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Simple Summary: Kidney cancer is a significant health concern, requiring the immediate need for early
diagnosis and precise treatment strategies to decrease mortality issues. Identifying the accurate type of kidney
cancer is important for determining the best treatment plan to cure the cancer. Although many AI methods are
used for classifying various cancers, they are not yet widely adopted in clinical settings. In our paper, we aimed
to bridge this gap by developing an ensemble of deep learning algorithms and transformer models including
ViT (Vision Transformer), CAiT (Class-Attention in Image Transformers), DeiT (Data Efficient Image
Transformers), ResNet to classify the Dartmouth Kidney Cancer Histology Dataset into five types of kidney
cancers: benign, chromophobe, clear cell, oncocytoma, and papillary. We organized the patch extraction
resulting in 26088 patches. The accuracy results after training the images on ResNet, as well as other state-of-
the-art transformer models such as CAiT, ViT, DeiT, Swin and the Ensemble model, are 95.03%, 98.73%, 97.65%,
99.24%, 98.43% and 99.26% respectively which indicates that the Ensemble model, combining Swin and Vision
Transformer, has the greatest validation accuracy. By leveraging the strengths of Swin and Vision
Transformers, the ensemble model excels at identifying unique features necessary for accurate classification.
This paper presents a detailed analysis and comparison of our models and methodologies, demonstrating their
potential to improve kidney cancer diagnosis.

Abstract: Kidney cancer has become a major global health issue over time, showing how early detection can
play a very important role in mediating the disease. Traditional histological image analysis is recognized as the
clinical gold standard for diagnosis although it is highly manual and labor-intensive. Due to this issue, many
are interested in computer-aided diagnostics technologies to assist pathologists in their diagnostic. Specifically,
deep learning (DL) has become a viable remedy in this field. Nonetheless, the capacity of existing DL models
to extract comprehensive visual features for accurate classification is limited. Towards the end, this study
proposes using ensemble models that combine the strengths of multiple transformers and deep learning model
architectures. By leveraging the collective knowledge of these models, the ensemble enhances classification
performance and enables more precise and effective kidney cancer detection. This study compares the
performance of these suggested models to previous studies, all of which used the publicly accessible
Dartmouth Kidney Cancer Histology Dataset. This study showed that the Vision Transformers, with an
average accuracy of over 99%, were able to achieve high detection accuracy across all complete slide picture
patches. In particular, the CAiT, DeiT, ViT, and Swin models outperformed ResNet. All things considered, the
vision Transformers consistently produced an average accuracy of 98.51% across all five folds 5 folds. These
results demonstrated that Vision Transformers might perform well and successfully identify important
features from smaller patches. Through utilizing histopathological images, our findings will assist pathologists
in diagnosing kidney cancer, resulting in early detection and increased patient survival rates.

Keywords: kidney cancer diagnosis; deep learning; convolutional neural networks; image classification;
artificial intelligence; computer vision; histopathology images; foundation models; image processing
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1. Introduction

Patients with renal cancer frequently exhibit symptoms such as anemia and fever which can
lower blood cancer levels and lead to poor red blood cell counts. The most common harmful subtype
of renal cancer is clear cell renal carcinoma [Figure 1 (a)]. The stroma of these tumors is highly
vascular, which often leads to hemorrhagic regions. The characteristic yellow appearance of the
tumor surface is due to the lipid composition of the cells, which includes high levels of cholesterol,
neutral lipids, and phospholipids. [1,2]. Roughly 10% of renal cell carcinomas are papillary renal cell
carcinomas [Figure 1 (b)]. Like clear cell renal cell carcinoma, papillary renal cell carcinoma has an
age distribution with a reported mean age at diagnosis typically ranging from 50 to 65 years. Necrosis
is a common feature of papillary renal cell carcinomas [3-5]. About 5% of renal cancers are
chromophobe renal cell carcinomas. Their prognosis is better than that of clear cell kidney carcinoma.
The death rate is under 10%. There have been cases of chromophobe renal carcinoma that have
distantly metastasized to the pancreas, liver, and lung. It has been proposed that chromophobe renal
tumors have a higher incidence of liver metastasis than other histological subtypes. [6,7] [Figure 1
(c)]. Renal oncocytoma is a benign tumor, and it is believed to be the precursor of eosinophilic
chromophobe renal cell carcinoma, which is the malignant variant of this tumor [Figure 1(d)]. Benign
kidney cancer can manifest in several forms including renal clear cell, papillary, chromophore,
oncocytoma, and benign. [Figure 1]

