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Simple Summary: Kidney cancer is a significant health concern, requiring the immediate need for early 

diagnosis and precise treatment strategies to decrease mortality issues. Identifying the accurate type of kidney 

cancer is important for determining the best treatment plan to cure the cancer. Although many AI methods are 

used for classifying various cancers, they are not yet widely adopted in clinical settings. In our paper, we aimed 

to bridge this gap by developing an ensemble of deep learning algorithms and transformer models including 

ViT (Vision Transformer), CAiT (Class-Attention in Image Transformers), DeiT (Data Efficient Image 

Transformers), ResNet to classify the Dartmouth Kidney Cancer Histology Dataset into five types of kidney 

cancers: benign, chromophobe, clear cell, oncocytoma, and papillary. We organized the patch extraction 

resulting in 26088 patches. The accuracy results after training the images on ResNet, as well as other state-of-

the-art transformer models such as CAiT, ViT, DeiT, Swin and the Ensemble model, are 95.03%, 98.73%, 97.65%, 

99.24%, 98.43% and 99.26% respectively which indicates that the Ensemble model, combining Swin and Vision 

Transformer, has the greatest validation accuracy. By leveraging the strengths of Swin and Vision 

Transformers, the ensemble model excels at identifying unique features necessary for accurate classification. 

This paper presents a detailed analysis and comparison of our models and methodologies, demonstrating their 

potential to improve kidney cancer diagnosis. 

Abstract: Kidney cancer has become a major global health issue over time, showing how early detection can 

play a very important role in mediating the disease. Traditional histological image analysis is recognized as the 

clinical gold standard for diagnosis although it is highly manual and labor-intensive. Due to this issue, many 

are interested in computer-aided diagnostics technologies to assist pathologists in their diagnostic. Specifically, 

deep learning (DL) has become a viable remedy in this field. Nonetheless, the capacity of existing DL models 

to extract comprehensive visual features for accurate classification is limited. Towards the end, this study 

proposes using ensemble models that combine the strengths of multiple transformers and deep learning model 

architectures. By leveraging the collective knowledge of these models, the ensemble enhances classification 

performance and enables more precise and effective kidney cancer detection. This study compares the 

performance of these suggested models to previous studies, all of which used the publicly accessible 

Dartmouth Kidney Cancer Histology Dataset. This study showed that the Vision Transformers, with an 

average accuracy of over 99%, were able to achieve high detection accuracy across all complete slide picture 

patches. In particular, the CAiT, DeiT, ViT, and Swin models outperformed ResNet. All things considered, the 

vision Transformers consistently produced an average accuracy of 98.51% across all five folds 5 folds. These 

results demonstrated that Vision Transformers might perform well and successfully identify important 

features from smaller patches. Through utilizing histopathological images, our findings will assist pathologists 

in diagnosing kidney cancer, resulting in early detection and increased patient survival rates. 

Keywords: kidney cancer diagnosis; deep learning; convolutional neural networks; image classification; 

artificial intelligence; computer vision; histopathology images; foundation models; image processing 
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1. Introduction  

Patients with renal cancer frequently exhibit symptoms such as anemia and fever which can 

lower blood cancer levels and lead to poor red blood cell counts. The most common harmful subtype 

of renal cancer is clear cell renal carcinoma [Figure 1 (a)]. The stroma of these tumors is highly 

vascular, which often leads to hemorrhagic regions. The characteristic yellow appearance of the 

tumor surface is due to the lipid composition of the cells, which includes high levels of cholesterol, 

neutral lipids, and phospholipids. [1,2]. Roughly 10% of renal cell carcinomas are papillary renal cell 

carcinomas [Figure 1 (b)]. Like clear cell renal cell carcinoma, papillary renal cell carcinoma has an 

age distribution with a reported mean age at diagnosis typically ranging from 50 to 65 years. Necrosis 

is a common feature of papillary renal cell carcinomas [3–5]. About 5% of renal cancers are 

chromophobe renal cell carcinomas. Their prognosis is better than that of clear cell kidney carcinoma. 

