

Article

Not peer-reviewed version

Clinical Effectiveness of Oral Amoxicillin for Treatment of Child-hood Non-Severe Pneumonia at Primary Health Centers, Sana'a Governorate Yemen – 2021: A Randomized Controlled Trail

Ehab Al-Sakkaf *, Khaled Al-Jamrah , Abdulrahman Al-Hadi , Mohammad Al Amad , Yasser Ghaleb

Posted Date: 9 May 2023

doi: 10.20944/preprints202305.0559.v1

Keywords: Pneumonia; Amoxicillin; Randomized Trial; Antimicrobial-Resistance.

Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Clinical Effectiveness of Oral Amoxicillin for Treatment of Child-hood Non-Severe Pneumonia at Primary Health Centers, Sana'a Governorate Yemen – 2021: A Randomized Controlled Trail

Ehab Al-Sakkaf 1,*, Khaled Al-Jamrah 2, Abdulrahman Al-Hadi 3, Mohammed Al-Amad 1 and Yasser Ghaleb 1

- ¹ Yemen Field Epidemiology Training Program (Y-FETP) Ministry of Public Health and Papulation, Sana'a
- ² Integrated Management of Childhood Illness (IMCI) Ministry of Public Health and Papulation, Sana'a
- ³ Medical College and Health Sciences, Sana'a University, Yemen
- * Correspondence: ehab.f.alsakkaf@gmail.com; Tel: +967771965185

Abstract: Pneumonia kills over two million children under-age of five every year. Oral amoxicillin was recommended by WHO as the first drug of choice for treatment of non-severe pneumonia. The study aimed to determine the clinical failure rate of amoxycillin for the treatment of childhood non-severe pneumonia at Primary Health Care Centers (PHCCs). A randomized controlled multicenter-trial study was conducted in Sana'a. IMCI strategy was used to enrollments the cases where randomly allocated to receive amoxicillin or cotrimoxazole orally for five days. Multivariate logistic regression was used for identified risk factors associated with clinical failure. A total of 254 children were enrolled, of whom 128 cases were treated with amoxicillin while 126 with co-trimoxazole. The clinical failure for amoxicillin was significantly more than co-trimoxazole (30% vs 10%) p value > 0.001. the most risk factor which significantly associated to amoxicillin failure were preinfection in the last 6 months, while abnormal CBC and literate mothers were associated with clinical failure of co-trimoxazole (p value > 0.05). The use of co-trimoxazole as an alternative to amoxicillin for the treatment of non-severe pneumonia in the PHCCs and conducting further studies to determine the appropriate antibiotic as the first line of defense are recommended.

Keywords: pneumonia; amoxicillin; randomized trial; antimicrobial-resistance

1. Introduction

Pneumonia is one of the largest killer of children under the age of five worldwide which kills over two million children under the age of five every year [1,2]. WHO developed standard guidelines in 2011 for management of patients to reduce the number of people dying from pneumonia [3].

The guidelines have been used widely in several less-developed countries for many years and recommend five days of oral amoxicillin for treatment of non-severe pneumonia [4]. In additional, transport to a distant facility can entail serious delays in effective treatment. Many children with severe pneumonia referred for admission to a hospital could die in transit or reach too sick to be saved [5].

Antimicrobial resistance rate is growing health problem and concern widely, studies that were conducted in different countries addressed such barriers to the recommended treatment of severe pneumonia. [6].

Furthermore, the study revealed whether oral antibiotics are equivalent to injectable antibiotics when both are given in the hospital. This was an open label equivalency study called Amoxicillin Penicillin Pneumonia International Study (APPIS), which was a large multicenter randomized controlled trial comparing injectable penicillin versus oral amoxicillin given for 7 days to children in the hospital [7].

In addition, New Outpatient Short-Course Home Oral Therapy for Severe Pneumonia Study (NOSHOTS) was a randomized, open-label equivalency trial done at seven study sites in Pakistan

and compared initial hospitalization and parenteral ampicillin for 48 h followed by 3 days of oral amoxicillin at home, to 5 days of home-based treatment with oral amoxicillin [8]. NOSHOTS showed home treatment with high dose oral amoxicillin is equivalent to hospital-based treatment with parenteral ampicillin in selected children aged 3–59 months with WHO defined severe pneumonia [8].

Later, another study called Multicenter Amoxicillin Severe Pneumonia Study (MASS) showed that clinical treatment failure and adverse event rates among children with severe pneumonia treated at home with oral amoxicillin did not substantially differ across geographic areas (Bangladesh, Ghana, Vietnam, and Egypt) and hence home-based therapy of severe pneumonia could possibly be applied to a wide variety of settings [9].

The Lancet Series on Childhood Pneumonia and Diarrhea has reported that case management is one of the three most effective interventions to reduce pneumonia deaths in children but also noted that the cost effectiveness of these interventions in national health systems needs urgent assessment [10].

The conflict in Yemen has devastated the health system, with only 51% of health facilities classified as fully functional and 19.7 million people lacking access to health care. To address the urgent need for primary health care services in rural communities, [11] This lead to increase the acute respiratory infections (ARI) which is a leading cause of mortality and morbidity among children under 5 of age in Yemen. In a recent epidemiological survey, 49% of this age group had cough and 25% had cough with difficult breathing during the 2 weeks prior to the survey. [11,12].

Therefore, our study hypothesis (null) was the clinical failure rate with Amoxycillin as the first line based on the Integrated Management Childhood Illness (IMCI) strategy or Co-trimoxazole antibiotic treatment would be similar in children with non-severe pneumonia.

General objective:

To assess the IMCI strategy in the primary health care centers (PHCCs) is beneficial for use of amoxicillin in treatment of childhood non-sever pneumonia.

Specific objectives:

- 1. To determine the effectiveness of antibiotic amoxicillin for treatment of childhood non-severe pneumonia.
 - 2. To identify the risk factors associated with clinical failure.
 - 3. Provide policy makers with evidence to make a decision.

2. Materials and Methods

2.1. Study design

A randomized controlled trail was conducted from August to October 2021.