RCCs (renal cell carcinomas) typically do not cause any symptoms until late in the course of the
illness, and more than 50% of tumors are discovered by chance [9]. Merely 10 to 15% of patients can
exhibit the "classic triad," which consists of flank fullness, hematuria, and discomfort.

The experience and expertise of the pathologist plays a major role in the accuracy of the
histopathological analysis, which leaves the manual method open to human error including
improper diagnosis and detection. Additionally, a lack of pathologists causes major delays in the
examination of patient cases, which may result in the diagnosis of cancer later than expected [10,11].

The three main components of the proposed CAD system as described by Shehata et al. [13] that
preprocessing of grey images to creates 3D segmented objects representing renal tumors; extracting
various discriminating features (texture and functional) from segmented objects; and completing a
two-stage classification process using various machine learning classifiers to determine the renal
tumor's final diagnosis. [13]. Texture analysis is frequently utilized to give multiple quantitative
patterns or descriptors that may be obtained by linking the grey values of each pixel in each tumor
image or volume during the process of obtaining discriminating features.
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(f) Benign tissue

Figure 1. An example of microscopy images for five classes in Dartmouth Kidney Cancer Histology
Dataset (on 40 x magnification).

2. Materials and Methods

2.1. Literature Reviews

There are imaging techniques such as CT (Computed Tomography), MRI (Major Research
Instrumentation) that can detect tumors or abnormal growths in the kidneys. Blood and urine tests
are also conducted to identify the features linked to kidney cancer. The identification and
categorization of kidney cancer has made great progress in recent years because of the application of
deep learning techniques. By combining radiomic characteristics and clinical data, Liu et al. (2021)
developed a multimodal deep-learning system that achieved a 94% accuracy rate in the early
diagnosis of kidney cancer disease [23]. To classify kidney cancers in MRI Scans, Chen et al (2020)
used transfer learning with pre-trained VGG-16 and ResNet-50 models, obtaining accuracies of 87%
and 89%, respectively. Using a modified U-Net architecture, Gao et al. (2019) achieved 90%
classification accuracy and 91% segmentation accuracy when they categorized renal cell carcinoma
in histopathological pictures. Additionally, Nguyen et al. (2020) obtained a Dice coefficient of 0.89
and a classification accuracy of 92%, demonstrating the efficacy of a combined CNN-RNN strategy
for segmenting and categorizing renal masses. These findings demonstrate the revolutionary
potential of deep learning to improve the precision and efficacy of kidney cancer diagnosis, opening
the door to more dependable and individualized treatment approaches. The paper by Breggie et al.
(2023) presents a web app using Al and multimodal data to improve prostate cancer diagnosis. Users
valued its summary tabs and high-resolution images. The study suggests improvements while
highlighting the app's potential to enhance diagnostic accuracy and efficiency.
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Originally, hand-crafted features like color, texture, and morphology were extracted from
histopathology pictures and used to identify kidney cancer using classic machine learning (ML)
methods including support vector machines (SVM), random forests, and Ada boost. Compared to
manual analysis, these techniques significantly improved results, producing more reliable and
consistent outcomes. For example, Zhou et al. (2019) achieved a noteworthy accuracy of 88% by using
a mix of color and texture information in a random forest classifier to identify between benign and
malignant kidney cancers.[12] Deep learning's introduction has completely changed the field of
digital pathology. Convolutional neural networks (CNNs) have proven to be incredibly effective at
tasks like cancer-related histopathology, image recognition, and segmentation. CNN’s are especially
useful for medical image analysis since they can automatically learn hierarchical feature
representations from raw pixel data. Research has demonstrated that CNNs are as accurate as human
pathologists, if not more so, in certain areas, including determining the severity of a tumor and
recognizing malignant tissues. Esteva et al. (2017), for instance, showed that a CNN could classify
skin cancer with dermatologist-level accuracy [14]. This discovery has now been applied to other
cancer types, such as kidney cancer.