The death rate is under 10%. There have been cases of chromophobe renal carcinoma that have 

distantly metastasized to the pancreas, liver, and lung. It has been proposed that chromophobe renal 

tumors have a higher incidence of liver metastasis than other histological subtypes. [6,7] [Figure 1 

(c)]. Renal oncocytoma is a benign tumor, and it is believed to be the precursor of eosinophilic 

chromophobe renal cell carcinoma, which is the malignant variant of this tumor [Figure 1(d)]. Benign 

kidney cancer can manifest in several forms including renal clear cell, papillary, chromophore, 

oncocytoma, and benign. [Figure 1]  

RCCs (renal cell carcinomas) typically do not cause any symptoms until late in the course of the 

illness, and more than 50% of tumors are discovered by chance [9]. Merely 10 to 15% of patients can 

exhibit the "classic triad," which consists of flank fullness, hematuria, and discomfort.  

The experience and expertise of the pathologist plays a major role in the accuracy of the 

histopathological analysis, which leaves the manual method open to human error including 

improper diagnosis and detection. Additionally, a lack of pathologists causes major delays in the 

examination of patient cases, which may result in the diagnosis of cancer later than expected [10,11]. 

The three main components of the proposed CAD system as described by Shehata et al. [13] that 

preprocessing of grey images to creates 3D segmented objects representing renal tumors; extracting 

various discriminating features (texture and functional) from segmented objects; and completing a 

two-stage classification process using various machine learning classifiers to determine the renal 

tumor's final diagnosis. [13]. Texture analysis is frequently utilized to give multiple quantitative 

patterns or descriptors that may be obtained by linking the grey values of each pixel in each tumor 

image or volume during the process of obtaining discriminating features. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2024 doi:10.20944/preprints202411.1615.v1

https://doi.org/10.20944/preprints202411.1615.v1


 3 

 

 

Figure 1. An example of microscopy images for five classes in Dartmouth Kidney Cancer Histology 

Dataset (on 40 × magnification). 

2. Materials and Methods 

2.1. Literature Reviews 

There are imaging techniques such as CT (Computed Tomography), MRI (Major Research 

Instrumentation) that can detect tumors or abnormal growths in the kidneys. Blood and urine tests 

are also conducted to identify the features linked to kidney cancer. The identification and 

categorization of kidney cancer has made great progress in recent years because of the application of 

deep learning techniques. By combining radiomic characteristics and clinical data, Liu et al. (2021) 

developed a multimodal deep-learning system that achieved a 94% accuracy rate in the early 

diagnosis of kidney cancer disease [23]. To classify kidney cancers in MRI Scans, Chen et al (2020) 

used transfer learning with pre-trained VGG-16 and ResNet-50 models, obtaining accuracies of 87% 

and 89%, respectively. Using a modified U-Net architecture, Gao et al. (2019) achieved 90% 

classification accuracy and 91% segmentation accuracy when they categorized renal cell carcinoma 

in histopathological pictures. Additionally, Nguyen et al. (2020) obtained a Dice coefficient of 0.89 

and a classification accuracy of 92%, demonstrating the efficacy of a combined CNN-RNN strategy 

for segmenting and categorizing renal masses. These findings demonstrate the revolutionary 

potential of deep learning to improve the precision and efficacy of kidney cancer diagnosis, opening 

the door to more dependable and individualized treatment approaches. The paper by Breggie et al. 

(2023) presents a web app using AI and multimodal data to improve prostate cancer diagnosis. Users 

valued its summary tabs and high-resolution images. The study suggests improvements while 

highlighting the app's potential to enhance diagnostic accuracy and efficiency. 
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Originally, hand-crafted features like color, texture, and morphology were extracted from 

histopathology pictures and used to identify kidney cancer using classic machine learning (ML) 

methods including support vector machines (SVM), random forests, and Ada boost. Compared to 

manual analysis, these techniques significantly improved results, producing more reliable and 

consistent outcomes. For example, Zhou et al. (2019) achieved a noteworthy accuracy of 88% by using 

a mix of color and texture information in a random forest classifier to identify between benign and 

malignant kidney cancers.[12] Deep learning's introduction has completely changed the field of 

digital pathology. Convolutional neural networks (CNNs) have proven to be incredibly effective at 

tasks like cancer-related histopathology, image recognition, and segmentation. CNNs are especially 

useful for medical image analysis since they can automatically learn hierarchical feature 

representations from raw pixel data. Research has demonstrated that CNNs are as accurate as human 

pathologists, if not more so, in certain areas, including determining the severity of a tumor and 

recognizing malignant tissues. Esteva et al. (2017), for instance, showed that a CNN could classify 

skin cancer with dermatologist-level accuracy [14]. This discovery has now been applied to other 

cancer types, such as kidney cancer.  