2.2. Study setting and population.

This study was conducted at PHCCs in Sana'a governorate, which supported by World Bank. All children with age group of 2 months to 5 years, who attending the PHCCs for non-severe pneumonia as IMCI classify strategy were included in the study.

2.3. Definitions and selection criteria:

- Exposed arm: All cases with non-sever pneumonia who were treat with Oral Amoxicillin.
- Non-exposed arm: All cases with non-sever pneumonia who were treat with oral co-trimoxazole instead of amoxicillin.
- The clinical cure was defined as respiratory rate of less than 50/minute between 2 months to 12 months of age and less than 40/minute between 1 year to 5 years of age and absence of any of clinical signs of treatment failure.
- The treatment failure was defined as occurrence of any signs of WHO defined of severe pneumonia, increase respiratory rate of more than or equal 50/minute between 2 months to 12 months of age and more than or equal 40/minute between 1 year to 5 years of age. [13]

- Inclusion Criteria: based on IMCI strategy, any cases of non-sever pneumonia, who is attending to PHCCs and will receive oral amoxicillin or any other antibiotics.
- Exclusion Criteria: The cases were excluded if they have WHO signs of severe pneumonia, history of having received antibiotics for any illness anywhere 48 hours before coming to the PHCCs, previous history of wheezing including asthma or children who have been prescribed corticosteroids along with bronchodilators, children with congenital heart disease, immunodeficiency (congenital or acquired) including suspected or confirmed HIV infection, any chronic illness including chronic infections like tuberculosis, malignancy, acute/chronic organ disorder, known allergy/ hypersensitivity to penicillin. [14]
 - Follow-up of cases:

The physicians assessed every child in first day of visiting, primary follow up will be after 2 days of starting treatment, while the final follow up will be after 5 days of treatment, treatment was stopped after 5 days if respiratory rate had returned to normal.

(Figure 1).

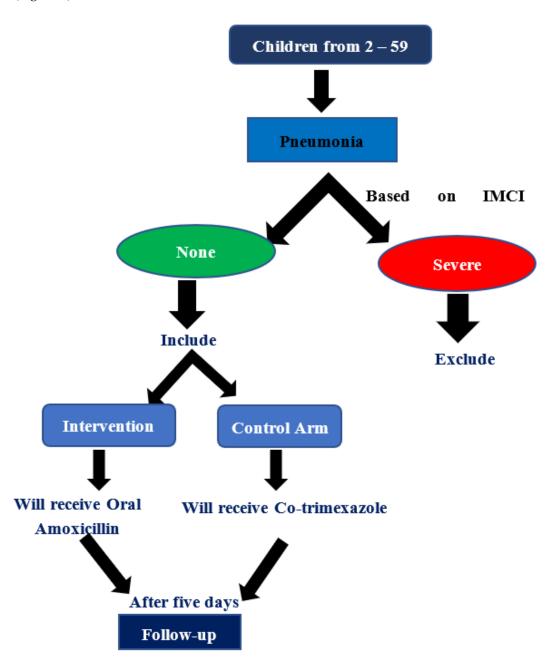


Figure 1. Flowchart of the study.

4

2.4. Sample size:

The sample size calculated using open Epi program with based on alpha of 0.05, Confidence Interval (CI) of 95%, power of 80%, old ratio 2.5 and assuming a treatment failure rate of expose and non- expose group according to previous studies (7). The sample size comes to 228. we increased the sample by 10% to be 254 to overcome refusal or loss to follow-up.

2.5. Sampling procedures:

The sample was selected from 30 % of districts in Sana'a governorate through choosing the main PHCCs in each district, who applied the IMCI strategy, the sampling interval will be calculated form the main HFs. Randomization of the intervention and control arms for each targeted health facility by Proportion Probability Size (PPS) which is depending on the average of the last three months reports of the non-severe pneumonia cases, the randomization selection generated by the Open Epi Random Program Version 3 which available at: www.openepi.com (Annex I).

2.6. Data Collection:

Data were collected through face-to-face interview with parents of the children using IMCI registration form and a predesigned questionnaire. The questionnaire that includes closed and open questions which cover demographic, socioeconomic characteristics, and clinical features with follow up.

One data collector (doctor) that will administer the questionnaire and one sample collector (lab technician) to collect blood sample will be chosen from the staff at each center. Those will be trained on data and sample collection under direct supervision of the principal investigator. All cases were reviewed after 2 days and then five days after starting treatment.

The effectiveness and therapy failure were decided based on clinical, radiological, and complete blood count results.

2.7. Variables

The following variables will be gathered for the study:

- Demographical data such as name, sex, age, place of birth, residency, ...etc.
- Clinical data such as symptoms, signs ...etc.
- Dates such as date of diagnosis, date of start onset, date of follow-up, ...etc.
- Investigation such as CBC, Nasopharyngeal swab, and chest X-ray result.
- Outcome such as clinically cured, failure of treatment.

2.8. Laboratory testing and procedures:

Three ml whole blood sample was collected twice before treatment and after 5 days of treatment from each case in a labeled plain tube with the unique identifier number. Only CBC will be measured. Regarding the failure of treatment, a nasopharyngeal swab will be taken from the cases after three days from stopping the antibiotics (Amoxicillin or Co-trimoxazole) then send the swab to the national laboratories to do culture and sensitives test.

2.9. Analysis and data management:

Data were entered and analyzed using Epi info 7.2 version. The Chi-squared test will be used for categorical variables and T-test for continuous one. For comparing clinical failure in two interventions, Kaplan Meier survival curve analyses were employed by comparing the means and probability of survival for the two arms (groups) of cases to find any difference in response due to antibiotics therapy, P value <0.05 is considered a statistically significant cut off point.

2.10. Quality assurance and control:

5

The quality assurance was secured during data collection through proper training of study members on the objectives of the study and how to collect the data through the questionnaire and ensure proper case definition using during samples collection. After collection of data, the investigator will follow up the cases in a daily basis. After collections of the questionnaires, the investigator will check data for completeness and accuracy to make sure that data are correctly taken. After completing data entry, cleaning will be taken by checking frequencies for each variable looking for inconsistencies and out-of-range values.