A study by Jiang et al. (2024) assessed the suggested models using the recently released
Dartmouth Kidney Cancer Histology Dataset [16] to determine their effectiveness. [vanova et al. [22]
review Al models for renal cell carcinoma (RCC) diagnosis using the histological image dataset,
highlighting high accuracies in classification and grading tasks. Convolutional Neural Networks
(CNNSs) and deep learning models often exceed 90% accuracy, with one CNN achieving 99.1%
accuracy in RCC tissue identification. Other effective approaches include Bayesian classifiers and
Support Vector Machines. These Al techniques show significant potential for improving RCC
diagnosis and management in clinical practice.

This study's primary contributions are the creation of transformer models and an efficient deep
ensemble learning model that outperforms existing research on the Kidney Cancer Histology dataset
for kidney cancer detection. Moreover, the successful identification of kidney histology patches by
the ensemble model of Swin and Vision Transformer may lead to a reduction in the number of digital
scanners, data storage devices, and computer servers required for histopathology-related tasks. This
has the potential to improve patient survival rates and raise the likelihood of renal or kidney cancer
being detected early [13,16].

2.2. Dataset Description

The Dartmouth Kidney Cancer Histology Dataset is a large collection of 563 whole-slide images
(WSIs) stained with hematoxylin and eosin (H&E) that have been carefully chosen for analysis and
kidney cancer. The images provide a broad dataset that is essential for research in digital pathology
and machine learning applications in medical diagnostics. The dataset includes a wide range of
kidney cancer subtypes, including oncocytoma, chromophobe renal cell carcinoma (chRCC),
papillary renal cell carcinoma (pRCC), and clear cell renal cell carcinoma (ccRCC). To properly
categorize and diagnose kidney tumors, machine learning models need to be trained with these as
labels. The dataset includes metadata including the file name, image class, slide type, and split type
(Train, Test, and Val), in addition to various demographic data. Understanding the context of each
histopathology image and performing in-depth analysis is facilitated with this information. In
particular, the dataset is useful for creating and comparing computer-aided diagnostic (CAD)
systems. It offers a wealth of data for deep learning models and other machine learning algorithms
to improve their performance in kidney cancer diagnosis and classification. Additionally, it facilitates
clinical decision-making by offering a point of reference for the confirmation and comparison of
diagnostic results.
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Figure 2. Example of histopathological Kidney Cancer whole slide images.
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2.3. Methodology Overview
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This study demonstrates the use of Vision Transformers techniques with CNN architectures to
identify kidney cancer patches. There are four main steps in the process: First, the dataset is created
by removing empty patches and augmenting it. Next, pre-trained networks or base models are
tailored. Third, the most successful base models are selected to generate ensemble models. Finally,
the models are evaluated and presented using various metrics and the class activation map.

The ensemble model approach is a key feature of this study, combining the strengths of Vision
Transformers (ViT) and Swin Transformer architectures. This ensemble strategy leverages the
complementary capabilities of both models, with ViT excelling in capturing global image context and
Swin Transformer adept at handling multi-scale feature hierarchies. By averaging the outputs of
these two powerful models, the ensemble achieves a synergistic effect, enhancing overall
classification accuracy and robustness. The ensemble model demonstrated exceptional performance,
achieving a remarkable accuracy of 99.26% in classifying kidney cancer histology images.