A study by Jiang et al. (2024) assessed the suggested models using the recently released 

Dartmouth Kidney Cancer Histology Dataset [16] to determine their effectiveness. Ivanova et al. [22] 

review AI models for renal cell carcinoma (RCC) diagnosis using the histological image dataset, 

highlighting high accuracies in classification and grading tasks. Convolutional Neural Networks 

(CNNs) and deep learning models often exceed 90% accuracy, with one CNN achieving 99.1% 

accuracy in RCC tissue identification. Other effective approaches include Bayesian classifiers and 

Support Vector Machines. These AI techniques show significant potential for improving RCC 

diagnosis and management in clinical practice. 

This study's primary contributions are the creation of transformer models and an efficient deep 

ensemble learning model that outperforms existing research on the Kidney Cancer Histology dataset 

for kidney cancer detection. Moreover, the successful identification of kidney histology patches by 

the ensemble model of Swin and Vision Transformer may lead to a reduction in the number of digital 

scanners, data storage devices, and computer servers required for histopathology-related tasks. This 

has the potential to improve patient survival rates and raise the likelihood of renal or kidney cancer 

being detected early [13,16]. 

2.2. Dataset Description 

The Dartmouth Kidney Cancer Histology Dataset is a large collection of 563 whole-slide images 

(WSIs) stained with hematoxylin and eosin (H&E) that have been carefully chosen for analysis and 

kidney cancer. The images provide a broad dataset that is essential for research in digital pathology 

and machine learning applications in medical diagnostics. The dataset includes a wide range of 

kidney cancer subtypes, including oncocytoma, chromophobe renal cell carcinoma (chRCC), 

papillary renal cell carcinoma (pRCC), and clear cell renal cell carcinoma (ccRCC). To properly 

categorize and diagnose kidney tumors, machine learning models need to be trained with these as 

labels. The dataset includes metadata including the file name, image class, slide type, and split type 

(Train, Test, and Val), in addition to various demographic data. Understanding the context of each 

histopathology image and performing in-depth analysis is facilitated with this information. In 

particular, the dataset is useful for creating and comparing computer-aided diagnostic (CAD) 

systems. It offers a wealth of data for deep learning models and other machine learning algorithms 

to improve their performance in kidney cancer diagnosis and classification. Additionally, it facilitates 

clinical decision-making by offering a point of reference for the confirmation and comparison of 

diagnostic results.  
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Figure 2. Example of histopathological Kidney Cancer whole slide images. 

 
(a) pie chart representing the total number of images for every kidney cancer subclass 

 
(b) bar chart representing class-wise sample distribution percentage 

2.3. Methodology Overview 
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This study demonstrates the use of Vision Transformers techniques with CNN architectures to 

identify kidney cancer patches. There are four main steps in the process: First, the dataset is created 

by removing empty patches and augmenting it. Next, pre-trained networks or base models are 

tailored. Third, the most successful base models are selected to generate ensemble models. Finally, 

the models are evaluated and presented using various metrics and the class activation map. 

The ensemble model approach is a key feature of this study, combining the strengths of Vision 

Transformers (ViT) and Swin Transformer architectures. This ensemble strategy leverages the 

complementary capabilities of both models, with ViT excelling in capturing global image context and 

Swin Transformer adept at handling multi-scale feature hierarchies. By averaging the outputs of 

these two powerful models, the ensemble achieves a synergistic effect, enhancing overall 

classification accuracy and robustness. The ensemble model demonstrated exceptional performance, 

achieving a remarkable accuracy of 99.26% in classifying kidney cancer histology images. 

Data preprocessing was done to improve the model's performance by deleting non-informative 

empty patches from the dataset. These patches would have biased the training process and 

compromised the model's performance. Following the elimination of empty patches, data 

augmentation was used to expand the training dataset. 