2.11. Ethical considerations:

Study was submitted to the and approved by the Institutional Review Board of the National Committee for Health and Medical Research at the ministry of Public Health and Population (protocol code 103 and date of approval 13/8/2021). Permission from IMCI will be secured and written consent will be taken from parents of children. Privacy will be maintained during interviews, questionnaires kept in a lockable cabinet and data entered in the computer was password protected.

3. Results

3.1. Cases characteristics (Descriptive Analysis)

A total of 269 children were randomly enrolled to study, 262 cases of them were well-matched to inclusion and exclusion criteria of this study, 97% of them (254 cases) were followed up and committed until the end of the study, of whom 128 cases were treated with five days amoxicillin while 126 cases in the five days co-trimoxazole. as clarified in the trail profile ((Figure 2).

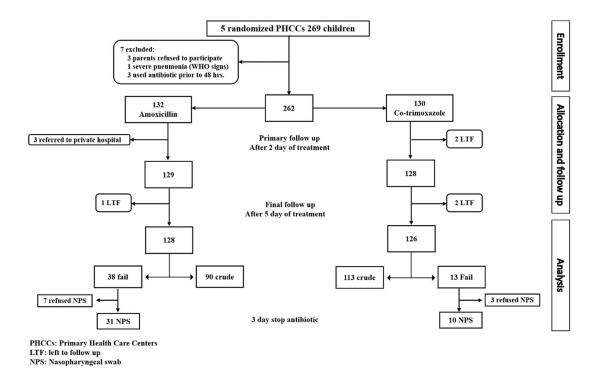


Figure 2. Trail profile.

Table 1 shows the demographic characteristics of childhood non-severe pneumonia cases. Male (64%), farmer jobs of the fathers (61%), children aged less than 12 months (53%), and the primary or secondary education level of fathers (50%) formed the majority of cases. The overall median age of children was 12 months (rang: 2.5 - 59), the overall median wight of children was 8 kilograms (range: 4 - 17.5), and the overall mean monthly income was 30,830 YER ($\pm 12,637$).

100 % of cases were their mothers' housewife, 35 % of cases enrolled from Bani matter district and 94 % of cases were their own houses. This section may be divided by subheadings. It should provide a concise and precise description of the experimental results, their interpretation, as well as the experimental conclusions that can be drawn.

Table 1. Socio-demographic characteristics of the childhood non-severe pneumonia cases, at PHCCs, Sana'a Governorate, 2021 (N = 254).

Characteristics	Overall total (N=254)	Amoxicillin (N=128)	Co-trimoxazole (N=126)	P value
Gender				
Male	163 (64%)	81 (50 %)	82 (50 %)	0.066
Female	91 (36%)	47 (52%)	44 (48%)	0.866
Age group				
Infants $(2 - 11)$ months	135 (53%)	71 (53 %)	64 (47%)	
Children (12 – 23) months	56 (22%)	24 (43%)	32 (57%)	0.442
Children (24 – 59) months	63 (25%)	33 (52%)	30 (48%)	
Districts name				
Arhab district	26 (10%)	19 (73%)	7 (27%)	
Bani Matar district	88 (35%)	39 (44%)	49 (56%)	
Hamdan district	70 (27%)	31 (44%)	39 (56%)	0.075
Sanhan district	38 (15%)	21 (55%)	17 (45%)	
Belad Al-Rous district	32 (13%)	18 (56%)	14 (44%)	
Father education				
Illiterate	30 (12%)	17 (57%)	13 (43%)	
Read & write	57 (22%)	25 (44%)	32 (56%)	0.600
Primary or Secondary	128 (50%)	66 (52%)	62 (48%)	0.680
University	39 (15%)	20 (50%)	19 (50%)	
Mother education				
Illiterate	100 (39%)	50 50%)	50 (50%)	
Read & write	54 (21)	28 (52%)	26 (48%)	0.047
Primary or Secondary	86 (34%)	44 (51%)	42 (49%)	0.947
University	14 (6%)	6 (43%)	8 (57%)	
Father job				
Casual labor	50 (20 %)	20 (40%)	30 (60%)	
Employer	31 (12%)	12 (39%)	19 (61%)	0.100
Farmer	156 (61%)	85 (54%)	71 (46%)	0.100
Jobless	17 (17%)	11 (65%)	6 (35%)	
Home type				
Own house	238 (94%	123 (52%)	115 (48%)	
Rent house	13 (5%)	3 (23%)	10 (77%)	0.100
Other	3 (1%)	2 (67%)	1 (33%)	

Table 2 show the last 6 months medical characteristics of childhood non-severe pneumonia cases, 122 cases (48%) had a previous history of pneumonia infection during the last 6 months, most of them 85% used antibiotics, 60% of them were syrup in type, the final outcome was cured and represented 89%.

Table 2. Previous medical history of the childhood non-severe pneumonia cases, at PHCC, Sana'a Governorate, 2021 (N = 254).

Characteristics Overall total	Amoxicillin (N=128)	Co-trimoxazole (N=126)	P value
-------------------------------	------------------------	---------------------------	---------

Yes	122 (48%)	66 (54 %)	56 (46 %)	0.212			
No	132 (52%)	62 (47%)	70 (53%)	0.312			
	Pre-used of	antibiotic (N=122	2)				
Yes	104 (85%)	51 (49 %)	53 (51%)	0.014			
No	18 (15%)	15 (83%)	3 (17%)	0.014			
	Type of the previ	ious antibiotic (N	N=104)	_			
Drop	2 (2%)	1 (50%)	1 (50%)				
Syrup	62 (60%)	22 (43%)	40 (75%)	0.001			
Vial	40 (38%)	28 (55%)	12 (23%)				
V	Where was the pre	vious treatment	(N=122)				
At home	6 (5%)	3 (50%)	3 (50%)				
In the pharmacy	45 (36%)	19 (43%)	25 (57%)	0.006			
At private HFs	33 (27%)	25 (79%)	7 (21%)	0.006			
At public HFs	39 (32%)	18 (46%)	21 (54%)				
Previous outcome (N=122)							
Cured	108 (89%)	58 (54%)	50 (46%)	0.680			
Failure	14 (11%)	8 (57%)	6 (43%)	0.000			

