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Technology and Business University, Chongqing 400067, China 
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Abstract: In traffic scene, pedestrian target detection faces significant issues of misdetection and omission due 

to factors such as crowd density and obstacle occlusion. To address these challenges and enhance detection 

accuracy, we  propose  an  improved  CCW‐YOLO  algorithm.  The  algorithm  first  introduces  a  lightweight 

convolutional  layer using GhostConv and  incorporates an enhanced C2f module  to  improve  the networkʹs 

detection performance. Additionally, it integrates the Coordinate Attention module to better capture key points 

of  the  targets. Next,  the bounding box  loss  function CIoU Loss at  the output of YOLOv5  is  replaced with 

WiseIoU Loss  to  enhance  adaptability  to various detection  scenarios,  thereby  further  improving  accuracy. 

Finally,  we  develop  a  pedestrian  count  detection  system  by  using  PyQt5  to  enhance  human‐computer 

interaction. Experimental results on the INRIA public dataset show that our algorithm achieves a detection 

accuracy of 95.6%, representing a 8.7% improvement over the original YOLOv5s algorithm. This advancement 

significantly  enhances  the detection of  small objects  in  images  and  effectively  addresses misdetection  and 

omission issues in complex environments. These findings have important practical implications for ensuring 

traffic safety and optimizing traffic flow. 
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1. Introduction 

With  the  rapid  acceleration  of  urbanization,  traffic  safety  issues  are  becoming  increasingly 

prominent.  Pedestrian  detection,  as  a  crucial  technology  in  intelligent  transport  systems,  holds 

significant  research  importance and practical value. Effective pedestrian detection algorithms can 

identify and locate pedestrians in real‐time traffic scenarios, thus providing essential data support 

for intelligent driving [1], automated parking, and monitoring systems. This significantly enhances 

road safety and pedestrian protection. Moreover, pedestrian detection technology plays a vital role 

in smart city development by aiding urban management [2], facilitating traffic flow analysis [3], and 

enabling event monitoring, thereby promoting the intelligence and humanization of urban traffic. 

However,  pedestrian  detection  faces  numerous  challenges  due  to  the  complexity  of  traffic 

environments. Background noise can lead to false positives or missed detections, while variations in 

illumination  impact  image  clarity  and  contrast, making  pedestrian  features  difficult  to  discern. 

Additionally, the diverse postures of pedestrians and differences in clothing colors further complicate 

detection,  and  occlusion  is  particularly  common  in  busy  traffic  settings,  often  resulting  in  the 

misidentification of pedestrians. To overcome these challenges, it is essential to develop more robust 

detection  algorithms  that  enhance  pedestrian  detection  performance  in  complex  environments, 

ultimately providing strong support for the safe operation of intelligent transport systems. 

1.1. Related Work 

Pedestrian detection algorithms  in complex scenes can be broadly categorized  into  two main 

types: traditional machine vision‐based methods and deep learning‐based approaches. Traditional 

methods rely on manual feature extraction and established machine learning algorithms, boasting a 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 October 2024 doi:10.20944/preprints202410.2326.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202410.2326.v1
http://creativecommons.org/licenses/by/4.0/


  2 

 

long research history and relatively mature techniques. For example, Haar feature cascade classifier 

[4], which  achieves  fast  detection  through  simple  rectangular  features,  is  suitable  for  real‐time 

applications and performs well especially  in  simpler  contexts. Another  classic algorithm  is HOG 

(Histogram  of Oriented Gradients)  [5], which  achieves  good detection  results  by  calculating  the 

orientation gradient features of the image and combining them with Support Vector Machine (SVM) 

[6]  for  classification,  especially performs well  in detecting pedestrians under different poses and 

shape changes. DPM  ( Deformable Part Model)  [7]  introduces  the concept of deformable parts  to 

capture  the  overall  shape  of  a  pedestrian  by  modeling  its  constituent  parts  and  their 

interrelationships. Although DPM  significantly  improves  accuracy,  it  comes with  relatively high 

computational  complexity  [8].  In  addition,  pedestrian  detection  methods  based  on  image 

segmentation have also received attention, which are usually combined with background modelling 

techniques to achieve pedestrian detection by separating the foreground from the background. While 

these  traditional methods  are  effective  in  simpler  scenes,  they  are  susceptible  to  interference  in 

complex environments and dynamic backgrounds, which can diminish detection efficacy. 

With  the  rapid  advancement  of deep  learning  technology, methods based  on  convolutional 

neural  networks  (CNN)  [9]  have  increasingly  become  the  mainstream  approach  in  pedestrian 

detection.  The  classical  algorithm,  Region‐based Convolutional Neural Networks  (R‐CNN)  [10], 

markedly  enhances  the  accuracy  of  pedestrian  detection  by  generating  candidate  regions  and 

employing CNNs for feature extraction. However, the computational complexity of R‐CNN limits its 

performance in real‐time applications [11]. To address this issue, Faster R‐CNN [12] was developed, 

incorporating a Region Proposal Network (RPN) to effectively balance detection speed and accuracy, 

thus becoming widely used across various application scenarios.Conversely, the YOLO (You Only 

Look Once)  [13] algorithm achieves end‐to‐end detection using a single neural network, enabling 

pedestrian detection under real‐time conditions. It is particularly well‐suited for video applications. 

