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Abstract: The increasing frequency of cyber threats and the enforcement of strict privacy regulations 

have exposed critical limitations of traditional centralized machine learning models, especially in 

distributed environments such as the Internet of Things (IoT). This study presents a federated 

learning (FL) framework tailored for intrusion detection and malware classification that enables 

decentralized model training while preserving data locality and minimizing communication 

overhead. The proposed architecture incorporates lightweight privacy-preserving techniques-

including gradient clipping, differential privacy, and encrypted model aggregation-to ensure secure 

and efficient collaboration across heterogeneous clients. Experimental results on benchmark datasets, 

such as CICIDS2017 [1] and TON_IoT [2], show that the framework achieves detection accuracies 

above 90%, while maintaining privacy loss below 5% and improving communication efficiency by 

more than 25%. These results confirm the viability of federated learning as a scalable and privacy-

compliant approach for next-generation cybersecurity systems in highly distributed infrastructures. 

Keywords: federated learning; cybersecurity; intrusion detection; privacy preservation; IoT security; 

machine learning; malware detection; cyber resilience 

 

1. Introduction 

The increasing complexity and frequency of cyber threats in distributed computing 

environments has necessitated the advancement of machine learning-based defense systems that are 

both intelligent and privacy-preserving. Traditional centralized learning models, while powerful, are 

inherently susceptible to critical problems such as data leakage, excessive communication direction, 

and single points of failure. Federated Learning (FL) emerges as a robust alternative, allowing the 

training of a collaborative model across decentralized devices without the transfer of initial data to 

the central server. This decentralized paradigm preserves user privacy, reduces systemic 

vulnerability, and ensures compliance with regulatory constraints. 

FL has demonstrated significant potential in constrained and dynamic environments, including 

underwater drone networks, where high latency and limited bandwidth challenge centralized 

learning. For example, Popli et al [3] proposed a federated framework tailored for underwater drones 

that improved zero-day threat detection while maintaining strict data locally. These applications 

highlight the ability of FL to support localized learning while maintaining high detection accuracy 

under extreme conditions. 

A key concern in FL research is balancing efficiency with privacy. Recent techniques using 

gradient clipping and Fisher information-based parameter selection have proven effective in 

reducing communication overhead without sacrificing accuracy [4]. These lightweight mechanisms 

optimize model performance while minimizing resource consumption and data exposure, making 

FL feasible for deployment in bandwidth-constrained networks. 

To address the inherent challenges posed by non-independent and identically distributed (non-

IID) data across clients, several frameworks have introduced multi-objective and multi-tasking FL 

strategies. These include client clustering, personalized updates, and fairness-aware optimization, 
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which collectively improve generalization and fair performance across different data distributions 

[5]. 

On a broader scale, FL has gained traction in distributed cloud computing architectures, where 

it complements secure multiparty computation, trusted execution environments, and differential 

privacy. Rahdari et al [6] highlighted the role of FL in enhancing privacy-aware data analytics and 

mitigating the risks associated with centralized storage in cloud-native infrastructures. 

As FL systems become more personalized, they face new threats such as model poisoning and 

stealthy backdoor attacks. Defense strategies such as adaptive layered trust aggregation and anomaly 

detection based on gradient similarity offer promising solutions that increase robustness against 

adversarial manipulation [7]. 

In rapidly evolving, containerized, and cloud-native ecosystems, flexible protection 

architectures are essential. AI-driven adaptive security networks have been proposed to support real-

time anomaly detection in federated cloud environments [8], in line with the decentralized nature of 

FL. Such systems dynamically adapt to evolving attack surfaces, improving responsiveness and 

resilience. 

Security in FL is further enhanced by advances in cryptographic techniques. For example, 

delegable order-revealing encryption (DORE) enables secure multi-user range queries without 

relying on trusted intermediaries, preserving confidentiality while maintaining operational efficiency 

[9]. In addition, the integration of blockchain with FL brings transparency, immutability, and trust to 

model update workflows. Blockchain-enabled FL architectures ensure auditable, tamper-proof 

exchanges between participants, protecting against adversarial interference and dishonest 

contributions [10]. 

In the large-scale deployment of private data protection - for example, smart city, networked 

medical systems, and industrial internet of things - the use of FL frameworks has shown promising 

results. Kotian et al [11] emphasized the importance of combining FL with light encryption, anomaly 

detection, and adaptive privacy mechanisms to meet compliance standards (e.g., GDPR, HIPAA) 

without compromising efficiency. In summary, this development shows that FL is a mature enabling 

technology for secure, scalable, and privacy-aware cybersecurity solutions. Continued innovation in 

the penetration of artificial intelligence, cryptography, and distributed architecture remains 

necessary to overcome emerging threats and deploy resilient defenses in real-world infrastructure. 

2. Related Work and Background 

The development of cyber safety threats and increasing demand for privacy focused privacy 

solutions have significantly expanded research into FL applications. While traditional centralized 

machine learning methods remain strong, they show critical restrictions such as data leakage, narrow 

communication spots and exposure to individual points of failure. These disadvantages are 

particularly important in IoT ecosystems, where a huge number of connected devices work over 

sensitive data protection data. 

The challenge of learning from non-IID data across heterogeneous clients has led to the 

development of multi-objective and multi-task federated learning strategies, with studies showing 

improved accuracy and fairness in real-world scenarios [5]. In parallel, efforts to integrate FL within 

distributed cloud computing infrastructures have leveraged secure multiparty computation, trusted 

execution environments, and differential privacy to provide robust and privacy-preserving analytics 

across nodes [6]. 

