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Abstract: The dependence on Unmanned Aerial Vehicles (UAVs) has dramatically increased in many sectors
around the globe. UAVs are in high demand, and their technology is developing quickly due to their
sophisticated ability to handle various issues. UAVs are capable of replacing labor-intensive tasks with
conducive and safe regulation. Additional tools or sensors need to be added to the UAVs system to ensure the
implementation of UAVs able to serve into industrial level. The paper aims to consolidate and present a
thorough understanding of the various stages of image processing pipelines deployed in UAV applications,
including image acquisition, preprocessing, feature extraction, object detection and tracking, and decision-
making processes. Throughout this paper, several aspects were deliberate such as strengths, limitations, and
performance metrics of existing approaches, this paper seeks to provide researchers, engineers, and
practitioners with valuable insights into the challenges and opportunities of image processing systems for
UAVs. Ultimately, the synthesis of this knowledge will contribute to enhancing the effective-ness, autonomy,
and applicability of UAVs in diverse fields such as surveillance, agriculture, disaster management, and
environmental monitoring.
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1. Introduction

Image processing has emerged as a vital field of study with numerous applications in various
domains, including computer vision, medical imaging, remote sensing, and robotics [1-7]. Over the
years, extensive research has been conducted to develop and improve image processing techniques,
algorithms, and methodologies to extract meaningful information from images [8-10]. These studies
have contributed valuable insights into various aspects of image processing, such as image
enhancement [11], image segmentation image registration [12], and object recognition [13].
Additionally, researchers have investigated the integration of artificial intelligence and machine
learning in image processing systems, leading to significant advancements in image classification
[14], object detection [15], and image generation [16]. The constant evolution of image processing
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techniques has paved the way for groundbreaking applications, such as medical image analysis for
disease diagnosis and treatment [17], facial recognition for security and authentication purposes [18-
20], and satellite image processing for environmental monitoring and disaster management [21]. This
introduction aims to provide an overview of the diverse and rapidly evolving landscape of image
processing based on the findings of various research papers in the field.

1.1. Unmanned Aerial Vehicle

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have emerged as a
transformative technology with a wide range of applications. Numerous research studies have
explored various aspects of UAVs considering manufacturing process [22-25], dynamics aspects [26-
28], energy management [29] and control system [30] highlighting their potential and challenges.
Research on UAV swarm intelligence and its applications in collaborative tasks that enables the UAV
to independently make decisions based on shared information [31]. The use of UAVs for agricultural
monitoring, emphasizing their role in precision farming and crop management [32]. Moreover, [33]
explored the integration of UAVs with artificial intelligence for autonomous navigation and obstacle
detection [34]. On the regulatory front, [35] analyzed the legal and ethical considerations surrounding
UAV operations, addressing privacy, security, and airspace management. Additionally, [36]
examined the use of UAVs in disaster response and humanitarian aid, demonstrating their
effectiveness in remote sensing and data collection during emergencies. Challenges of UAV battery
technology, aiming to enhance flight endurance and energy efficiency were observed [37]. On the
commercial side, [38] studied the impact of drone delivery services on logistics and last-mile delivery
solutions. Furthermore, [39] explored the use of UAVs in film-making and media production,
showcasing their potential for aerial cinematography. Lastly, the emerging trends and future
prospects of UAV technology, pointing towards advancements in swarm intelligence,
miniaturization, and increased autonomy [40]. These research findings collectively illustrate the
diverse and rapidly evolving landscape of UAVs, underscoring their significance across multiple
industries and domains.

Figure 1. FPV Drone.

2. Implementation of UAV

This paper analyzes the implementation of UAVs in different sectors around the globe and the
technology used to ensure the UAV can achieve the targeted requirements. Other sectors have
emphasized defects or flaws to be inspected by the drone. Additional sensors or tools are equipped
onto UAVs to scan the damaged structure. Depending on the application sector, UAVs can also use
specialized microcontroller based monitoring systems [41-43]. Table 1 shows previous research on
inspection drone applications.

Table 1. Previous research on drone’s applications.

Sectors Previous Study Reference
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Bridge
inspection

This research aims to compare plenty
of different cameras that are suitably
used for the inspection process.
Moreover, this study encourages safety
during the inspection process without
involving humans physically
inspecting the bridge.

[44]

Overhead
power line
inspection

The Lidar-aided inspection approach
creates collision-free paths that
decrease the risk of any accident. This
research has concluded that Lidar has
provided precise information on their
surrounding topography and
vegetation and supports a good
navigation basis for UAV-based
powerline inspections.

