In Figure 23 (c.f., [17]), with 

𝒂 ൌ 𝟑 𝒄𝒎𝟑 𝒅𝒂𝒚ି𝟏, 𝑲 ൌ 𝟏𝟎𝟎,𝑽 ൌ 𝟓𝟎 𝒄𝒎𝟑, for the analysis over a period of 10 days. By adjusting these 
parameters, the model can show different growth behaviors, helping researchers understand how 

changes in growth factors affect the volume over time. 
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Figure 23. 

Schematic 24 (c.f., [17]) of the generalized logistic model visually represents how different parameters 

(𝜶,𝜷,𝜸) affect the growth of a population or tumor over time. It shows various growth patterns, such 

as  logistic  growth,  exponential  growth,  and  other  models  like  Von  Bertalanffy  and  Richard, 

depending on the values of these parameters. By analyzing this diagram, one can understand how 

changes in parameters influence the behavior of the model and the volume of the population or tumor 

as it approaches its carrying capacity (𝑲). 
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Schematic 24. 

On  another  different  note,  [17]  focused  on  controlling  tumor  growth  by  modeling  the 

interactions between different types of immune cells (like natural killer cells and CD𝟖ା  T cells) and 
tumor cells, using mathematical equations. These equations describe how tumor cells grow and how 

they are affected by treatments like chemotherapy and immunotherapy. By analyzing these models, 

researchers  can  explore  different  treatment  strategies  to  effectively  reduce  tumor  volume while 

minimizing side effects. 

In a nutshell, the designed mathematical model to optimize chemotherapy treatment for cancer 

by reducing tumor volume while minimizing side effects, is based on the log‐kill hypothesis, which 

suggests that the effectiveness of chemotherapy is proportional to the tumor size at a given time. The 

model uses differential equations to describe how the tumor volume changes over time, factoring in 

the growth rate of the tumor and the effects of the drug, allowing researchers to analyze different 

treatment strategies and their outcomes. 

Cancer is a major health issue [18], but we still don’t fully understand how it grows and spreads. 

To help predict how  cancer  cells behave,  researchers use mathematical models  that  can  simulate 

cancer growth, which can be based on fixed rules (deterministic models) or random factors (stochastic 

models). These different  types of models were  reviewed  [18],  focusing on how  they  explain  the 

initiation and growth of tumors, and summarizes key findings and ongoing research challenges in 

this area. 

A mathematical model that analyzes how tumors grow when treated with both chemotherapy 

and  immunotherapy,  was  introduced  [19].  This  particular  model  introduced  the  concept  of  a 

“threshold”  for  tumor cell populations:  if a  tumor starts with  fewer cells  than  this  threshold,  the 

immune system can keep it small and asymptomatic, referred to as “cancer without disease.” The 

analysis [19] revealed that chemotherapy can sometimes cause small tumors to grow larger, that high 

doses  are needed  for  chemotherapy  to work  effectively,  and  that  combining  chemotherapy with 

immunotherapy can enhance treatment outcomes. 

2.2. Radiation Therapy Planning 

Radiation therapy planning [29–39] is a crucial process in cancer treatment that ensures radiation 

is delivered effectively while protecting healthy tissues. It involves several steps [29–39], including 

simulating  the patient’s position using  imaging  techniques, outlining  the  tumor and surrounding 

organs,  calculating  the  appropriate  radiation  dose  [29–39],  and  optimizing  the  treatment  plan. 

Quality  assurance measures  are  taken  to verify  the  accuracy of  the plans  and  equipment before 

treatment begins [29–39], and regular follow‐ups are conducted to monitor the patient’s response and 

manage any side effects. 

Contouring target volumes [29] and surrounding organs‐at‐risk (OARs) is an essential part of 

planning radiation treatment for cancer patients. This process [29], often done manually by trained 

professionals, can be time‐consuming and varies between providers, which can affect the quality of 

treatment and patient outcomes. Auto‐segmentation [29], where computer algorithms automatically 

create  these  contours,  has  the  potential  to  improve  consistency  and  effectiveness  in  treatment 

planning, especially with the recent advancements in artificial intelligence. 

Figure 25 (c.f., [29]) visualizes the “Overview of metrics used for contour evaluation”, referring 

to different methods used to assess the quality of outlines (or contours) created in medical imaging, 

particularly for treatments like radiotherapy. These metrics [29] help determine how well automated 

systems  can  replicate  the  contours  that  doctors would manually  create, which  is  important  for 

ensuring effective treatment. Common metrics  include  the Dice Similarity Coefficient and  Jaccard 

Similarity Coefficient, which measure how much two sets of contours overlap, but they may not fully 

reflect how clinically acceptable those contours are. 
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Figure 25. 

