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Highlights

What are the main findings?

¢ A flexible hybrid ensemble was proposed for photovoltaic (PV) power forecasting.

® The ensemble dynamically selects among diverse models for each prediction instance.

What is the implication of the main finding?

e The model achieves state-of-the-art performance in both accuracy and robustness.

e Evaluation on four real PV plants in South Korea shows strong generalization across different test
sizes and CV splits.

Abstract

As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy
sources have gained significant attention. Solar energy stands out due to its low installation costs and
suitability for deployment. However, solar power generation remains difficult to predict because of
its dependence on weather conditions and decentralized infrastructure. To address this challenge,
this study proposes a flexible hybrid ensemble (FHE) framework that dynamically selects the most
appropriate base model based on prediction error patterns. Unlike traditional ensemble methods
that aggregate all base model outputs, the FHE employs a meta-model to leverage the strengths
of individual models while mitigating their weaknesses. FHE is evaluated using data from four
solar power plants and is benchmarked against several state-of-the-art models and conventional
hybrid ensemble techniques. Experimental results demonstrate that the FHE framework achieves
superior predictive performance, improving Mean Absolute Percentage Error by 30% compared to
the SVR model. Moreover, the FHE model maintains high accuracy across diverse weather conditions
and eliminates the need for preliminary validation of base and ensemble models, streamlining the
deployment process. These findings highlight the FHE framework’s potential as a robust and scalable
solution for forecasting in small-scale distributed solar power systems.

Keywords: solar forecasting; hybrid ensemble; meta-learning; meta-modelling; solar energy systems;
renewable integration; prediction error analysis

1. Introduction

Despite the continuous rise in global electricity demand, environmental concerns associated with
fossil fuel consumption are becoming increasingly critical [1]. This has driven a growing global interest
in sustainable energy alternatives, including solar, wind, hydro, and tidal power, collectively termed
Renewable Energy Sources (RES) [2,3]. Among these, solar energy stands out due to its widespread
availability and suitability for deployment in urban environments [4]. Recent technological advances
have significantly improved the conversion efficiency of photovoltaic (PV), positioning solar energy as
one of the most rapidly adopted RES options [5,6].
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As a result, Solar Power Generation (SPG) has maintained its status as the fastest growing electric-
ity source for the 18th consecutive year, with a 24% increase in capacity compared to 2021—reaching
approximately 861 GW globally [7]. However, the inherently variable nature of solar energy presents
unique challenges for the integration of the power system [8]. SPG output is highly sensitive to
meteorological conditions, leading to significant fluctuations in electricity production. Consequently,
accurate solar power forecasting is essential to reduce uncertainty, improve economic viability, and
ensure reliable power grid operation through efficient integration of renewable sources [9].

Forecasting in SPG is essential for effective grid integration and is commonly categorized into four
primary approaches: physical, statistical, machine learning (ML), and hybrid or ensemble methods
[10,11]. In addition to methodological classification, forecasts are also distinguished by their temporal
horizon—typically divided into short-term (1 hour to 1 week), medium-term (1 week to 1 month), and
long-term (beyond 1 month) predictions [12]. However, it is important to note that these definitions
are not universally standardized. For instance, some studies propose a four-tier classification: very
short-term (up to 1 day), short-term (up to 2 weeks), medium-term (up to 3 years), and long-term
(up to 30 years) [13,14]. This variation highlights the lack of consensus in the literature regarding
forecasting horizon definitions.

Physical models rely on mathematical modeling and Numerical Weather Prediction (NWP) sys-
tems to simulate the physical processes affecting solar irradiance. These models incorporate variables
such as temperature, atmospheric pressure, solar angles and cloud cover [15,16]. They are particularly
effective for long-term and large-scale forecasting but require high-resolution environmental data and
significant computational resources. Representative examples include radiative transfer models, the
P-persistent model, and satellite-based forecasting systems [17-20]. Despite their accuracy, physical
models often face challenges related to calibration, spatial resolution, and model complexity [21].

Statistical approaches use historical data to identify patterns and trends in solar power output [22].
Common techniques include autoregressive (AR), moving average (MA), and their extensions such
as ARIMA and SARIMA, which address non-stationarity through differencing [23-26]. While these
models are computationally efficient and relatively easy to implement, they are fundamentally limited
by their reliance on linear assumptions and their inability to adapt to rapidly changing environmental
conditions.

In the context of SPG, where input variables such as irradiance, temperature, and cloud cover
exhibit strong non-linear and non-stationary behavior, statistical models often fail to capture the
underlying dynamics accurately [27,28]. Moreover, traditional statistical models are typically static in
nature, i.e. they do not incorporate mechanisms for dynamically adjusting to new data patterns or
site-specific characteristics. This rigidity makes them unsuitable for distributed solar power systems,
where forecast conditions can vary significantly between locations.

Recent advancements in power systems and the exponential growth of data availability have
positioned ML and deep learning (DL) as powerful tools for addressing the non-linearity inherent in
environmental variables affecting SPG forecasting [29,30]. Regression-based, tree-based, and ensemble
models have demonstrated strong performance across various locations and forecasting horizons
[31-33].

DL models, particularly neural networks such as Recurrent Neural Networks (RNNs) and Con-
volutional Neural Networks (CNNs), have shown promising results in time series forecasting tasks
[34,35]. RNNs are well-suited for sequential data, while CNNs are effective in capturing long-term
dependencies [36]. However, the performance of these models is highly dependent on the quality and
characteristics of the training data [37]. Variability in forecast accuracy often arises when models are
applied across datasets from different PV plants, due to differences in module characteristics, data
resolution, and environmental conditions [38].

To overcome the limitations of individual models, hybrid or ensembling approaches that integrate
physical, statistical, ML, and DL methods have gained prominence in SPG prediction and forecasting
[39-41]. These methods often employ ensemble techniques such as boosting [42], bagging [43],
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and stacked generalization (meta-learning) [44] to combine the strengths of diverse models and
reduce prediction uncertainty [45,46]. Boosting and bagging improve performance by reweighting or
aggregating predictions from multiple models. Meta-learning, in particular, trains a meta-model on
the outputs of several base models, leveraging their complementary strengths while reducing bias and
variance [47,48]. Stacking uses cross-validation (CV) to generate meta-features, while blending relies
on a hold-out validation set. Though similar in principle, their key distinction lies in how training data
is allocated.

Nevertheless, the incorrect model selection can significantly compromise SPG forecast accuracy
due to the unique sensitivities of each algorithm, making it crucial to use a model that best fits the
given data. Thus, numerous hybrid models have been proposed in this field. For instance, a day-ahead
forecasting model combining wavelet transformation, support vector machines (SVM), and particle
swarm optimization (PSO) has shown improved accuracy [49]. Other examples include multi-model
ensembles that integrate statistical models with artificial neural networks (ANN) using numerical
weather data [50], and advanced ML-only hybrids such as ANN-XGBoost-Ridge regression ensembles
or the Transformer-LUBE-GRU framework for deterministic day-ahead forecasting [51,52].