2.4. Empty Patch Removal Process 

This study focuses on the efficient management and processing of whole-slide images (WSIs) for 

patch extraction using OpenSlide Library. The main goal is to eliminate empty patches, defined as 

those with over half of pixels having RGB intensity values greater than 230 in all channels. OpenSlide, 

an open-source C library, is used to read and modify digital pathology images. The implementation 

involves using OpenSlide to read WSIs and tools from the tools package for tissue detection and 

patch extraction. The process includes setting up paths, reading metadata, and using a Tissue 

Detector class with a Gaussian Naive Bayes model for tissue recognition. A Patch Extractor class is 

employed with specific parameters to extract relevant patches. The workflow is optimized through 

parallel processing using Python's multiprocessing package, resulting in an efficient and transparent 

approach for managing WSIs and extracting valuable data for further analysis. With this process, 

every high-resolution image is broken into different patches depending on the RGB intensity, and 

the ensemble models are trained on them.  

 

Figure 3. The pictures above exhibit examples of histopathology: (a) tissue patch image and (b) empty 

patch image. 

2.5. Pretrained networks as Base Models 

Since the beginning of deep learning, Convolutional Neural Networks (CNNs) have been 

helpful in many applications because of their constant improvements in strength, efficiency, and 

adaptability. CNNs, which are specifically designed for computer vision problems and use 

convolutional layers inspired by natural visual processes, are a great example of this innovation. The 

accuracy, speed, and overall performance of various CNN structures have improved over time, and 

they are frequently compared to the ImageNet project —a sizable visual database that fosters 

advances in computer vision. 
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In the past, training CNNs from scratch took a lot of time and computer power. By using 

previously learned information from trained models, transfer learning (TL) offers a useful shortcut 

that can speed up optimization and possibly increase classification accuracy. TL entails transferring 

weights from pre-trained models, using insights acquired from varied datasets, and speeding 

training processes to improve model accuracy, particularly in complicated architectures.  

ResNet50 Architecture: 

Deeper than ResNet34, ResNet50 is a 50-layer variant of the ResNet architecture. While this 

increased depth can lead to better performance on some tasks, training with it requires more 

processing power. By enabling gradients to flow across shortcut connections, ResNet50, a deep 

convolutional neural network with 50 layers, introduces the idea of residual learning and helps to 

address the disappearing gradient issue. This design is efficient in several computer vision 

applications, most notably picture categorization. 

 

Figure 4. ResNet50 Model Architecture. 

Transformers 

Transformers are network models that use attention to understand the sequence of information 

like frames in a movie, words in a sentence, notes in music, or pixels of an image. The transformer 

networks can capture relationships and dependencies between the elements even if they are far apart 

from each other. The ability to capture long-range dependencies makes transformers powerful for 

tasks like language understanding where the meaning of the words depends on words that appear 

earlier or later in the sentence. The Transformer network consists of two main parts: 1) Encoder; and 

2) Decoder. 

Encoder and Decoder 

The input sequence that we get from positional encoding is passed through the encoder. Each 

encoder consists of a self-attention mechanism and feed feed-forward neural network to capture the 

contextual information and dependencies between the words. Multi head attention layer helps the 

model to figure out which words are important to each other and how they relate to one another. In 

the self-attention layer, each word will have three jobs such as query, key, and value. A query is a 

word looking for other words to pay attention to. The key is a word being looked at by other words. 

The self-attention layer looks at each word and compares it with all other words in the sentence and 

see how they are related to each other. It calculates the similarity between each word query and all 

word keys. The words with the higher scores will be prioritized. Add and norm layer is applied after 

the multiheaded attention layer and feed-forward neural network in each transformer network. It 

preserves the original information from the previous layer which allows the model to learn and 

update the new information captured by the sub layer. It assists in addressing the vanishing gradient 

problems and allows the model to learn more effectively. 
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Figure 5. Architecture of Encoder and Decoder of Transformer. 