Geometric‐dosimetric discordance  [29]  refers  to  situations where  the  shapes of  two medical 

contours (like those of organs) do not match, but they still receive similar radiation doses, as in Figure 

26 (c.f., [29]). For example, in the left image, the contours of the left anterior descending artery overlap 

very little, yet both receive almost the same amount of radiation. In contrast, the right image shows 

two small bowel contours that look similar in shape, but one contour is in a region where the radiation 

dose changes quickly, leading to a higher maximum dose for that contour. 

 

Figure 26. 

The undertaken exposition of [30] summarized research on stereotactic body radiation therapy, 

focusing on how different medical centers compare their treatment planning methods. It includes 30 

studies categorized into three areas: differences in dose measurements, standardizing plans before 

clinical trials, and examining technical methods. The review emphasized [30] the importance of clear 
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guidelines, independent data analysis, and collaboration tools to improve treatment consistency and 

quality across different healthcare facilities. 

Figure 27  (c.f.,  [31]) describes different visual  representations used  in a study about medical 

imaging and treatment planning. It includes two‐dimensional and three‐dimensional views showing 

the locations of important structures, like the submandibular glands and the brain stem, in relation 

to the planning target volume (PTV) [31], which is the area that needs treatment. The colors represent 

different  types  of  contouring  methods:  manual  delineation  (MD)  in  red,  deep  learning‐based 

delineation (DLD) in blue, and the distance between structures in green, highlighting how accurately 

these methods can outline critical areas. 

 

Figure 27. 

The limits [32] of how much radiation healthy tissues can tolerate have made it difficult to treat 

large  tumors  effectively. A new  technique  called  spatially  fractionated  radiation  therapy  (SFRT), 

which includes methods like GRID radiation therapy [32], delivers uneven doses of radiation to the 

tumor, potentially  improving  treatment  outcomes  for  bulky  cancers. However  [32],  because  this 

technique is complex and not widely used, researchers are working to standardize its application and 

understand how it achieves better tumor responses with less damage to surrounding healthy tissue. 

Figure 28 (c.f., [32]) offers a visualization of the GRID block, a specialized tool used in radiation 

therapy  to create a specific pattern of high‐dose radiation on a patient’s  tumor while minimizing 

exposure to surrounding healthy tissue. This tool helps in targeting deep‐seated tumors effectively 

by shaping the radiation field, which is crucial for treatments like GRID therapy. The design of the 

GRID block allows for precise control over the radiation dose delivered to different areas, enhancing 

treatment outcomes for patients with bulky or hard‐to‐treat tumors. 
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Figure 28. 

Figure 29 (c.f., [32]) portrays the dose distribution at the dmax depth refers to how radiation 

doses are spread out at the maximum depth where the radiation beam delivers the highest dose to 

the tissue. Film dosimetry is a technique used to measure this dose distribution by placing special 

film  in  the  path  of  the  radiation  beam  [32], which  records  the  amount  of  radiation  it  receives. 

Understanding  this  distribution  is  important  for  ensuring  that  the  right  amount  of  radiation  is 

delivered to the tumor while minimizing exposure to surrounding healthy tissue. 
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Figure 29. 

2.3. Chemotherapy Optimization 

Chemotherapy optimization [40–52] is the process of improving cancer treatment by making it 

more effective and safer for patients. This involves personalized medicine, where doctors analyze a 

patient’s  tumor genetics  to choose  the best drugs, and pharmacogenomics, which  looks at how a 

person’s genes affect how they respond to medications. Other strategies include using combinations 

of drugs,  adjusting doses  based  on  individual patient  needs,  and  integrating  supportive  care  to 

manage side effects, all aimed at enhancing treatment outcomes while minimizing harm. 

Outpatient  chemotherapy  centers  are  facing  challenges  due  to  high  demand  and  limited 

resources  [40], which  has  led  researchers  in  operations management  to  focus  on  optimizing  the 

outpatient chemotherapy process (OCP). This review analyzes existing research on OCP optimization 

by examining various studies and using tools to gather and categorize the information. The findings 

indicate  that  while  there  are many  studies,  they  often  focus  on  specific  problems  rather  than 

providing  comprehensive  solutions  to  the  broader  challenges  faced  by  outpatient  chemotherapy 

centers. 

A word tree map is a visual tool that shows the most common keywords used by authors [40] in 

their publications about outpatient  chemotherapy  (OCP).  In Figure 30  (c.f.,  [40]),  the  size of each 

rectangle represents how often a keyword appears, helping to highlight the main topics of focus, such 

as  “outpatient  chemotherapy”  and  “optimization.”  This  visualization  helps  researchers  quickly 

understand the key themes and areas of interest in the literature related to OCP. 
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Figure 30. 

