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Abstract: As the development of low-altitude economies and aerial countermeasures continues, the safety of
unmanned aerial vehicles becomes increasingly critical, making the emitter identification in remote sensing
practices more essential. Effective recognition of Radio Frequency (RF) signal attributes is a prerequisite for
identifying emitters. However, due to the diverse wireless communication environments, RF signals often face
challenges from complex and time-varying wireless channel conditions. These challenges lead to difficulties in
data collection and annotation, as well as disparities in data distribution across different communication scenarios.
To address this issue, this paper proposes a Progressive Maximum Similarity-based Unsupervised Domain
Adaptation (PMS-UDA) method for RF signal attribute recognition. Initially, we introduce a noise perturbation
consistency optimization method to enhance the robustness of the PMS-UDA method under low signal-to-
noise conditions. Subsequently, a progressive label alignment training method is proposed, combining sample-
level maximum correlation with distribution-level maximum similarity optimization techniques to enhance the
similarity of cross-domain features. Finally, domain adversarial optimization method is employed to extract
domain-independent features, reducing the impact of channel scenario. Experimental results demonstrate that
the PMS-UDA method achieves superior recognition performance in automatic modulation recognition and RF
fingerprint identification tasks, as well as cross both ground-to-ground and air-to-ground scenarios, compared to

baseline methods.

Keywords: progressive maximum similarity; unsupervised domain adaptation; radio frequency signal attribute

recognition; automatic modulation recognition; radio frequency fingerprint identification; signal processing

1. Introduction

With the increasing emphasis on Unmanned Aerial Vehicle (UAV) technology in fields such
as low-altitude economies [1-4] and offensive & defensive confrontations [5,6], the threat posed by
high-dynamic electromagnetic targets is on the rise. Consequently, efficient electromagnetic awareness
of high-maneuverability targets in complex environments has become an urgent requirement for
remote-sensing practices. The identification of electromagnetic targets is fundamentally based on
the recognition of the attributes of the Radio Frequency (RF) signals they emit. This encompasses
the recognition of both signal and device attributes. Signal attributes include modulation type [7,8],
signal bandwidth [9], center frequency [10,11], etc, whereas device attribute is primarily defined by RF
fingerprints [12-14].

With the advancement of machine learning, methods for RF signal attribute recognition based
on deep learning have made significant progress in recent years, injecting new vitality into the
identification of electromagnetic emitter. Despite these strides, the propagation of RF signals is
frequently confronted with challenges posed by dynamic, time-varying, and intricate wireless channel
conditions across various spatio-temporal contexts, such as Air-to-Ground (A2G) channels in low-
altitude economic zones [15-17]. Air-to-ground channel scenarios, in contrast to the Ground-to-
Ground (G2G) channel scenario, are subject to a multitude of influences, including transceiver mobility,
fluctuating atmospheric conditions, and diverse terrains and topographies. These factors exert distinct
impacts on RF signal propagation, introducing variability and uncertainty in the data distribution.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Consequently, traditional deep learning models, trained on data from a single scenario, struggle to
adapt and accurately discern the characteristics of RF signals across various scenarios. Moreover,
the diversity and complexity of communication environments significantly complicate the task of
effectively capturing RF signals and assigning them accurate labels. Collectively, these factors amplify
the difficulties associated with cross-scenario deep learning-based RF signal attribute recognition.

Facing the challenges of the distribution discrepancy of signal data across scenarios and the
scarcity of data & label, traditional deep learning methods struggle to effectively cope. Transfer
Learning (TL) offers an effective solution by allowing the migration of prior knowledge learned in
one scenario to another, thereby enhancing the performance of RF signal attribute recognition in
new environments [18-20]. Specifically, domain adaptation within the realm of transfer learning
facilitates the acquisition of knowledge in the target domain by leveraging insights from the source
domain [21,22]. This strategy addresses the challenges stemming from distribution discrepancy and
label paucity in the target domain [23-26]. Therefore, domain adaptation methods not only optimize
the utilization of existing data resources but also adapt to changes in the feature distribution of signal
attributes across different scenarios, bringing new development opportunities and challenges to the
field of RF signal attribute recognition.