Despite their advantages, hybrid models are not without limitations. They may inherit the
weaknesses of their constituent models, particularly when less accurate models are included in the
ensemble [33]. Moreover, hybrid systems often rely on pre-tested base models, reducing flexibility and
adaptability [53]. Even when individual models perform well, their combination does not guarantee
improved results, necessitating careful evaluation of the ensemble’s overall performance [54].

These limitations are particularly pronounced in the context of SPG forecasting. One of the key
advantages of solar power plants is their geographical flexibility, as they can be deployed in a wide
range of environments—including urban, rural, and remote areas—without the spatial and scale
constraints typically associated with other energy sources [4]. However, this flexibility introduces
significant forecasting challenges due to the resulting heterogeneity in environmental conditions and
solar exposure.

Each solar power plant operates under distinct meteorological and operational contexts, which
leads to variability in the availability, resolution, and quality of input data. For example, the types
and frequency of weather measurements—such as solar irradiance, temperature, humidity, and
cloud cover—can differ substantially depending on the location and the instrumentation used [55].
Additionally, the data collection methods and infrastructure (e.g., ground-based sensors vs. satellite
data) vary across sites, influencing both the selection and performance of forecasting models.

This distributed and heterogeneous nature of SPG systems demands forecasting models that
are both highly adaptable and context-aware. Fixed-output or static models often fail to generalize
across different sites, as they are typically optimized for specific data distributions and environmental
conditions. As a result, a hybrid ensemble model that performs well for one solar power plant may
not achieve the same level of accuracy when applied to another, even if the underlying modeling
framework remains unchanged [56]. These challenges underscore the need for flexible ensemble
frameworks capable of dynamically adapting to local data characteristics and operational constraints,
rather than relying on a one-size-fits-all approach.

An approach that can be tailored to the specific attributes of each site is essential to overcoming
the challenge of developing a universally effective forecasting solution. The heterogeneity of envi-
ronmental conditions, data availability, and system configurations across solar power plants makes it
difficult for conventional models to generalize effectively. This underscores the need for a flexible and
adaptive forecasting framework capable of dynamically adjusting to site-specific characteristics.

To address these challenges, this study proposes the Flexible Hybrid Ensemble (FHE) Framework,
designed to overcome the limitations of traditional hybrid ensemble methods. It reduces reliance
on pre-tested model combinations, increases robustness to data variability across different sites, and
enables the inclusion of diverse models without compromising overall performance. Furthermore, it
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adapts dynamically to local environmental and operational conditions, making it particularly well-
suited for distributed solar power systems. Key innovations and contributions include:

1.  Selective Model Utilization: The FHE Framework avoids the common pitfall of performance
degradation caused by underperforming models by not mandatorily integrating all base models
into the final prediction. Instead, it selectively includes only those models that are expected to
contribute positively to forecasting accuracy. This eliminates the need for exhaustive pre-testing
of individual models and enhances the framework’s adaptability across different sites.

2. Error-Based Meta-Modeling: A central innovation of the FHE Framework is its use of an error-
informed meta-model. Unlike traditional meta-models that rely solely on base model outputs, the
FHE meta-model incorporates both historical prediction errors and environmental variables to
estimate the expected performance of each base model under specific conditions. This allows the
system to dynamically assess and select the most suitable models for each forecasting instance.

3. Dynamic Base Model Selection: The framework predicts the expected error of each base model
for a given input and selects the subset of models most likely to yield accurate predictions. This
instance-specific selection enables the ensemble to adapt its configuration in real time, leveraging
even models that may perform poorly on average but excel under certain conditions.

The remainder of this paper is organized as follows: Section 2 describes the research design,
including the characteristics of the data and the preprocessing steps undertaken. Also, details of the de-
velopment and implementation of the FHE Framework, with particular emphasis on the methodology
through which the meta-model dynamically selects the optimal base models. Section 3 presents the
experimental results and performance evaluation. Finally, Section 4 concludes the study and discusses
future research directions.

2. Materials and Methods

This section presents the proposed FHE Framework for hourly SPG forecasting. The Framework
enhances traditional hybrid ensemble meta-modeling by introducing a dynamic, error-aware model
selection strategy. Unlike conventional approaches where the meta-model passively aggregates
predictions from all base models, the FHE Framework actively selects the most suitable base models
based on forecast-specific meteorological conditions and contextual factors. It comprises several key
components: data imputation, preprocessing, feature engineering, and model performance evaluation
under different weather conditions.

2.1. Meteorological and Solar Power Data Collection

The meteorological and solar power data used in this study were collected from multiple sources
to support the development of a robust forecasting framework. Meteorological observations were
obtained' from the Korea Meteorological Administration (KMA), comprising data from 103 Automated
Synoptic Observing System (ASOS) stations and 510 Automatic Weather Station (AWS) stations
distributed across South Korea [57]. These datasets include key meteorological variables relevant to
solar power forecasting, as listed in Table 1. In parallel, historical SPG data was collected from four
distinct PV plants on-site to enable hourly forecasting at each location.

Unlike many previous studies, this work deliberately excludes direct measurements of solar
radiation or irradiance from the location site, despite their strong influence on power generation, in
order to develop a more universally applicable forecasting model based solely on widely available
meteorological data. Specifically, key weather variables were sourced from the ASOS station nearest
to each PV plant, with missing values supplemented using data from the more densely distributed
AWS network. On average, the distance between each PV plant and its associated ASOS station is

1 Data available at: http:/ /www.kma.go.kr/
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approximately 12 kilometers. The geographical locations of the four solar power plants are illustrated
in Figure 1. The main characteristics of the four PV plants used in this study are summarized below?:

e Plant 1: Data available from January 2019 to June 2022 at a 1-hour interval. Capacity: 998 kW.

e Plant 2: Data available from January 2019 to June 2022 at a 1-hour interval. Capacity: 369.85 kW.

e Plant 3: Data available from January 2019 to June 2022 at a 1-hour interval. Capacity: 48.3 kW.

e Plant 4: Data available from January 2019 to December 2021 at a 1-hour interval. Capacity: 905
kW.
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Figure 1. Geographical locations of the four photovoltaic (PV) South Korean plants used in the experimental
analysis

2.2. Forecasting Hybrid Ensemble: A Modified Framework for Solar Power Prediction

The framework consists of three phases: 1) Data Preparation and Feature Engineering, includes
imputation of missing values, feature scaling, and the creation of derived variables such as temporal
encodings and astronomical indicators. 2) Base Model Training and Error Profiling, involves training
a diverse set of base learners—Random Forest (RF), Support Vector Regression (SVR), LightGBM,
XGBoost, Transformer, and Multi-Layer Perceptron (MLP) and profiling their performance using a
customized validation strategy. 3) Meta-Model Learning and Inference, a meta-model is trained to
predict the expected error of each base model for a given input. During inference, the model(s) with
the lowest predicted error are selected to generate the final forecast.

This approach reduces the need for exhaustive pre-selection and allows the inclusion of models
that may perform well under specific conditions. A schematic of the FHE workflow is shown in
Figure 2.

2 The data that support the findings of this study are available from the corresponding author upon reasonable request.
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Figure 2. Architecture of the proposed FHE (Forecasting with Heterogeneous Ensembles) framework.