Table 3: shows the clinical presentation, sings, laboratory finding of childhood non-severe pneumonia cases, the mean of temperature, respiratory rate, and T.WBC 37.7, 51.7, and 11.2, respectively. The common symptoms of cases were cough, difficulty of breath and fever 99 %, 97 % and 82 %, respectively. In addition, the common measured signs were tachypnea 100%, fever (axillary 37.2<) 70%, chest indrawing 41%, and under wight (Z score > -2) 40%. The lab findings show abnormal deferential blood count (CBC) which represent 61%, out of 51 failure of treatment cases, 80% conduct nasopharyngeal swab, 49% of them were Staph. aureus while 7% no growth, nasopharyngeal sensitivity significantly show resistance for amoxicillin vs co-trimoxazole (91% vs 9%). However, there were statistically significant differences between two arms in the diarrhea, malnutrition, otitis media, CBC, and nasopharyngeal sensitivity.

Table 3. The clinical presentation, signs, and lab findings of the non-severe pneumonia cases, PHCC, Sana'a Governorate, 2021 (N = 254).

Characteristics	Overall total	Amoxicillin	Co-trimoxazole	P value			
Characteristics	(N=254)	(N=128)	(N=126)	1 value			
Temperature mean (SD)	37.7 (± 0.8)	37.7 (± 0.8)	37.7 (± 0.7)	0.425			
Respiratory rate mean (SD)	51.7 (± 6.5)	52 (± 6.2)	51.3 (± 6.8)	0.422			
T.WBC* mean (SD)	11.2 (± 3)	11.5 (± 3.2)	10.8 (± 2.9)	0.070			
Neutrophil median (range)	70 (40 - 88)	71.5 (40 - 88)	66.7 (40 - 86)	0.009			
	Fever (by	history)					
Yes	209 (82%)	102 (49%)	107 (51%)	0.252			
No	45 (18%)	26 (58%)	19 (42%)	0.353			
Difficulty breath (by history)							
Yes	245 (97%)	121 (49%)	124 (51%)	0.102			
No	9 (52%)	7 (78%)	2 (22%)	0.182			
	Cou	gh					
Yes	251 (99%)	126 (5%)	125 (50 %)	1 000			
No	3 (1%)	2 (67%)	1 (33%)	1.000			
	Runny	nose					
Yes	92 (36%)	42 (46%)	50 (54%)	0.121			
No	162 (64%)	86 (53%)	76 (47%)	0.131			
	Fever (Me	easured)					
Temp. (> 37.2)	178 (70%)	88 (49%)	90 (51%)	0.742			
Normal	76 (30%)	40 (53%)	36 (47%)	0.742			

	Chest ind	Irawina		
Yes	104 (41%)	50 (48%)	54 (52%)	
No	150 (59%)	, ,	72 (48%)	0.626
	Whe		72 (10 70)	
Yes	4 (2%)	2 (50%)	2 (50%)	
No	250 (98%)	126 (50%)	124 (50%)	1.000
	Stric	, ,	121 (00 70)	
Yes	6 (2%)	4 (67%)	2 (33%)	
No	248 (98%)	124 (50%)	124 (50%)	0.693
Diarrhea	(* * * * *)	(===,=)	(****)	
Yes	50 (20%)	2 (4%)	48 (96%)	
No	204 (80%)	126 (62%)	78 (38%)	0.000
	Vomi	` '	,	
Yes	21 (8%)	7 (33%)	14 (66%)	0.4.0
No	233 (92%)	121 (52%)	112 (48%)	0.160
	Swee	, ,	(/	
Yes	34 (0%)	20 (59%)	14 (41%)	
No	220 (86%)	108 (84%)	112 (89%)	0.383
	General W	, ,	,	
Yes	36 (14%)	17 (47%)	19 (53%)	0.045
No	218 (86%)	111 (51%)	107 (49%)	0.817
	Aneı	` '	, ,	-
Yes	28 (11%)	12 (43%)	16 (57%)	0.540
No	226 (89%)	116 (51%)	110 (49%)	0.518
	Malnutrition		, ,	
Yes	22 (9%)	16 (73%)	6 (27%)	0.040
No	233 (91%)	112 (48%)	120 (52%)	0.048
	Otitis N	Media		
Yes	28 (11%)	24 (86%)	4 (14%)	0.000
No	226 (89%)	104 (46%)	122 (54%)	0.000
	Z Score (Weig	ght for Age)		
Under weight	101 (40%)	52 (52%%)	49 (48%)	0.077
Normal	153 (60%)	76 (50%)	70 (50%)	0.877
	Lab resul	lt (CBC)		
Abnormal	156 (61%)	93 (72%)	63 (50%)	0.000
Normal	98 (39%)	35 (27%)	63 (50%)	0.000
	Nasopharyngea	ıl swab (N=51)		
Yes	41 (80%)	31 (76%)	10 (24%)	1.000
No	10 (20%)	7 (70%)	3 (30%)	1.000
	Nasopharyngeal	culture (N=41)		
No growth	3 (7%)	3 (100%)	0 (0%)	
H. influenzae	4 (10%)	3 (75%)	1 (25%)	
K. pneumoniae	5 (12%)	4 (80%)	1 (20%)	0.942
Staph. aureus	20 (49%)	15 (75%)	5 (25%)	
Streptococci sp.	9 (22%)	6 (67%)	3 (33%)	
	Nasopharyngeal s	•		
Sensitive	11 (28%)	4 (36%)	7 (64%)	
Moderate	4 (11%)	3 (75%)	1 (25%)	0.002
Resistant	23 (61%)	21 (91%)	(9%)	
	*T M/DC, Total M/I	Dl 1 C.11.		

