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Abstract: Identification of Dengue drivers is crucial for pro-active prevention strategies. In semi-arid regions,
the relationship between meteorological variables, particularly rainfall, and the dengue vector is complex. This
study analyzes associations between the number of dengue cases and rainfall categories in six semi-arid
locations in India. Focusing on official website data, we find significant correlations only with heavy rainfall
(R>10 mm/day). The findings underscore the importance of heavy rainfall in Dengue incidence and offer
insights for pro-active prevention. The study methodology involves rainfall and dengue occurrence over Indian
region. This research contributes to the growing body of knowledge on Dengue prevention, emphasizing the
need for targeted interventions during periods of heavy rainfall.
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Introduction

With its life-threatening nature for many patients, dengue has emerged as a rapidly spreading
global threat; estimates and modelling suggest dengue to become more prevalent in the future [1-3].
The annual dengue infections are estimated at 390 million with 96 millions of these as manifest at
different levels of disease severity. While dengue is a global threat, there are many and intricate
regional differences in the occurrence and risk owing to differences in immune systems, local climate
and urbanization [4,5]. Changes in regional climate also introduce spatio-temporal variability in
dengue [6-8].

Dengue control faces several challenges due to some unique properties of the dengue vector [9].
Both the infectious agent and the associated vector are very small and devoid of thermostatic
mechanisms. Their temperature and fluid levels are therefore determined directly by the local
climate. The incubation time of the vector-borne infective agent within its vector organism is typically
very sensitive to changes in temperature, usually displaying an exponential relationship [10,11].
However, all the three weather variables, namely rainfall, temperature and humidity, are known to
affect mosquito population [12-14], the trends in these variables like increase in the intensity and the
frequency of extreme rainfall events over endemic regions [15], can play important roles in dengue
occurrence. The rainy season provides temperature and humidity conducive for build-up of the
vector population. In arid zones where rainfall is scanty during the dry season, high vector
population builds up in man-made storage containers. Other climatic sensitivities for the agent,
vector and host include level of precipitation, sea level elevation, wind, and duration of sunlight [16—
18]. However, the effects of the meteorological and other environmental variables can have
appreciable regional variations. A challenging task in dengue control is precision identification of the
meteorological drivers for preventive efforts.

The important roles of the meteorological variables in dengue vector have been generally
acknowledged, and the potential of forecast and prevention of disease, especially mosquito-borne
diseases, based on climate and meteorological variables has been suggested in several recent works
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[19-21]. However, an important requirement is an accurate estimate of vector (mosquito) load under
different conditions. Thus, a major challenge in effective dengue control is understanding the drivers,
especially the meteorological factors, and their regional characteristics [22-24]. The climate and the
weather variables exhibit complex relationships with dengue; however, the role of rainfall in dengue
vector is perhaps the most complex [16,17]. While the wet season provides breeding habitats for
Aedes mosquitoes, heavy rainfall can potentially flush away larvae or pupae of the immature stage.
Heavy rainfall can also increase the mortality rate of adult mosquitoes, and shorten the life span of
outdoor Aedes mosquitoes; at the same time heavy rainfall also creates numerous temporary
breeding habitats for mosquitoes, which in turn impacts vector population. Similarly, dry spells can
create habitats for vectors by causing small and shallow rivers to dry into pools, thus leading to dry
season malaria. An indirect effect of heavy rain is increase in host-vector encounters[18]. Thus while
most studies have considered total rainfall or the number of rainy days, the vector dynamics is
expected to strongly depend on the rainfall categories.