The Single Shot MultiBox Detector (SSD) [14] adopts a similar principle, enhancing adaptability to 

pedestrians of varying scales by detecting them across multi‐scale feature maps. Additionally, Mask 

R‐CNN [15] extends Faster R‐CNN by integrating  instance segmentation capabilities, allowing for 

simultaneous  detection  and  segmentation,  which  provides  higher  detection  accuracy  and  fine‐

grained information.These deep  learning methods significantly outperform traditional approaches 

in  complex  scenes, not  only  improving  the  accuracy  of pedestrian detection  but  also prompting 

technological advancements and expanding applications in this field. 

1.2. Motivation 

Traditional methods have made some progress in early pedestrian detection research; however, 

their limitations are becoming increasingly apparent. Haar feature cascade classifier is widely used 

due to  its high computational efficiency, but  it performs poorly under  light changes and complex 

backgrounds, which can easily  lead  to misdetection and omission  [16]. Reference  [17] used HOG 

(Histogram of Oriented Gradients) combined with Support Vector Machines (SVM), which improves 

the detection accuracy but is not robust enough in dealing with different poses and scale variations, 

and  its  performance  tends  to  degrade  significantly,  especially  in  crowded  scenes.  In  addition, 

although DPM  (Deformable  Part Model)  in  the  literature  [18]  is  able  to  capture  the  shape  and 

structure changes of pedestrians, its computational complexity is high and its real‐time performance 

is  limited.Therefore, the primary shortcomings of traditional pedestrian detection methods can be 

summarized  as  follows:  limitations  in  feature  selection,  sensitivity  to  variations  in  lighting  and 

background,  inadequate  real‐time  performance,  and  poor  robustness  against  scale,  pose,  and 

occlusion  [19].  These methods  typically  rely  on  hand‐crafted  features, making  it  challenging  to 

capture  the  complex morphology  of  pedestrians  fully.  This  often  results  in  increased  rates  of 

misdetection and omission in complex environments. Furthermore, the high computational demands 

associated with  these  traditional  techniques  hinder  their  effectiveness  in  dynamic  and  crowded 

scenes. 

The  primary  advantage  of  deep  learning methods  over  traditional  approaches  lies  in  their 

powerful  feature  learning  capabilities  and  efficient  automated processing. Utilizing  architectures 

such as convolutional neural networks  (CNNs), deep  learning can automatically extract complex, 

high‐dimensional  features,  significantly  enhancing  the  recognition accuracy of pedestrians across 
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varying scales, postures, and occlusions [20]. Furthermore, deep learning methods generally exhibit 

greater  robustness,  effectively managing  lighting  changes  and  background  interference, making 

them particularly suitable for dynamic scenes and video surveillance applications. These advantages 

have positioned deep learning as a mainstream method in the field of pedestrian detection, garnering 

substantial attention, albeit accompanied by several challenges.Region‐based Convolutional Neural 

Networks  (R‐CNN) generate  candidate  regions  through  selective  search,  subsequently  extracting 

features and classifying them with CNNs. Despite its high detection accuracy, R‐CNNʹs considerable 

computational  complexity  and  limited  real‐time  performance  restrict  its  applicability  [21].  In 

response, Faster R‐CNN incorporates a Region Proposal Network (RPN) to enhance detection speed, 

thereby  improving  real‐time performance, although  it still  falls short of meeting  the demands  for 

high frame rate detection [22].The Single Shot MultiBox Detector (SSD) conducts detection on feature 

maps at multiple scales, balancing speed and accuracy, and performs particularly well in detecting 

small  targets. However,  it  continues  to  experience  degradation  in  performance within  complex 

backgrounds [23]. RetinaNet addresses the challenge of detection accuracy by introducing focal loss 

[24], which mitigates the imbalance between foreground and background samples, thus enhancing 

small  target  detection  capabilities;  yet,  its  computational  complexity  remains  relatively  high, 

resulting  in poorer  real‐time performance. The YOLO  (You Only Look Once)  [25]  algorithm has 

gained  significant attention  for  its end‐to‐end detection approach, markedly  improving detection 

speed by dividing images into grids and simultaneously predicting bounding boxes and categories 

within each grid. Nonetheless,  the detection accuracy of YOLO  for small  targets and  in crowded 

scenes still requires improvement [26]. Current advancements in YOLO‐based algorithms primarily 

focus  on  enhancing detection  accuracy  and  real‐time  performance  by  integrating deeper  feature 

extraction  networks  and  attention  mechanisms,  effectively  improving  small  target  detection, 

especially in complex and crowded environments. 