Social  network  analysis  of  quantitative OCP  (Operations  and  Care  Planning)  optimization 

models  involves examining how different elements within these models  interact and relate to one 

another(See Figure 41 (c.f., [40]) , much like studying connections in a social network. This analysis 

helps researchers understand the relationships between various factors, such as patient scheduling, 

treatment planning, and resource allocation, which can improve the efficiency and effectiveness of 

healthcare  operations.  By  visualizing  these  connections,  it  becomes  easier  to  identify  areas  for 

improvement and optimize processes in outpatient chemotherapy settings. 
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Figure 31. 

The OCP optimization‐oriented  research  framework  refers  to a  structured approach used  in 

operations research to solve complex decision‐making problems, as depicted in Figure 32 (c.f., [40]). 

It  includes  various mathematical  programming  techniques,  such  as mixed‐integer  programming 

(MIP) and linear programming (LP), which help optimize outcomes under certain constraints. Other 

methods like stochastic mixed‐integer programming (SMIP) and Markov decision processes (MDP) 
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are also part of this framework, allowing researchers to handle uncertainty and dynamic decision‐

making scenarios effectively. 

 

Figure 32. 

Cancer remains one of the leading causes of premature death worldwide [41], with projections 

indicating a significant  increase  in new cases by 2050. Chemotherapy  is a common treatment that 

uses drugs to target and disrupt tumor cells, but it can also cause severe side effects and lead to drug 

resistance. To improve chemotherapy effectiveness, researchers are exploring personalized treatment 

plans using mathematical models  to  optimize drug doses, particularly  through  a method  called 

metronomic treatment, which involves administering smaller doses more frequently. 

A  schematic  figure of  the multi‐objective problem‐solving procedure visually  represents  the 

steps involved in optimizing a problem with multiple goals. It typically includes stages like modeling 

the problem, defining objectives, conducting the optimization process, and making decisions based 

on the results. Figure 33 (c.f., [41]) helps researchers understand how to approach complex problems, 
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such as optimizing chemotherapy treatments, by showing the relationships between different steps 

in the process. 

 

Figure 33. 

A schematic representation of the Pareto front visually shows the trade‐offs between multiple 

objectives  in  an  optimization  problem.  In  Figure  34  (c.f.,  [41])  ,  each  axis  represents  a  different 

objective  function,  and  the points  (or  circles)  indicate potential  solutions. The Pareto  front  itself 

includes  the  non‐dominated  solutions, meaning  these  are  the  best  options were  improving  one 

objective would worsen another, helping decision‐makers find the best balance between conflicting 

goals. 
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Figure 34. 

2.4. Clinical Trials and Biostatistics 

Clinical trials are structured research studies that test the safety and effectiveness of new medical 

treatments [53–64], such as drugs or devices, before they can be approved for public use. They go 

through several phases [53–64], starting with small safety tests and progressing to larger studies that 

compare the new treatment with existing options. Biostatistics is crucial in these trials [53–64], as it 

helps determine how many participants are needed, ensures unbiased group assignments, manages 

data, and analyzes results to make informed decisions about the treatments being tested. 

The authors [53] discussed how modern oncology clinical trials are evolving to better evaluate 

targeted cancer therapies through designs like basket and umbrella trials. Basket trials group patients 

with different types of cancer but share a specific molecular alteration [53], while umbrella trials focus 

on one type of cancer but test multiple therapies based on different molecular changes. These trial 

designs require careful planning and coordination, including the use of biomarker testing to identify 

which patients are eligible for specific treatments, ultimately aiming to improve the effectiveness of 

cancer therapies in a more efficient way. 

Common problems in biostatistics that researchers should avoid ensuring accurate results were 

deeply explored by [54], through emphasizing the importance of using the correct metrics to describe 

data,  understanding  P‐values  and  confidence  intervals,  and  recognizing  the  difference  between 

correlation and causation. By avoiding these mistakes [54], researchers can improve the reliability of 

their studies and contribute to better medical outcomes. 

Effective  treatments  [55]  for metastatic  triple‐negative  breast  cancer  (mTNBC)  are  urgently 

needed due to the poor outcomes associated with this type of cancer. Pembrolizumab, an immune 

therapy that targets the PD‐1 protein [55], has shown low response rates when used alone, indicating 

that combining it with other treatments, like radiotherapy (RT), may enhance its effectiveness. The 

authors [55] investigated the safety and efficacy of using pembrolizumab alongside RT in patients 

with mTNBC, aiming to improve treatment responses and overall patient outcomes. 