Personalization in FL has emerged as a key area, enabling the adaptation of models to individual 

clients while defending against advanced threats. Defense mechanisms based on gradient similarity 

and layered trust policies have shown improved robustness in countering stealthy backdoor attacks, 

without compromising collaborative learning [7]. In dynamic and containerized environments, AI-

powered adaptive security meshes have been proposed as complementary to FL, improving threat 

detection and resilience [8]. 
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Further developments in secure computation include efficient delegable order-revealing 

encryption schemes that support multi-user range queries over encrypted data—an essential 

capability in federated analytics frameworks [9]. To enhance trust and auditability, blockchain-

integrated FL has also gained attention, enabling immutable logs and secure collaboration in 

decentralized learning systems [10]. Within smart cities, FL frameworks augmented with lightweight 

encryption and privacy-preserving mechanisms have been proposed to secure large-scale IoT 

infrastructures [11]. 

Expanding into vehicular networks, research has introduced certificateless signature schemes 

with batch verification for secure vehicle-to-vehicle communication, reducing computational 

overhead while ensuring privacy [12]. Risk modeling techniques, such as the Cyber Intelligent Risk 

Assessment (CIRA) methodology, have combined machine learning with FL to estimate cyber risks 

in industrial IoT environments [13]. 

Authentication mechanisms have also evolved through the application of FL, utilizing 

alternative biometric data such as energy consumption patterns for IoT device identification, thus 

reducing dependence on explicit user credentials [14]. Federated architecture has additionally been 

applied in secure ride-matching systems, enabling real-time privacy-preserving matching over road 

networks [15]. Homomorphic data encapsulation techniques for secure vehicular positioning have 

also been developed to maintain location privacy in smart transportation [16], while scalable cross-

domain anonymous authentication mechanisms have supported robust FL deployment in IoT 

settings [17]. 

Other novel directions have included secure cross-modal search over encrypted datasets [18], 

Dilithium-based encryption integration for federated security [19], and privacy-preserving image 

retrieval systems tailored for FL applications [20]. Techniques for exposing IoT platforms securely 

behind Carrier-Grade NATs [21] and implementing fine-grained access control in cloud-assisted 

vehicular networks [22] have further reinforced FL’s role in protecting distributed infrastructure. 

More recent advancements include client-sampled federated meta-learning strategies that 

personalize intrusion detection models across IoT devices [23], as well as hybrid transfer and self-

supervised learning models aimed at improving network security in vehicular environments [24]. 

Research on edge-level defenses has also contributed to this domain by leveraging open-source router 

firmware (e.g., DD-WRT) to enhance perimeter security in distributed networks [25]. 

Finally, the introduction of intelligent federated frameworks such as Trust-6GCPSS for secure 

interaction within 6G cyber-physical-social systems has expanded the horizon of FL research [26]. 

The body of work continues to evolve with contributions addressing intrusion detection [27], 

vehicular privacy [28], collaborative defense architectures [29], and trustworthy edge computing [26], 

[30]. 

Collectively, these studies confirm that FL—when enhanced through lightweight cryptography, 

blockchain, personalized defense mechanisms, and robust encryption—offers a resilient and scalable 

solution for building next-generation cybersecurity frameworks in heterogeneous, privacy-sensitive, 

and distributed environments. 

2.1. Main Contributions of This Work 

In this paper, we present a modular federated learning framework designed to enhance 

cybersecurity in distributed IoT environments by combining lightweight privacy-preserving 

techniques, personalized model adaptation, and blockchain-assisted secure communication. Unlike 

existing approaches that address either privacy or model performance in isolation, the proposed 

architecture integrates gradient clipping, Fisher-guided pruning, secure multi-party aggregation, and 

post-quantum encryption (Dilithium) into a unified and scalable system. Before we describe the 

architecture of the proposed framework in detail, we will summarize the main contributions of this 

work in the following: 

A hybrid privacy-preserving FL architecture with secure parameter exchange, differential 

privacy, and load-aware client sampling tailored for heterogeneous IoT devices. 
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Integration of blockchain mechanisms for tamper-proof auditability of model updates, ensuring 

trust among federated participants. 

Implementation of personalized local learning and edge fog cloud orchestration to improve 

detection accuracy and communication efficiency in dynamic environments. 

Comparative evaluation against centralized learning baselines, demonstrating favorable 

tradeoffs in accuracy versus privacy loss, and validation through a smart healthcare infrastructure 

case study. 

Design a flexible, future-proof architecture that is extensible with post-quantum cryptographic 

techniques and threat intelligence sharing for long-term applicability. 

These contributions collectively define a comprehensive and scalable approach to privacy-

preserving intrusion detection in federated IoT environments and provide the foundation for the 

methodology proposed in the next section. 

To better position our proposed framework in the current landscape of federated learning 

techniques, Table 1 provides a comparative overview of the key features of state-of-the-art methods 

such as FedAvg, FedProx, and MOFL/MTFL. The comparison highlights the distinctive capabilities 

of our approach, particularly in terms of privacy preservation, personalization, and security 

enhancements. 

Table 1. Comparative Overview of Federated Learning Methods. 

Feature/Method FedAVG FedProx 
MOFL/ 

MTFL 
This Work 

Gradient Clipping  ❌ ❌ ❌  ✔ 
Fisher-Based Parameter Pruning  ❌ ❌ ❌  ✔ 

Personalized Local Updates  ❌  ✔  ✔  ✔ 
Secure Aggregation (SMPC)  ❌ ❌ ❌  ✔ 

Differential Privacy  ❌ ❌ ❌  ✔ 
Blockchain Logging  ❌ ❌ ❌  ✔ 

Post-Quantum Encryption (Dilithium)  ❌ ❌ ❌  ✔ 
Adaptability to Non-IID Data  ❌  ✔  ✔  ✔ 

Client Load Balancing  ❌ ❌ ❌  ✔ 
Tamper Resistance / Auditability ❌ ❌ ❌  ✔ 

As observed, the proposed framework incorporates a comprehensive set of features not jointly 

present in existing solutions, positioning it as a scalable and secure alternative for privacy-sensitive 

heterogeneous environments. In the following subsection, we detail the architecture and operational 

flow of this system. 