1.3. Our Work 

Inspired  by  these  facts, we propose  a pedestrian detection network, CCW‐YOLO,  based on 

YOLOv5, specifically designed to address issues of low accuracy, missed detections, and errors in 

pedestrian  detection  within  traffic  scenarios.  First,  our  algorithm  introduces  a  lightweight 

convolutional layer, GhostConv, which aims to reduce both computational load and the number of 

parameters while maintaining efficient feature extraction capabilities. Additionally, the enhanced C2f 

module further improves the overall detection performance of the network by optimizing the feature 

fusion  process,  thus  enhancing  adaptability  across  diverse  scenarios.Second, we  incorporate  the 

Coordinate Attention module, an attention mechanism  that enables  the network  to better  localize 

pedestrians in complex backgrounds by focusing on spatial information and feature distribution. This 

results in more accurate detection outcomes. Finally, we adopt WiseIoU Loss as the bounding box 

loss  function  at  the  output  of  YOLOv5  to  improve  adaptability  to  various  detection  scenarios, 

ensuring that the model performs robustly in changing environments.The contributions of our work 

are summarized as follows: 

 Introduction  of  Lightweight  Convolution  (GhostConv):  We  first  implement  lightweight 

convolution within  the  YOLOv5  pedestrian  detection  algorithm,  significantly  reducing  the 

modelʹs  computational  complexity  and  the number of parameters. This  approach maintains 

excellent feature extraction capabilities while enhancing the efficiency of real‐time detection. 

 Design of an Improved C2f Module: By constructing an enhanced C2f module, we optimize the 

feature  fusion  process  to  address  the  low  accuracy  in  pedestrian  detection  resulting  from 

variations  in  environmental  scales.  This  improvement  enhances  the  networkʹs  adaptability 

across diverse scenes, thereby significantly boosting pedestrian detection performance. 

 Incorporation  of  Coordinate Attention: We  introduce  a  coordinate  attention mechanism  to 

enhance  the modelʹs  ability  to  capture key  target  locations. This  innovation  facilitates more 

accurate localization of pedestrians in complex backgrounds, reducing the incidence of missed 

and false detections while improving overall detection accuracy. 

 Design of the WiseIoU Loss Function: The WiseIoU Loss function is employed in bounding box 

calculations, integrating the overlapping region, centroid distance, and aspect ratio. This design 

enhances the modelʹs adaptability to various detection scenarios, ensuring robust performance 

in dynamic environments. 
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 Experimental Validation and Performance Enhancement: Rigorous experiments conducted on 

public datasets reveal that the detection accuracy of the CCW‐YOLO algorithm reaches 95.6%, 

which  is  an  improvement of  8.7% over  the original YOLOv5s  algorithm. This  advancement 

significantly  enhances  the detection of  small objects  in  images  and  effectively  addresses  the 

issues of misdetection and omission in complex scenes. 

2. The Proposed Approach 

In  this  study,  we  utilized  YOLOv5s  as  the  foundation  for  model  improvement.  Figure  1 

illustrates the network structure of YOLOv5 [27], which is divided into four main components: Input, 

Backbone, Neck, and Output. The input image is standardized to a resolution of 640 x 640 pixels for 

model  training.The  Backbone  component  is  responsible  for  feature  extraction  and  progressively 

reduces the size of the feature map. The Neck component enhances the modelʹs capability to detect 

targets of varying sizes through multi‐scale feature fusion and upsampling operations. Finally, the 

output component predicts the class, bounding box coordinates, and confidence level of the target 

based on the feature information provided by the Neck network. 
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Figure 1. YOLOv5s network structure. 

To address the issues of false and missed detections resulting from overlapping and occlusion 

of pedestrian targets in complex traffic scenarios, we have enhanced the YOLOv5s model,as shown 

in Figure 2.Firstly, we introduce the GhostConv and C2f modules to optimize the convolutional layer 

structure, replacing the C3 module in YOLOv5s. By fusing feature maps from different layers, we 

enhance the gradient flow information and feature representation of the model, thereby improving 

the detection of  small  targets.Secondly,  the  incorporation of  the  coordinate  attention mechanism 

(Coordinate Attention module) strengthens  the modelʹs ability  to  focus on key regions within  the 

image,  further  enhancing  the  accuracy  of  target  detection.Finally,  we  improve  the  output  loss 

function of YOLOv5 by adopting WiseIoU Loss in place of the original CIoU Loss. This modification 

enhances the modelʹs robustness in complex backgrounds and under varying scales through more 

detailed pixel‐level evaluations and effective handling of occlusion cases. 
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Figure 2. Improved CCW‐YOLO network structure . 

2.1. Improved Backbone Network 

In  traffic  scene,  the  size  and  orientation  of  pedestrian  targets  are  continuously  changing, 

particularly  for  smaller  targets  at  greater  distances,  whose  feature  representations  tend  to  be 

relatively weak. This weak representation makes  it challenging  for  the model  to extract sufficient 

information  for  accurate  detection.  To  address  this  issue,  this  study  focuses  on  enhancing  the 

Backbone  network  of  the  YOLO model  to  improve  both  the  efficiency  and  accuracy  of  feature 

extraction, enabling it to better adapt to variations in target scales and shapes. 

2.1.1. GhostConv Structure 

The GhostConv structure [28] consists of three steps: standard convolution, Ghost generation, 

and feature map splicing. The operational principle of GhostConv is illustrated in Figure 3. The Ghost 

Module operates in three steps to obtain the same number of feature maps as a normal convolution. 