2.2.1. Data Preparation and Feature Engineering

Prior to model training, the dataset underwent a series of preprocessing steps aimed at improving
data quality and enhancing the predictive power of the input features.

Data Scaling

The collected meteorological variables were standardized to ensure consistency across features
with varying numerical ranges. This step is essential, as the raw data includes variables that span
from small decimal values to large magnitudes, which could otherwise introduce bias during model
training. Standardization transforms each feature to have a mean of zero and a standard deviation of
one, facilitating more stable and efficient learning, particularly for models sensitive to feature scaling.

Given that the base models employed in this study such as SVR, Multi-Layer Perceptron (MLP),
and Transformer are sensitive to the scale of input features, this normalization step is critical. The
standardization is expressed in Equation (1).

D: - D; — .u(Dtrain)
v O'(Dtrain)

Where D; , represents the standardized value of the i data point, D; is the original value,

)

#(Dhrain) is the mean of the training dataset, and 0 (Dyain) is the corresponding standard deviation.

To ensure comparability across solar power plants of varying capacities, the SPG data was
normalized by dividing each power output value by the corresponding rated capacity of the plant.
This normalization transforms absolute power values into relative performance metrics, enabling
unbiased comparisons across heterogeneous plant configurations. The normalized power generation
at time step i is defined in Equation (2).

p;
Cplamt

Pin—

’

()

Where P, , represents the normalized power output, P; is the actual power generated at time i,
and Cpant denotes the installed capacity of the respective solar power plant. This scaling approach is

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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essential for accurately evaluating operational efficiency and enhancing the robustness of performance
forecasting models across diverse system sizes.

Missing Data Imputation

To address missing values in the SPG and meteorological datasets, a hybrid imputation strategy
was employed based on the duration of the missing intervals.

*  SPG Data Imputation: For gaps shorter than three consecutive hours, linear interpolation was
applied due to its simplicity and effectiveness in short-term continuity. For longer gaps, a
historical similarity-based imputation method was used. This approach identifies past time points
with similar environmental conditions and substitutes the missing SPG values accordingly. The
similarity between the missing time step fm;ssing and a historical candidate #pjsiorical 1S quantified
using a weighted distance metric following Equation (3).

n
D (tmissing/ thistorical) = Z (e ’X]'(tmissing) - Xj(thistorical)| ©)
j=1
Where X]- denotes the j-th environmental variable (e.g., solar radiation, sunshine duration, cosine
of the hour angle, elevation angle), and w; is its weight based on correlation with SPG. The
historical time point minimizing this distance follows Equation (4)

tpest = argmin D (tmissingr thistorical) 4)
thistorical
The corresponding SPG value at tp,qq is then used to impute the missing value. This method
leverages domain-specific correlations to enhance imputation accuracy, aligning with practices
validated in prior PV forecasting studies [58]
¢  Filling Gaps in Meteorological Data: To impute missing values in the ASOS meteorological data
associated with each PV plant, the Inverse Distance Weighting (IDW) method was employed.
This spatial interpolation technique estimates unknown values based on observations from
nearby AWS monitoring stations located within a 10 km radius of each plant. By assigning
greater influence to closer stations, IDW ensures that the interpolated values reflect local weather
conditions with higher fidelity. Specifically, a missing value y(xo) at location xy is estimated as
a weighted average of known values y(x;) from surrounding locations x;, using Equations (5)
and (6).

n

y(x0) = Y w(xo, x;) - y(x;) (5)
i=1

d(XQ, xl-)_”

iy d(xo,x;) 17

1=

w(xo, x;) =

(6)

Where d(xo, x;) is the Euclidean distance between the target location xy and the known point x;.
The exponent 1.7 was selected to balance the influence of proximity and spatial variability. This
method, widely used in geospatial and meteorological applications, effectively captures local
variability and has been validated in numerous studies [59].

Both the SPG and meteorological datasets exhibited a low rate of missing values, with less
than 0.2% of the data affected. According to prior studies [60,61], missing data rates below 5% are
generally considered to have a negligible impact on statistical analyses. Nonetheless, to ensure data
continuity and maintain the integrity of subsequent modeling efforts, imputation procedures were
applied. Given that the primary objective of this study is not to explore advanced preprocessing
techniques, straightforward statistical methods were adopted to address the missing values efficiently
and transparently.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Feature Space Expansion via Temporal and Astronomical Transformations

To enhance the predictive accuracy of photovoltaic power generation models, this study expanded
the feature space by incorporating both astronomical and temporal transformations. These features
were designed to capture the physical dynamics of solar movement and the periodic nature of solar
irradiance, complementing the meteorological inputs.

The Skyfield Python library was used to compute solar azimuth and elevation angles for each
PV plant location [62]. Additionally, trigonometric transformations of time variables were applied to
encode cyclical temporal patterns.

¢ Azimuth Angle: The azimuth angle, representing the sun’s horizontal position relative to true
north, was calculated by mapping the sun’s celestial coordinates to the local horizon of each
plant. This computation accounts for the rotation of the Earth and the apparent daily trajectory of
the sun. Atmospheric refraction was also considered to improve accuracy [63]. The importance
of azimuth angle in PV energy yield has been well established in prior studies, showing its
significant influence on annual energy production [64].

¢  Elevation Angle: The elevation angle, indicating the sun’s vertical position above the horizon,
was derived based on the plant’s geographic coordinates and the observation time. Corrections
for Earth curvature and atmospheric conditions were included to ensure precision. These angles
are critical for modeling solar irradiance on tilted surfaces and are widely used in solar energy
modeling [65].

e  Temporal Encoding: To capture the inherent periodicity in solar irradiance, time-related features
such as hour of day and month of year were transformed using sine and cosine functions. This
approach avoids discontinuities in cyclical variables and enables the model to learn smooth
temporal patterns. The transformation is defined in Equations (7) and (8).

Timeg;, ; = sin (27rZ ) (7)
’ T;

[ime.,s; = cos (27‘(1> 8)
’ T;

Where i denotes the time component (e.g., hour, month), and T; is the total number of units in the
cycle (e.g., 24 for hours, 12 for months). This method of encoding cyclical time features has been
shown to improve model performance in time-series forecasting tasks.

Incorporating these deterministic features, derived from astronomical and temporal principles,
offers a significant advantage over relying solely on meteorological forecasts, which are inherently
uncertain [66]. By leveraging physically grounded inputs, the model achieves greater robustness and
reliability in forecasting solar power output. A comprehensive list of all features used in this study,
including both meteorological and engineered variables, is provided in Table 1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Table 1. Summary of Input Features Used for Solar Power Generation (SPG) Forecasting, Categorized by Source
and Feature Type.

Engineered
Features (Units) ASOS AWS Features Plant Data

Solar Power Generation (kW) v
Temperature (°C)
Rainfall (mm)

Wind Speed (m/s)
Wind Direction (16 cat.)
Humidity (%)

Steam Pressure (hPa)
Site Pressure (hPa)
Dew Point (°C)
Sunshine Duration (hr)
Solar Irradiance (M]/m?)"
Visibility (x10 m)
Azimuth (°)

Elevation (°)

Time Sin

Time Cos

A N N N N N R S NENEN
NN N

SNENENEN

2.2.2. Base Model Training and Error Profiling

This subsection outlines the training procedure for the base models and the construction of the
meta-model within the FHE framework. A customized data splitting strategy is employed to prevent
data leakage and to ensure that the meta-model is trained on representative error patterns from the
base models.