Data preprocessing was done to improve the model's performance by deleting non-informative
empty patches from the dataset. These patches would have biased the training process and
compromised the model's performance. Following the elimination of empty patches, data
augmentation was used to expand the training dataset.

2.4. Empty Patch Removal Process

This study focuses on the efficient management and processing of whole-slide images (WSIs) for
patch extraction using OpenSlide Library. The main goal is to eliminate empty patches, defined as
those with over half of pixels having RGB intensity values greater than 230 in all channels. OpenSlide,
an open-source C library, is used to read and modify digital pathology images. The implementation
involves using OpenSlide to read WSIs and tools from the tools package for tissue detection and
patch extraction. The process includes setting up paths, reading metadata, and using a Tissue
Detector class with a Gaussian Naive Bayes model for tissue recognition. A Patch Extractor class is
employed with specific parameters to extract relevant patches. The workflow is optimized through
parallel processing using Python's multiprocessing package, resulting in an efficient and transparent
approach for managing WSIs and extracting valuable data for further analysis. With this process,
every high-resolution image is broken into different patches depending on the RGB intensity, and
the ensemble models are trained on them.

(b)

Figure 3. The pictures above exhibit examples of histopathology: (a) tissue patch image and (b) empty
patch image.

2.5. Pretrained networks as Base Models

Since the beginning of deep learning, Convolutional Neural Networks (CNNs) have been
helpful in many applications because of their constant improvements in strength, efficiency, and
adaptability. CNNs, which are specifically designed for computer vision problems and use
convolutional layers inspired by natural visual processes, are a great example of this innovation. The
accuracy, speed, and overall performance of various CNN structures have improved over time, and
they are frequently compared to the ImageNet project —a sizable visual database that fosters
advances in computer vision.
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In the past, training CNNs from scratch took a lot of time and computer power. By using
previously learned information from trained models, transfer learning (TL) offers a useful shortcut
that can speed up optimization and possibly increase classification accuracy. TL entails transferring
weights from pre-trained models, using insights acquired from varied datasets, and speeding
training processes to improve model accuracy, particularly in complicated architectures.

ResNet50 Architecture:

Deeper than ResNet34, ResNet50 is a 50-layer variant of the ResNet architecture. While this
increased depth can lead to better performance on some tasks, training with it requires more
processing power. By enabling gradients to flow across shortcut connections, ResNet50, a deep
convolutional neural network with 50 layers, introduces the idea of residual learning and helps to
address the disappearing gradient issue. This design is efficient in several computer vision
applications, most notably picture categorization.
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Figure 4. ResNet50 Model Architecture.

Transformers

Transformers are network models that use attention to understand the sequence of information
like frames in a movie, words in a sentence, notes in music, or pixels of an image. The transformer
networks can capture relationships and dependencies between the elements even if they are far apart
from each other. The ability to capture long-range dependencies makes transformers powerful for
tasks like language understanding where the meaning of the words depends on words that appear

earlier or later in the sentence. The Transformer network consists of two main parts: 1) Encoder; and
2) Decoder.

Encoder and Decoder

The input sequence that we get from positional encoding is passed through the encoder. Each
encoder consists of a self-attention mechanism and feed feed-forward neural network to capture the
contextual information and dependencies between the words. Multi head attention layer helps the
model to figure out which words are important to each other and how they relate to one another. In
the self-attention layer, each word will have three jobs such as query, key, and value. A query is a
word looking for other words to pay attention to. The key is a word being looked at by other words.
The self-attention layer looks at each word and compares it with all other words in the sentence and
see how they are related to each other. It calculates the similarity between each word query and all
word keys. The words with the higher scores will be prioritized. Add and norm layer is applied after
the multiheaded attention layer and feed-forward neural network in each transformer network. It
preserves the original information from the previous layer which allows the model to learn and
update the new information captured by the sub layer. It assists in addressing the vanishing gradient
problems and allows the model to learn more effectively.
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Figure 5. Architecture of Encoder and Decoder of Transformer.