Firstly, GhostNet applies a standard convolution (1×1×M), followed by batch normalization and the 

ReLU  activation  function,  to  compress  the  input  image  in  terms  of  channel  count  and  generate 

intrinsic feature maps. The input feature maps  X are convolved by Equation 1 to obtain the intrinsic 

feature maps  'Y  

'' fXY    (1)

These feature maps are then applied using a series of simple linear operations (unit mapping in 

parallel  with  linear  transformation)  to  obtain  more  feature  maps  and  increase  the  number  of 

features.The feature maps of each channel of  'Y are linearly transformed 
ij   to produce the Ghost 

feature maps 
ijY   by Equation 2. 

sjmiYY ijij ,...,2,1,,...,2,1),( '    (2)

Finally, the intrinsic feature maps obtained in the first step and the Ghost feature maps obtained 

in the second step are spliced (identity connection) to obtain the final result OutPut. Compared with 

the traditional convolutional neural network, the Ghost module significantly reduces the number of 

parameters required and the computational complexity, which can effectively improve the speed of 

training and inference. 
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Figure 3. Comparison of Ghost convolution and Normal Convolution. (a) Normal Convolution; (b) 

Ghost convolution. 

2.1.2. C2f Module 

The C3 module in the YOLOv5s model exhibits limitations in accurately detecting targets with 

specific  scales and aspect  ratios.  Its  inability  to adapt  effectively  to objects of varying  scales and 

shapes  results  in  suboptimal detection performance, particularly  for  small  or  irregularly  shaped 

targets. To address  this  issue, we proposes replacing  the C3 module  in  the YOLOv5s architecture 

with the C2f module. This enhancement significantly improves the modelʹs capability to detect small 

targets by  integrating  feature maps  from different  layers,  thereby providing  richer gradient  flow 

information and enhancing feature representation. 

The  C2f module  is  a  hybrid  neural  network  structure  that  primarily  integrates  high‐level 

semantic features with low‐level detail features. A comparison of the network structures of the C3 

and C2f modules  is presented  in Figure 4. The C2f module borrows design concepts  from  the C3 

module,  removing  the  sub‐branching  convolution, which  results  in  a more  lightweight  network 

architecture.  Additionally,  it  incorporates  a  Split  operation  and  more  parallel  gradient  flow 

branches—known  as  skip  connections—allowing  the  output  feature map  of  the  C2f module  to 

contain  richer  gradient  information  and  enhanced  feature  representation.  This  improvement 

significantly enhances  the expressive capability of  the entire network model,  thereby boosting  its 

performance in detecting small targets. 
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Figure 4. Comparison of C3 and C2f network structures. 

In this study, we replace the C3 module in the Backbone and Neck components of the YOLOv5s 

model with the C2f module to enhance the modelʹs ability to detect small targets. The C2f module 

[29] utilizes  feature  fusion, effectively stacking  feature maps  from various  layers  to create deeper 

feature  representations by concatenating  them along  the  channel dimension. This  fusion  strategy 

enables the C2f module to more efficiently capture the features of small targets, thereby improving 

detection performance. Moreover, the C2f module enhances the transfer of gradient flow information, 

allowing the model to concentrate on critical features of small targets, which improves both accuracy 

and  effectiveness. Additionally,  the  C2f module  addresses  the  challenge  of  detecting  targets  at 

varying scales by generating feature maps that are high‐resolution and rich in semantic information. 

This is achieved through the fusion of shallow feature maps, which provide high resolution but less 

semantic context, with deep feature maps that offer rich semantic information but lower resolution. 

This approach is particularly vital for small target detection, as the semantic content from the deep 

feature maps significantly contributes to improved detection accuracy. The structure of the modified 

network is illustrated in Figure 2. 

2.2. Coordinate Attention Mechanism  

To address the issues of false and missed detections caused by target overlapping and occlusion, 

while enhancing the modelʹs ability to focus on important regions or features within an image, we 

incorporate the Coordinate Attention mechanism into the Neck and Head stages of the YOLO model. 

This  integration aims  to  improve  the accuracy of pedestrian detection  in complex scenes, and  the 

structure of  the Coordinate Attention module  [30]  is  illustrated  in Figure 2.Coordinate Attention 

decomposes channel attention into two one‐dimensional feature encoding processes that aggregate 

features along two spatial directions. The resulting attention maps are applied complementarily to 

the input feature maps, enhancing the representation of the target object. The network structure of 

the  Coordinate  Attention  module  comprises  four  key  components:  an  average  pooling  layer, 

concatenation and convolution operations, batch normalization and nonlinear activation, and feature 

separation and reweighting. This structure is illustrated in Figure 5. 
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Figure 5. Coordinate Attention structure. 

The Coordinate Attention module encodes channel relationships and long‐term dependencies 

using precise positional information, allowing the network to concentrate on significant regions while 

maintaining a low computational cost. This process involves two main steps: Coordinate Information 

Embedding and Coordinate Attention Generation. 