The primary function of the decoder is to transform encoded representations back into the 

desired output format. In sequence generation tasks like machine translation and text summarization, 

the decoder predicts the next token in the sequence at each time step, often utilizing techniques like 

beam search to improve output quality. In data reconstruction applications, such as image or audio 

reconstruction, the decoder transforms encoded latent representations back into the original data 

format, a common approach in autoencoders and generative models like Variational Autoencoders 

(VAEs) and Generative Adversarial Networks (GANs). Additionally, decoders are designed for 

conditional output production, where the output is conditioned on additional context or input data, 

and for error correction and denoising, where they reconstruct clean data from noisy inputs. 

Transformer-based decoders. 

The decoder is integral to various neural network architectures, especially in sequence-to-

sequence models and data reconstruction tasks. It typically includes an embedding layer, recurrent 

layers, attention mechanisms, transformer layers, and an output layer. These components 

collaboratively transform encoded representations into meaningful outputs. The decoder's primary 

functions include sequence generation, data reconstruction, conditional output production, and error 

correction. Transformer-based decoders utilize self-attention, cross-attention, and feed-forward 

networks for enhanced performance. Applications of decoders span natural language processing, 

computer vision, speech processing, and healthcare, highlighting their versatility and importance in 

modern neural network models. Understanding their architecture and functions is essential for 

optimizing data transformation tasks.  

CAiT Architecture (Class Attention in Image Transformers) 

The CAiT (Class-Attention in Image Transformers) transformer is a novel architecture designed 

to enhance the performance of vision transformers (ViTs) in image classification tasks. Traditional 

vision transformers apply self-attention mechanisms uniformly across all patches of an input image, 

which can sometimes lead to suboptimal learning of class-specific features. CAiT introduces a unique 

class-attention mechanism that focuses on improving the interaction between class tokens and image 
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patches, leading to better representation learning and classification accuracy. In the CAiT 

architecture, a class token is appended to the sequence of image patches, and attention is specifically 

directed towards this class token. This design allows the model to aggregate and emphasize class-

specific information more effectively. The class-attention mechanism is integrated at multiple stages 

of the transformer, enhancing the model's ability to capture and utilize discriminative features 

necessary for accurate classification. Additionally, CAiT incorporates deeper transformer layers and 

a progressive learning approach, gradually increasing the model's complexity and capacity. This 

results in improved convergence and performance on various image recognition benchmarks, 

making CAiT a powerful architecture for vision tasks.  

 

Figure 6. CAiT Transformer Architecture. 

VitNet Architecture: 

Vision Transformers use self-attention. It allows the model to understand the relationship 

between different parts of an image by assigning important scores to patches and focusing on the 

most relevant information. This helps the model make better sense of the image and perform various 

tasks related to computer vision. It breaks images into smaller patches. [19] The statement used in the 

paper ‘An image is worth 16x16 words’ means how many pixels the sliding window moves each 

time. Each patch is treated as a separate input token. There is no decoder in the vision transformer, it 

is an encoder only transformer. Linear projection works on flattened patches by transforming 1D 

vector into lower dimensional representation. It preserves the important features. 

 

Figure 7. VITNet Model Architecture. 

DeiT Architecture: 

The difference between ViT and DeiT is that originally ViT was trained on a massive dataset 

having 300M samples of data [20]. DeiT on the other hand, trains on well-known ImageNet Dataset. 

ViT takes a long time to get trained whereas DeiT trains in 2 or 3 days on a single 8GPU or 4GPU 

machine. DeiT uses knowledge distillation which means transferring knowledge from one 

model/network to another. Regularization is used which means the overfitting of a network is being 

reduced to limited training data so that the model does not learn the noise from the training data but 
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the actual information from the data. Augmentation is when multiple samples are created of the same 

input with some variations. Suppose there is a model which classifies cats and dogs. We pass the cat 

image through the model and get the embeddings of the image. The embeddings are passed through 

self max function to get the probabilities of the dog and cat. Cross entropy loss is compared with the 

ground truth label and the entire function. With distillation we distill the knowledge from another 

network called the teacher network, we get the embeddings and pass it through self-max with the 

temperature parameter to get the output probabilities so that it becomes smoothened. 

 

Figure 8. DeiT Model Architecture. 

Swin Architecture 

Swin Transformers are more accurate than Vision Transformers in some cases due to their 

capacity to handle large images and high-resolution images with lower computational complexity. 