The primary function of the decoder is to transform encoded representations back into the
desired output format. In sequence generation tasks like machine translation and text summarization,
the decoder predicts the next token in the sequence at each time step, often utilizing techniques like
beam search to improve output quality. In data reconstruction applications, such as image or audio
reconstruction, the decoder transforms encoded latent representations back into the original data
format, a common approach in autoencoders and generative models like Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs). Additionally, decoders are designed for
conditional output production, where the output is conditioned on additional context or input data,
and for error correction and denoising, where they reconstruct clean data from noisy inputs.
Transformer-based decoders.

The decoder is integral to various neural network architectures, especially in sequence-to-
sequence models and data reconstruction tasks. It typically includes an embedding layer, recurrent
layers, attention mechanisms, transformer layers, and an output layer. These components
collaboratively transform encoded representations into meaningful outputs. The decoder's primary
functions include sequence generation, data reconstruction, conditional output production, and error
correction. Transformer-based decoders utilize self-attention, cross-attention, and feed-forward
networks for enhanced performance. Applications of decoders span natural language processing,
computer vision, speech processing, and healthcare, highlighting their versatility and importance in
modern neural network models. Understanding their architecture and functions is essential for
optimizing data transformation tasks.

CAIiT Architecture (Class Attention in Image Transformers)

The CAIT (Class-Attention in Image Transformers) transformer is a novel architecture designed
to enhance the performance of vision transformers (ViTs) in image classification tasks. Traditional
vision transformers apply self-attention mechanisms uniformly across all patches of an input image,
which can sometimes lead to suboptimal learning of class-specific features. CAiT introduces a unique
class-attention mechanism that focuses on improving the interaction between class tokens and image
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patches, leading to better representation learning and classification accuracy. In the CAIiT
architecture, a class token is appended to the sequence of image patches, and attention is specifically
directed towards this class token. This design allows the model to aggregate and emphasize class-
specific information more effectively. The class-attention mechanism is integrated at multiple stages
of the transformer, enhancing the model's ability to capture and utilize discriminative features
necessary for accurate classification. Additionally, CAiT incorporates deeper transformer layers and
a progressive learning approach, gradually increasing the model's complexity and capacity. This
results in improved convergence and performance on various image recognition benchmarks,
making CAiT a powerful architecture for vision tasks.
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Figure 6. CAiT Transformer Architecture.

VitNet Architecture:

Vision Transformers use self-attention. It allows the model to understand the relationship
between different parts of an image by assigning important scores to patches and focusing on the
most relevant information. This helps the model make better sense of the image and perform various
tasks related to computer vision. It breaks images into smaller patches. [19] The statement used in the
paper ‘An image is worth 16x16 words” means how many pixels the sliding window moves each
time. Each patch is treated as a separate input token. There is no decoder in the vision transformer, it
is an encoder only transformer. Linear projection works on flattened patches by transforming 1D
vector into lower dimensional representation. It preserves the important features.
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Figure 7. VITNet Model Architecture.

DeiT Architecture:

The difference between ViT and DeiT is that originally ViT was trained on a massive dataset
having 300M samples of data [20]. DeiT on the other hand, trains on well-known ImageNet Dataset.
ViT takes a long time to get trained whereas DeiT trains in 2 or 3 days on a single 8GPU or 4GPU
machine. DeiT uses knowledge distillation which means transferring knowledge from one
model/network to another. Regularization is used which means the overfitting of a network is being
reduced to limited training data so that the model does not learn the noise from the training data but
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the actual information from the data. Augmentation is when multiple samples are created of the same
input with some variations. Suppose there is a model which classifies cats and dogs. We pass the cat
image through the model and get the embeddings of the image. The embeddings are passed through
self max function to get the probabilities of the dog and cat. Cross entropy loss is compared with the
ground truth label and the entire function. With distillation we distill the knowledge from another
network called the teacher network, we get the embeddings and pass it through self-max with the
temperature parameter to get the output probabilities so that it becomes smoothened.
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Figure 8. DeiT Model Architecture.