In the realm of RF signal attribute recognition, domain adaptation-based methods have demon-
strated considerable promise and benefits. Bu et al. [27] introduced an innovative adversarial TL
framework to address the challenge of Automatic Modulation Recognition (AMR) amidst shifting data
distributions and limited signal data availability. This method leverages a synergy of adversarial train-
ing and knowledge transfer, aiming to minimize disparities in data distributions through adversarial
training, while simultaneously exploiting knowledge transfer to extract prior knowledge from the
source domain. To tackle the issue of divergent data distributions between test and training sets, Liu et
al. [28] presented a Radio Frequency Fingerprint Identification (RFFI) technique for long-term specific
transmitter identification. This method achieves domain alignment between source and target domain
samples through unsupervised domain adaptation, thereby diminishing the intra-class variability of
deep features and alleviating the misclassification of edge samples in the target domain. Nonetheless,
current TL-based methods for RF signal attribute recognition often employ a random selection of
training samples from the target domain. This practice can result in decreased correlation between
samples cross source and target domains, as well as a reduction in distribution similarity of batch
domains , which hinders the alignment and extraction of domain-invariant features.

To address the aforementioned challenges in the cross-scenarios, this paper focuses on the study
of cross-scenario RF signal attribute recognition. We propose a Progressive Maximum Similarity-
based Unsupervised Domain Adaptation (PMS-UDA) method for RF signal attribute recognition
cross G2G and A2G channel scenarios. Initially, to enhance the model’s robustness in diverse noisy
environments, a noise perturbation consistency optimization method is introduced. This method
leverages the subtle feature differences induced by random noise in the signals of target domain to
learn feature representations under various Signal-to-Noise Ratio (SNR) conditions. Subsequently,
addressing the challenge of effectively learning feature similarities at both the sample and distribution
levels in high-dimensional spaces, we introduce a Progressive Label Alignment Training (PLAT)
method. This method optimizes the learning of maximum sample-level correlation and distribution-
level similarity. Finally, to mitigate the impact of channel differences on feature learning, a domain
adversarial optimization method is incorporated. This method employs adversarial learning to extract
domain-invariant RF signal attribute features, enhancing the generalizability and accuracy of the
model across diverse operational scenarios.

The main contributions of this paper are as follows:

(1) A noise perturbation consistency optimization learning method is introduced to utilize slight
noise perturbations during training, enhancing the model’s robustness to various SNR conditions
and improving the performance at low SNRs.
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(2) We propose a progressive label alignment training method, which combined with optimization
for maximizing sample-level correlation and distribution-level similarity, effectively enhances
the similarity between the feature distributions of the source and target domains, thus increasing
the cross-scenarios adaptability of RF signal attribute features.

(3) Utilization of domain adversarial optimization learning methods to extract domain-invariant fea-
tures, significantly reducing the impact of channel scenario differences on recognition outcomes.

(4) Compared to baseline methods, the proposed method demonstrates superior performance in
AMR and RFFI tasks cross G2G and A2G channel scenarios.

The remainder of this paper is organized as follows. Section 2 presents the problem formulation
and the corresponding solutions developed for addressing the challenges in wireless communication
systems. Section 3 explores the network architectures of backbone employed for feature extraction.
Section 4 delves into the proposed UDA method. Section 5 presents the experimental setup and
analyzes the outcomes of the proposed UDA method. Finally, Section 6 concludes the paper with a
summary of our findings.

2. Problem Formulation and Solution

2.1. Problem Formulation

In the wireless communication systems, the interaction between transmitted signals and the
channel through which they propagate is of paramount importance. The received signal, R(t), is
formulated as the convolution of the transmitted signal S(f) with the channel impulse response #(t),
in addition to additive white Gaussian noise (AWGN), W (t), represented as:

R(t) = H(t) * S(t) + W(¢t). (1)

This model captures the essence of signal propagation in wireless channels, including the effects
of multipath fading and noise. Eq. (1) is also described in the form of multiple taps:

R(n) =Y ags(n — 1)e 0% 1 p(n), (2)
r

where ay, Ty, wi and ¢, denote the amplitude, path delay, frequency and phase offset of the kth tap,
respectively.

The spatial scope of the G2G channel under urban topography and geomorphology discussed
is relatively small, with the relative movement speed and height difference between the transceivers
being negligible. In contrast, the A2G channel in an urban environment comprises a direct path and a
ground-reflected path, with a probabilistic existence of 3-9 multipath components. Additionally, due
to the high flight speed of drones, the A2G channel exhibits significant Doppler effects compared to
the new G2G scenarios. Generally, the A2G channel scenario covers a wider spatial range, leading to
relatively severe path loss.