[45]

Porcelain
insulators
Inspection

The performance of YOLOV4 in object
detection is outstanding because it has
a high object detection accuracy. The
idea of a flight path strategy for UAVs
to inspect proved to save time and
energy.

Human
activity
recognition
(HAR)

This paper implemented several types
of CNN, such as 3D and 2D CNNs. The
computational barriers inhibiting the
use of deep learning-based HAR
systems on drones may be removed by
this research.

[47]

Early sinkhole
detection

This research applies a thermal
infrared camera attached to a drone to
detect a potential sinkhole. The
combination of machine learning CNN
and thermal infrared has showna
tremendous positive impact in
detecting a high possibility of sinkhole
occurrence’s location.

[48]

Building
external wall
inspection

A deep learning module was
implemented to scan any flaws
obtained on the wall surface. UAV
starts the process by capturing the wall
image to transform the defect locations
into coordinates. Next, the deep
learning process will determine the
presence of defects.

Bridge
inspection

Machine learning (CNN) was used to
detect the flaws on columns and
beams. The image captured by the
UAV is adjusted to increase the quality
of the image.

d0i:10.20944/preprints202308.1855.v1
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High-speed Real-time defect detection is developed [51]
railroad to scan potential safety hazards (PSH)
inspection in the surrounding high-speed

railroad. Mask R-CNN segment is

applied to the image processing

program to detect any flaws in the

surrounding.

Petroleum In a simulated oil spill setting in arctic ~ [52]
conditions, the capacities of several
active/passive sensors, including a
visible-near infrared (VNIR)
hyperspectral camera (Rikola), thermal
IR camera (Optris and Work- swell
Wiris), and laser fluorosensor
(BlueHawk) onboard an X8 Video-
drone were evaluated.

Plantation Yano et al. (2016) used RGB images [53]
(sugarcane and the Random Forest (RF) classifier
crops) to identify weeds in a sugarcane field.

Machine learning algorithms such as
RF, SVM, ANN, and Deep Learning
(DL) have been utilized with remotely
sensed data for sugarcane monitoring
with good accuracy (Wang et al., 2019)
Mapping Agisoft PhotoScanl 1.2.6 (Agisoft LLC, [54]
St. Petersburg, Russia) was used to
further process the set after a thorough
inspection to create 3D textured digital
models. In order to build 3D meshes,
specific procedures were followed,
including “arbitrary” mesh
triangulation, “high” quality and

“mild” depth filtering, and “ultra-

high” photo alignment Urbanova et al.

(2015).
Electricity R-CNN generates region proposals for  [55]
infrastructure  extracting smaller chunks of the

original image that consist of the items

under examination. In order to

accomplish this, a selective search

method is used, which employs

segmentation to guide the image
sampling process and exhaustive
search for potential item positions. Due
to the selection algorithm, only the
necessary number of regions are
selected. The image data from each
region is then wrapped into squares
and sent to a CNN in the following
step.

Sloped road An obstacle identification and distance  [56]

inspection measuring approach for sloped roads
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based on Vision IMU based detection
and range method (VIDAR) is
proposed. First, the road photos are
collected and processed. The VIDAR
collects the road distance and slope
information the digital map provides
to detect and eliminate false obstacles
(those for which no height can be
determined). Tracking the obstacle’s
lowest point determines its moving
condition. Finally, experimental
analysis is carried out using simulation
and real-world tests.

Research Gap:

UAVs show excellent performance in solving problems faced by several
industries. However, difficulties in handling UAVs also were identified,
such as photographic quality diminishes in dark environments and
UAVs cannot clear debris or other obstructions.

Based on the above table, numerous methods were used to enhance drone application on an
industrial scale. Under the Industry 4.0 framework, drones have proven significant tools in various
industries in recent years. By incorporating UAVs into several industries, it is proven that UAVs are
beneficial by reducing the operation cost, the possibility of accidents, and better efficiency [57].

3. FPV Camera

An FPV (First Person View) camera is a cutting-edge device that has revolutionized the world
of remote-control hobbies and aerial activities. With its compact design and lightweight construction,
the FPV camera offers users a real-time, immersive view from the perspective of their drones, RC
cars, or other radio-controlled vehicles [58]. By transmitting live video feeds to specialized goggles
or monitors, users can experience the thrill of piloting their vehicles from the inside, providing an
adrenaline-packed experience for drone racing enthusiasts and FPV pilots [59]. Moreover, the low
latency and high-resolution capabilities of FPV cameras contribute to a remarkable sense of speed
and precision during flights or races [60]. As a result, FPV cameras have become an indispensable
component in drone racing, freestyle flying, and aerial cinematography, elevating users” enjoyment,
and skill level to unprecedented levels [61]. Prominent brands like DJI, Fat Shark, Foxeer, RunCam,
and TBS have been at the forefront of producing top-notch FPV cameras, incorporating the latest
technologies to provide an unparalleled FPV experience for enthusiasts [62]. Some of FPV cameras
can have a built-in gyroscope (MEMS angular velocity sensor) which makes it possible to provide
smooth video and stabilized image [63].