Swin Architecture

Swin Transformers are more accurate than Vision Transformers in some cases due to their
capacity to handle large images and high-resolution images with lower computational complexity.
The Swin Transformer, or Shifted Window Transformer, enhances traditional vision transformers by
targeting their limitations in image processing and the process by which they do it. It is constructed
as a hierarchical design with shifted windows, enabling efficient and scalable visual data modeling.
Instead of using the whole slide image all at once, it is divided into different sections. The model
looks at the relationship between all the features and then analyzes the section. These windows or
sections are shifted across all layers so that they can make connections with different features of the
image. This method shows that Swin Transformer can detect images with accuracy.
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Figure 9. Diagram showing Swin Transformer architecture.

In this research, CNN model architecture and vision transformers were used. Initially, each
model was trained independently to determine its unique performance. Then the best-performing
epochs for each model are based on validation accuracy.

To improve the robustness and generalizability of the techniques, 5-fold cross-validation is used.
During each fold of the cross-validation approach, the research utilized the average calculation of the
last epoch of every fold to calculate the best performing validation accuracy.

2.6. Experimental Setting
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The data was divided into training and validation sets. Each network was trained for 12 epochs
using 5-fold cross-validation to create the model. The weights from the epoch with the best validation
accuracy were chosen as the final representations for each model. Various metrics were then
employed to assess accuracy, followed by many objective assessment factors to determine overall
performance.

3. Results

The performance evaluation criteria used include validation Accuracy and Validation Cohen
Cappa Score. Positive samples include abnormal or malignant patches, whereas negative samples
contain normal or healthy patches. The phrases true positive (TP), false positive (FP), true negative
(TN), and false negative (FN) are used to describe the various prediction results.

1. Train Loss: A machine learning model's fit to the training set of data is shown by its train loss.
On the training dataset, it measures the difference between the expected and actual outputs.
Reducing this loss is the goal of training to enhance the model's functionality.

2. Validation Loss: A machine Learning model’s ability to generalize to previously unknown
data is measured by the validation loss. On the validation dataset, it measures the difference between
the expected and actual outputs. 8}

3. Validation Accuracy means the ratio of correctly predicted instances out of the total number
of instances in the validation dataset. It's computed as:

(Tp+TN)

Validation Accuracy = TNAFP+TP4FN)

4. Validation Cohen Cappa Score is a statistical measure.

A complete view of the model’s performance, especially in differentiating between positive and
negative data, can be obtained by looking at these metrics.

Performance metrics must be considered while evaluating the efficacy of machine learning
models. These metrics offer quantifiable figures that represent a statistical or machine-learning
technique's overall performance. Performance metrics assess the model's ability to consistently
produce the correct classifications and its ability to classify data points accurately in classification
tasks. The table below displays the study's conclusions, which were arrived at by looking at various
performance criteria.

Table 1. The effectiveness of the several deep learning models was assessed as displayed below.

Model  Fold Train Loss Train Val Accuracy Val Cohen Cappa Average Val Accuracy
Accuracy Score

Resnet50 1 0.049504 0.981212 0.935595 0.915757
2 0.028646 0.990174 0.975848 0.970563
3 0.091897 0.964484 0.936362 0.906291 0.9503162
4 0.116948 0.95624 0.926586 0.889975
5 0.013555 0.995399 0.97719 0.967462

CAiTNet 1 0.002974 0.999617 0.981407 0.973953
2 0.001046 0.999712 0.988499 0.983126
3 0.004492 0.998993 0.988116 0.977851 0.9873108
4 0.000931 0.999569 0.989266 0.978501
5 0.000439 0.999664 0.989266 0.983871

ViTNet 1 0.000885 0.999808 0.992141 0.989653
2 0.000567 0.999856 0.992141 0.988295
3 0.001646 0.999712 0.990416 0.983298 0.9924862
4 0.000606 0.999856 0.993483 0.987726
5 0.000449 0.999952 0.99425 0.988553