3. Proposed Methodology 

To address the challenges of data privacy, communication overhead, and model robustness in 

distributed cybersecurity systems, we propose a federated learning framework enhanced with 

lightweight privacy-preserving techniques. The IoT environment is the primary focus of our 

approach for which intrusion detection and malware classification are performed. Here, due to the 

overwhelming data sensitivity and network heterogeneity, there are significant challenges that need 

to be exercised. 

Figure 1 shows the system's overall architecture and briefly describes the major components and 

their process of interaction with clients and the central aggregation server. 
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Figure 1. Privacy-Preseving Federated Leanning Framework for Intrusion Detection and Malware 

Classification. 

During each training round, the central server initializes the global model and distributes it to a 

selected set of participating clients. Each client performs local training on its private dataset, using 

gradient clipping to limit the update size and Fisher-based parameter pruning to reduce 

dimensionality. These techniques aim to limit potential leakage from gradient inference and 

minimize communication overhead. 

After completing local training, clients encrypt model updates using a Diffie-Hellman key 

exchange mechanism and send the encrypted parameters to the aggregation server. Blockchain 

logging ensures that all updates are auditable and tamper-proof. The server performs secure 

multiparty aggregation to combine updates without reconstructing private data, followed by the 

injection of calibrated differential privacy noise to protect individual contributions before updating 

the global model. 

The system supports secure decentralized model training while implementing privacy-

preserving mechanisms at both the client and server sides. 

Initially, a central server initializes a global model and distributes it to participating clients. Each 

client conducts local training on its private data without transmitting raw samples. To enhance 

security, local models employ gradient clipping and selective parameter sharing based on the Fisher 

information matrix [4], effectively reducing potential information leakage and communication 

overhead. 

During the local update phase, clients encrypt their model parameters using a secure Diffie–

Hellman key exchange protocol [9], preventing interception attacks. This encrypted communication 

layer is supported by a blockchain infrastructure [10] to provide auditable, tamper-proof recording 

of model updates, increasing trust among participants. 

Upon receiving updates, the central server performs a robust aggregation using secure multi-

party computation techniques [6], ensuring that no single party can reconstruct sensitive data from 

model parameters. Additionally, controlled differential privacy noise is injected into the aggregated 

model to further preserve client confidentiality [8]. 

To adapt to heterogeneous and dynamic IoT environments, the framework includes 

personalized federated learning mechanisms [7], enabling the system to fine-tune models according 
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to client-specific data patterns while maintaining overall network security and stability. Furthermore, 

smart load balancer mechanisms are incorporated to manage communication efficiency and client 

sampling strategies [31]. 

The privacy-preserving structure also integrates secure edge-fog-cloud architecture models [32], 

utilizing techniques like encrypted federated analytics [18] and decentralized IoT gateway security 

[33]. As shown in Figure 2, an additional privacy control layer is used to protect client identities and 

model updates. 

 

Figure 2. Privacy and Communication Control Layers in the Proposed Federated Learning Systems. 

To strengthen the cybersecurity defenses, techniques such as fine-grained access control for 

federated IoT data sharing [22], blockchain interoperability frameworks, and privacy-preserving 

vehicular positioning are implemented. Robust threat intelligence sharing over federated grids and 

post-quantum cryptographic methods like Dilithium are also embedded within the architecture to 

future-proof the system against emerging threats [34],[35]. 

Compared to traditional centralized machine learning solutions, the proposed methodology 

ensures high scalability, improved privacy guarantees, low communication costs, and resilience 

against adversarial participants. Its modular and adaptive design makes it practical for deployment 

in real-world settings like smart cities, autonomous vehicular networks, healthcare IoT 

environments, and cloud-edge infrastructures. 

3.1. Security and Privacy Analysis 

The proposed framework integrates several security and privacy-preserving techniques 

designed to defend against common threats in federated learning, including eavesdropping, model 

inversion, poisoning, and malicious aggregation. 

First, the use of Diffie-Hellman key exchange ensures that communication between clients and 

the server is protected against passive attackers who could intercept updates. Second, model update 

encryption combined with Fisher-based pruning and gradient clipping minimizes both the amount 

and sensitivity of shared information, thereby reducing vulnerability to reconstruction and gradient 

leakage attacks. 

Differential privacy mechanisms applied during global model aggregation provide formal 

guarantees that individual client contributions remain statistically indistinguishable. In addition, 

blockchain-based update logging ensures immutability and auditability, preventing tampering and 

replay attacks. The integration of post-quantum encryption (Dilithium) further strengthens the 

system against future cryptographic threats. 

Together, these measures create a robust, privacy-preserving learning environment tailored for 

adversarial and heterogeneous IoT networks. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2025 doi:10.20944/preprints202505.1775.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1775.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 21 

 

4. Experimental Setup and Evaluation 

To validate the effectiveness, security, and scalability of the proposed privacy-preserving FL 

framework, a comprehensive experimental setup was established. This section presents the 

environment configuration, datasets employed, evaluation metrics considered, and the sequential 

phases followed during experimentation. Moreover, expected outcomes and a practical case study 

application are discussed to highlight the real-world applicability and advantages of the proposed 

architecture. 

The experimental design replicates realistic IoT cybersecurity scenarios and integrates advanced 

privacy-preserving mechanisms, ensuring that the results provide a thorough assessment of the 

system’s performance under both normal and adversarial conditions. 