Figure 2. Camera mounted on the UAV.

Many FPV cameras have been developed recently to improve image quality and ease of use.
Field of View (FOV) and lens focal length are vital considerations when choosing a camera [64]. The
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lens focal length influences the degree of FOV of the camera. Wider FOVs are often achieved by using
lenses with shorter focal lengths. Table 2 shows the lens focal length and the approximate FOV for a
camera with a 1/3-inch sensor size. FPV cameras would provide clear views both forward and
backward. The advantage of flying forward and backward is that the drone does not need to make
yaw maneuvers to gain a comprehensive picture of its surroundings [65].

Figure 3. Field of View of the camera.

Table 1. Lens focal length and approximate FOV estimation for a camera with a 1/3 inch sensor size
in a 4:3 aspect ratio

Lens Focal Length (mm) Approximate FOV (degree)
1.6 170+
1.8 160 - 170
2.1 150 — 160
2.3 140 - 150
25 130 - 140

The image sensor is the most crucial part of the camera. It creates an electrical signal from the
image that the lens sensor has captured. Two imaging sensors commonly used in FPV cameras are
charged coupling devices (CCD) and complementary metal oxide semiconductors (CMOS). CCDs
and CMOS sensors both rely on metal-oxide-semiconductor (MOS) technology. CMOS sensors using
MOSFET (MOS field-effect transistor) amplifiers and CCDs using MOS capacitors. Vacuum tubes of
various types are typically used in analog sensors for infrared radiation, whereas flat-panel detectors
are used in digital sensors. The CCD is an analog sensor, while CMOS is a digital sensor. The
mechanism of the imaging sensor is that light absorbed by the sensors will create a charge, which is
subsequently converted into a voltage video signal proportionate to its illumination [66]. Both sensors
have pros and cons based on the mission of the quadcopter.

CCD cameras’ wide dynamic range (WDR) capabilities make them excellent in challenging
lighting settings. With the proper settings, a decent CCD FPV camera lets the pilot see well, even
when looking directly into the sun or pitch-black hours after sunset. Vibration problems do not affect
CCD cameras as much as CMOS cameras. This is because CMOS cameras apply a system known as
“rolling shutter,” which shoots from top to bottom. If the vibration is there, the picture becomes
shaky.

Meanwhile, CCDs are often better suited for robotics applications because they perform better
under varying illumination conditions and are less prone to rolling shutter deviations, which can
cause image distortion during motion [67]. Besides that, CCD cameras require more power than
CMOS cameras, and CCD sensors are considerably more costly. However, CMOS camera is widely
used by leading technology companies such as GoPro and DJI, which are well known for their quality
and reliable products [68]. Table 3 shows the defect detection method used in the current drones.

a) Advantages of CCD Imaging Sensor
Good performance in most lighting circumstances, especially in low light, is one of the benefits
of CCD image sensors because the WDR feature adjusts the exposure and the color to be faultless

[69]. The video has no vibration effect, and the image contrast is better than CMOS. The resulting
image’s color is more natural and has lower noise.
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b) Advantages of CMOS Imaging Sensor

Low power consumption and low latency are benefits of CMOS. This will result in the image
distortion being at a minimum level due to small latency during data transfer [70]. A sharper, higher-
resolution image can be obtained using a CMOS imaging sensor. Apart from that, CMOS is less
expensive than CCD because the production cost is inexpensive.

Table 3. Defect detection method.

Method Previous Study Reference

Fringe A method used in this paper is rivetand  [71]
projection seam extraction to allow a precise and
accurate 3D figure of the structure. The
technology of surface structured light
measurement was applied to the 3D
figure.

Wavelet Surface defect detection in tiling [72]
transform industries scans cracks, pinholes,
scratches, and blobs on the ceramic
surface. Wavelet transform is applied to
filter for soft texture images such as
ceramic and textile.
Ultrasonic Background echo filter (BWEF) filters the  [73]
ultrasonic C-scan to determine the
location with a different depth than the
neighboring ones.