A conceptual basis for differential impacts of rainfall categories on vector population can be
obtained from loss of vector habitat due to the process of evaporative drying. Buildup of a vector
population depends on the availability of a water body on ground for at least one time period
necessary for vector genesis and emergence of adult mosquitoes. The time scale for evaporative
drying is essentially a function of the depth of the water body and meteorological variables like near
surface wind and humidity. However, as evaporation is essentially a surface process, under similar
meteorological conditions, a thinly spread (shallow) water body would dry sooner compared to a
deeper water body even with less water content. At the same time, a water body of small spatial
coverage will lose its shallow edges and become unsuitable for vector genesis. Thus water bodies
with certain minimum spread and depth are required to allow a vector buildup so that the
evaporative drying timescale will be longer than the time required for the immature stage to survive.
A typical evaporative drying time scale Tt can be defined as

w
Ty = T )

where E is the rate of evaporation from a water surface (gms/m?/sec) and W is the total water. The
total water can be estimated as

W=p,*S*D @)
where S and D are the surface area (m?) and (average) depth (m) of the water pool and py, is the
density of water.

The rate of evaporation from an open surface of area S depends on wind speed u and near surface
vertical gradient in humidity Aq and can be represented as

E=Cpy*p,*u*dg*S 3)

Here Cp is a drag coefficient (~1.5x10%) and p, is the density of air near the surface.

Typically, under a (near surface) wind speed of 2 m/s and 10% gradient in humidity, equation
(1) along with Equations (2) for water depth and Equation (3) for rate of evaporation (loss) would
suggest an evaporative drying time of a few days for a water body to retain a depth of at least a few
centimeters. Thus, rainfall episodes of low intensity, even though widespread, may have less impact
on vector genesis as the shallow water bodies created would evaporate quickly. On the other hand,
even sporadic heavy rainfall events will allow development of water bodies that will outlast
evaporative drying to allow mosquito genesis. This is likely to be particularly true in arid regions
(drier near surface atmosphere) where evaporative drying can be fast. Further, as the rainfall over
semi-arid regions is infrequent and permanent water pools may not generally exist, development of
vector habitats depends on sufficient water from rainfall. Thus the impacts of different rainfall
categories on vector population over semi-arid regions are likely to be quite different from those over
high-rainfall areas. The objective of the present work is to examine associations between the number
of dengue cases and four rainfall categories over semi-arid regions based on the above scenario; we
also consider a coastal region (Goa) for comparison.
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Data and Methodology

While the number of deaths due to dengue depends on many socio-economic factors like quality
and access to health care, the number of disease incidences can be assumed to be essentially due to
host-vector encounters for a given human population of characteristic life style. We have thus
considered only the number of dengue cases available in official website. We have adopted data on
the annual number of dengue cases from
http://www .indiastat.com/health/16/disease/77/dengue/17810/stats.aspx from 1998 to 2011 for six
states of India. The daily rainfall data was adopted from Tropical Rainfall Measuring Mission
(TRMM) available on a global grid of 25kmx25km during 1998 to 2011; we have constructed the
annual as well as seasonal data of pre monsoon (March-May), monsoon (June-September) and post
monsoon (October-December) rainfall from the daily data. Although station data may provide more
accurate rainfall over a fixed location, gridded data provides a better candidate for spatially
distributed processes like vector genesis and dengue. Following our hypothesis, we have considered
daily rainfall(R) in four categories 0<R<3, 3<R<10, 10<R<15 and high rainfall i.e. (R=15mm). Here we
have correlated the number of rainy days and the number of cases by using the Pearson correlation.
According to the Pearson correlation coefficient table the 95% of the significance value is 0.49
(http://www.nzdl.org/gsdl/collect/hdl/index/assoc/HASH3b4d.dir/t802.png).

The six regions selected represent different socio-climatic conditions, from semi-arid urban
(Delhi) to arid (Rajasthan); the number of dengue cases as % of population for respective states varies
from 11 to 1 (Table 1). The use of only annual data on dengue cases is currently an unavoidable
constraint.

Table 1. Characteristics of the six locations (in order of increasing annual rainfall) from 1998 to 2011.

States Population General climate Annual mean | Average no of cases
(1000) rainfall (mm) | (% of population)

Rajasthan (R]) 14456 Arid 1.49 0.005

Haryana (HR) 7098 Semi-arid 1.49 0.004

Delhi (DL) 14794 Semi-arid 1.62 0.007

Punjab (PB) 9253 Semi-arid 2.18 0.011

Gujarat (G]) 54208 Semi-arid 2.51 0.001

We have used Pearson correlation without any Z-transformation. For assigning significance of
correlation, we have used the Pearson correlation coefficient table (http://www.nzdl.o Pearson
correlation coefficient table rg/gsdl/collect/hdl/index/assoc/HASH3b4d.dir/t802.png) for assigning
the significance value for the degrees of freedom involved (e.g is 0.49 for 95%).