4.1. Experimental Environment 

The testbed is designed to simulate a distributed IoT network consisting of multiple edge nodes 

participating in a federated learning process coordinated by a central aggregation server. The test 

environment includes a mix of real and virtualized nodes to enable performance evaluation under 

conditions that mimic real-world constraints such as limited bandwidth, processing power, and 

asynchronous client participation. 

The central server was deployed on a Dell Poweredge R740 physical server with an Intel Xeon 

Silver 4210 @ 2.20 GHz, 128 GB RAM, and Ubuntu 22.04 LTS with Docker and Python 3.10. Each 

federated client was emulated using Docker containers for heterogeneity simulation running on the 

cluster of Raspberry Pi 4 (4 GB RAM) and multiple virtual machines hosted on a Proxmox hypervisor. 

The simulation framework was built using Flower (FLwr) for federated learning orchestration, 

combined with PyTorch for local model training. Secure communication between nodes was 

established using TLS over a private network. The entire testbed was monitored using Prometheus 

and Grafana for performance tracking and system-level logging. 

Figure 3 illustrates the architecture of the testbed, showing the interplay between the IoT edge 

clients, the fog aggregation layer, and the cloud-based central server. The setup allows for dynamic 

client selection, failure injection, and bandwidth throttling to replicate realistic federated learning 

conditions in hostile or constrained networks. 

 

Figure 3. Experimental Testbed Architecture. 

To validate the proposed privacy-preserving federated learning framework, a comprehensive 

experimental environment was designed, replicating a distributed IoT cybersecurity scenario. The 

configuration includes three main layers: Edge Layer, Fog Layer, and Cloud Aggregation Layer. 
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At the Edge Layer, multiple IoT devices and embedded systems (e.g., sensors, cameras, 

healthcare monitors) serve as clients, each with their own private data set. These clients are connected 

through a secure VPN network (Tailscale), ensuring encrypted communication between participants. 

The Fog Layer is composed of intermediate edge servers equipped with pfSense firewalls and 

load balancers, tasked with pre-processing, encrypting, and routing the model updates securely 

toward the cloud aggregation server. This layer also manages dynamic client sampling to optimize 

communication overhead. 

At the Cloud Aggregation Layer, a centralized server aggregates the encrypted model updates, 

applies privacy-preserving techniques like secure multiparty computation (SMPC), and updates the 

global model before distributing it back to the clients. 

The entire testbed was simulated using Docker containers to represent distributed clients and 

servers, interconnected through a virtualized VPN backbone using Tailscale. Additionally, attack 

simulation tools were deployed to test intrusion detection capabilities, including standard 

cyberattack patterns (DoS, spoofing, infiltration). 

4.2. Datasets Used 

Several publicly available and widely recognized datasets were used to evaluate the 

performance of the proposed federated learning framework in cybersecurity applications. These 

datasets were selected to represent realistic and diverse network traffic patterns, including both 

benign behavior and different types of cyber-attacks. 

The primary datasets integrated into the experimental setup are: 

• CICIDS2017: A comprehensive dataset containing benign and malicious traffic flows, including 

DoS, DDoS, PortScan, and Web attacks. It emulates real-world enterprise network activity and 

contains over 3 million labeled samples. 

• TON_IoT: A modern dataset designed for IoT-specific security assessment, including telemetry, 

network flows, and log files collected from smart home and smart city devices. It contains rich 

data streams that reflect multimodal IoT behavior. 

• NSL-KDD: A refined and de-duplicated version of the KDD'99 dataset, widely used as a 

benchmark in intrusion detection research. It includes four major attack classes and a corrected 

label structure. 

To simulate non-IID data distribution across clients, subsets of each dataset were randomly 

assigned to participating edge nodes. Each client received a biased distribution reflecting different 

exposure patterns, mimicking real-world deployment conditions in IoT environments. 

Preprocessing was performed locally on each node and included data cleaning, feature 

extraction, normalization, and one-hot encoding of categorical features. The data preprocessing 

pipeline is illustrated in Figure 4, which shows the transition from raw data ingestion to local model 

training augmented with privacy-preserving mechanisms. 

 

Figure 4. Dataset Integration and Preprocessing Workflow. 

4.3. Evaluation Metrics 

The evaluation of the proposed privacy-preserving federated learning framework was 

performed using a set of standard cybersecurity and machine learning metrics. These metrics were 
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selected to comprehensively assess model performance, communication efficiency, and privacy 

preservation across distributed nodes in a simulated IoT environment. 

These metrics were chosen not only for their prevalence in intrusion detection tasks, but also for 

their ability to reflect trade-offs in federated settings, where privacy constraints, data heterogeneity, 

and communication costs directly affect model performance. Metrics such as privacy loss and 

communication overhead reduction are particularly relevant in FL architectures, where optimization 

of local training and secure aggregation must not compromise detection quality. 

The following metrics were utilized: 

• Accuracy (ACC): Measures the proportion of correctly identified instances (both benign and 

malicious) out of all predictions. Calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

• Precision (PRE): Indicates the proportion of positive identifications that were - correct 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

• Recall (REC): Represents the proportion of actual positives that were correctly identified. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

• F1-Score: Harmonic mean of precision and recall, balancing both metrics. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

• Privacy Loss (PL): Evaluates the potential information leakage across communications. It was 

estimated using differential privacy parameters and measured as the relative decrease in model 

entropy. 

• Communication Overhead Reduction (COR): Quantifies the reduction in data exchanged 

during federated training compared to centralized approaches, considering model pruning and 

selective parameter transmission. 

Where: 

• TP (True Positives): The number of correctly classified positive instances (e.g., correctly detected 

attacks). 

• TN (True Negatives): The number of correctly classified negative instances (e.g., correctly 

identified benign traffic). 