Step 1: Coordinate Information Embedding. To capture attention regarding the imageʹs width 

and height while encoding precise location information, the input feature map is initially globally 

pooled along both the width and height dimensions. Specifically, for the input feature tensor X , the 

features of each channel are encoded along the horizontal coordinates using a pooling kernel of size 

)1,(H . Consequently, the output for channel  c   at height  h   can be represented as follows: 

),(
1

)(
0

ihx
W

hz
Wi

c
h
c 



   (3)

where  h
cz   denotes the height of the  c th channel as  h ;  ),( ihxc   denotes the value of the feature 

map with width coordinate  i   for the height of the  c th channel as  h ; and W   denotes the width of 

the  feature map. Similarly,  the output of  the width of  the  c th  channel  as  w   can be written  as 

Equation 4. 

),(
1

)(
0

wjx
H

wz
Wj
c

w
c 



   (4)

where  h
cz   denotes the height of the  c th channel as  w ;  ),( wjxc   denotes the value of the feature 

map with width coordinate  j   for the height of the  c th channel as  w ; and  H   denotes the width 

of the feature map. 

These two transformations aggregate features from two spatial directions, resulting in a pair of 

direction‐aware feature maps. This dual transformation enables the attention module to capture long‐

term dependencies  along  one  spatial  dimension while  preserving  precise  positional  information 

along the other. As a result, the model is better equipped to localize the target of interest effectively. 
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Step 2: Coordinate Attention Generation. The aggregated feature maps generated by Equation 

3  and  4  undergo  a  concatenation  operation,  after  which  they  are  transformed  using  the  11  

convolutional function  1F . This process yields intermediate feature maps  f , which encode spatial 

information in both the horizontal and vertical directions, as shown in Equation 5 : 

])),([( 1
wh zzFf    (5)

Where  [  ]  denotes  a  concatenation  operation  along  the  spatial  dimension,   represents  a 

nonlinear  activation  function,  )( WHrCRf    is  an  intermediate  feature map  that  encodes  spatial 

information in both the horizontal and vertical directions, and  r   is a reduction rate used to control 
the size of the Squeeze‐and‐Excitation  (SE) block. The decomposition of  f   into two  independent 

tensors,  HrCh Rf    and  WrCw Rf  , along the spatial dimension, and the transformation of  hf  

and  wf   into tensors with the same number of channels as the input  X   using two additional  11  

convolutional transforms,  hF   and  wF , respectively, as shown in Equation 6 and 7: 

))(( h
h

h fFg    (6)

))(( w
w

w fFg    (7)

where     is the Sigmoid activation function. To reduce model complexity and computational 

overhead, the number of channels in  f   is typically decreased using appropriate reduction ratios. 
Subsequently, the outputs  hg   and  wg   are expanded to serve as the attention weights, respectively. 

The  final output of  the Coordinate Attention  (CA) module, denoted as  ],...,,[ 21 cyyyY  ,  can be 

expressed as Equation 8: 

)()(),(),( jgigjixjiy w
c

h
ccc    (8)

2.3. Improved WiseIoU Loss 

The  loss  function utilized  in bounding box  regression  (BBR)  is pivotal  for pedestrian  target 

detection, as a well‐defined  loss  function  can  significantly enhance model performance.  In  traffic 

scenarios,  issues such as omissions or misdetections can  result  in  incorrect  filtering of pedestrian 

prediction frames. This problem is particularly evident when the actual frame does not overlap with 

the predicted frame. The traditional Intersection over Union (IoU) loss function often suffers from 

gradient  vanishing, which  hinders  the modelʹs  convergence  speed  and  ultimately  compromises 

detection accuracy.To address  this  challenge, we  introduces an enhancement  to  the  loss  function 

derived from  the YOLOv5  framework, specifically by replacing the original Complete IoU (CIoU) 

Loss with WiseIoU Loss. This modification aims  to  improve detection accuracy  in complex  traffic 

environments. 

WiseIoU Loss  is an optimized  loss function [31] designed for target detection that employs a 

pixel‐level weighting strategy to more accurately evaluate the correspondence between the predicted 

frame  and  the  actual  frame,  with  its  computational  principles  illustrated  in  Figure  6.  This 

enhancement enables WiseIoU Loss  to better capture  the effectiveness of target detection, thereby 

improving  overall  detection  accuracy.Compared  with  CIoU,,  WiseIoU  Loss  offers  a  more 

comprehensive assessment of the relationship between the target area and its surrounding context. 

It not only emphasizes the overlapping regions of the two frames but also incorporates surrounding 

area information, resulting in a more precise evaluation of target detection. This capability provides 

WiseIoU Loss with  a  significant  advantage  in  complex  scenarios  and when handling  irregularly 

shaped targets.Furthermore, WiseIoU Loss features the flexibility to dynamically adjust weights. By 

modifying the weight matrix, the importance of various regions can be tailored to meet specific task 

requirements. This adaptability allows WiseIoU Loss  to effectively accommodate diverse datasets 

and target detection challenges. 
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Figure 6. WiseIoU calculation block diagram. 

As shown in Equation 9, WiseIoU Loss incorporates additional factors, including the length and 

width of the target frame, as well as the distance from the center point, during the calculation process. 