The Swin Transformer, or Shifted Window Transformer, enhances traditional vision transformers by 

targeting their limitations in image processing and the process by which they do it. It is constructed 

as a hierarchical design with shifted windows, enabling efficient and scalable visual data modeling. 

Instead of using the whole slide image all at once, it is divided into different sections. The model 

looks at the relationship between all the features and then analyzes the section. These windows or 

sections are shifted across all layers so that they can make connections with different features of the 

image. This method shows that Swin Transformer can detect images with accuracy. 

 

Figure 9. Diagram showing Swin Transformer architecture. 

In this research, CNN model architecture and vision transformers were used. Initially, each 

model was trained independently to determine its unique performance. Then the best-performing 

epochs for each model are based on validation accuracy.  

To improve the robustness and generalizability of the techniques, 5-fold cross-validation is used. 

During each fold of the cross-validation approach, the research utilized the average calculation of the 

last epoch of every fold to calculate the best performing validation accuracy. 

2.6. Experimental Setting 
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The data was divided into training and validation sets. Each network was trained for 12 epochs 

using 5-fold cross-validation to create the model. The weights from the epoch with the best validation 

accuracy were chosen as the final representations for each model. Various metrics were then 

employed to assess accuracy, followed by many objective assessment factors to determine overall 

performance. 

3. Results 

The performance evaluation criteria used include validation Accuracy and Validation Cohen 

Cappa Score. Positive samples include abnormal or malignant patches, whereas negative samples 

contain normal or healthy patches. The phrases true positive (TP), false positive (FP), true negative 

(TN), and false negative (FN) are used to describe the various prediction results. 

1. Train Loss: A machine learning model's fit to the training set of data is shown by its train loss. 

On the training dataset, it measures the difference between the expected and actual outputs. 

Reducing this loss is the goal of training to enhance the model's functionality. 

2. Validation Loss: A machine Learning model’s ability to generalize to previously unknown 

data is measured by the validation loss. On the validation dataset, it measures the difference between 

the expected and actual outputs. ￼              

3. Validation Accuracy means the ratio of correctly predicted instances out of the total number 

of instances in the validation dataset. It's computed as: 

Validation Accuracy = 
(𝑇𝑝+𝑇𝑁)

(𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁)
  

4. Validation Cohen Cappa Score is a statistical measure. 

A complete view of the model’s performance, especially in differentiating between positive and 

negative data, can be obtained by looking at these metrics.  

Performance metrics must be considered while evaluating the efficacy of machine learning 

models. These metrics offer quantifiable figures that represent a statistical or machine-learning 

technique's overall performance. Performance metrics assess the model's ability to consistently 

produce the correct classifications and its ability to classify data points accurately in classification 

tasks. The table below displays the study's conclusions, which were arrived at by looking at various 

performance criteria. 

Table 1. The effectiveness of the several deep learning models was assessed as displayed below. 

Model Fold 
Train Loss  Train 

Accuracy 
Val Accuracy 

Val Cohen Cappa 

Score  
Average Val Accuracy 

Resnet50 1 0.049504  0.981212 0.935595 0.915757 

0.9503162 

 2 0.028646  0.990174 0.975848 0.970563 

 3 0.091897  0.964484 0.936362 0.906291 

 4 0.116948  0.95624 0.926586 0.889975 

 5 0.013555  0.995399 0.97719 0.967462 

CAiTNet 1 0.002974 0.999617 0.981407 0.973953 

0.9873108 

 2 0.001046 0.999712 0.988499 0.983126 

 3 0.004492 0.998993 0.988116 0.977851 

 4 0.000931 0.999569 0.989266 0.978501 

 5 0.000439 0.999664 0.989266 0.983871 

ViTNet 1 0.000885 0.999808 0.992141 0.989653 

0.9924862 

 2 0.000567 0.999856 0.992141 0.988295 

 3 0.001646 0.999712 0.990416 0.983298  

 4 0.000606 0.999856 0.993483 0.987726 

 5 0.000449 0.999952 0.99425 0.988553 

DeiTNet 1 0.002418 0.999377 0.983899 0.977618 

0.9765  2 0.02344 0.993434 0.970098 0.946267 

 3 0.003358 0.999425 0.986007 0.978339 
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 4 0.007856 0.996885 0.97834 0.967509 