The linear trend in our analysis refers to the coefficient in a linear fit of the form y=mx + c (here
m is being referred to as the coefficient of linear trend). The significance of liner trend is normally
judged by comparing against standard deviation (natural variability or noise) in the data. However,
the threshold of significance is not strictly defined; we have adopted a threshold of 10% of respective
standard deviation as the threshold for significance.

Results

In presenting our results below we have organized the states in the order of increasing annual
rainfall. It is worth noting that each of the six states experiences appreciable number of days with
heavy rainfall (R>10 mm/day) in a year; the average number of such heavy rainfall days is naturally
smaller than the number of days with weak (0<R<3) rainfall, but not small (Supplementary Fig.1). For
location like Goa such heavy rainfall days in a year can easily exceed 80; however, even for arid and
semi-arid regions like Rajasthan and Delhi, an average number of 40-50 heavy rainfall episodes in a
year is observed (Supplementary Fig.1). Expectedly, most of the heavy rainfall episodes take place
during the monsoon season (June-September); however other seasons also experience some episodes
of such heavy rainfall events (Supplementary Fig.1). We shall therefore consider rainfall episodes at
both annual and seasonal scales to identify periods of vulnerability.
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As argued above, heavy rainfall episodes that lead to accumulation of water and for a prolonged
period are likely to be more conducive for dengue than weak rain episodes. Indeed, the annual
number of dengue cases is found to be strongly correlated with the annual number of days of heavy
rainfall (R>10 mm/day) for all the six states (Figure 1A). In contrast, the correlation between the
annual number of weak rainfall (0<R<3) days and the annual number of dengue cases is insignificant;
however, as expected, this correlation is significant for Goa (Figure 1A), a coastal location with high
annual rainfall. Consistent with much fewer cases of heavy rainfall episodes in the March-May period
(Supplementary Figure 1B), there is no significant association between the seasonal (March-May)
number of rainfall days and the annual number of dengue cases (Figure 1B). The situation, however,
drastically changes for the monsoon (June-September) season, with all the six states showing
significant (>95%) correlation between the annual number of dengue cases and the seasonal number
of heavy (R210) rainfall episodes (Figure 1C). For rainfall during October-December, only Goa shows
a strong association between weak rainfall days with the annual number of dengue cases (Figure 1D).
In our subsequent analysis we shall primarily examine association between heavy rainfall days and
the annual number of dengue cases.
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Figure 1. Correlation coefficients between the annual number of dengue cases and the number of days
in four categories of rainfall during the period 1998-2011 at annual and three seasonal timescales. The
horizontal dash line represents 95% significance (0.497) level of correlation for the degree of freedom

involved.

On a year-to-year basis also, each state exhibits significant (295%) correlation between the annual
number of dengue cases and the heavy rainfall days (Figure 2). It may be noted that for each of the
states and for each of the 15 years, there is non-zero number of heavy rainfall (R>10mm/day) days;
however, there are examples like, for Haryana, Goa and Rajasthan during 1998-2000, for which the
number of dengue cases was essentially zero (Figure 2). It may be also noted that for states like Goa,
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Gujarat and Punjab, there are indications of sharp increases in the number of dengue cases (Figure
2). While many factors are likely to contribute to such increases, the changes in the rainfall
characteristics could be important. Indeed, there are significant (in term of % of respective standard
deviation as a measure of noise) linear trends in the number of heavy (R>10mm/day) rainfall days
essentially for all the states except Delhi (Figure 3A); the rather weak trend for Delhi (Figure 3A) is
consistent with lack of any trend in the annual number of dengue cases for Delhi (Figure 2A). It is
important to note that the trend in the number of heavy rainfall days is significant only for the
monsoon (June-September) season (Figure 3C); for the other two seasons the trends are insignificant
(Figure 3B, D). Although the variability (standard deviations) in the number of dengue cases and the
number of rainy days is very different quantitatively, there are strong similarities in the state-wise
distribution of this variability (Supplementary Figure 2).
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Figure 2. Inter annual variability in the annual number of heavy rainfall days and the annual dengue
cases for the six states. The numbers in the brackets represent correlation coefficients between dengue
cases and the annual number of rainy days for the respective rainfall categories for the period of 1998-
2011; the 95% significance of correlation is 0.497.
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Figure 3. Coefficient of linear trends in days /year (left Y axis) and as % of respective standard
deviation (right Y axis) for the period of 1998-2011 for the four time scales (seasons) and six states.
The results are for the heavy rainfall category (R>10 mm/day).The horizontal dash line represents
+10% of linear trend (% of SD).