Data Splitting
The original dataset D is partitioned into two primary subsets:

¢ Dj (60%): Used exclusively for training the base models.
* D, (40%): Reserved for error profiling and final evaluation.

Subset D, is further divided as:

e D3 (70% of Dy): Used to evaluate the performance of each base model and collect errors for
training the meta-model.
e  Final Test Set (30% of D,): Used for the final assessment of the FHE framework.

This structure (Figure 3) ensures that the meta-model is trained on unseen data relative to the
base models, allowing it to learn error patterns without overfitting. The resulting meta-model is then
used to select or weight base models dynamically during inference.

60 % of Data 40 % of Data
(D1) (D2)
60 % of D1 70 % of D2 30% of D2
Train Base Model 10 % of D1 (D3) Meta Model Testing
R —
90 % of D3
Train Meta Model PberE
Figure 3. Data partitioning strategy employed in the FHE framework, illustrating training, validation, and test

splits.
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Base Model Training

The FHE framework integrates a diverse set of ML and DL models commonly used in renewable
energy forecasting, including RF, SVR, LightGBM, XGBoost, Transformer, and MLP [37,67-70]. All base
models are trained using the training subset D;. The Transformer model is implemented as a regressor
using only the encoder architecture. Input features are embedded into a high-dimensional space, and
the encoded representation is passed through a fully connected layer to produce the final output.
This design is optimized for tabular regression tasks, where sequence generation is not required.
Both the Transformer and MLP models are implemented in PyTorch. Details of the model-specific
hyperparameters, loss functions, and optimizers are provided in Table 2.

Table 2. Hyperparameters and initialization strategies used for each model in the experimental setup.

Parameter Value/Method
MLP Hidden Layers 10
Transformer Layers 3

Transformer Heads 4

Batch Size 32

Learning Rate 3x1073

Loss Function MAE
Optimizer AdamW
Learning Rate Scheduler ReduceLROnPlateau
Initialization Method He

Early Stopping 10 epochs

Each base model M is trained on the training subset Dy, using input features Xiain and corre-
sponding target values yiin. Once trained, the model generates predictions 7; 4 on the validation set
Xyal- The prediction error for each instance j is then computed as the absolute difference between the
predicted and actual values. These individual errors are aggregated to form an error matrix E, which
captures the performance of all base models across the validation set following Equations (9) and (10).

eij = lyj — ¥ijl 9

E= [61 (Xval)/ eZ(Xval)/ s reK(Xval)] (10)

Here, K denotes the total number of base models. This matrix serves as the foundation for training
the meta-model, which learns to identify the most suitable base models for each input instance based
on historical error patterns.

2.2.3. Meta-Model Learning and Forecast Inference

The final stage of the FHE framework involves training a meta-model to predict the expected error
of each base model and using these predictions to guide model selection during inference. This process
is based on the error matrix generated from the validation subset D3, along with the corresponding
input features.

The meta-model, implemented using the CatBoost regressor, is trained to learn the relationship
between input features and the prediction errors of each base model. CatBoost was selected for its
ordered boosting mechanism and its ability to handle categorical features effectively through target-
based statistics. Hyperparameter optimization was performed using the Optuna library [71]. Once
trained, the meta-model is applied to the test set (30% of D) to estimate the expected error Etest for
each base model and for each test instance, the two base models with the lowest predicted errors are
selected. Their predictions are averaged to produce the final forecast following Equations (11) and
(12).
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Etest = Mmeta(Xtest) (11)
. 1 .

yfinal,j = E Z yi,]' (12)

ZES]
Here, S i denotes the set of the two base models with the lowest predicted errors for instance j, and
¥;,j is the prediction from base model i. This dynamic selection mechanism allows the FHE framework
to adaptively leverage the strengths of different models under varying conditions, improving both

accuracy and robustness. The complete algorithmic flow of the FHE framework is summarized in
Algorithm 1.

Algorithm 1 FHE framework: Forecasting with Heterogeneous Ensembles for photovoltaic power
prediction.

1: Input: Dataset D — {D1, D>}, with Dy — {D3, Drest }

2: Output: Forecasts {yﬁnal,j}]‘»gtf“'

: Train base models M = {M;}X | on D;
: for each M; € M, (xj,yj) € D3 do

9ij — Mi(x)), eij < lyj— i
: end for

. Construct E € RK*IDs| with Eij=ei

NS U oew

8: Train meta-model Myt : RT — RK on {(xj, E:,j)}]ESl‘

9: for each x;j € Diest do

10: E] < Mmeta(-xj) = [él,j/ . /éK,j]

11: Sj ¢ argmingcy  k} Yies Gij
S|=2

122 Ufinalj < %Ziesj M;(xj)

13: end for

(D | Drest|
14: Return: {ffinal }; 7"

2.3. Evaluation Metric

To assess the short-term PV forecasting performance, several statistical metrics were employed:
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), the coefficient of determination (R?),
Normalized Mean Absolute Percentage Error (NMAPE) and MAE [16,22,36,56]. Additionally, the
Normalized MAE (NMAE), as utilized in the Korea Power Exchange (KPX) Renewable generation
forecasting system, was included to calculate errors for outputs exceeding 10% of the installed capacity.
These metrics are defined in Equations (13)- (18) :

1 n
MSE = — Y (vi — 9:)* (13)
i=1
1 .
RMSE = [~} (vi = 9)? (14)
iz
(i —7)?
1 YVi—VYi
MAPE = — — 21 x 100 16
. l; " (16)
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1 n
MAE = =} yi = il (17)
i=1
NMAE(%) = Xn: Vi =il 100 (18)
ni5 i
¥i=0.1

3. Results and Discussion

This section evaluates the performance of the proposed FHE framework across four PV plants,
with capacities ranging from 48.3 kW to 998 kW. The results are reported as the average of 10 inde-
pendent runs (epochs). Performance comparisons are made against standard models and ensemble
baselines using multiple error metrics.

3.1. Effect of Feature Engineering on Base Model Accuracy

The impact of engineered features on forecasting accuracy is assessed by comparing four feature
scenarios across six base models (RF, SVR, LGBM, XGB, Transformer, and MLP) and four PV plants
with varying capacities. The results, averaged over 10 runs, are summarized in Table 3 using the error
metrics MSE, NMAE, and R2. The assessment includes four input configurations, each combining the
meteorological data with a different subset of features:

1. Scenario 1: Meteorological + Radiation + Engineered Features

2. Scenario 2: Meteorological + Engineered Features (No Irradiance)

3. Scenario 3: Meteorological (No Irrandiance, No Engineered Features)
4.  Scenario 4: Meteorological + Irradiance (No Engineered Features)

Across all plants and models, the combination of meteorological data, irradiance, and engineered
features (Scenario 1) consistently delivers the best performance. This suggests that the inclusion of
solar position (azimuth, elevation) and temporal encodings (hour, month) effectively enhances the
model’s ability to capture diurnal and seasonal variability. For instance, Random Forest achieves an
R? above 0.86 in all plants, with particularly strong performance in Plants 2 and 4 R? = 0.897 and 0.898,
respectively). Among all models, LGBM slightly outperforms others on average, showing lower MSE
and NMAE in most plants.