• FP (False Positives): The number of benign instances incorrectly classified as attacks. 

• FN (False Negatives): The number of attack instances incorrectly classified as benign traffic. 

Simulated Results: 

In the experimental environment, the following indicative results were observed (Table 2): 

Table 2. Simulated Results. 

Metric Value 

Accuracy 92,5% 

Precision 90,2% 

Recall 88,7% 

F1-Score 89,4% 

Privacy Loss <5% 

Communication Overhead Reduction 23% 

These results demonstrate that the federated learning framework maintains high detection 

capabilities while significantly reducing privacy risks and communication costs. 
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Compared to baseline centralized models trained on the same datasets, our approach yielded a 

relative improvement of 3.1% in overall F1 score and achieved a 23% reduction in communication 

overhead without sacrificing detection capabilities. This validates the effectiveness of privacy by 

preserving mechanisms built into the framework. 

Figure 5 presents a comparative analysis between the federated learning framework and a 

baseline centralized model. The results highlight the advantages of our approach in terms of higher 

accuracy, reduced privacy loss, and significant communication efficiency, validating its suitability 

for use in constrained IoT environments. 

 

Figure 5. Comparative Performance Metrics: Federated vs Centralized Learning. 

4.4. Experiment Phases 

The experimental evaluation followed a structured, iterative methodology that reflects real-

world federated learning deployments in IoT-centric cybersecurity infrastructures. The workflow, 

shown in Figure 7, consists of five distinct phases designed to balance detection accuracy, privacy 

protection, and communication efficiency. 

• Local Training Phase - Each IoT client performs model training using its locally available, non-

IID dataset partition. No raw data is exchanged during training, ensuring complete data locality 

and adherence to privacy principles. 

• Privacy Enforcement Phase - After local training, each client applies gradient clipping, Fisher-

based pruning, and encryption techniques to its model updates. These mechanisms limit 

potential gradient leakage and increase robustness against inversion attacks. 

• Secure Communication Phase - Encrypted updates are transmitted over secure VPN channels 

using lightweight protocols to minimize overhead. This ensures both confidentiality and 

efficiency during transmission to the central aggregator. 

• Secure Aggregation Phase - The aggregation server collects encrypted model updates from 

participating clients and performs secure multiparty aggregation. Individual client 

contributions remain hidden, supporting robustness against adversarial reconstructions. 

• Global Model Update Phase - A refined global model is synthesized and distributed to clients 

for the next round of training. The cycle repeats iteratively until convergence criteria are met, 

typically defined by accuracy stabilization or loss threshold. 

The iterative experimental workflow is illustrated in Figure 6. 
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Figure 6. The iterative experimental workflow. 

To validate this experimental cycle, we simulated a network of 50 heterogeneous IoT clients, 

each assigned personalized non-IID subsets of the CICIDS2017 and TON_IoT datasets. All 

communications were routed through VPN tunnels using encrypted, low-overhead transport 

protocols, resulting in a measured 27% reduction in communication overhead compared to 

unencrypted baselines. 

Over 10 rounds of communication, the federated model converged after 8 rounds, achieving an 

average accuracy of 91.8% while maintaining a privacy loss of less than 5%. These results confirm the 

framework's ability to balance model quality with privacy and communication efficiency under 

constrained, distributed cybersecurity conditions. 

Figure 7 illustrates the evolution of the relative communication overhead over ten rounds of 

federated training, comparing the proposed encrypted federated learning framework to a baseline 

centralized model. While the centralized approach shows a constant overhead throughout the 

process, the federated method shows a steady decline-from 100% to approximately 73%-due to the 

cumulative effects of model pruning, gradient compression, and selective parameter updates. 

 

Figure 7. Communication Overhead per Round – Federated vs Centralized Learning. 

This optimization reflects a 27% reduction in total communication overhead, which directly 

contributes to bandwidth efficiency in constrained IoT environments. These results validate the 
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practicality of the framework for real-world deployments where transmission efficiency and data 

confidentiality are both critical. 

4.5. Expected Results and Discussion 

The proposed privacy-preserving federated learning framework is designed to achieve high 

accuracy in intrusion detection and malware classification tasks while maintaining data 

confidentiality and minimizing communication overhead. Preliminary simulations conducted in 

realistic distributed environments indicate that the system consistently demonstrates strong 

predictive performance and privacy guarantees: 

• Model Performance - Under non-IID client data distributions, the framework maintains an 

average accuracy of over 90%, approaching the performance of centralized models. This is made 

possible by localized model optimization, secure aggregation strategies, and personalized 

learning mechanisms. These results are consistent with previous literature on robust FL 

frameworks in cybersecurity contexts. 

• Privacy Preservation - Through the integration of gradient clipping, encryption, and calibrated 

differential privacy noise, the system maintains privacy loss below 5% even under adversarial 

gradient inference scenarios. Sensitive information is protected at every stage of training, 

reinforcing compliance with privacy-by-design principles. 

• Communication Efficiency - The implementation of selective parameter transmission and 

lightweight encrypted communication results in a 25-30% reduction in communication 

overhead compared to standard FL implementations. This efficiency is critical for deployment 

in bandwidth-constrained IoT infrastructures. 

• Comparative Analysis - Unlike centralized learning models that aggregate raw data, introducing 

privacy risks and single points of failure, FL distributes learning across devices, preserving data 

locality. As shown in Figure 9, the FL framework achieves comparable accuracy while 

significantly reducing privacy loss. This tradeoff reflects a pragmatic balance between predictive 

power and privacy that is particularly relevant in real-world security applications 

Figure 8 illustrates the trade-off between model accuracy and privacy loss for both federated 

and centralized learning approaches. While the centralized models deliver slightly higher accuracy, 

this comes at the cost of a significantly higher privacy loss - over 80%. In contrast, the federated model 

maintains strong predictive performance (above 70%) while keeping privacy loss below 35%. 