*T.WBC: Total White Blood Cells.

9

3.2. Clinical outcome:

The clinical effectiveness of two arms of antibiotics were shown in (Table 4), which was the failure of treatment for amoxicillin significantly more than co-trimoxazole based on the IMCI failure criteria (30% vs 10%, p value < 0.001).

Table 4. The failure and cured rate by antibiotics of the non-severe pneumonia cases, PHCC, Sana'a Governorate, 2021 (N = 254).

Factors	Failure	Cured	OR (CI)	P value
Amoxicillin	38 (30%)	90 (70%)	3.670	0.000
Co-trimoxazole	13 (10%)	0%)	(1.84 - 7.30)	0.000

3.3. Predictors (Risk factors) associated with clinical failure:

Risk factors associated with clinical failure bivariate analysis of two groups of antibiotics with baseline variables are given in (Table 5).

Table 5. Comparison of antibiotics with factors association in treatment failures of childhood nonsevere pneumonia cases at PHCCs, Sana'a governorate, 2021.

Factors	Amo	xicillin (N=3	8)	Co-tri	moxazole (N	=13)
ractors	no. (%)	OD (CI)	P value	no. (%)	OD CI	P value
		Gend	er			
Male	23 (28%)	1.14	0.879	8 (10%)	0.84	1.000
Female	15 (32)	(0.53-2.44)	0.679	5 (11%)	(0.25-2.75)	1.000
Age group						
Infant (2-11)	19 (31%)	1.14	0.879	5 (9%)	0.73	0.822
Children (12-95)	19 (28%)	(0.53-2.44)	0.679	8 (12%)	(0.22-2.37)	0.022
Father education						
illiterate	13 (31%)	1.09	0.989	4 (9%)	0.78	0.930
literate	25 (29%)	(0.49-2.44)	0.969	9 (11%)	(0.22-2.69)	0.930
Mother education						
illiterate	19 (24%)	0.52	0.147	3 (4%)	0.16	0.009
literate	19 (38%)	(0.24-1.13)	0.14/	10 (20%)	(0.04-0.63)	0.009
Father Job						
Has a job	7 (23%)	0.62	0.441	2 (6%)	0.42	0.421
jobless	31 (31%)	(0.24-1.59)	0.441	11 (12%)	(0.08-2.00)	0.431
	Pre-in	fection in the	e last 6 m	onths		
Yes	26 (39%)	2.70	0.022	6 (11%)	1.08	1 000
No	12 (19%)	(1.21-6.03)	0.022	7 (10%)	(0.34-3.41)	1.000
Antibiotic used	l in the last (6 months				
Yes	21 (41%)	2.47	0.034	6 (11%)	1.20	0.984
No	17 (22%)	(1.13-5.36)	0.034	7 (10%)	(0.38-3.81)	0.984
Type of antibiotic i	used in the l	ast 6 months				
Vial	16 (57%)	4.80	0.000	5 (41%)	28.57	0.001
Syrup/Drop	5 (22%)	(1.38-16.61)	0.023	1 (2%)	(2.9-282.7)	0.001
Where was the	previous tr	eatment				
Home / pharmacy	4 (18%)	0.22	0.005	1 (4%)	0.17	0.194
at HFs	22 (50%)	(0.06-0.76)	0.025	5 (18%)	(0.01-1.56)	
	Malnut	rition diagno	sed by (H	listory)		
Yes	9 (56%)	3.67	0.028	1 (14%)	1.48	1.000
No	29 (26%)	(1.25-10.77)	0.028	12 (10%)	(0.16-13.4)	
		Otitis M	edia			

Yes	10 (42%)	1.93	0.220	1 (25%)	3.05	0.884
No	28 (27%)	(0.77-4.86)	0.239	12 (10%)	(0.29-31.7)	
		Anemi	a			
Yes	5 (42%)	1.79	0.522	1 (6%)	0.54	0.894
No	33 (29%)	(0.53-6.06)	0.533	12 (11%)	(0.06-4.49)	
	First ac	tion since the	illness	appear		
referred latterly	9 (18%)	0.37	0.024	4 (10%)	0.91	1 000
referred directly	29 (37%)	(0.15-0.87)	0.034	9 (11%)	(0.26-3.15)	1.000
Other	medication	(except antibio	otic) use	d prior to 4	8 hours	
Yes	8 (20%)	0.48	0.150	3 (6%)	0.45	0.201
No	30 (34%)	(0.19-1.17)	0.158	10 (13%)	(0.11-1.73)	0.381
		Z score (weig	ht/age)			
Underweight	13 (25%)	0.68	0.445	1 (2%)	0.11	0.022
Normal	25 (33%)	(0.30-1.49)	0.445	12 (16%)	(0.01-0.89)	0.032
	Def	erential blood	count (CBC		
Abnormal	36 (39)	10.42	0.000	12 (19%)	14.58	0.003
Normal	2 (6%)	(2.35-46.10)	0.000	1 (2%)	(1.83-116)	0.003
Fever (Measured)						
Temp. (> 37.2)	30 (48%)	6.47	0.000	10 (16%)	3.77	0.078
Normal	8 (12%)	(2.66-15.77)	0.000	3 (5%)	(0.98-14.4)	

The multivariate analysis was done to estimate the treatment effect after considering the imbalance in certain baseline variables. Only pre-infection in the last 6 months, malnutrition, abnormal CBC, and high-grade fever were found to be associated with clinical failure of amoxicillin even after adjustment (p > 0.05) while abnormal CBC and literate mothers associated with clinical failure of co-trimoxazole (p > 0.05) (Table 6).

Table 6. Multivariate analysis with factors association in treatment failures of childhood non-severe pneumonia cases at PHCCs, Sana'a governorate, 2021.