The Consolidated Standards of Reporting Trials (CONSORT) flow diagram (See Figure 35 (c.f., 

[55]) is a visual tool used in clinical research to show the process of how participants are selected and 

treated in a study. This helps to clearly outline the number of patients assessed for eligibility, those 

who were  enrolled  [55],  and  any dropouts  or  exclusions during  the  trial.  In  this  context,  it  also 
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references RECIST v1.1, which is a set of criteria used to evaluate how tumors respond to treatment, 

and RT, which stands for radiotherapy. 

 

Figure 35. 

Figure  36  (c.f.,  [55])  displays  tracks  changes  in  tumor  size  for  cancer  patients  undergoing 

treatment.  It  explains  how  researchers used  a  specific  evaluation method  called RECIST  v1.1  to 

measure whether tumors grew, shrank, or remained stable after treatment. The figures mentioned 

show  the  results  for different groups of patients, highlighting  those who had new  lesions,  tumor 

growth, or complete responses to the treatment over time. 
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Figure 36. 

2.5. Genomic Data Analysis 

Genomic data analysis [65–74] is the process of examining and interpreting genetic information 

obtained from sequencing technologies, like next‐generation sequencing (NGS). This involves several 

key  steps  [65–74],  including  generating  data  through  sequencing,  aligning  the  sequences  to  a 

reference genome,  identifying genetic variants, and analyzing gene expression. The  findings from 

this analysis can lead to personalized medicine and better understanding of genetic conditions [65–

74], ultimately transforming healthcare. 
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The  National  Cancer  Institute’s  Genomic  Data  Commons  (GDC)  collects  and  shares  large 

amounts of  cancer‐related genomic data  [65],  including  information  from major projects  like The 

Cancer Genome Atlas. To ensure that this data is comparable and reliable, the GDC uses a process 

called harmonization [65], which aligns data from different sources to a single reference genome and 

generates  summary  results. This  allows  researchers  to  analyze  cancer data more  effectively  and 

discover important insights that could improve healthcare and our understanding of genetics. 

Figure  37  (c.f.,  [65])  describes  how  the  GDC  (Genomic  Data  Commons)  identifies  genetic 

changes, called somatic variants, in cancer samples using different analysis methods, referred to as 

pipelines. Each pipeline’s results are organized in rows [65], while the different cancer projects are 

shown  in  columns.  The  data  [65]  includes  counts  of  two  types  of mutations:  single  nucleotide 

polymorphisms (SNPs) and insertions/deletions (INDELs), which are represented in different colors 

to distinguish between public and protected mutation annotation format (MAF) data. 

 

Figure 37. 

Observing Figure 38 (c.f., [65]) , the Venn Diagram on the left illustrates how four different GDC 

(Genomic Data Commons) tools, called somatic callers, identify genetic variants in tumor samples. It 

shows that 56% of the variants were found by all four tools, while 15.1% were identified by three, 

14% by  two,  and  14.9% by  just one  tool. The  right Venn Diagram highlights  the  recall  rates  for 

validated variants from the TCGA (The Cancer Genome Atlas), revealing that 3.2% of these variants 

were not detected by any of the GDC tools, while the majority (71.6%) were detected by all four. 
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Figure 38. 

Maintaining software across many data centers  is a significant challenge because each center 

needs to install and update its own tools [66], which can lead to inefficiencies and inconsistencies. 

This  traditional model requires researchers  to copy  large datasets,  like  the 1000 Genomes Project, 

which can take days or even months, making collaboration difficult. A more efficient approach is to 

use  cloud  computing, where  researchers  can access a  single  copy of  the data  remotely,  reducing 

redundancy and costs while improving collaboration and data security, (See Figure 39(c.f., [66]). 

 

Figure 39. 

The AnVIL  [66]  ecosystem  is  a  cloud‐based platform designed  for  analyzing  large  genomic 

datasets.  It  combines various  established  tools and environments,  such as  the Terra platform  for 

secure data  sharing, Dockstore  for  sharing  analysis  tools  [66],  and R/Bioconductor,  Jupyter,  and 

Galaxy  for  users with different  skill  levels  to  perform  analyses. The AnVIL  supports  numerous 

genomics projects and provides access to a wide range of genomic datasets [66] , including whole‐

genome and whole‐exome sequencing data, as depicted in Figure 40 (c.f., [66]). 
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Figure 40. 

The AnVIL (Analysis, Visualization, and Informatics Lab‐space) has made significant progress 

since its launch over three years ago [66], focusing on improving tools for human genetics and clinical 

genomics. Key initiatives [66] include integrating diverse genomic data and enhancing capabilities 

for analyzing complex genetic variations and risk scores. The AnVIL aims to democratize access to 

powerful computing resources [66], allowing more researchers to utilize cloud computing for their 

genomic studies, while also addressing cost concerns and providing support for effective budgeting 

and resource management. 