 5 0.02124 0.993817 0.964156 0.946163 

SwinNet  1 0.005455 0.998083 0.987157 0.98223 

0.9843206 

 2 0.005398 0.998322 0.986007 0.979366 

 3 0.011216 0.99583 0.980449 0.96823 

 4 0.009326 0.997364 0.982749 0.979266 

 5 0.00346 0.998898 0.985241 0.974935 

Ensemble 1 0.001756 0.9788 0.992973 0.953791 

0.99267 

 2 0.00345 0.9779 0.986007 0.979366 

 3 0.004576 0.9867 0.996423 0.96823 

 4 0.00474 0.989967 0.992749 0.979266 

 5 0.00475 0.9930475 0.995241 0.984935 

4. Discussion 

In this study, we successfully implemented an ensemble of deep learning and transformer 

models to classify kidney cancer histopathology images, achieving great validation accuracy rates. 

Our ensemble, which included ViT and Swin models, demonstrated that this ensemble model is 

capable of detecting critical features from histopathological images. The ensemble model’s approach 

of processing images as grids of patches facilitates effective diagnosis of images, which was crucial 

in achieving the highest validation accuracy of 99.26% and less training loss as well. These results 

highlight the potential of combining Vision Transformers and Swin Transformers in digital 

pathology, offering a significant improvement relative to traditional convolutional neural network 

models such as ResNet and Vgg 16. 

Moreover, our research demonstrates the potential of these advanced models to enhance 

diagnostic accuracy and efficiency in clinical settings. The consistent performance of Vision 

Transformers and Swin Transformers across the five kidney cancer types—benign, chromophobe, 

clear cell, oncocytoma, and papillary—demonstrates their robustness. This could lead to earlier and 

more accurate detection diagnosis of kidney cancer, improving patient and doctor report outcomes. 

By taking into consideration the strengths of both Swin Transformers and Vision Transformers, our 

ensemble approach not only provides a good diagnostic tool but also paves the way for future 

research in the application of advanced deep learning models in medical image analysis. The 

successful implementation and high performance of these models suggest a promising direction for 

integrating AI-based solutions into routine pathological workflows. 

4.1. Future Directions 

This study highlights important directions for enhancing kidney cancer diagnosis through 

digital pathology and deep learning. The main areas for improvement include the integration of 

medical reports and X-ray scans. This paper and study emphasize the importance of AI tools that can 

detect the accuracy and the type of the image easily just by seeing the image. By harnessing the full 

potential of AI-driven digital pathology and web tools to detect the type of cancer in the images by 

uploading the cancer image, this research paves the way for more accurate, efficient, and reliable 

diagnostic tools using deep learning models in oncology. 

5. Conclusion 

This study of kidney cancer diagnosis shows the effectiveness of deep learning and ensemble 

transformer models in classifying kidney cancer histopathology images, with a focus on comparing 

their performance on metrics such as validation accuracy, validation cohen-cappa score, training loss, 

and validation loss. Our analysis reveals that the Ensemble model of Vision Transformer and Swin 

Transformer and Vision Transformers alone, particularly the ViTNet model, excels in identifying 

critical features from histopathological images, with the highest validation accuracy of 99.26% 

achieved by the ensemble of the Swin and Vision transformers. The improvement in accuracy across 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 November 2024 doi:10.20944/preprints202411.1615.v1

https://doi.org/10.20944/preprints202411.1615.v1


 13 

 

various models signifies the potential of the Ensemble transformer to outperform convolutional 

neural network models. 

The performance of the models trained along 5 different kidney types shows the robustness of 

those models in clinical applications such as detecting kidney cancer application. Integration of AI 

can also be made so that the use cases can be extended in other domains as well. By reducing the 

errors, this application can be used in many different domains by various kinds of people. Our 

findings show precise use cases where such a study will be very helpful in clinical domains. 

Supplementary Materials: The Kidney Cancer dataset is openly available at this Link: 

https://bmirds.github.io/KidneyCancer/. 
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