Ultrasonic  The lower and upper wing skins were [74]
subjected to non-destructive testing
(NDT) using an ultrasonic C-scan Mobile
Automated Ultrasonic Scanner (MAUS)
with a 5 MHz transducer.

Research Gap:

Current technologies were observed and studied in detecting the
defects. The defect has criteria that require high-technology tools
to scan it accurately.

3.1. Video Transmitter

A Video transmitter, or VTX, is a gadget attached to the camera and transmits the image in real
time from the drone to an FPV receiver over the airways. A secure data transmission can be provided
using the onboard system for neural network cryptographic data protection in real-time [75].VTX
operates at a frequency of 5.8 GHz but may also broadcast the FPV signal at 900 MHz, 1.3 GHz, or
2.4 GHz, depending on the area. The drawback of employing a camera for a first-person view
quadcopter is latency problems. However average delay of 100-200 milliseconds is barely detectable
when flying in general [76].

The most crucial factor to consider in choosing VRX is VIX’s frequency. 5.8 GHz is the most
used frequency on FPV equipment because this frequency is legal in most parts of the world. The
frequency selection is dependable based on the range of the drone’s mission and high data rating
[77]. Higher frequency signals carry greater bandwidth, which is advantageous, but they find it much
more challenging to get through barriers like buildings and trees. High frequency is suitable for long-
range missions, while low frequency is for short-range missions [78].
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Programing a transmitter to broadcast on a specific frequency or channel is possible. When
flying with other FPV pilots, having more channels that can be configured on the transmitter is
helpful since each pilot will fly on a distinct frequency to ensure that the FPV video does not conflict
with others. These days, 32 or 40 channel FPV transmitters are the most prevalent. Each transmitter
will have a frequency table that lists each channel, band, and matching frequency, as shown in Table

4.
Table 4. Example of frequency, channel, and band of video transmitter.
Band Channels
CH1I CH2 CH3 CH4 CH5 CH6 CH7 CHS8
Band 1 F - FS/IRC 5740 5760 5780 5800 5820 5840 5860 5880

Band2 E-Lumenier/DJI 5705 5685 5665 5752 5885 5905 5925 5866
Band 3 A —Boscam A 5865 5845 5825 5805 5785 5765 5745 5725
Band 4 R - RaceBand 5658 5695 5732 5769 5806 5843 5880 5917

Next, an aspect that needs to be considered in choosing VTX is the output power of VTX because
it affects the capability of VIX to transmit the video signal to the receiver. The amount of power
transmitted from the transmitter is determined by its output power; commonly, the output power for
VTX is 25mW, 200mW, and 600mW. The more extended range was obtained by high output power.
However, the VTX might become hot and broken. Aside from that, when flying in an area with a lot
of signal reflection (indoor environment), there are better choices than using a high-powered
transmitter. Signal interference, or “multipath”, can occur when signals bounce off surfaces,
including the floor, ceiling, and walls.

3.2. FPV Receiver

FPV receiver is an essential component in the FPV system that complements the FPV camera by
receiving and displaying the live video feed from radio-controlled vehicles, such as drones and RC
cars. This receiver acts as a bridge between the vehicle mounted FPV camera and the viewing device,
which can be specialized goggles or monitors. It plays a crucial role in ensuring a seamless and real-
time transmission of the video feed, enabling users to immerse themselves in the exhilarating
experience of piloting their vehicles from a first-person perspective [79]. FPV receivers come in
various frequencies, such as 5.8GHz, 2.4GHz, and 1.2GHz, each offering unique advantages and
trade-offs in terms of range and signal penetration [80]. The receiver’s ability to handle multiple
channels is crucial for racing events, where multiple pilots can simultaneously stream their video
feeds [81]. To ensure a reliable and interference-free reception, some receivers are equipped with
diverse systems that switch between multiple antennas to find the optimal signal [82]. Advances in
FPV receiver technology have contributed significantly to the popularity and growth of FPV racing
and other remote-control hobbies, providing users an unparalleled sense of control and excitement
[83]. Video transmitters (VIX) send out radio frequencies received by the FPV video receivers,
converting those signals into videos that can be viewed on our goggles and screens. FPV receivers
are generally in the 5.8 GHz range, and most feature 48 channels total, separated into a few bands
with eight channels each.

Radio frequency containing

Digital image information s : .
& g digital image information

e g 9 -  » S

Camera Video Transmitter FPV Receiver

Capture the Convert the digital image Receive and convert
image into radio frequency and the radio frequency

transmit into digital image

Figure 4. Process flow of streaming real time image from camera.
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4. Image Filtering

According to Nayagam et al., 2018, digital image processing performs various operations and
algorithms on digital images to produce enhanced images. Digital image processing encounters
blurred, low-quality, monochrome images, and many more. This is the main reason many methods
were created due to these difficulties. The three fundamental steps in image processing are acquiring
the input from the source, analyzing and manipulating the image, and generating the enhanced
output [84].