The  undertaken  research  in  [67]  focused  on  unsupervised  feature  selection  algorithms  for 

analyzing genomic data, which often has many features but few samples. The authors [67] proposed 

three algorithms  (SCEFS, SCRFS, and SCAFS)  that  evaluate  features based on  their discernibility 

(how well they can distinguish between categories) and independence (how much they overlap with 

other features). By plotting these features  in a two‐dimensional space [67], they can automatically 

select the most important features that contribute to better classification of cancer‐related data. 

Figure  41  (c.f.,  [67])  displays  the  performance  of  three  new  unsupervised  feature  selection 

algorithms  (SCEFS,  SCRFS,  and  SCAFS) when  used with  a  KNN  classifier  on  different  cancer 

datasets, including leukemia and non‐small lung cancer. These algorithms [67] effectively identify a 

small  set  of  important  features  that  can  distinguish  between  different  classes  of  data  while 

minimizing  redundancy. The  results  confirmed  that using  these  selected  features  leads  to  better 

classification  accuracy,  demonstrating  their  effectiveness  in  reducing  the  complexity  of  high‐

dimensional genomic data. 
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Figure 41. 

2.6. Immunotherapy and Systems Biology 

Immunotherapy is a cancer treatment that boosts the body’s immune system to fight cancer cells, 

using methods like monoclonal antibodies [75–87], checkpoint inhibitors, and CAR‐T cell therapy. 

Systems  biology  studies  the  complex  interactions within  biological  systems  [75–87],  helping  to 

identify biomarkers and personalize treatments based on individual patient data. By combining these 

two  fields,  researchers  can  improve  cancer  treatment outcomes  [75–87], understand how  tumors 

resist therapies, and develop more effective, tailored immunotherapy strategies. 

Xenograft  tumors  [75]  in  untreated  experiments  grow  rapidly  and  can  become  very  large, 

leading to the death of mice before the tumors reach their maximum size. The growth of these tumors 

is modeled using a mathematical equation that describes how the total tumor volume changes over 

time [75], factoring in the tumor growth rate. To better understand how tumors grow and respond to 

treatments [75], researchers extend this model to include the effects of blood vessel growth and the 

immune response, creating a more complex model that captures the dynamics of tumor growth and 

its interaction with the body’s immune system. 

To investigate why immunotherapy might fail [75], researchers used a specific set of parameters 

from  the MC38 cancer cell  line that responds  to treatment. They adjusted  three key parameters—

representing immune response, immune proliferation [75], and functional immune response—to see 

how these changes affected the outcomes compared to non‐responding MC38 cells. The simulations 

showed that increasing the immune response parameter led to more aggressive cancer behavior [75], 

while decreasing the other parameters helped identify conditions under which the immune response 
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could  still  be  elevated  after  treatment,  highlighting  important  factors  in  immunotherapy 

effectiveness. 

There are several ways [75] to improve research on tumor behavior during immunotherapy by 

gathering more data on tumor hypoxia and immune cell changes. It suggests using advanced imaging 

techniques, like FMISO‐PET, to track these changes over time [75], although this can be costly and 

may expose animals to radiation. Additionally, the authors plan to refine their mathematical model 

to better understand how different  treatments and  timing  can affect  tumor  responses, while also 

considering the uncertainties and interactions between various factors in their analysis. 

Cancer [76] is a significant health issue worldwide and is the second leading cause of death in 

many  countries. Traditional  treatments  like  surgery,  chemotherapy,  and  radiation  can have  side 

effects, which has  led to  increased  interest  in  immunotherapy [76], a method that uses the body’s 

immune system to fight cancer. One promising approach in immunotherapy is using dendritic cells 

(DCs) to activate T cells [76], which can help induce a stronger immune response against tumors, and 

researchers are developing mathematical models to better understand and optimize these treatments. 

Figure 42 (c.f., [76]) discusses how a mathematical model was used to evaluate the effectiveness 

of different types of dendritic cell (DC) vaccines in treating tumors. It shows that using multiple doses 

of  the CpG‐DC vaccine  led  to  increased  tumor growth and a higher number of regulatory T cells 

(Treg), which  can  suppress  the  immune  response.  In  contrast  [76], multiple doses of  the Listeria 

monocytogenes‐DC vaccine resulted in reduced tumor growth and increased activation of T helper 

1 (Th1) cells, which are important for fighting tumors, while also decreasing Treg cells. 