Therefore, the constructed G2G and A2G channel models exhibit significant differences within
their channel parameters, specifically in ay, T, wg, and ¢;. Furthermore, the distribution of w(n) may
also vary. These variations lead to different distributions of the radio frequency (RF) signal data across
channel models. To better describe the problem of domain adaptation, we denote the signal input to
the deep model as X, which represents the radio frequency signal R(n) that has undergone wireless
channel effects. Meanwhile, Y is used to denote the label of the signal X. Suppose the sample datas
of RF signal in the G2G scenario follows the distribution Py (X, Y), denoted as (x,y) ~ Pgac(X,Y),
similarly, the sample data of RF signal in the A2G scenario adheres to the distribution Py (X,Y),
represented as (x,y) ~ Paxg(X,Y). Due to these distributional differences in sample data of RF
signal across scenarios, deep learning-based methods for RF signal attribute recognition experience a
significant performance degradation in cross-scenario applications.
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2.2. Problem Solution

In practical wireless communication scenarios, we can obtain samples of RF signals along with
their corresponding labels in familiar environments. However, the task often extends to performing
similar tasks in new communication scenarios. Based on the previous analysis of two communication
channel conditions, a distribution discrepancy exits between the sample spaces of RF signals in these
two scenarios. Moreover, in the new communication scenarios, only a few of RF signal samples are
known, with no access to the corresponding labels.

2.2.1. Traditional Deep Learning Paradigm

In the traditional deep learning, the empirical risk within the source domain is represented as:

R (fo(x)) = B(xy)mps(v) £ (fe( )yl
Z/ (fo(x),y)Ps(x,y)dx )

yey

where L(fp(x),y) denotes the loss function, and Ps(x,y) symbolizes the joint probability distribution
within the source domain. The summation }, cy represents the aggregation across discrete categorical
labels, signifying that the risk is assessed over all possible outcomes within the label space ). Concur-
rently, the integral [, is performed over the continuous input space X, capturing the expected loss
across the entire data distribution within the source domain. This dual operation of summation and in-
tegration is pivotal in computing the comprehensive expected risk, ensuring the model’s performance
is evaluated over both the entire input domain and the categorical outcomes.
For the unfamiliar target domain, the empirical risk is represented as:

R;wmp(fg(x)) = IE:( x,y)~Pr(x,y) [ (f(-)( )/]/)]
= ¥ [ £l )Pt ) @

yey

However, the labels of target domain, yr € Vr, is unavailable. Therefore, the traditional deep
learning paradigm is incapable of effectively addressing the task with unlabeled sample in the target
domain.

2.2.2. Deep Domain Adaptation Paradigm

The solution to domain adaptation involves learning a model fy(-) that performs well on a target
domain T, characterized by a low risk Rr(fp(x)), using labeled data from a source domain S and
unlabeled data from a target domain T. To enhance the model’s generalizability across different
distributions, both domains are leveraged simultaneously.

The fundamental expression for the risk on the source domain is given in Eq. (3). The risk in the
target domain, Rr(fg(x)), can be conceptually derived as the expectation of the loss function with
respect to the target distribution:

Rr(fo(x)) = E(xy)mpr oy [L(fo(x), )]
E/ fg(x )Pr(x,y)dx

yey

= T [, S g ©
ye ’
(%, y)

:E(x,y)NPS(x,y) |:P (x ,]/>£(f6( x), )
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where 1;?8:; 3 is a domain adaptation factor in the transformation, which serves to reconcile the
distributions discrepancy of two domains.
For the practical implementation of training a model under this paradigm, the empirical risk on

the target domain is minimized by evaluating:

Em 1 L 17 J1
P(fo(x ;Z (fo(xi) %)pT(x i) (6)

ps(xi, yi)’

where (x;, ;) are samples drawn from the target domain distribution Pr(x,y), and n represents the
number of samples. Crucial to this process is estimating the ratio, commonly referred to as the domain
adaptation factor.

To address the issue of unlabeled data in the target domain, it is necessary to minimize the loss

function £(-) while maximizing the similarity TEx,y 3 between the source and target domains.

3. Network Architectures for Task of Feature Extraction

To more effectively extract features relevant to two types of RF signal attributes, we intro-
duce two distinct deep learning-based network architectures from our previous works, namely the
Multi-Scale Correlation Networks (MSCNs) [29] and Multi-Periodicity Dependency Transformer
(MPDFormer) [30].