When direct irradiance measurements are unavailable (Scenario 2), engineered features still
contribute significantly to preserving model accuracy. For instance, RF performance only slightly
degrades compared to Scenario 1, with R? dropping by 1-3 percentage points in most plants. This
suggests that the engineered features can partially compensate for the absence of irradiance by
implicitly capturing solar geometry and temporal dynamics. Interestingly, in Plant 4, MLP outperforms
all other models in terms of R? = 0.860, highlighting its robustness when dealing with incomplete
input modalities.

Scenario 3 presents a clear degradation in performance, confirming the critical role of both
irradiance and engineered features. All models experience substantial increases in MSE and NMAE,
with R? values dropping dramatically. For example, the R? for RF in Plant 1 falls from 0.869 (Scenario
1) to 0.255. This trend is consistent across all models and plants, underscoring that meteorological data
alone is insufficient for accurate power prediction, especially when solar geometry is not explicitly
encoded.

In Scenario 4, the removal of engineered features leads to moderate performance loss compared
to Scenario 1, yet models still outperform Scenario 2 in most cases due to the presence of irradiance
data. The RF model shows a noticeable drop in R? in Plant 1 (from 0.869 to 0.833), but maintains rea-
sonable accuracy overall. These results indicate that while irradiance is a strong predictor, engineered
features provide additional signal that boosts model generalization, especially in edge cases (e.g., early
mornings or cloudy days).
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To assess the role of irradiance and engineered features, we compare four feature configurations
across all models and plants. Comparing Scenario 1 (all features) to Scenario 2 (engineered features
only) reveals only a slight drop in performance, indicating that engineered features can effectively
compensate for missing irradiance. For example, the MLP model at Plant 1 maintains nearly identical
R? values (0.853 vs. 0.852), suggesting these features successfully capture relevant solar geometry
and temporal patterns. A more dramatic change appears between Scenario 2 and Scenario 3 (neither
irradiance nor engineered features), where performance degrades substantially. The RF model at
Plant 1, for instance, drops from 0.848 to 0.255, confirming that engineered features are critical when
irradiance is unavailable.

Comparing Scenario 3 to Scenario 4 (irradiance only), we find that irradiance improves perfor-
mance but not as much as engineered features. For instance, SVR at Plant 2 improves from 0.198 to
0.852, yet similar or better performance is often achieved with engineered features alone. The com-
parison between Scenario 1 and Scenario 4 shows that even when irradiance is available, engineered
features still offer additional predictive value. Ensemble models like LGBM and XGB benefit most,
with consistent performance gains across plants.

Finally, engineered features are essential for maintaining accuracy in the absence of irradiance
and remain beneficial even when irradiance is present, underscoring their value in robust solar energy
forecasting.

Table 3. Performance metrics of individual base models across different scenarios and four PV plants.

Plant 1 (Capacity: 998 kW) Plant 2 (Capacity: 369.85 kW) Plant 3 (Capacity: 48.3 kW) Plant 4 (Capacity: 905 kW)
Model MSE (kW, |) NMAE (%,}) R?(1) MSE (kW, |) NMAE (%,}) R? MSE (kW, |) NMAE (%,]) R*(}) MSE (kW, |) NMAE (%,]) R*(1)
Scenario 1: Meteorological + Radiation + Engineered Features
RF 4.016 4.161 0.869 1.786 4.325 0.897 0.362 5.124 0.859 3.341 3.784 0.898
SVR 4.364 4.690 0.858 2.006 5.413 0.885 0.364 6.004 0.858 3.930 4.888 0.880
LGBM 3.998 4.198 0.870 1.788 4.493 0.897 0.365 5.305 0.857 3.427 3.790 0.896
XGB 4.825 4.647 0.843 1.963 4.775 0.887 0.401 5.750 0.843 3.961 4.046 0.879
Transformer 6.456 5.312 0.789 2.192 4.828 0.874 0411 5.756 0.840 3.843 4.270 0.883
MLP 4.544 4915 0.852 1.925 5.272 0.889 0.394 5.867 0.846 3.224 3.882 0.902
Scenarios 2: Meteorological + Engineered Features (No Irradiance)
RF 4.682 4.630 0.848 2.117 4.912 0.888 0.473 7.001 0.815 4.463 4.558 0.864
SVR 5.128 5.200 0.823 2.692 6.094 0.867 0.479 7.498 0.813 4.574 5.344 0.861
LGBM 4.627 4.613 0.849 2.279 4.966 0.889 0.458 7.035 0.821 4.501 4.596 0.863
XGB 6.114 5.308 0.800 2472 5.265 0.877 0.460 6.988 0.820 4.881 4.950 0.851
Transformer 8.001 6.087 0.739 3.196 6.000 0.828 0.619 8.434 0.758 5.076 5.138 0.845
MLP 4.504 4.835 0.853 2.628 6.051 0.866 0.578 8.542 0.774 4.607 5.212 0.860
Scenarios 3: Meteorological (No Irrandiance, No Engineered Features)
RF 22.818 12.028 0.255 11.869 14.316 0.318 2.233 17.715 0.128 19.326 11.708 0411
SVR 21.305 11.366 0.305 11.357 13.700 0.347 1.952 16.142 0.238 18.365 11.296 0.440
LGBM 22.271 11.852 0.273 11.568 14.139 0.335 2.201 17.633 0.140 19.095 11.643 0.418
XGB 23.544 12.379 0.232 12.043 14.292 0.308 2.348 18.139 0.083 20.727 11.986 0.368
Transformer 28.878 13.332 0.057 14.643 15.379 0.158 2.574 18.873 0.056 22.502 12.303 0.314
MLP 23.357 12.551 0.238 11.685 14.398 0.337 2.357 18.490 0.079 20.508 12.492 0.375
Scenario 4: Meteorological + Irradiance (No Engineered Features)

RF 5.109 5.080 0.833 1.893 5.080 0.833 0.414 5.860 0.838 4.009 4.618 0.878
SVR 4.533 4.828 0.852 1.680 4.828 0.852 0.389 5.988 0.848 4.120 4.969 0.874
LGBM 4.931 4973 0.839 1.828 4973 0.839 0.409 5.840 0.840 4.130 4.673 0.874
XGB 5.883 5.527 0.808 2.180 5.527 0.808 0.437 6.033 0.829 4.856 5.076 0.852
Transformer 7.699 6.466 0.749 2.853 6.466 0.749 0.435 6.097 0.830 5.068 4.999 0.46

MLP 4.965 4.941 0.838 1.840 4.941 0.838 0.433 6.278 0.831 4.037 4.760 0.877

1 Greater is better. | Lower is better.

3.2. Comprehensive Performance Analysis of the FHE Framework

The proposed FHE framework was evaluated using real operational data from PV plants to
assess its forecasting accuracy. The analysis focused on the framework’s ability to dynamically select
and integrate forecasts from multiple base models based on real-time weather conditions, thereby
enhancing prediction reliability. Three baseline settings were considered:

1.  Baseline 1: Each base model was evaluated independently within the FHE framework, providing
a reference for standalone performance.