 

Figure 42. 
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Figure 43 (c.f., [76]) shows how dendritic cell (DC) vaccination affects tumor growth and survival 

rates in mice with cancer. In this experiment, BALB/c mice were injected with a specific type of cancer 

cells (WEHI 164 fibrosarcoma) and then monitored for tumor size and survival over 30 days. The 

results  [76]  showed  that  the  DC  vaccination  influenced  tumor  growth  and  improved  survival 

compared to control groups, with statistical analysis confirming the significance of these findings. 

 

Figure 43. 

Figure 44 (c.f., [76]) displays how  to compare tumor sizes between mathematical simulations 

and actual experimental results across four different treatment groups. Part (A) describes how the 

researchers used mathematical models to predict tumor sizes based on different treatments. Parts (B) 

and (C‐F) detail how the average tumor sizes from the simulations were compared to the real data 

for  each  treatment group,  showing  that  the predictions  and  experimental  results were  generally 

consistent. 
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Figure 44. 

Following  [77],  a  study  on  breast  cancer  that  focuses  on  how  certain  immune  cells  called 

macrophages can change their behavior in response to the tumor environment. Researchers used a 

CRISPR system  to manipulate  these macrophages, encouraging  them  to adopt a more aggressive, 

anti‐tumor (M1) state instead of a supportive (M2) state. This approach [77] aimed to improve the 

effectiveness of cancer treatments by enhancing the immune response against tumors, particularly in 

challenging areas like the liver where cancer often spreads. 

Figure 45  (c.f.,  [77]) describes a  simulation  that models how different  types of macrophages 

(immune cells) affect the growth of a specific type of cancer lesion (BCLM) over 24 hours. It compares 

[77] two scenarios: one with M1 macrophages, which help shrink the tumor, and another with M2 

macrophages, which promote tumor growth. The simulation also shows how treatment with a drug 

(MSV‐nab‐PTX)  influences  these effects  [77], with  the  tumor  tissue being  represented  in different 

colors to indicate healthy and hypoxic (low oxygen) areas. 
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Figure 45. 

Figure 46 (c.f., [77]) visualizes a simulation that measures the average size of a tumor over time 

when  treated with macrophages  loaded with  a drug  called MSV‐nab‐PTX.  It  compares different 

treatment scenarios: one where both types of macrophages (M1 and M2) are active, one where only 

M1 macrophages are active, and two different treatment schedules (every 2 days and every 3 days) 

while keeping a specific ratio of M1 to M2 macrophages. The results help researchers understand 

how  the  presence  and  activity  of  these macrophage  types  affect  tumor  growth  and  treatment 

effectiveness. 
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Figure 46. 

2.7. Tumor Biomarker Research 

Tumor  biomarker  research  [88–108]  is  an  important  field  in  cancer  studies  that  focuses  on 

finding specific biological markers related to tumors, which can help in diagnosing cancer, predicting 

its progression, and determining how well treatments will work. These biomarkers can be proteins 

[88–108], DNA fragments, or small RNA molecules found in blood or tumor tissues. The research 

aims to improve personalized cancer care by using advanced techniques and technologies, including 

AI, to better understand and treat different types of cancer. 
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Pooling  biomarker  data  [88]  from  different  studies means  combining  information  to  better 

understand health risks, like the relationship between vitamin D levels and stroke risk. This approach 

increases the sample size [88], leading to more accurate estimates and the ability to analyze different 

groups or conditions. In principle, the authors [88] have explored methods for analyzing this pooled 

data,  focusing on how  to adjust  for differences  in measurements across studies  to ensure  reliable 

results. 

A visualization on how different methods for analyzing data perform as more participants are 

included in a calibration study, was offered by Figure 47 (c.f., [88]), which is a process used to improve 

the accuracy of measurements.  In this case, the total number of participants  in each study  is kept 

constant at 1,000, but the proportion of those participants who take part in the calibration study varies 

at 5%, 15%, or 25%. The results are organized into panels [88], with some panels using a “controls‐

only” design and others using a “random sample” design, allowing for a comparison of how these 

different approaches affect the outcomes. 

 

Figure 47. 

Biomarkers are measurable indicators used in medicine to help with various tasks [89], such as 

detecting diseases, diagnosing conditions, predicting how patients will respond to treatments, and 

monitoring disease progression. In the context of precision medicine [89], validated biomarkers are 

crucial  for making  informed  clinical  decisions  tailored  to  individual  patients.  The  authors  [89] 

discussed  best  practices  for  discovering  and  validating  these  biomarkers  and  emphasizes  the 

importance of collaborative research to improve patient care and outcomes. 