One of the valuable filters used in image and video analysis is Gaussian Filter that K.N Sivabalan
introduced. The process of blurring a picture using a Gaussian function is called a “Gaussian filter,”
sometimes known as “Gaussian blur” (named after mathematician and scientist Carl Friedrich
Gauss). A Gaussian low-pass filter blurs specific picture areas and reduces noise (high-frequency
components) [85]. The filter is constructed as an odd-sized symmetric kernel (DIP version of a matrix)
and passed through each pixel in the region of interest to get the desired result. In processing images
with fixed-point arithmetic, using a Gaussian filter increases processing effectiveness and lowers
computing costs [86]. However, according to Cabello et al., 2015 heavy computational resources are
needed to create a 2D Gaussian Filter for real-time applications. This research compares the processor
used to implement a 2D Gaussian Filter. CPU, GPU, and Field programmable gate array (FPGA) were
tested to observe the performance of the 2D Gaussian Filter. Fixed-point arithmetic is used to create
a 2D Gaussian Filter in FPGA, proven to speed up processing [87].

Gaussian Filter is applied in the defect detection program that was created. It helps reduce the
noise of the image captured by the camera mounted on the drone. Gaussian Filter filters the grayscale
image; hence it will become blurry. This approach is used since it has an efficiency of 85% in detecting
defects in textured and non-textured pictures [84]. Figure 5 shows an image that is filtered using a
Gaussian filter.

Figure 5. The image filtered by Gaussian Filter.

Gary Bradsky invented OpenCV at Intel in 1999; the initial version was released in 2000.
OpenCV is accessible on several operating systems, such as Windows, Linux, OS X, Android, and
iOS, and it supports many programming languages, including C++, Python, Java, etc. A package of
Python modules called OpenCV-Python was created to solve issues with computer vision. Intel first
released OpenCV (Open-Source Computer Vision) as an open-source image and video analysis
toolkit. The OpenCV library now contains almost 2500 optimized algorithms in image processing and
computer vision. OpenCV is one of the most extensively used computer vision libraries, with many
capabilities designed for Intel processors [88].

Approximately 2.5 million programmers have downloaded OpenCV because it is intuitive and
easy to learn [89]. Apart from this, the module offered by OpenCV is open source, meaning it is free,
and the code is portable. Even though the OpenCV function does not require high complexity of
understanding, the designed algorithms are beneficial. Python-OpenCV offers a new alternative for
academic research that requires image and video analysis [90]. OpenCV can convert the image into
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grayscale, blur the image, thresholding the image, and stream the live feed image from the camera
[91].

Figure 6. The image is threshold.

Table 5. OpenCV library for image and video analysis.

Library Function

cv2 Display the visual from the camera.
Read the image input from the camera.
Transform the image intograyscale, blur, and threshold.

NumPy Arithmetic operations
Handling a complex number

Scipy, spatial ~ Draw an object on the image
Measure the size of an object

5. Conclusion

Many sectors have emphasized that the drone could quickly inspect defects or flaws due to
additional sensors or tools are equipped onto UAVs to scan the damaged structure. Effectiveness of
UAVs in disaster response and relief efforts was proven [92]. UAVs show excellent performance in
solving problems faced by several industries. However, difficulties in handling UAVs also were
identified, such as photographic quality diminishes in dark environments and UAVs cannot clear
debris or other obstructions.

The image sensor is the most crucial part of the camera. The mechanism of the imaging sensor
is that light absorbed by the sensors will create a charge, which is subsequently converted into a
voltage video signal proportionate to its illumination. Both sensors have their benefits. The CCD
sensor shows good performance in low lighting, good image contrast, and the resulting image is more
natural with low noise. Meanwhile, CMOS sensor needs low power consumption, produces a high-
resolution image, and is inexpensive.

As UAV applications continue to diversify across domains, the insights presented in this paper
serve as a foundation for inspiring future innovations and advancements in image processing
systems, ultimately shaping the trajectory of UAV technology and its impact on society. As we move
forward, it is evident that the synergy between UAVs and image processing will continue to drive
innovation and shape the future of various domains. With the emergence of artificial intelligence,
machine learning, and deep learning techniques, the potential for UAVs to autonomously interpret
and respond to visual data opens up new horizons for applications that were once deemed
unattainable.
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