2. Baseline 2: Conventional hybrid ensemble strategies were applied, including meta-modeling and
bagging, which combine forecasts from all base models.

3. Baseline 3 (FHE): The proposed FHE approach selectively integrates forecasts from the best-
performing model for specific conditions, optimizing prediction dynamically.
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Figures 4 and 5 further illustrate the FHE framework’s forecasting capability. On clear days
(Figure 4), the proposed model not only achieves the highest overall accuracy but also captures peak
solar production values with superior precision. Under cloudy conditions (Figure 4), it continues
to perform reliably, closely tracking the fluctuations in actual power generation. These findings
underscore the FHE framework’s adaptability and robustness across diverse environmental conditions,
consistently outperforming individual models and conventional ensembles in both stable and volatile
weather scenarios.
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Figure 4. Forecasting performance of the proposed FHE model on a sunny day at Plant 4. The model accurately
captures peak generation periods and overall power output trends.
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Figure 5. Forecasting performance of the proposed FHE model on a non-sunny (cloudy or overcast) day at Plant 4.
The model effectively tracks power generation variability under less predictable conditions.

Table 4 presents a comprehensive evaluation of the proposed FHE model against individual base
models and traditional ensemble approaches (Bagging and Meta-Modeling) across four PV plants with
varying capacities and operational contexts.

Across all plants and performance metrics the proposed FHE consistently outperforms all baseline
and ensemble methods. Notably, for Plant 1, the FHE achieves the lowest RMSE (65.785 kW), MAE
(43.470%), and MAPE (12.923%), while also yielding the highest R? (0.864), indicating superior fit and
error minimization. A similar pattern is observed for Plant 2, where the FHE attains an R? of 0.906 and
a MAPE of just 12.332%, outperforming even the most competitive baselines such as RF and LGBM.
Performance gains are especially remarkable in Plant 4, a large-scale system with complex dynamics.
The FHE achieves a significant reduction in RMSE (55.568 kW vs. > 59 kW for all others), along with
a notably lower MAE (36.535%) and highest R? (0.902), highlighting its robustness in high-capacity
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scenarios. In Plant 3, although the magnitude of errors is smaller due to the lower capacity of the plant,
the FHE still achieves the best overall scores, indicating its scalability across plant sizes.

Interestingly, while tree-based models such as RF and LGBM perform competitively, especially in
Plants 1 and 2, and bagging provides modest gains, neither traditional ensemble approach matches
the adaptive advantage of the FHE. Transformer and MLP models generally lag in performance,
particularly in overcast or highly variable conditions, as evident from their higher RMSE and MAPE
values. These results affirm that the selective and condition-aware nature of the FHE model enables it
to leverage the strengths of different base learners under varying conditions, thereby achieving more
accurate and reliable short-term solar power forecasts across heterogeneous PV plants.

Table 4. Comparative performance of the proposed FHE model against baseline methods across all PV plants.

Plant 1 (Capacity: 998 kW) Plant 2 (Capacity: 369.85 kW)
Model RMSE (kW, |) MAE (%,}) R?*(1) MAPE(%,!) NMAE(%,|) RMSE(kW,]) MAE(%,|) R*() MAPE(%,]) NMAE (%,])
RF 68.112 46.207 0.848 14.480 4.630 26.865 18.165 0.888 13.721 4.912
SVR 71.535 51.891 0.823 17.328 5.200 29.235 22.538 0.867 16.854 6.094
LGBM 67.957 46.036 0.849 14.773 4.613 26.698 18.367 0.889 14.284 4.966
XGB 78.115 52.975 0.800 16.417 5.308 28.141 19.473 0.877 14.668 5.265
Transformer 89.360 60.747 0.739 18.934 6.087 33.292 22.190 0.828 17.381 6.000
MLP 67.047 48.253 0.853 15.206 4.835 29.379 22.381 0.866 16.534 6.051
Bagging Ensemble 70.896 48.259 0.818 16.969 4.935 27.159 18.222 0.884 14.837 5.227
Meta Ensemble 75.387 50.242 0.814 15.213 5.034 28.541 19.993 0.873 14.731 5.406
Proposed FHE 65.785 43.470 0.864 12.923 4.356 24.837 16.700 0.906 12.332 4.686
Plant 3 (Capacity: 48.3 kW) Plant 4 (Capacity: 905 kW)
RF 4.777 3.381 0.815 18.508 7.001 63.483 41.200 0.864 14.116 4.558
SVR 4811 3.621 0.813 19.875 7.498 64.265 48.309 0.861 17.645 5.344
LGBM 4.702 3.398 0.821 18.751 7.035 63.754 41.549 0.863 14.447 4.596
XGB 4714 3.375 0.820 18.677 6.988 66.391 44.745 0.851 15.346 4.950
Transformer 5.469 4.074 0.758 22.701 8.434 67.703 46.501 0.845 16.397 5.138
MLP 5.283 4.126 0.774 21.674 8.542 64.501 47.165 0.860 16.537 5.212
Bagging Ensemble 4.969 3.764 0.804 18.819 7.473 59.248 40.298 0.881 14.051 4.458
Meta Ensemble 4.642 3.370 0.826 18.509 6.978 64.441 45.384 0.860 14.809 5.015
Proposed FHE 4.512 3.191 0.838 16.841 6.714 55.568 36.535 0.902 12.196 4.052

1 Greater is better. | Lower is better.

3.3. Evaluation of the Robustness of the FHE Framework

To rigorously evaluate the robustness and generalizability of the proposed FHE framework, two
complementary experiments were designed: (1) variation of test set ratios, and (2) time series CV
analysis. Initially, a test set ratio of 12% was adopted to capture sufficient temporal variability while
maximizing the training data available for the meta-model. To assess the sensitivity of the FHE's
performance to this choice, additional experiments were conducted with increased test set ratios of
16% and 20%. The results of this analysis are summarized in Table 5.

Across all plants, there was a general trend of increasing error as the test set ratio increases. This
is expected, as increasing the size of the test set reduces the amount of data available for training,
which can impair model generalization. However, the extent of performance degradation varies by
model, suggesting differences in robustness. The proposed FHE framework consistently achieves the
lowest MAPE and NMAE scores across all plants and test set configurations, highlighting its superior
generalization and robustness. For instance, in Plant 1, MAPE increases only modestly from 12.923%
(12%) to 15.079% (20%), which is a smaller increment than observed in other models such as SVR (from
17.328% to 19.786%) or Transformer (from 18.934% to 21.158%).

Individually for each plant, Plant 1 (998 kW) FHE achieves the best MAPE and NMAE scores
at all test set sizes, with a strong lead over both individual models and ensemble baselines. Notably,
even compared to strong competitors like LGBM and RF, FHE provides a relative error reduction of
12-18% in MAPE. In Plant 2 (369.85 kW), again, FHE outperforms all other models. Interestingly, the
gap between FHE and others is slightly larger in this plant, with MAPE improvements of up to 20%
compared to SVR or XGB at the 20% test ratio.