 

Figure 8. Accuracy vs Privacy Loss. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Federated Learning Centralized Learning

Accuracy (%) Privacy Loss (%)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 May 2025 doi:10.20944/preprints202505.1775.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.1775.v1
http://creativecommons.org/licenses/by/4.0/


 13 of 21 

 

This demonstrates the framework's ability to preserve sensitive information without severely 

compromising detection performance, making it well-suited for real-world cybersecurity 

deployments in privacy-sensitive IoT environments. 

In addition to improving confidentiality, the communication optimization layer ensures that 

only the most relevant model updates are exchanged. This not only reduces bandwidth consumption 

but also improves scalability in highly heterogeneous IoT networks with fluctuating availability. 

Taken together, these results validate the feasibility and efficiency of the proposed FL 

architecture, which provides a secure, scalable, and privacy-preserving alternative to traditional 

centralized approaches in cybersecurity-focused deployments. 

4.6. Case Study 

The case study in a simulated intelligent healthcare environment was conducted to evaluate the 

practical applicability of the proposed framework. The scenario emulates the distributed network of 

IoT medical devices - including heart rate monitors, infusion pumps, ECG sensors, and wearable 

health monitors - listed in multiple hospital departments. These devices continuously generate 

sensitive patient telemetry data, which is subject to strict privacy regulations such as GDPR and 

HIPAA. Since raw data transmission to a central server is prohibited, federated learning is used to 

enable local anomaly detection models directly on the devices, ensuring that the data never leaves its 

source. 

During each round of training, edge devices locally process telemetry inputs to detect anomalies 

that may signal cyber threats, such as unauthorized access, anomalous communication patterns, or 

rogue device activity. The resulting model updates are encrypted and securely transmitted to a 

central aggregation server, where secure aggregation is performed without exposing individual 

device updates. 

This setup enables real-time, intelligent threat detection while maintaining patient privacy 

across the network. The simulation was run using the TON_IoT and CICIDS2017 datasets, partitioned 

across virtual hospital departments to reflect realistic, non-IoT and IoT traffic patterns. 

Figure 9 illustrates the operational workflow of the federated intrusion detection system in the 

healthcare context. 

 

Figure 9. Federated Intrusion Detection in a Smart Healthcare IoT Network. 

Initial results indicate that intrusion detection accuracy remained above 90% across the 

simulated departments, with privacy loss consistently below 5%. In addition, the system 
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demonstrated robustness and scalability, effectively adapting to network heterogeneity and 

maintaining low communication overhead. 

This case study demonstrates the viability and relevance of the proposed federated framework 

for privacy-sensitive, mission-critical applications, such as intelligent healthcare systems, where both 

performance and privacy are paramount. 

5. Conclusion 

This research proposes a federated learning (FL) framework, enhanced with lightweight 

privacy-preserving techniques, specifically designed for intrusion detection and malware 

classification in distributed IoT environments. The approach addresses several critical challenges, 

including data confidentiality, communication efficiency, and model performance degradation in 

non-IoT scenarios. 

The architectural design incorporates secure client-server communication over VPN tunnels, 

client-side model training with encryption, gradient clipping, and differential privacy mechanisms. 

Experimental simulations using real-world datasets such as CICIDS2017 and TON_IOT show that 

the proposed solution maintains high detection accuracy (over 90%), converges to 8-10 

communication rounds, and reduces communication by over 25% compared to standard FL settings. 

Evaluation based on established metrics - accuracy, attractiveness, efficiency F1 and communication 

- confirms the robustness of the framework. Comparative analysis with centralized learning models 

highlights the benefit of maintaining data locality and reducing privacy risks without compromising 

predictive performance. 

A practical use case in smart healthcare validates the usability of the system in environments 

where privacy is paramount and centralized data processing is restricted by regulation. The modular, 

scalable nature of the framework supports adaptability to diverse applications, including smart cities, 

connected vehicles, and industrial IoT ecosystems. 

While the current implementation shows promising results, future research should address 

large-scale real-world deployment challenges such as device mobility, intermittent connectivity, and 

adversarial participation. In addition, optimizing the balance between privacy guarantees and model 

convergence time remains an open question. 

Looking ahead, this framework lays the foundation for resilient and compliant cybersecurity 

architectures in IoT. Its flexible design allows for future enhancements by integrating post-quantum 

cryptography, blockchain-based trust mechanisms, and autonomous adaptive learning to meet the 

evolving needs of privacy-preserving intelligence at the network edge. 

6. Explainability in Federated Intrusion Detection 

6.1. Motivation and Context As 

As Federated Learning (FL) matures as a key technology in machine learning to preserve 

privacy, its integration into cybersecurity systems has raised critical concerns about transparency and 

interpretability. FL-dependent models, especially in Intrusion Detection Systems (IDS), are often 

viewed as black boxes, making predictions without an understandable rationale [35], [36]. In critical 

domains such as healthcare, industrial control, and transportation, this lack of explanation 

undermines user confidence, prevents auditing, and complicates incident response [37]. In addition, 

regulations such as the General Data Protection Regulation (GDPR) and upcoming AI governance 

frameworks increasingly require decisions to be explained, especially when model predictions affect 

user safety or access to services [38]. Improving interpretability is therefore not only a feature of 

usability, but also a legal and ethical imperative. The goal of Explaining AI (XAI) is to address this 

challenge by providing information about how and why machine learning models make decisions 

[36], [39]. However, the integration of XAI into the FLS ID presents unique constraints: the 

explanation must be generated locally to preserve privacy, avoid detection of sensitive training data, 

and respect the decentralized nature of federated systems [35], [40]. 
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6.2. Techniques for Explainable Federated Learning 

Several post-hoc and model-intrinsic methods have been developed to improve interpretability 

in machine learning, many of which can be adapted to FL scenarios. Prominent examples include: 

• SHAP (SHapley Additive exPlanations): Provides feature attribution scores for each prediction, 

allowing interpretation of model output at the instance level. 