3.1. Multi-Scale Correlation Networks for AMR Task

In the task of AMR, we incorporate our previous work [29] with the MSCNs network architecture
for extracting the features from modulated signals in the cross-scenarios. The MSCNs can effectively
suppress noise and enhance the features of the modulated signals, thereby achieving AMR task under
low SNRs. The network architecture of MSCNs for AMR task is shown in Table 1.

Table 1. Layout of MSCNss network architecture for AMR task. LSWT denotes learnable stationary
wavelet transform, MSC denotes multi-scale correlation, SAFS denotes subband-adaptive frequency
selection, FS-ResNet denotes frequency selection ResNet, GAP is global average pooling, and FC is full

connection.

Layer | Output Dimension | Number of Parameters | kFLOPs

Input 1024 x 2 - 0
LSWT 1024 x 4 x5 120 245.8
MSC 1024 x 4 x5 - 143.4
SAFS 1024 x 2 x 6 426 130.5
FS-ResNet 512 x 16 2256 3313.3
FS-ResNet 256 x 32 6544 5426.9
FS-ResNet 128 x 64 23312 10675.1
GAP 64 - 8.2

3.2. Multi-Periodicity Dependency Transformer for RFFI Task

In the task of RF signal attribute recognition, we have introduced a Transformer network architec-
ture based on a periodicity-dependency attention mechanism, termed MDPFormer. The MPDFormer
utilizes a spectrum offset-based periodic embedding representation to enhance the differentiation
of intrinsic features. We explore the complexities of the periodicity-dependency attention mecha-
nism, which incorporates both inter-period and intra-period attention frameworks. This mechanism
enables the effective extraction of both long-range and short-range periodicity-dependent features,
thereby emphasizing feature distinctions while simultaneously reducing the disturbances introduced
by background noise and features with weak periodicity.

The network architecture of MPDFormer is shown in Table 2.
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Table 2. Layout of MPDFormer network architecture for RFFI task.

Layers ‘ Output Dimension ‘ Parameters ‘ kFLOPs
Input 1024 x 2 - -
Periodic Embedding Representation 16 x 128 -
Projection 16 x 128 16,512
Scaling 16 x 128 -
Positional Encoding 16 x 128 - 13799.4
Encoding Layers 16 x 128 1,193,472 ’
Transpose 128 x 16 -
GAP 128 x 1 -
Squeeze 128 -
Periodic Embedding Representation 25 x 84 -
Projection 25 x 84 7,140
Scaling 25 x 84 -
Positional Encoding 25 x 84 - 9626.4
Encoding Layers 25 x 84 517,104 '
Transpose 84 x 25 -
GAP 84 x 1 -
Squeeze 84 -
Periodic Embedding Representation 8 x 256 -
Projection 8 x 256 65,792
Scaling 8 x 256 -
Positional Encoding 8 x 256 -
Encoding Layers 8 x 256 4,746,240 27004.9
Transpose 256 x 8 -
GAP 256 x 1 -
Squeeze 256 -
Concatenation 468 - 01
Adaptive Fusion 468 144 '

4. Method

The unsupervised domain adaptation method described is depicted in Figure 1. Initially, the
method utilizes the MSCNs and MPDFormer networks to process the input signal samples from both
the source and target domains, thereby deriving feature representations. Subsequently, the extracted
features are leveraged to achieve cross-scenario domain adaptation and RF signal attribute recognition.
This is accomplished through a series of learning strategies, including noise perturbation consistency
learning, sample-level maximum correlation learning, distribution-level maximum similarity learning,
domain adversarial learning, and source-domain cross-entropy optimization learning. Additionally,
a balancing factor is introduced to adjust the gradient weight of these learning strategies during the
backpropagation optimization process. The formulation of the learning strategies with loss function
proposed is as follows:

] (0, ¢, €) :’X‘cnpcl (6, xt, x,t) + BLsmer (0, xs,x¢) + (1 — ,B)Edmsl (6, xs, xt)

@)
+r)/£dﬂl (91 (Pl Xs, xt) + UL:CE(G/ g, xs),

where 0 represents the set of trainable parameters of backbone model. The variables x;, x;, and xi
correspond to the normalized signals of source domain, target domain, and target domain with noise
perturbation, respectively. Additionally, «, 8, 7y, and # are the balancing factors for their respective loss
functions.