These  factors  enable a more precise  reflection of  the  similarity between  the predicted and actual 

frames,  thereby yielding a more accurate  loss value. By optimizing  this  loss value,  the model can 

learn a more effective method for regressing the target frame and accurately assess the discrepancies 

between the predicted and actual frames. This leads to more effective optimization and improved 

detection performance. 

WiseIoU= exp൮
൫x‐xgt൯

2
+ ቀy‐y

gt
ቁ
2

൫wg2+Hg
2൯
* ൲  (9)

3. Experimental Results 

To evaluate our approach, we conducted algorithm validation on the INRIA pedestrian dataset 

and performed comparative experiments with the pre‐improvement algorithm. All experiments were 

executed  on  a  server  running  a  Windows  operating  system,  utilizing  Python  3.8.18  as  the 

programming  language,  PyTorch  2.2.1  as  the  deep  learning  framework,  and CUDA  11.8  as  the 

parallel computing platform. The experiments were carried out on NVIDIA GeForce RTX 4060 GPUs. 

During  the  training process, we set  the epoch size  to 300 and  the batch size  to 16, with an  initial 

learning  rate  of  0.01.  The  image  resolution  was  configured  to  640×640  pixels,  while  all  other 

parameters were maintained at their default values. 

3.1. Dataset Description 

The  INRIA  Pedestrian Dataset  [32]  is  a  standard  dataset, widely  used  in  computer  vision, 

dedicated to pedestrian detection tasks. Created by the French National Institute for Information and 

Automation Research (INRIA), the dataset aims to provide researchers with a unified benchmark for 

evaluating and  comparing  the performance of pedestrian detection algorithms.The  images  in  the 

INRIA Pedestrian Dataset  typically have a  resolution of 640x480 pixels and encompass a diverse 

range  of  scenes,  including  urban  streets  and  public  areas,  reflecting  the  variety  of  pedestrian 

appearances under different lighting and background conditions. The dataset consists of a total of 

2,475 images, with 1,218 images designated for training and 1,257 images for testing. 

3.2. Evaluation Metrics   

The  evaluation  metrics  provide  a  comprehensive  assessment  of  the  performance  and 

effectiveness  of  the  improved  YOLO  model  from  various  perspectives.  This  paper  primarily 

evaluates the algorithm using the following metrics: 

(1) Precision: Precision  refers  to  the proportion  of  true positive  samples  among  all  samples 

predicted as positive by the model. It serves as a measure of the modelʹs accuracy in predicting the 

target. The calculation formula for precision is presented in Equation 10. 

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 ൌ 𝑇𝑃/ሺ𝑇𝑃 ൅ 𝐹𝑃ሻ  (10)
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In  our  research,  targets  are  classified  as  positive  examples, while  non‐targets  are  deemed 

negative examples. Specifically, we define the following terms: 

 TP  (True  Positives):  These  are  true  cases,  meaning  positive  instances  that  are  accurately 

identified as such by the model. 

 FP  (False Positives): These refer  to pseudo‐positive cases, which are  instances  that  the model 

incorrectly identifies as positive, although they are actually negative. 

(2)  Recall:  Recall measures  the  proportion  of  all  actual  positive  samples  that  are  correctly 

identified by  the model. This metric  assesses  the modelʹs  ability  to  accurately detect  all positive 

instances. The calculation formula for recall is presented in Equation 11. 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ 𝑇𝑃/ሺ𝑇𝑃 ൅ 𝐹𝑁ሻ  (11)

In this context, we define the following terms: 

 FN (False Negatives): These are pseudo‐negative cases, meaning instances that are actually positive 

but have been incorrectly identified as negative by the model. 

 TN  (True  Negatives):  These  are  true  negative  cases,  referring  to  instances  that  are  accurately 

identified as negative by the model. 

(3) Mean Average Precision (mAP): mAP is a crucial evaluation metric in target detection tasks. 

It  calculates  the  average  accuracy  across  different  thresholds  of Average  Precision  (AP), which 

represents  the  area  under  the  Precision‐Recall  curve.  This  metric  provides  a  comprehensive 

assessment of the modelʹs performance across various categories. A higher mAP value indicates that 

the model  is more effective at detecting  targets across different classes. The relevant  formulas are 

presented in Equations 12 and 13. 

𝐴𝑃 ൌ න 𝑃ሺ𝑟
ଵ

଴
ሻ𝑑𝑟  (12)

n

nAPAPAPAP
mAP

_...3_2_1_ 
   (13)

where  )(rP   is the precision when the recall is r. 

3.3. Comparison Experiment 

We  conduct  a  comparative  analysis  between  the  original YOLOv5s model  featuring  the C3 

module  and  the  improved  YOLOv5s model  incorporating  the  C2f module. We  calculate  their 

precision and recall metrics. Additionally, we evaluate the mean average precision (mAP) at an IoU 

threshold of 0.5 (mAP_0.5) and the mean average precision across IoU thresholds ranging from 0.5 

to 0.95 (mAP_0.5:0.95). The results of this analysis are presented in Table 1.Data analysis indicates 

that replacing the C3 module with the C2f module in the Backbone and Neck sections of the YOLOv5s 

model  results  in a  significant  enhancement of model performance. The original YOLOv5s model 

achieves a training accuracy of 88.3%, a recall of 75.8%, an average precision of mAP_0.5 at 86.9%, 

and a mAP_0.5:0.95 of 56.8%. Following the replacement, accuracy improves by 3.2%, while mAP_0.5 

and mAP_0.5:0.95  increase by 3.3% and 1.9%,  respectively. Although  there  is a slight decrease  in 

recall by 0.4%, these results clearly demonstrate that the C2f module effectively enhances the overall 

performance of the YOLOv5s model. 