Eastava	Am	oxicillin (N=38	3)	Co-tri	imoxazole (N:	=13)			
Factors	no. (%)	OD (CI)	P value	no. (%)	OD CI	P value			
	Pre-	infection in th	e last 6 n	nonths		_			
Yes	26 (39%)	2.84	0.028	6 (11%)	1.76	0.430			
No	12 (19%)	(1.11-7.23)	0.028	7 (10%))0.42-7.29)	0.430			
	Malnı	ıtrition diagno	sed by (History)					
Yes	9 (56%)	3.87	0.026	1 (14%)	2.25	0.561			
No	29 (26%)	(1.08-13.77)	0.036	12 (10%)	(0.14-35.01)				
	Deferential blood count CBC								
Abnormal	36 (39%)	5.91	0.024	12 (19%)	18.41	0.006			
Normal	2 (6%)	(1.25-27.83)	0.024	1 (2%)	(2.22-152)	0.006			
	J	Fever (Measur	ed)						
Temp. (> 37.2)	30 (48%)	5.74	0.000	10 (16%)	2.53	0.220			
Normal	8 (12%)	(2.16-15.25)	0.000	3 (5%)	(0.57-11.22)				
	Mother education								
illiterate	19 (24%)	0.98	0.070	3 (4%)	0.12	0.004			
literate	19 (38%)	(0.38-2.54)	0.978	10 (20%)	(0.03-0.52)	0.004			

There were no deaths and only 3 cases were hospitalization from amoxicillin arm, there were no serious adverse drug reactions in the amoxycillin or co-trimoxazole arm, four cases on co-trimoxazole drop out during follow up while one on amoxicillin.

4. Discussion

Globally, most deaths due to childhood pneumonia occur at the community level (1) and increasing concern over bacterial resistance to amoxicillin, which is recommended by WHO and IMCI strategy as a first-line drug for treating non-severe pneumonia, led to the suggestion that this might not be optimal therapy. (3) However, changing to alternative antimicrobial agents which is the second line drug, such as co-trimoxazole, is more effective. (4)

During the period of study, almost 53% of the cases were infants below the age of one years, and this is in concordance with other trail conduct in India that have shown maximum no. of cases in the age group below one years (9).

Male preponderance was noticed in our study with male: female ratio being 1.7:1. This is like the findings of other studies (8,9,10). The higher incidence among males might be due to their increase exposure to outdoor activities which make them in a high risk to be sick with pneumonia.

Regarding clinical features, cough, fast breathing, and fever are the dominant symptoms in addition to runny nose; all of these are the most common symptoms reported throughout the literature on non-severe pneumonia and agreed with our findings. (8,9,10)

All cases were included in the study based on IMCI classification of clinical criteria of non-severe pneumonia. As tachypnea is the earliest sign of pneumonia before the laboratory evidence of pneumonia occur, is the best method with combination of high sensitivity and specificity to detect pneumonia in children below 5 years of age. (14)

However, in all cases complete blood counts (Hb, T.WBC, Neutrophil were carried out before the treatment and the abnormal cases were repeated after treatment. Our finding shows higher in abnormal findings of CBC (61%) compared to a trail conducted in India (18%). (9)

Our results shows that the clinical efficacy of the amoxicillin is a significantly higher than cotrimoxazole when given in daily basis for five days to treat children with non-severe pneumonia and this is in contrast to study conducted in India (9) but in Pakistan, there was no difference in effectiveness of treating children with non-severe pneumonia with oral co-trimoxazole for 5 days or oral amoxycillin for 3 days. (10)

Relatively high failure rate with amoxicillin in our study might be due to number of factors like the extensive use of newer generations of antibiotics, inappropriate prescribing of antibiotics and use of antibiotics without medical prescription in addition to the availability of those drugs over the count all this lead to use it without return to doctors. (15)

The cure rate among children of intervention group (amoxicillin) was 70% and in control group (co trimoxazole) 90%. Higher cure rate with co-trimoxazole in our study is in contrast to the study conducted in India which was the cure rate of amoxicillin (91%) cases and in co trimoxazole (60%). (9)

The Limitation was the difficulty of the road and the distance of the targeted health facilities from the central laboratory which led to delay to receive the NPS.

5. Conclusions and recommendation

The frequency of treatment failure was higher in Amoxicillin group than in the Co-trimoxazole group among children under 5 years with non-severe pneumonia. The pre-infection in the last 6 months, malnutrition, abnormal CBC, and high-grade fever were the most important associated factors to the failure of treatment of amoxicillin in our study.

Recommendations:

- Oral co-trimoxazole should be used instead of amoxicillin for the treatment of non-severe pneumonia in the IMCI strategy in Yemen.
- Update IMCI strategy is essential in the development of treatment management that are based on clinical outcomes.
 - Increase the awareness activities and sessions about antimicrobial resistance.
- Further study to determine the suitable antibiotics instead of amoxicillin as first line for nonsevere pneumonia.

Author Contributions: E. Al-Sakkaf contributed to the study conceptualization, collected, analyzed, interpreted the data, and prepared the original draft of manuscript. K. Al-Jamrah and A. Al-Hadi contributed in validation, investigation and data curation, M. Al-Amad contributed in questionnaire design, data analysis and revising the draft, A. Y. Ghaleb contributed in final revising and final approval of the version to be submitted. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by TEPHINET.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of the National Committee for Health and Medical Research at the ministry of Public Health and Population (protocol code 103 and date of approval 13/8/2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.".

Data Availability Statement: data is unavailable due to privacy or ethical restrictions.

Acknowledgments: my sincere thanks go to public Health specialist, Data collectors, and Republican Teaching Hospital Authority for technical support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Sample Randomization (N = 250) and flow chart for the data collection

1. Al-Wagash District Hospital, Bani Matar District

Table 1. Sample Randomization for Al-Wagash DH (1 - 125) N = 88.