We proceed to detail the following learning strategies: noise perturbation consistency comparison
learning, sample-level maximum correlation learning, distribution-level maximum similarity learning,
domain adversarial learning, and source-domain cross-entropy optimization learning.
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Figure 1. Optimization method for cross-scenario RF signal attribute recognition.

4.1. Noise Perturbation Consistency Learning

Labeling a vast array of signal samples in a novel environment is challenging, yet even a modest
collection of signal samples can be an invaluable source of data. Consequently, to make the most of
the numerous unlabeled signal samples present in a new setting and, concurrently, to discern the
intrinsic features of RF signal attributes amidst the interference of noise perturbation while mitigating
the adverse effects of noise on RF signals, this section introduces the Noise Perturbation Constancy
Loss (NPCL). This loss function is predicated on the principle of noise perturbation consistency and
employs comparative learning to facilitate the effective extraction of features.

Noise perturbation consistency learning serves as an unsupervised learning technique designed
to enhance a model’s resilience to noise and fluctuations in input data. It operates by incorporating
minor noise perturbation into the training process and demanding that the model yield consistent
predictions for both the pristine and the noise-perturbed data. This method compels the model to
learn the genuine distribution and properties of the data rather than merely internalizing the noise
and anomalies present in the training set. Incorporating such losses aids in reducing model overfitting
and enhances its capacity to generalize to new, unseen data. The formulation for incorporating noise
perturbation into the signal is outlined as follows:

x'(t) = x(t) + wo(t), ®)

where 1y(t) denotes additive Gaussian white noise.

The noise perturbation consistency loss is quantified through the metric of cosine similarity.
Let the model parameters be denoted by 6, with the original source and target domain signal data
represented by x; and x; respectively. The corresponding signal data perturbed by noise are x and
x;, respectively. The model’s feature extraction outputs for both the original and perturbed data are
given by fy(x) and fy(x’) respectively. Consequently, the cosine similarity loss can be formulated as
the discrepancy between the cosine distances of the pairs of feature vectors:

N L folx) - fo(x'h)
Luper (6,1, %) = Z’ 1 foCxe)ll2 - I fo(xe) 12 Y

where fy(x) and fy(x’) denote the feature map of original and perturbed signal, - denote the inner
product of vectors, and ||-||, denote their L2 norms, respectively.

Minimizing the cosine similarity loss compels the model to generate similar feature extraction
outcomes for both pristine and perturbed data, thereby enhancing the model’s robustness and capacity
for generalization. This process effectively curbs the model’s tendency to overfit on the noise and fluc-
tuations within the training dataset, guiding the model to more accurately capture the intrinsic feature
distribution of the data. In contrast to traditional supervised learning paradigms, this method places a
greater emphasis on the model’s generalization capabilities, equipping the model to exhibit enhanced
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resilience when confronted with unfamiliar data or varied environmental contexts. Moreover, the
incorporation of noise perturbation consistency loss is cost-effective, as it leverages data transformation
and perturbation techniques during training, eliminating the need for additional labeling efforts.

4.2. Sample-Level Maximum Correlation Learning

To effectively diminish the divergence among samples sharing identical labels, this section intro-
duces the Sample-level Maximum Correlation Loss (SMCL). The sample-level maximum correlation
loss is designed to refine the distinctiveness of the feature representation by amplifying the correlation
among samples that belong to the same class. This strategy is instrumental in enhancing the model’s
proficiency in the domain of RF signal attribute recognition. The incorporation of a sample-level
correlation constraint within the loss function enables SMCL to efficiently mitigate intra-class variance,
thereby improving the model’s proficiency in discerning the intra-class distribution. Consequently,
during the training phase, the model is compelled to integrate samples with the same label into a
closely-knit feature space.

The sample-level maximum correlation loss is crafted to cultivate a feature representation that is
more generalizable by emphasizing the correlation between analogous samples cross both the source
and target domains. The formulation of this loss function is expressed as follows:

1 u ff([fe xsz ] [f9 ) ])
’ 10
N PR —" i

(6, xs, xt)

£Smcl(6, Xs, xt) =1- /\tr(el Xs, xt)/ (11)

where x; and x; denote the feature means of the samples in the source and target domains, respectively,
fo(xs;) and fg(x¢;) denote the feature representations of the samples x, ; and x; ;, respectively, jis and
pt denote the mean of fp(x,;) and fy(x;;), respectively, tr(-) represents the trace of a matrix, and 7 is
the total number of signal samples, A; is a weighting parameter used to control the influence of the
squared correlation coefficient, and we set A; = 0.5. The sample-level maximum correlation loss is
distinguished by its efficacy in narrowing the distributional disparities between the source and target
domains, thereby enhancing the model’s generalization capabilities on the target domain.