Table 1. Comparison table of network structure optimization experiments. 

Network Models    Precision(%)  Recall(%)  mAP_0.5(%)  mAP_0.5:0.95(%) 

YOLOv5s  88.3  75.8  86.9  56.8 

YOLOv5s+C2f  91.5  75.4  90.2  58.7 

To assess  the detection performance of  the algorithm  incorporating  the Coordinate Attention 

module, we compared the improved model against both the original YOLOv5 model and the version 

utilizing  the SE attention mechanism. The results of  this comparison are presented  in Table 2. By 

contrast,  the  YOLOv5s  fusion  network  model  incorporating  the  Coordinate  Attention  module 
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demonstrates  improvements  of  4.0%  in  accuracy,  5.6%  in  recall,  and  5.5%  in both mAP_0.5  and 

mAP_0.5:0.95. These results indicate that the Coordinate Attention module not only surpasses the 

performance of the original YOLOv5s model but also outperforms the model utilizing the SE module. 

Table 2. Comparison of different attention mechanisms. 

Network Models    Precision(%)  Recall(%)  mAP_0.5(%)  mAP_0.5:0.95(%) 

YOLOv5s  88.3  75.8  86.2  56.8 

YOLOv5s+SE  89.7  80.2  90.2  56.4 

YOLOv5s+CA  92.3  81.4  92.4  62.3 

To evaluate the impact of WiseIoU Loss on enhancing the detection capabilities of the YOLOv5s 

algorithm, we conducted comparative experiments using three bounding box loss functions: CIoU, 

EIoU, and WiseIoU. The  results of  this comparison are presented  in Table 3.Experimental  results 

demonstrate  that  replacing CIoU Loss with EIoU Loss and WiseIoU Loss  in  the YOLOv5s model 

significantly enhances detection performance. The original CIoU Loss model achieves an accuracy of 

88.3%, a recall of 75.8%, an average precision of mAP_0.5 at 86.9%, and an mAP_0.5:0.95 of 56.8% on 

the self‐constructed pedestrian dataset. When using EIoU Loss, accuracy  increases by 0.4%, recall 

improves by 2.7%, and mAP_0.5 rises by 1.5%, although mAP_0.5:0.95 experiences a slight decline of 

1.2%. In contrast, the introduction of WiseIoU Loss yields more pronounced improvements: accuracy 

increases  by  1.5%,  recall  by  4.5%,  and  both mAP_0.5  and mAP_0.5:0.95  rise  by  2.7%  and  1.7%, 

respectively. These  findings  indicate that WiseIoU Loss significantly outperforms both CIoU Loss 

and EIoU Loss in enhancing the performance of the YOLOv5s algorithm, highlighting its superior 

effectiveness in bounding box regression tasks. 

Table 3. Comparison of different loss functions. 

Network Models    Precision(%)  Recall(%)  mAP_0.5(%)  mAP_0.5:0.95(%) 

YOLOv5s+CIoU  88.3  75.8  86.9  56.8 

YOLOv5s+EIoU  88.6  78.5  88.4  55.9 

YOLOv5s+WiseIoU  89.8  80.3  89.6  58.5 

We conducted eight sets of ablation experiments and recorded  the  training results on  INRIA 

public  dataset,  as  presented  in  Table  4.  The  findings  indicate  that  the  improved  CCW‐YOLO 

algorithm  demonstrates  a  significant  enhancement  in  detection  accuracy.  Specifically,  when 

employing the C2f module and the Coordinate Attention module, the average precision (mAP_0.5) 

reaches 93.1%, while mAP_0.5:0.95 is 63.6%. These results represent improvements of 6.2% and 6.8%, 

respectively,  compared  to  the original YOLOv5s algorithm. Additionally, when  compared  to  the 

results  obtained  using  the  C2f  module  alone,  there  are  improvements  of  2.9%  and  4.9%,  and 

improvements  of  0.7%  and  1.3% when  compared  to  the  Coordinate Attention module  alone.In 

contrast, the combination of the C2f module and WiseIoU Loss yields an mAP_0.5 of 90.1% and an 

mAP_0.5:0.95 of 56.9%,  representing enhancements of 3.2% and 0.1% over  the original YOLOv5s 

algorithm. Ultimately, when the three improvements—C2f module, Coordinate Attention module, 

and  WiseIoU  Loss—are  applied  simultaneously,  the  average  precision  reaches  95.6%,  with 

mAP_0.5:0.95 at 65.9%, marking improvements of 8.7% and 9.1% compared to the original YOLOv5s 

algorithm, respectively. These  results clearly demonstrate  that  the simultaneous application of all 

three  improvements  yields  the  most  significant  performance  enhancement  for  the  YOLOv5s 

algorithm model. 