DeiTNet 1 0.002418 0.999377 0.983899 0.977618
2 0.02344 0.993434 0.970098 0.946267 0.9765
3 0.003358 0.999425 0.986007 0.978339
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4 0.007856 0.996885 0.97834 0.967509
5 0.02124 0.993817 0.964156 0.946163
SwinNet 1 0.005455 0.998083 0.987157 0.98223

2 0.005398 0.998322 0.986007 0.979366
3 0.011216 0.99583 0.980449 0.96823 0.9843206
4 0.009326 0.997364 0.982749 0.979266
5 0.00346 0.998898 0.985241 0.974935

Ensemble 1 0.001756 0.9788 0.992973 0.953791
2 0.00345 0.9779 0.986007 0.979366
3 0.004576 0.9867 0.996423 0.96823 0.99267
4 0.00474 0.989967 0.992749 0.979266
5 0.00475 0.9930475 0.995241 0.984935

4. Discussion

In this study, we successfully implemented an ensemble of deep learning and transformer
models to classify kidney cancer histopathology images, achieving great validation accuracy rates.
Our ensemble, which included ViT and Swin models, demonstrated that this ensemble model is
capable of detecting critical features from histopathological images. The ensemble model’s approach
of processing images as grids of patches facilitates effective diagnosis of images, which was crucial
in achieving the highest validation accuracy of 99.26% and less training loss as well. These results
highlight the potential of combining Vision Transformers and Swin Transformers in digital
pathology, offering a significant improvement relative to traditional convolutional neural network
models such as ResNet and Vgg 16.

Moreover, our research demonstrates the potential of these advanced models to enhance
diagnostic accuracy and efficiency in clinical settings. The consistent performance of Vision
Transformers and Swin Transformers across the five kidney cancer types—benign, chromophobe,
clear cell, oncocytoma, and papillary —demonstrates their robustness. This could lead to earlier and
more accurate detection diagnosis of kidney cancer, improving patient and doctor report outcomes.
By taking into consideration the strengths of both Swin Transformers and Vision Transformers, our
ensemble approach not only provides a good diagnostic tool but also paves the way for future
research in the application of advanced deep learning models in medical image analysis. The
successful implementation and high performance of these models suggest a promising direction for
integrating Al-based solutions into routine pathological workflows.

4.1. Future Directions

This study highlights important directions for enhancing kidney cancer diagnosis through
digital pathology and deep learning. The main areas for improvement include the integration of
medical reports and X-ray scans. This paper and study emphasize the importance of Al tools that can
detect the accuracy and the type of the image easily just by seeing the image. By harnessing the full
potential of Al-driven digital pathology and web tools to detect the type of cancer in the images by
uploading the cancer image, this research paves the way for more accurate, efficient, and reliable
diagnostic tools using deep learning models in oncology.

5. Conclusion

This study of kidney cancer diagnosis shows the effectiveness of deep learning and ensemble
transformer models in classifying kidney cancer histopathology images, with a focus on comparing
their performance on metrics such as validation accuracy, validation cohen-cappa score, training loss,
and validation loss. Our analysis reveals that the Ensemble model of Vision Transformer and Swin
Transformer and Vision Transformers alone, particularly the ViTNet model, excels in identifying
critical features from histopathological images, with the highest validation accuracy of 99.26%
achieved by the ensemble of the Swin and Vision transformers. The improvement in accuracy across
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various models signifies the potential of the Ensemble transformer to outperform convolutional
neural network models.

The performance of the models trained along 5 different kidney types shows the robustness of
those models in clinical applications such as detecting kidney cancer application. Integration of Al
can also be made so that the use cases can be extended in other domains as well. By reducing the
errors, this application can be used in many different domains by various kinds of people. Our
findings show precise use cases where such a study will be very helpful in clinical domains.

Supplementary Materials: The Kidney Cancer dataset is openly available at this Link:
https://bmirds.github.io/KidneyCancer/.
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