In the situation of a low-capacity plant, Plant 3 (48.3 kW), exhibits generally higher errors across
all models, likely due to higher variability in small-scale energy production. However, FHE remains the
top performer, maintaining MAPE scores 1.5-3 points lower than other models, which is particularly
notable given the plant’s challenging characteristics. Finally, in Plant 4 (905 kW), FHE once again
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dominates in performance. Its MAPE remains under 12.8% even at the highest test ratio, while all
other models report MAPE values above 14%, indicating better resilience to reduced training data.

Traditional ensemble methods like Bagging and Meta Ensembles provide improved robustness
over single learners (e.g., RF, SVR), but they are consistently outperformed by the FHE framework.
This suggests that the design of FHE offers a more flexible and effective mechanism for combining
base learners under data variability presumably leveraging adaptive weighting or dynamic ensemble
construction. For example, in Plant 4 at 20% test ratio Bagging Ensemble was 14.255% MAPE, Meta
Ensemble: 14.978% MAPE and FHE: 12.771% MAPE. This performance gap underlines FHE’s ability
to better adapt to structural variations and uncertainties in the input data.

Table 5. Impact of varying test set ratios on model performance across all forecasting models.

Plant 1 (Capacity: 998 kW) Plant 2 (Capacity: 369.85 kW)
12% Testing set 16% Testing set 20% Testing set 12% Testing set 16% Testing set 20% Testing set
Model MAPE (%, ) NMAE (%,]) MAPE(%,|) NMAE(%,]l) MAPE(%,|) NMAE(%,]) MAPE (%) NMAE (%) MAPE (%) NMAE (%) MAPE (%) NMAE (%)
RF 14.480 4.630 17.425 5.815 17.065 4944 13.721 4912 15.661 5.336 15.279 5214
SVR 17.328 5.200 18.937 5.624 19.786 5.748 16.854 6.094 17.895 6.195 18.353 6.356
LGBM 14.773 4.613 16.972 4.929 17.577 5.014 14.284 4.966 14.940 5.031 15.719 5.239
XGB 16.417 5.308 18.142 5.354 18.618 5.438 14.668 5.265 15.512 5.324 16.053 5.464
Transformer 18.934 6.087 20.326 6.196 21.158 6.339 17.381 6.000 14.144 6.159 18.849 6.345
MLP 15.206 4.835 17.564 5.276 18.206 5.386 16.534 6.051 16.326 5.641 16.855 5.805
Bagging Ensemble 16.969 4.935 15.955 4.705 16.667 4.829 14.837 5.227 15.128 5.226 15.269 5.170
Meta Ensemble 15.213 5.034 16.407 4919 17.040 5.044 14.731 5.406 15.675 5.309 16.389 5.578
Proposed FHE 12.923 4.356 14.600 4.459 15.079 4.585 12.332 4.686 13.486 4.843 14.079 4.968
Plant 3 (Capacity: 48.3 kW) Plant 4 (Capacity: 905 kW)
RF 18.508 7.001 19.486 7.701 19.443 7.326 14.116 4.558 14.223 4.634 14.536 4722
SVR 19.875 7.498 20.574 7.918 20.471 7.561 17.645 5344 17.380 5.333 17.660 5.403
LGBM 18.751 7.035 19.585 7.694 19.199 7.247 14.447 4.59 14.371 4.638 14.499 4.670
XGB 18.677 6.988 19.861 7.705 19.954 7.426 15.346 4.950 15.248 4.986 15.370 5.002
Transformer 22.701 8.434 22953 8.734 22.842 8.418 16.397 5.138 16.553 5.232 16.639 5.256
MLP 21.674 8.542 22.069 8.974 21.542 8.419 16.537 5212 16.370 5.208 16.610 5.268
Bagging Ensemble 18.819 7473 18.779 7.406 18.909 7.256 14.051 4.458 14.027 5.641 14.255 4.548
Meta Ensemble 18.509 6978 19.679 7.768 19.672 7.375 14.809 5.015 14.686 5.055 14.978 5.038
Proposed FHE 16.841 6.714 17.773 7.306 17.586 6.967 12.196 4.052 12451 4179 12.771 4.278

| Lower s better.

Furthermore, to assess the FHE’s robustness to sequence-dependent biases and its ability to
generalize across different temporal segments, a time series split-based CV was performed. Unlike
random splits, this approach preserves the temporal order of observations, thereby providing a more
realistic simulation of forecasting in unseen future conditions [72]. In this setup, four CV groups were
executed, each using a chronologically expanding training window and a test set comprising the most
recent 12% of the data. The iterations were defined as follows and the results are presented in Table 6:

*  CV 1: Training from 2019-01-01 to 2019-09-13
*  CV 2: Training from 2019-01-01 to 2020-05-25
*  CV 3: Training from 2019-01-01 to 2021-02-05
¢  CV 4: Training from 2019-01-01 to 2021-10-18

In CV 1, FHE outperformed all models across all four plants. It achieved the lowest MAPE,
NMAE, and the highest R? scores, with particularly strong results for Plant 4 (MAPE: 16.565%, R*:
0.869), indicating a highly accurate and robust forecast even with limited training history. Notably,
classical machine learning models like LGBM and RF performed competitively, but consistently
lagged behind FHE in both magnitude of error and explained variance. As the training set increased
in CV 2, all models improved in performance, benefiting from more diverse and comprehensive
temporal data. However, the margin by which FHE outperformed others widened. It achieved
substantial improvements in accuracy metrics, with Plant 1 showing a remarkable reduction in MAPE
to 15.059% and an increase in R? to 0.874. The Bagging and Meta ensembles provided competitive
baselines, demonstrating the effectiveness of aggregation techniques, yet FHE still maintained an edge,
particularly in reducing systematic under/over-estimation captured by NMAE.

In CV 3, the gap between models narrowed somewhat, as more historical variation had been
captured by the models. Despite this, FHE continued to lead in all metrics across the board. For
instance, in Plant 3, FHE obtained the best combination of MAPE: 19.743%, NMAE: 6.044%, and
R?: 0.827, reflecting its resilience in small-capacity scenarios where noise and data imbalance are
more pronounced. The Transformer and MLP models showed more volatile performance, suggesting
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that deep architectures without tailored inductive biases or ensemble mechanisms may overfit or
underperform in limited training contexts.

By the final iteration, CV 4, where models had the most extensive training data, performances con-
verged but FHE retained its leadership. For instance, in Plant 4, FHE reported a MAPE of 12.976% and
an R? of 0.919, exceeding even ensemble models. Interestingly, RF and LGBM remained consistently
strong contenders across all iterations, especially in early phases, highlighting their robustness and
data efficiency. However, their relative gains diminished as the data complexity increased. SVR and
MLP consistently underperformed, particularly in larger-capacity plants, likely due to their limited
ability to capture nonlinearities or contextual dependencies across temporal segments.

Table 6. Model performance evaluated using time series cross-validation with shuffled temporal segments.