Table 4. Comparative experimental results on INRIA database. 

YOLOv5s  C2f  CA  WiseIoU  mAP_0.5(%)  mAP_0.5:0.95(%) 

√        86.9  56.8 

√  √      90.2  58.7 
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√    √    92.4  62.3 

√      √  89.6  58.5 

√  √  √    93.1  63.6 

√  √    √  90.1  58.9 

√    √  √  92.6  62.7 

√  √  √  √  95.6  65.9 

Finally, we present  the experimental results for all comparison methods alongside  the CCW‐

YOLO method on the dataset, as shown in Table 5. The results indicate that CCW‐YOLO outperforms 

existing methods, achieving  the highest accuracy of 95.6%, which represents a 8.7%  improvement 

over the original YOLOv5s algorithm. This finding further validates the effectiveness of our proposed 

method in the pedestrian detection task. 

Table 5. Comparative experimental results on INRIA database. 

Models  Precision(%)  Recall(%) mAP_0.5(%)  mAP_0.5:0.95(%) 

Faster R‐CNN  90.5  76.6  84.9  57.7 

YOLOv5s  88.3  75.8  86.9  56.8 

YOLOv7  91.5  75.4  90.2  58.7 

YOLOv8  92.3  81.4  92.4  62.3 

CCW‐YOLO  95.6  83.5  94.2  65.9 

3.4. Visual Assessment   

We  evaluated  the  performance  of  the  improved  CCW‐YOLO  model  against  the  original 

YOLOv5s model on a test dataset captured during two different times of day: daytime and evening, 

within a complex traffic scene. The comparative results of the detection are illustrated in Figure 7. 

Specifically, Figure 7(a) presents the detection results from the original YOLOv5s algorithm, while 

Figure 7(b) displays the detection outcomes of the three enhanced CCW‐YOLO algorithms. 

As  illustrated  in Figures 7(a),  the  results obtained using  the original YOLOv5s algorithm  for 

detection are not satisfactory. The presence of occlusion between vehicles and pedestrians leads to 

false  detections,  while  the  detection  accuracy  for  some  pedestrian  targets  is  relatively  low. 

Additionally,  the  similarity  between pedestrians  and  the  background  contributes  to  instances  of 

missed detection. Consequently, the overall performance of the original YOLOv5s algorithm is rather 

limited.In  contrast, Figures  7(b) demonstrates  that  the  improved CCW‐YOLO  algorithm  exhibits 

significant  enhancements  in detection  results. The modified algorithm  shows greater accuracy  in 

frame  localization  and  is  capable  of  comprehensively detecting  all pedestrian  targets within  the 

image.  Furthermore,  compared  to  the  original  algorithm,  the  improved  CCW‐YOLO  algorithm 

efficiently recognizes pedestrian targets that closely resemble the background and effectively corrects 

previous false detection issues. Additionally, the enhanced CCW‐YOLO algorithm shows a marked 

improvement in detection accuracy. 
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(a)  (b) 

Figure 2. Comparison of pedestrian detection results between the original and improved algorithms: 

(a) YOLOv5s; (b) CCW‐YOLO. 

4. Conclusions 

In  this paper, we propose  an  improved YOLO  algorithm,  termed CCW‐YOLO, designed  to 

address the challenges of false and missed detections in pedestrian detection within complex traffic 

scenarios.  Our  algorithm  significantly  reduces  the  modelʹs  computational  complexity  by 

incorporating  a  lightweight  convolutional  layer,  GhostConv,  while  preserving  robust  feature 

extraction capabilities. Additionally, we enhance  the  feature  fusion process through an optimized 

C2f module, which increases the networkʹs adaptability across diverse environments.Moreover, we 

integrate  a Coordinate Attention mechanism  to  enable more  precise  target  localization,  thereby 

further improving detection accuracy. To refine the bounding box loss function, we employ WiseIoU 

Loss, which enhances the modelʹs adaptability to various detection scenarios. Experimental results 

on the INRIA public dataset demonstrate that CCW‐YOLO achieves a detection accuracy of 94.2%, 

surpassing  the  original  YOLOv5s  by  8.7%.  This  advancement  effectively  addresses  pedestrian 

detection  challenges  in  complex  environments  and  offers  technical  support  for  enhancing  traffic 

safety. 

Looking  ahead,  future  research  will  focus  on  further  enhancing  the  performance  and 

applicability  of  the  CCW‐YOLO  algorithm. We  plan  to  develop  larger,  specialized  datasets  to 

improve  the  modelʹs  generalization  capabilities,  particularly  its  adaptability  to  different  traffic 

conditions. Additionally, we aim to optimize data preprocessing techniques and model architecture 

to bolster feature representation. Exploring the integration of CCW‐YOLO with other deep learning 

frameworks is also a priority, as this could strengthen its robustness in intricate scenarios. Through 

these  research  avenues, we  aspire  to  deliver more  efficient  pedestrian  detection  solutions  that 

contribute to the advancement of intelligent transportation systems and related technologies. 
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