4.3. Distribution-Level Maximum Similarity Learning

The Distribution-level Maximum Similarity Loss (DMSL) reduces the distributional difference
between the source and target domains by maximizing the similarity of the signal feature distributions
of the source and target domains taken within each batch to improve the generalization performance of
the model on the target domain. DMSL improves the generalization performance of the model on the
target domain by using the Jensen-Shannon (JS) divergence [31] to optimize the feature distributions of
the two domains and improve their similarity. In contrast to the Kullback-Leibler (KL) divergence [32],
JS divergence is symmetric and smooth, which addresses the problem that KL divergence is asymmetric
and may produce infinite values if the probability distributions do not support the same events. It
is used to measure the similarity between two probability distributions, providing a score ranging
between 0 and 1, where 0 means the distributions are identical and 1 means the distributions are
completely different.

Assuming that the distributions of the source and target domain data features in the probability
space are fy(xs) and fy(x;), respectively, the JS divergence of these two distributions is defined through
the KL divergence of their mean distribution M. The expression for the mean distribution M is:

M = 2 [fo(s) + folxn)] 12)

Therefore, JS divergence is defined as:


https://doi.org/10.20944/preprints202408.2188.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 August 2024 doi:10.20944/preprints202408.2188.v1

9 of 22

JS(folxe), fol)) = SKL(fo(xs) | M) + SKL(folx) || M), 13)

where KL(P || Q) is the KL divergence of Q to P and it can be expressed as:

KLP Q)= & P(1o8( 505 ) 19

where X denotes the set of all possible events in distributions P and Q. This leads to the mathematical
expression of DMSL as follows:

Lmsi (0, xs, 1)
_ 1 X 2fp(xs) . 2fe(xt) (15)
2L e tos( e iy ) + o2 s )

4.4. Domain Adversarial Learning

The Domain Adversarial Loss (DAL) serves as an optimization metric aimed at mitigating
discrepancies in data distributions between the source and target domains. Its objective is to facilitate
the seamless transfer of knowledge acquired from the source domain during model training to the
target domain. DAL fosters the extraction of domain-invariant features by incorporating an adversarial
mechanism, thereby diminishing the model’s susceptibility to performance degradation due to domain
variations.

Employing this strategy, the model transcends its proficiency in the source domain, extending
its high-accuracy performance to the unlabeled target domain. The conceptual foundation of DAL is
rooted in adversarial training, which aims to align the feature distributions of the source and target
domains through iterative optimization. This alignment bolsters the model’s capability to accurately
recognize RF signal attributes across various scenarios.

The Domain adversarial loss operates through a binary domain discriminator, which is a domain
classification network designed to discern the origin of input feature maps—whether from the source
or target domain. The network architecture of this domain discriminator is illustrated in Table 3. The
domain adversarial loss is expressed as follows:

Laar (6, ¢, x) L i [dilog Dy (fo(xi)) + (1 —d;)log(1 — Dy (fo(xi)))], (16)

n i=1

where Dy is the domain adversarial network, and ¢ is the parameters of the adversarial network, x
denotes the signal samples from source and target domain, fy(x;) is the feature maps extracted by the
backbone network.

Table 3. Layout of domain adversarial network architecture.

Output dimension
Layer
AMR RFFI
Input 64 468
Linear 128 128
SELU 128 128
Dropout 128 128
Linear 128 128
SELU 128 128
Dropout 128 128
Linear 2 2
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Throughout the training process, the objective of the domain domain classifier is to maximally
confuse the adversarial network regarding the provenance of the features, thereby fostering conver-
gence in the feature representations cross the two domains. In this process, the domain classifier with
the adversarial network engage in a competitive game. The domain classifier continually refines its
parameters to produce features that are unidentifiable by domain, while the adversarial network strives
to precisely ascertain the origins of these features. Consequently, the domain classifier is compelled
to acquire more generalized, domain-independent feature representations, while still maintaining its
performance on its primary task.