Conclusions

While heavy rainfall can affect dengue vector in opposite directions, our results indicate that the
resultant effect of heavy rainfall is to enhance dengue cases, especially over arid regions; this
association is the strongest for rainfall above 10 mm/day. This threshold in rainfall amount can be
understood in terms of time scale for loss of vector habitat due to evaporative drying and time scale
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for vector genesis. For a vector population to emerge, a habitat needs to last long enough for the larval
stage to survive. Over the semi-arid and arid regions considered here, weak rainfall events cannot
result in lasting vector habitats due to quick percolation of water and evaporative drying. An indirect
support to our hypothesis comes from the fact that over a coastal and generally wet region (Goa)
where rainfall events are frequent with large number of heavy rainfall events (Supplementary Figure
1) even weak rainfall events show significant correlation, with the number of dengue cases (Figure
1). Over such wet regions, there is near continuous but non-disruptive (not strong enough to fresh
larvae) replenishment of the water habitats.

Although the vector species, being a domestic breeder, is endothermic and endophilic, it largely
remains insulated by fitting into human ecological requirements. Thus buildup of vector population
also depends on socio-environmental factors like sanitation, drainage and processes that control
transmission; however, the strong association between the number of heavy-rainfall days and the
number of dengue cases over six different socio-climatic zones strongly suggest the number of heavy
rainfall episodes as a major driver of dengue. Quite clearly, the effect of heavy rainfall will also have
indirect effects like increased vector human contacts due to crowding[25].

Our results also imply elimination of post-rainfall water accumulation as an effective measure
of reducing risk of outbreaks of vector population; such measures can be potentially implemented
pro-actively based on recent advances in skill in forecasting such rainfall events. It is worth
mentioning that there has been considerable progress in such forecasting in recent years. It has been
shown that seasonal outlooks for mosquito-borne disease like malaria can be now attempted with
tools of dynamical seasonal forecasting based on global circulation models[26,27]; similarly, global
circulation models as well regional models with optimized configuration have been shown to possess
sufficient skill in forecasting heavy rainfall events more than 48 hours in advance[28,29]. At short
timescale (~1 day) also, vector genesis model driven by high-resolution meteorological forecasts can
be used to identify locations of mosquito genesis with sufficient precision for pro-active control[20];
the skill of such forecasts is improving due to techniques in meteorological forecasting like
downscaling and debiasing[30]. Thus, integration of such forecasts with disease/vector models
provides a promising avenue for pro-active control. At the same time, there are several reports of
increase in the number of extreme events due to climate change[15]; our results on relation between
dengue and extreme rainfall events point to increased vulnerability to dengue in a changed climate,
although the severity will be modulated by the local environmental conditions. It is important
therefore to calibrate and apply these tools for pro-active dengue control.

The present study can be enhanced in scope through use of disease (dengue) data at higher
spatio-temporal resolution. In particular, the data on the number of cases should be available at
weakly, and preferably daily, scale for establishing more precise relations between rainfall and other
meteorological variables and dengue. However, such optimal data sets are essentially lacking over
most locations. Given the diverse Socio-climatic conditions of the six regions, the disease data may
suffer from under reporting, although this may not adversely affect the conclusion from this study.
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