Figure 48  (c.f.,  [89]),  the use of biomarkers  in  relation  to  the  course of disease  refers  to how 

specific  biological  indicators  can  help  track  the  progression  of  a  disease  and  inform  treatment 
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decisions. Biomarkers can indicate the presence of a disease [89], predict outcomes, and guide therapy 

choices based on a patient’s unique characteristics. Understanding how these biomarkers relate to 

different stages of a disease is crucial for developing effective diagnostic and treatment strategies. 

 

Figure 48. 

Figure  49  (c.f.,  [89])  visually  explores  the  simplified  schematic  of  biomarker  development 

illustrates the process of identifying and validating biomarkers, which are biological indicators used 

to predict disease outcomes or responses to treatment. The PRoBE design stands for “prospective‐

specimen‐collection,  retrospective‐blinded‐evaluation,”  meaning  that  samples  are  collected  in 

advance  from  patients,  but  the  evaluation  of  these  samples  is  done  later without  knowing  the 

outcomes to avoid bias. This approach helps ensure that the biomarkers identified are reliable and 

clinically useful in improving patient care. 
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Figure 49. 

The trial design schema refers to different methods used in clinical trials to evaluate treatments 

based on the presence of specific biomarkers in patients, as depicted in Figure 50(c.f., [89]). In (A) the 

enrichment design, only patients with the desired biomarker are included in the trial, which is useful 

when the biomarker  is rare. In (B) the all‐comer design, all patients are enrolled but are analyzed 

based on their biomarker status, while (C) the subgroup design focuses on specific groups of patients 

based  on  their  biomarker  results,  allowing  researchers  to  assess  treatment  effects  in  those 

populations. 
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Figure 50. 

All‐comer designs [89] in clinical trials involve screening all patients for specific biomarkers and 

then enrolling those with valid results to study how different treatments affect them. This approach 

[89] helps researchers understand the effectiveness of treatments for both patients who test positive 

and those who test negative for the biomarker. An example  is the MARVEL trial, which aimed to 

compare two cancer treatments based on patients’ EGFR expression status [89], allowing for a more 

comprehensive analysis of treatment benefits. 
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3. Conclusion, Open Problems and Futuristic Research Avenues 

To  substantiate  the  impact  of  mathematics  on  the  advancement  of  cancer  treatment,  an 

explanation is provided. This triggers the following open problems: 

 Current research  [4]does not  fully explain how gut microbiota  influences  the effectiveness of 

radiotherapy  and  the  serious  side  effects  that  can  occur.  Some  scientists  suggest  that  gut 

microbiota might play a role in the immune responses related to radiotherapy, but there is no 

direct  evidence  to  support  this.  Understanding  the  connections  between  gut  health  and 

radiotherapy side effects could be a promising area for future research, potentially leading to 

new ways to reduce these side effects and enhance cancer treatment. 

 The undertaken exposition in [11] has emerged some open problems, for example, improving 

the AOA (Arithmetic Optimization Algorithm). It suggests that more research should focus on 

adapting parameters  like population size  to make AOA more  flexible  for different problems. 

Additionally  [11],  it emphasizes  the need  for better communication and  information sharing 

among solutions, exploring its applications in areas like machine learning and computer vision, 

and developing a mathematical framework to enhance understanding and effectiveness. 

 It is acknowledged that while microbial and bacterial models offer many practical benefits for 

research, these advantages are not unique to microorganisms alone; other types of organisms 

can  also  provide  useful  insights.  This  triggers  an  open  problem,  yet  unsolved  till  current, 

namely, exploring  the history of microbial models  to help  researchers better understand  the 

philosophical aspects of using multiple models in scientific research. This deeper understanding 

could  enhance  the  undertaken  scientific  approach  and  interpret  findings  across  different 

biological systems. 

 It  is  to be noted  [16],  that  there are not many well‐established principles  in biology,  like  the 

“universal” growth law, which makes most mathematical models used in cancer research based 

on observations rather than fundamental rules. Because of this [16], it’s hard to determine the 

best models for understanding how tumors grow, and these models need to be updated as new 

biological  information  becomes  available.  Additionally,  many  important  factors,  like  how 

quickly  cancer  cells  grow  or  how many  are  resistant  to  treatment,  are  not well‐defined  or 

measurable with current technology, limiting the models’ ability to accurately predict treatment 

outcomes. 

 A key challenge [16] in creating predictive models for tumors is dealing with uncertainties in the 

data collected from experiments and the models themselves. Experimental data can be affected 

by random errors and inaccuracies [16], which can lead to wrong estimates of important factors 

like  tumor  size  or  protein  levels.  To  address  these  uncertainties  [16],  researchers  can  use 

statistical methods  that  treat data and model parameters as probabilities, allowing  for more 

accurate and reliable predictions about tumor behavior and treatment outcomes. 