	Intervention Arm (N = 44)					Cont	rol Arm	(N = 44)	
2	31	56	78	100	3	33	58	79	103
4	34	59	81	102	6	36	61	82	104
9	37	62	83	106	11	38	63	84	107
12	39	64	85	108	13	41	65	87	110
14	42	66	88	111	16	44	67	89	113
18	45	68	90	115	19	46	69	91	116
21	48	71	92	118	23	49	73	93	120
25	51	74	94	122	27	52	75	96	124
28	53	76	97		29	55	77	99	

Tabl	e 2: Flov	v chart for	the data	collection	for Al-Wa	agash DH	(N=88)	
Week no.	Status	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.
1st week	New cases	234	6911	12 13 14	16 18 19	21 23 25	27 28 29	Off
(28/08- 03/09)	Follow up	-	-	-	-	234	6911	Off
2 nd week	New cases	31 33 34	36 37 38	39 41 42	44 45 46	48 49 51	52 53 55	Off
(04/09- 10/09)	Follow up	12 13 14 16 18 19	21 23 25	27 28 29	-	31 33 34	36 37 38	Off
3 rd week	New cases	56 58 59	61 62 63	64 65 66	67 68 69	71 73 74	75 76 77	Off
(11/09– 17/09)	Follow up	39 41 42 44 45 46	48 49 51	52 53 55	-	56 58 59	61 62 63	Off
4th week	New cases	78 79 81	82 83 84	85 87 88	89 90 91	92 93 94	96 97 99	Off
(18/09– 24/09)	Follow up	64 65 66 67 68 69	71 73 74	75 76 77	-	78 79 81	82 83 84	Off
5 th week	New cases	100 103	104 106	108 110	113 115	118 120	124	Off
(25/09– 01/10)	Follow up	85 87 88 89 90 91	92 93 94	96 97 99	-	100 103	104 106	Off
6 th week	New cases	-	-	-	-	-	-	Off
(02/10- 08/10)	Follow up	108 110 111 113 115 116	118 120	124	-	-	-	Off
	Ne	w cases	Follow	up	Amoxicillin	C0-1	rimoxazole	

2. Qa'a Al-Reqah Health Center, Hamdan district

Table 3. Sample Randomization for Qa'a Al-Reqah HC (200 - 310) N = 68.

	Intervention Arm (N = 34)					Contro	ol Arm (I	N = 34	
201	224	248	269	291	202	225	249	270	293
203	227	251	272	294	204	229	253	273	296
206	231	254	275	297	208	233	256	277	299
210	235	257	278	300	211	236	259	279	302
213	238	260	281	303	214	239	262	283	306
216	241	264	285	307	218	242	265	287	309
220	244	266	289		222	246	268	290	

Table	4: Flow	chart for t	he data co	llection fo	r Qa'a Al	-Reqah H	C(N=68)	
Week no.	Status	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.
1 st week	New cases	201 202	203 204	206 208	210 211	213 214	216 218	Off
(28/08- 03/09)	Follow up	-	-	-	-	188 189	190 192	Off
2 nd week	New cases	220 222	224 225	227 229	231 233	235 236	238 239	Off
(04/09- 10/09)	Follow up	206 208 210 211	213 214	216 218	-	220 222	224 225	Off
3 rd week	New cases	241 242	244 246	248 249	251 253	254 256	257 259	Off
(11/09– 17/09)	Follow up	227 229 231 233	235 236	238 239	-	241 242	244 246	Off
4 th week	New cases	260 262	264 265	266 268	269 270	272 273	275 277	Off
(18/09– 24/10)	Follow up	248 (249) 251 (253)	254 256	257 259	-	260 262	264 265	Off
5 th week	New cases	278 279	281 283	285 287	289 290	291 293	294 296	Off
(25/09– 01/10)	Follow up	266 268 269 270	272 273	275 277	-	278 279	281 283	Off
6 th week	New cases	297 299	300 302	303 306	307 309	-	-	
(02/10– 08/10)	Follow up	266 268 269 270	272 273	275 277		278 279	281 283	
7 th week	New cases	-	-	-	-	-	-	Off
(09/10– 15/10)	Follow up	285 287 289 290	-	-	-	-	-	Off
	Ne	w cases	Follow	up	Amoxicillin	Co-	trimoxazole	

3. Bahran Health Center, Sanhan Wa Bni Bahlol District

Table 5. Sample Randomization for Bahran HC (310 - 370) N = 38.

	Interven		Control Arm (N = 19)						
312	325	339	350	362	314	328	340	351	363
317	330	342	353	365	318	332	344	355	367
320	334	345	356	369	321	335	347	358	370
322	337	348	359		323	338	349	360	

Table 6: Flow chart for the data collection for Bahran HC $(N = 38)$											
Week no.	Status	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.			
1st week	New cases	312	314	317	318	320	321				
(28/08- 03/09)	Follow up	-	-	-	-	312	314				
2 nd week	New cases	322	323	325	328	330	332				
(04/09- 10/09)	Follow up	317 318	320	321	-	322	323				
3 rd week	New cases	334	335	337	338	339	340				
(11/09– 17/09)	Follow up	325 328	330	332	-	334	335				
4th week	New cases	342	344	345	347	348	349				
(18/09– 24/09)	Follow up	337 338	339	340	-	342	344				
5 th week	New cases	350	351	353	355	356	358				
(25/09– 01/10)	Follow up	345 347	348	349	-	350	351				
6th week	New cases	359	360	362	363	365	367				
(02/10– 08/10)	Follow up	353 355	356	358	-	359	360				
7 th week	New cases	369	370	-	-	-	-				
(09/10– 15/10)	Follow up	362 363	365	367	-	369	370				
	New cases Follow up Amoxicillin Co-trimoxazole										

4. Al-Naqeel Health Unit, Blad Al-Rous District

Table 7. Sample Randomization for Al-Naquel HU (400 - 450) N = 30.