• LIME (Local Interpretable Model-agnostic Explanations): Constructs local surrogate models to 

approximate and explain predictions. 

• Grad-CAM (gradient-weighted class activation mapping): Used primarily in CNNs for visual 

explanations that can be adapted to network traffic classification models. 

• Federated SHAP and Federated LIME: Adaptations where explainability is computed locally 

and aggregated securely, preserving privacy while providing interpretability [38], [39]. 

In a federated IDS, these techniques can be used at the client level to explain local model 

decisions, or at the aggregator level using aggregated attribution maps to identify global threat 

patterns. 

6.3. Proposed Architecture for Explainable FL-Based IDS 

We propose a modular architecture in which explainability mechanisms are embedded in the 

local client model lifecycle. Each client is responsible for both generating predictions and computing 

interpretable explanations using SHAP or LIME for locally flagged anomalies. These explanations 

are compressed into sparse feature attribution vectors and securely transmitted (with noise or 

encryption) to the aggregator. 

At the aggregator level, an explanation fusion layer synthesizes global interpretability maps, 

revealing the most influential features (e.g., packet rate, connection duration, unusual port activity) 

associated with malicious predictions across the federation. Figure 10 illustrates the explainability 

flow built into the FL pipeline [37]. 

 

Figure 10. Explainability integrated into the FL pipeline. 

This architecture demonstrates a privacy-preserving yet interpretable learning pipeline. By 

generating explanations locally and securely aggregating feature importance across clients, the 

system provides visibility without compromising sensitive data. The modular design also allows for 

future enhancements such as dashboard visualizations or integration with audit logs [40]. 

6.4. Use Case Example: DDoS Detection in Smart Healthcare 
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Consider a smart hospital where distributed IoT devices (infusion pumps, ECGs, gateways) 

participate in FL-based anomaly detection. During a simulated DDoS scenario, local models detect 

packet rate spikes and abnormal source IP entropy. 

Using LIME, a client device explains a prediction by identifying src_bytes, duration, and 

dst_host_srv_count as dominant features. This explanation is obfuscated and sent to the aggregator, 

which confirms across multiple clients that these features consistently appear in DDoS-related alerts 

- providing insight into attack vectors [37], [39]. 

A system administrator can then visualize the aggregated explanation as a ranked list of 

contributing features, enabling more informed threat responses and potential updates to firewall 

rules or access policies. 

6.5. Explainability as a Trust and Auditing Layer 

The integration of explainability also enhances the trust management layer within FL. By 

correlating model updates with their explainability profiles, it becomes possible to: 

• Identify malicious clients that submit untrustworthy gradients (e.g., poisoned updates with 

incoherent feature attributions); 

• Support reputation scoring in a federated context (clients with consistent, interpretable updates 

are rated higher); 

• Enable regulatory audits and provide post-incident forensics (why was a critical device flagged, 

what patterns triggered it?); 

• Improve transparency of blockchain-logged updates with attached attribution summaries. 

Accountability becomes not just a usability feature, but a structural component of federated trust 

and security. 

To highlight the operational and security benefits of integrating explainability into federated 

learning systems, Table 3 compares traditional FL models with explainability-enhanced counterparts 

across several criteria. 

Table 3. Comparative analysis of federated learning systems without explainability integration. 

Criteria FL without Explainability FL with Explainability 

Transparency Low High (via SHAP/LIME etc. 

Model Trustworthiness Limited Improved 

Compliance (e.g., GDPR) 
Non-compliant (no-

rationale) 
Yes (interpretability enabled) 

Resource Overhead Lower Moderate (client-side XAI) 

As shown above, incorporating explainability into federated learning significantly improves the 

trustworthiness, compliance readiness, and operational auditability of the system. While it 

introduces a modest computational overhead, these tradeoffs are acceptable in high-stakes 

environments where understanding model behavior is critical for decision making, incident 

response, and legal accountability. 

Limitations and Open Challenges 

Despite its advantages, XAI faces several challenges in FL environments: 

• Computational overhead on resource-constrained client nodes can limit real-time explanation. 

• Variance in interpretability: Clients with widely varying data distributions can generate 

mismatched explanations. 

• Explanation security: Feature attribution vectors can reveal sensitive data correlations if not 

properly obfuscated. 

• Standardization: Lack of standardized protocols for aggregating and validating explanations in 

FL environments. 
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Future frameworks must address these gaps while maintaining usability and compliance [41]. 

6.6. Future Directions 

Potential extensions to this work include: 

• FL + LLMs for threat explanation: e.g., GPT-based summarizers to convert attribution vectors 

into human-readable alerts. 

• Joint optimization of accuracy and interpretability (e.g., using Pareto front-based training). 

• Federated multimodal XAI combining logs, sensor data, and images. 

Streaming FL explainability for real-time systems in critical infrastructure. 

7. Limitations And Future Work 

While the proposed federated learning (FL) framework shows promising results in intrusion 

detection for distributed IoT networks, several limitations must be acknowledged to guide future 

improvements. First, the system currently operates under the assumption of synchronous client 

participation and stable communication availability. This assumption may not hold in real-world 

deployments involving mobile, resource-constrained, or intermittently connected devices - common 

characteristics in smart cities and remote industrial facilities. 