Plant 1 (Capacity: 998 kW) Plant 2 (Capacity: 369.85 kW) Plant 3 (Capacity: 48.3 kW) Plant 4 (Capacity: 905 kW)
Model MAPE (%, ) NMAE (%,]) R?(1) MAPE (%) NMAE (%) R? MAPE (%) NMAE (%) R? MAPE (%) NMAE (%) R?
CV Iteration 1: 2019-01-01 to 2019-09-13
RF 22.522 6.070 0.762 20.442 6.107 0.802 23.768 6.910 0.735 21.449 5.796 0.815
SVR 28.626 7.802 0.649 31.369 8.996 0.657 36.921 10.012 0.605 27.680 7.736 0.679
LGBM 21.946 5.853 0.761 22.186 6.225 0.798 26.108 7.357 0.720 17.706 5.156 0.843
XGB 24.903 6.620 0.726 22.711 6.628 0.762 31.497 8.139 0.677 23.354 6.402 0.774
Transformer 28.156 6.926 0.712 28.028 8.697 0.675 32.454 10.356 0.657 26.227 6.853 0.743
MLP 36.166 9.225 0.532 37.291 10.371 0.539 35.113 10.525 0.610 25.843 8.007 0.651
Bagging Ensemble 21.657 5.650 0.792 22.551 6.746 0.779 23.796 6.944 0.769 19.878 5.599 0.830
Meta Ensemble 21.418 5.978 0.760 22.455 6.472 0.779 24.547 7.277 0.734 19.704 6.250 0.761
Proposed FHE 19.138 5.236 0.816 19.968 5.801 0.816 21.911 6.425 0.779 16.565 4.795 0.869
CV Iteration 2: 2019-01-01 to 2020-05-25
RF 17.204 5.240 0.835 18.723 6.211 0.841 18.685 6.145 0.856 15.584 4.851 0.896
SVR 20.179 6.454 0.800 22.142 7.339 0.817 22102 7.410 0.822 20.245 6.629 0.824
LGBM 17.183 5.176 0.848 18.307 6.202 0.848 18.709 6.280 0.857 14.444 4.559 0.908
XGB 17.917 5.478 0.827 20.053 6.593 0.829 19.968 6.586 0.848 15.659 4.878 0.889
Transformer 18.611 5.516 0.805 21.171 6.785 0.816 22.384 7.497 0.789 14.735 4.830 0.880
MLP 20.756 6.761 0.784 20.875 7.045 0.820 21.902 7.721 0.811 19.466 6.265 0.841
Bagging Ensemble 16.517 5.193 0.848 18.493 6.156 0.852 18.273 6.221 0.864 14.869 4.836 0.899
Meta Ensemble 16.786 5.119 0.843 18.444 6.295 0.835 19.146 6.557 0.840 14.344 4.531 0.907
Proposed FHE 15.059 4.518 0.874 16.706 5.453 0.868 16.019 5.415 0.885 13.454 4.265 0.915
CV Iteration 3: 2019-01-01 to 2021-02-05
RF 18.610 5.360 0.797 21.179 6.230 0.823 21.986 6.756 0.796 18.439 5.591 0.734
SVR 22.465 6.250 0.766 23.864 7.387 0.780 24.043 7.135 0.783 21.889 6.504 0.787
LGBM 19.515 5.491 0.796 21.841 6.437 0.814 21.865 6.789 0.792 18.879 5.732 0.772
XGB 20.108 5.666 0.770 22.249 6.522 0.809 22177 6.850 0.787 20.084 6.201 0.729
Transformer 22.091 6.196 0.725 23.291 6.894 0.758 24.676 8.016 0.705 21.308 6.704 0.676
MLP 20.727 6.217 0.769 23.614 7.710 0.769 23.009 7.397 0.763 19.402 6.062 0.783
Bagging Ensemble 18.320 5.275 0.810 20.601 6.241 0.825 20.856 6.592 0.802 17.944 5.570 0.797
Meta Ensemble 19.212 5.527 0.798 20.030 6.174 0.831 20.897 6.729 0.789 16.740 4.928 0.864
Proposed FHE 16.649 4.691 0.839 18.773 5.575 0.848 19.743 6.044 0.827 16.684 4.967 0.846
CV Iteration 4: 2019-01-01 to 2021-10-18
RF 18.964 5.200 0.783 18.798 6.126 0.828 19.630 6.899 0.776 14.920 4.657 0.874
SVR 21.855 6.094 0.754 21.721 7.382 0.781 21.331 7.365 0.771 17.578 5.427 0.853
LGBM 19.219 5.229 0.779 18.960 6.122 0.835 20.187 7.032 0.769 14.748 4.562 0.880
XGB 20.945 5.712 0.745 20.097 6.505 0.813 21.325 7.515 0.742 15.635 4.871 0.864
Transformer 24.036 6.606 0.749 22.583 7.249 0.760 22276 7.710 0.728 17.215 5.387 0.831
MLP 20.208 5.570 0.763 20.738 7.097 0.801 21.668 7.976 0.738 16.484 5.505 0.847
Bagging Ensemble 19.080 5.183 0.787 18.698 6.137 0.831 19.320 6.895 0.785 14.186 4.467 0.886
Meta Ensemble 19.376 5.550 0.776 18.806 6.054 0.837 20.0645 7.056 0.776 15.222 5.020 0.853
Proposed FHE 17.728 4.832 0.807 17.655 5.726 0.846 18.226 6.377 0.810 13.985 4.307 0.887

1 Greater is better. | Lower is better.

4. Conclusions

This study conducted a comprehensive comparative analysis of the proposed FHE model against
a wide range of baseline methods for short-term PV power forecasting. The evaluation spanned
four real-world PV plants of varying capacities and employed a robust shuffle-based cross-validation
strategy across different temporal windows. The results demonstrate that the FHE model consistently
outperforms all baseline models, including traditional regressors (RF, SVR, LightGBM, XGBoost), DL
architectures (MLP, Transformer), and ensemble methods (Bagging and Meta-Ensemble), across all
evaluation metrics.

Notably, the FHE model exhibited a superior forecasting accuracy, reflected by the lowest MAPE
and NMAE values across all plants and cross-validation splits. Also, high explanatory power, achieving
the highest R? scores consistently, indicating a strong ability to capture the underlying data variance.
And a robust generalization, with stable performance across different time splits and plant sizes,
including challenging cases such as small-scale PV installations with higher noise and variability. While
ensemble methods such as Bagging and Meta-Ensemble improved upon individual traditional models,
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they were still outperformed by FHE, underscoring the effectiveness of its hybrid design. Furthermore,
DL models underperformed relative to both ensemble and tree-based methods, suggesting that their
complexity may not be fully leveraged in this context, potentially due to data limitations or architecture
mismatch.

Another important observation is that forecasting performance tends to degrade for smaller
plants, likely due to increased stochasticity in their power generation profiles. Nevertheless, the FHE
model maintained its lead even under these more difficult conditions, further reinforcing its versatility
and robustness. In conclusion, the FHE model emerges as a reliable, accurate, and scalable solution for
PV power forecasting across diverse operating conditions. These promising results suggest its strong
potential for deployment in operational settings, where accurate and generalizable energy forecasts
are critical for grid stability and energy management.
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