	Interven	Control arm (N = 15)							
400	411	419	429	439	402	413	421	430	441
405	415	422	432	442	407	416	423	434	444
408	417	425	435	445	409	418	427	437	447

Tab	Table 8: Flow chart for the data collection for Al-Naqeel HU $(N = 30)$											
Week no.	Status	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.				
1st week	New cases	400	402	405	407	408	409	Off				
(28/08- 03/09)	Follow up	-	-	-	-	400	402	Off				
2 nd week	New cases	411	413	415	416	417	418	Off				
(04/09- 10/09)	Follow up	405 407	408	409	-	411	413	Off				
3rd week	New cases	419	421	422	423	425	427	Off				
(11/09– 17/09)	Follow up	415 416	417	418	-	419	421	Off				
4th week	New cases	429	430	432	434	435	437	Off				
(18/09– 24/09)	Follow up	422 423	425	427	-	429	430	Off				
5 th week	New cases	439	441	442	444	445	447	Off				
(25/09– 01/10)	Follow up	432 434	435	437	-	439	441	Off				
6 th week	New cases	-	-	_	-	-	-	Off				
(02/10- 08/10)	Follow up	442 444	445	447	-	-	-	Off				
	New cases Follow up Amoxicillin Co-trimoxazole											

5. Al-Hazm Health Center, Arhab District

Table 9. Sample Randomization for Al-Hazm HC (460 - 500) N = 26.

	Interven	tion arm		Control arm (N = 13)					
462	474	482	490	499	463	475	483	492	500
464	477	484	494		466	479	485	495	
470	480	487	497		472	481	488	498	

Tab	le 10: Flo	ow chart fo	or the data	a collectio	n for Al-H	Iazm HC	(N=26)	
Week no.	Status	Sat.	Sun.	Mon.	Tue.	Wed.	Thu.	Fri.
1st week	New cases	462	463	464	466	470	472	Off
(28/08- 03/09)	Follow up	-	-	-	-	462	463	Off
2 nd week	New cases	474	475	477	479	480	481	Off
(04/09- 10/09)	Follow up	464 466	470	472	-	474	475	Off
3 rd week	New cases	482	483	484	485	487	488	Off
(11/09– 17/09)	Follow up	477 479	480	481	-	482	483	Off
4th week	New cases	490	492	494	495	497	498	Off
(18/09– 24/09)	Follow up	484 485	487	488	-	490	492	Off
5 th week	New cases	499	500	-	-		-	Off
(25/09– 01/10)	Follow up	494 495	497	498	-	499	500	Off

References

- 1. Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, et al. Global burden of childhood pneumonia and diarrhea. Lancet. 2013;381:1405–16.
- 2. Rudan I, Boschi-Pinto C, Biloglav Z, Mulholland K, Campbell H. Epidemiology, and etiology of childhood pneumonia. Bulletin of the World Health Organization. 2008;86:408–16.
- 3. International Institute for Population Sciences (IIPS) and ORC Macro. National Family Health Survey (NFHS-3), 2005–06, vol. 1. Mumbai: IIPS; 2007. p. 234–6.
- 4. World Health Organization: Technical bases for the WHO recommendations on the management of pneumonia in children at first-level health facilities. Geneva: World Health Organization; 1991. Available at: http://www.who.int/maternal_child_adolescent/documents/ari_91_20/en/. Accessed 17 November 2015
- 5. World Health Organization: Home treatment of pneumonia safe and effective, finds study. Available at: http://www.who.int/mediacentre/news/ releases/2008/pr01/en/. Accessed 17 November 2015.
- 6. World Health Organization. ANTIMICROBIAL RESISTANCE Global Report on Surveillance [Internet]. 2014 [cited 2022 Jan 29]. Available from: https://apps.who.int/iris/bitstream/handle/10665/112642/9789241564748_eng.pdf
- 7. Addo-Yobo E, Chisaka N, Hassan M, Hibberd P, Lozano JM, Jeena P, et al. Oral amoxicillin versus injectable penicillin for severe pneumonia in children aged 3 to 59 months: a randomised multicentre equivalency study. Lancet. 2004;364:1141–8.
- 8. Hazir T, Fox LM, Nisar YB, Fox MP, Ashraf YP, MacLeod WB, et al. Ambulatory short-course high-dose oral amoxicillin for treatment of severe pneumonia in children: a randomised equivalency trial. Lancet. 2008;371:49–56.
- 9. Addo-Yobo E, Anh DD, El-Sayed HF, Fox LM, Fox MP, MacLeod W, et al. Outpatient treatment of children with severe pneumonia with oral amoxicillin in four countries: the MASS study. Trop Med Int Health. 2011;16: 995–1006.
- 10. Bhutta ZA, Das JK, Walker N, Rizvi A, Campbell H, Rudan I, et al. Interventions to address deaths from childhood pneumonia and diarrhoea equitably: what works and at what cost? Lancet. 2013;381:1417–29.
- 11. Miller NP, Zunong N, Al-Sorouri TA, Alqadasi YM, Ashraf S, Siameja C. Implementing integrated community case management during conflict in Yemen. Journal of Global Health. 2020 Dec;10(2).
- 12. Goodarzi, E., Sohrabivafa, M., Darvishi, I., Naemi, H. and Khazaei, Z., 2021. Epidemiology of mortality induced by acute respiratory infections in infants and children under the age of 5 years and its relationship with the Human Development Index in Asia: an updated ecological study. Journal of Public Health, 29(5), pp.1047-1054.
- 13. Scott, J.A.G., Wonodi, C., Moïsi, J.C., Deloria-Knoll, M., DeLuca, A.N., Karron, R.A., Bhat, N., Murdoch, D.R., Crawley, J., Levine, O.S. and O'Brien, K.L., 2012. The definition of pneumonia, the assessment of severity, and clinical standardization in the Pneumonia Etiology Research for Child Health study. Clinical infectious diseases, 54(suppl_2), pp.S109-S116.
- 14. World Health Organization. Revised WHO classification and treatment of childhood pneumonia at health facilities. Geneva: World Health Organization. 2014:6-14.
- 15. Currie CJ, Berni E, Jenkins-Jones S, Poole CD, Ouwens M, Driessen S, et al. Antibiotic treatment failure in four common infections in UK primary care 1991-2012: longitudinal analysis. BMJ [Internet]. 2014 Sep 23 [cited 2022 Jan 29];349. Available from: https://www.bmj.com/content/349/bmj.g5493

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.