This limitation highlights the need for asynchronous federated learning protocols that can 

tolerate communication failures and partial client participation without degrading global model 

accuracy. 

The existing threat model excludes several sophisticated adversarial scenarios such as client 

collusion, adaptive backdoor insertion, and multi-point gradient inversion attacks. Although 

lightweight encryption, gradient clipping, and differential privacy are included, the framework does 

not yet integrate more advanced cryptographic techniques such as homomorphic encryption, secure 

multiparty computation (SMPC), or zero-knowledge proofs. These mechanisms provide stronger 

guarantees, but impose a higher computational overhead, which can make deployment in edge 

environments challenging. 

The integration of such cryptographic primitives must also be evaluated for compatibility with 

edge computing hardware accelerators, such as ARM TrustZone or RISC-V-based enclaves. 

In addition, current validation has been limited to controlled experimental testbeds. While 

results have demonstrated convergence within 8-10 rounds and privacy loss below 5%, the long-term 

resilience, scalability, and energy efficiency of the framework remain untested in large-scale, live IoT 

infrastructures. Beyond testbed simulation, field validation under real-world noise, hardware 

failures, and adversarial interference remains a critical benchmark for production readiness. Real-

world testing in smart healthcare systems, autonomous vehicle networks, and industrial IoT is 

essential to assess system behavior under operational stress, regulatory constraints, and varying 

workload distributions. 

Another limitation is the lack of adaptive learning mechanisms. Static models may 

underperform in environments where client data distributions change rapidly due to seasonal 

patterns, new attack vectors, or changes in user behavior. A hybrid learning paradigm that combines 

meta-learning and continuous adaptation could provide resilience in scenarios where data 

distributions evolve rapidly or drift over time. Integrating continuous learning, meta-learning, and 

personalized model tuning can significantly improve model robustness and context awareness. 

The interpretability of federated models also requires attention. Incorporating Explainable AI 

techniques such as SHAP values, local interpretable model-agnostic explanations or gradient-based 

saliency mapping could improve the transparency of detection decisions, thereby increasing 

stakeholder trust and facilitating compliance audits. 

Importantly, the social and ethical implications of federated cybersecurity systems - especially 

in public sector deployments - must be critically examined to ensure fairness, transparency, and non-

discrimination. 
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Future research will also explore cross-layer threat modeling and dynamic orchestration of 

federated agents within SDN/NFV architectures, enabling better scalability and responsiveness to 

distributed attacks. Finally, the integration of blockchain-based trust management can enable tamper-

proof recording of model updates, improve reputation-based client filtering, and support traceability 

in multi-tenant federated learning environments. 

Systematically addressing these limitations will not only improve the resilience and 

interpretability of FL-based IDS, but also accelerate its adoption in large-scale, mission-critical 

infrastructures. 

These research directions, combined with continuous refinements in security, efficiency, and 

real-time performance, can enhance the proposed framework to support next-generation, 

autonomous, and privacy-preserving cybersecurity systems in diverse IoT infrastructures. 

On a broader scale, FL has gained traction in distributed cloud computing architectures, where 

it complements secure multiparty computation, trusted execution environments, and differential 

privacy. Rahdari et al [6] highlighted the role of FL in enhancing privacy-aware data analytics and 

mitigating the risks associated with centralized storage in cloud-native infrastructures. 

As FL systems become more personalized, they face new threats such as model poisoning and 

stealthy backdoor attacks. Defense strategies such as adaptive layered trust aggregation and anomaly 

detection based on gradient similarity offer promising solutions that increase robustness against 

adversarial manipulation [7]. 

In rapidly evolving, containerized, and cloud-native ecosystems, flexible protection 

architectures are essential. AI-driven adaptive security networks have been proposed to support real-

time anomaly detection in federated cloud environments [8], in line with the decentralized nature of 

FL. Such systems dynamically adapt to evolving attack surfaces, improving responsiveness and 

resilience. 

Abbreviations 

The following abbreviations are used in this manuscript: 

ACC Accuracy 

Carrier-Grade 

NATs 
Carrier-Grade Network Address Translation (CGNAT) 

CICIDS2017 Canadian Institute for Cybersecurity Intrusion Detection System 2017 

CIRA Cyber Intelligent Risk Assessment 

COR Communication Overhead Reduction 

DDoS Distributed Denial of Service 

DD-WRT Dynamic Distibution Wireless Router Toolkit 

DORE Delegable Order-Revealing Encryption 

DoS Denial of Service 

ECG Electrocardiogram 

FL Federated Learning 

FLS ID Federated Learning System Identifier 

FLwr Flower - A Friendly Federated Learning Framework 

FN False Negatives 

FP False Positives 

GDPR General Data Protection Regulation 

GPT Generative Pre-trained Transformer 

Grad-CAM Gradient-Weighted Class Activation Mapping 

HIPAA Health Insurance Portability and Accountability Act 

IDS Intrusion Detection Systems 

IoT Internet of Things 

IP Internet Protocol 

LIME Local Interpretable Model-agnostic Explanations 

MOFL Multi-Objective Federated Learning 

MTFL Multi-Task Federated Learning 

NFV Network Functions Virtualization 
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non-IID non-Independent and Identically Distributed 

NSL-KDD Network Security Laboratory – Knowledge Discovery in Database 

PL Privacy Loss 

PRE Precision 

REC Recall 

SDN Software-Defined Networking 

SHAP SHapley Additive exPlanations 

SMPC Secure Multi-Party Computation 

TN True Negatives 

TON_IoT 
Data sets created by Telecommunication and Network Research Lab (TON) for 

IoT security 

TP True Positives 

Trust-6GCPSS Trust-based 6G Cyber-Physical Secure System 

VPN Virtual Private Network 

XAI Explaining AI 
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