 For mathematical models to be useful in medicine, they need to work with real patient data [16], 

such as  information from  imaging, biopsies, and genetic tests that help  identify  the type and 

severity of tumors. This data can be used to set up the models or adjust their parameters when 

direct measurements are not possible. It is really a burning open problem to offer an exploratory 

approach on how to combine imaging techniques, like MRI and PET scans, with mathematical 

models to better understand tumor growth and behavior, which can lead to improved cancer 

treatments. 

 If  the main  goal  is  to  ensure  that  the  contours  created  by  auto‐segmentation  are  clinically 

relevant [29], the best method is still to have a physician evaluate them, as this method has the 

strongest link to patient outcomes. However [29], this evaluation process can take a lot of time 

and effort, so there is a need for alternative measures that can be used to assess the quality of 

these automated systems more efficiently. The evaluation should also  focus on specific goals 

[29],  like  how  accurate  the  anatomical  shapes  are  or  how  quickly  the process  can  be done, 

depending on what is most important for the clinical situation. 
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 The main limitation of the study [31] is the lack of reliable “ground truth” data, which means 

that for some patients, the outline of the submandibular gland (SMG) can be clearly seen on CT 

scans, while for others, it is difficult to distinguish due to similar tissue densities. This can make 

accurate  contouring  challenging  [31],  and  additional  imaging  techniques  like MRI might be 

needed for better clarity. Other limitations include using only one evaluation metric for model 

performance, reducing the  training area due to memory  limits, and not testing the model on 

different datasets or types of treatment plans, which could affect the results. 

 It is suggested [32] that the guidelines for GRID therapy should be adjusted according to specific 

treatment goals, like reducing the size of large tumors or enhancing the body’s immune response 

to cancer. As  research  in spatially  fractionated radiation  therapy  (SFRT) continues  to evolve, 

these  guidelines  must  be  updated  to  incorporate  new  findings  and  improve  treatment 

effectiveness. This flexibility ensures that the therapy can be tailored to meet the unique needs 

of each patient. 

 There  is  a  significant  gap  [40]  between  research  on  outpatient  chemotherapy  operations 

management (OCP) and the use of advanced technologies from Industry 4.0, known as Health 

4.0. Health  4.0  includes  tools  like  cloud  computing  and  big  data, which  can  improve  how 

chemotherapy  services  are  automated  and  optimized.  Integrating  these  technologies  into 

existing models to enhance decision‐making and service performance in outpatient clinics is a 

sophisticated open problem that needs to be solved. 

 The  current  state  of  research  in  optimizing  outpatient  chemotherapy  planning  (OCP)[40], 

highlighting that many existing studies are still in the development phase and have not fully 

addressed  important  gaps,  identifying  eight  key  areas,  including  creating  a  comprehensive 

optimization  model  that  can  improve  performance  without  oversimplifying  the  problem. 

Additionally [40], there is a need for faster methods, known as heuristics, to solve complex OCP 

models effectively and to improve processes in real‐world applications, as summarized by the 

following Figure (c.f., [40]). 

 The authors  [55]  found  that giving pembrolizumab  (an  immunotherapy drug) and  radiation 

therapy (RT) at the same time made it hard to see how much each treatment contributed to the 

overall effect. Because the number of patients was small [55], the researchers couldn’t analyze 

many important factors that might affect treatment response, like previous treatments or tumor 

characteristics. They [55] also noted differences in how tumors responded, with some tumors 

showing  complete  responses while  others  did  not, which  complicates  understanding  how 

effective the combination treatment really is. 

 The study [76] acknowledged several limitations and suggests future directions for improving 

the mathematical model used  in DC  immunotherapy. Key  issues  include  large discrepancies 

between experimental data and model predictions  [76], which may  stem  from measurement 

errors  or  insufficient  sample  sizes.  The  authors  [76]  recommended  incorporating  more 

experimental  data,  especially  regarding  specific  immune  cell  types  [76],  and  conducting 

sensitivity  analyses  to  simplify  the model  by  focusing  on  the most  important  parameters, 

ultimately  enhancing  its  accuracy  and  applicability  in  understanding  tumor‐immune 

interactions. 

 A strong and effective team of scientists working together is essential for developing biomarkers 

[89],  which  are  important  tools  for  diagnosing  and  treating  diseases.  By  encouraging 

collaboration among researchers,  the goal  is  to speed up  the process of  taking new scientific 

discoveries from the lab (bench) to real‐world medical applications (bedside). This teamwork 

ultimately aims to enhance patient care and improve health outcomes. Until current, this open 

problem has not been solved yet. 

The next phase of research includes finding possible solutions to the provided open problems, 

as well  as  the  exploration  of more mathematical  applications  in  other  interdisciplinary  fields  of 

human knowledge. 
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