The domain adversarial loss markedly diminishes the model’s susceptibility to distributional
disparities between the source and target domains, thereby enhancing the model’s adaptability and
precision in the target domain. When compared with conventional domain adaptation methods, adver-
sarial loss offers a dynamic mechanism for aligning feature distributions, ensuring greater consistency
between domains. Moreover, as adversarial training operates directly at the feature level, it does
not require label information from the target domain. This trait renders the domain adversarial loss
particularly advantageous for scenarios where labeling is either prohibitively expensive or impractical.
The incorporation of this loss notably amplifies the model’s robustness and generalization capacity
across diverse tasks and environments, highlighting its substantial utility in practical applications.

4.5. Source-Domain Cross-Entropy Optimization Learning

In the field of unsupervised domain adaptation, all signal data in the target domain is unlabeled,
making it difficult to perform supervised learning effectively. However, the labeled sample data of RF
signal in the source domain carries important prior knowledge of the source domain scenario and is the
source of knowledge transfer. These labeled source domain sample data of RF signal provide critical
supervised information that effectively guides the model to better distinguish different categories
during target domain learning. Therefore, the model is effectively trained to minimize the difference
between the predicted outputs and the true labels by calculating the cross-entropy loss function of the
source domain data. The cross-entropy loss function allows the model to have better RF signal attribute
recognition ability in the source domain by comparing the probability distribution predicted by the
model with the true label distribution. At this point, with the co-optimization of the loss functions in
subsections 4.1 to 4.4, the feature distributions of the target domain and the source domain become
highly similar in the high-dimensional space. These two cases jointly contribute to enhancing the RF
signal attribute recognition accuracy in the target domain scenario. The categorical cross-entropy loss
function expression for the experiments is:

15

Cel6,6,%0,2) = —— Y [felfo(xar)) log(fe(fo (%))

s 2o
-5 (17)
— _ni Z []/s,i log(ys,l)]/
5 i=0
where,
Js = fe(fo(xs)), o

where 6 and ¢ denote the trainable parameters of the feature extraction and Multi-Layer Perceptron
(MLP) classification network, respectively, y; ; and iJ; ; denote the truth and predicted category labels,
respectively, f:(-) denotes the classifier for the task of the RF signal attribute recognition, and n;
denotes the number of samples in the source domain.
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Table 4. Layout of MLP classification network architecture for AMR and RFFI tasks.

Output dimension
Layer
AMR RFFI
Input 64 468
Linear 128 128
SELU 128 128
Dropout | 128 128
Linear 64 64
SELU 64 64
Dropout 64 64
Linear 8 8

4.6. Progressive Label Alignment Training Method

The PLAT method represents a sophisticated machine learning strategy tailored to address the
challenge of different data distributions between the source and target domains, as outlined in Algo-
rithm 1. The essence of this method lies in its iterative training process, in which the model identifies a
batch of data from the source domain, complete with its accurate labels. These authentic labels subse-
quently guide the selection of corresponding pseudo-labeled data from the target domain’s dataset,
which are based on the model’s predictions from the preceding training iteration. This method har-
nesses progressive label alignment, along with sample-level correlation learning and distribution-level
similarity learning, to amplify the learning efficacy. The rationale is that when signals from the same
class are selected, the data from both domains within the same batch exhibit the highest correlation and
the closest similarity in distribution. Consequently, the model undergoes incremental optimization,
with the quality of pseudo-labels in the target domain progressively enhanced, thereby facilitating
a more effective transfer of knowledge from the source domain to the target domain. The training
regimen emphasizes the foundational role of the source domain data and the dynamic refinement of
the target domain labels, focusing intensively on minimizing the distributional divergence between
the two domains.

Algorithm 1 Progressive label alignment training method

1: Input: Source domain signal data X, and labels Ys;
2: Target domain unlabeled signal data X;
3: Initialization of backbone, domain adversarial and MLP classifier networks;
4: Set key training parameters.
5: Output: Predicted labels for target domain signal sample X; ses¢.
6: begin
7: for epoch =1 to 300 do
8: if convergence condition not met then
9: Randomly sample a set of source domain signal data and corresponding labels (x;,ys) ~ Xs;
10: Based on the batch of source domain labels, select pseudo-labeled signal data from the target domain that matches
the source domain labels (x,,y;) ;
11: Use the backbone network Fy to extract features fy(xs) and fy(x;) from the source and target domain signals;
12: Use the task classification network F; to predict the labels f:(fs(x;s)) and fe(fp(x;)) for the features of the source
fo(xs) and target domains fp(x¢);
13: Use the domain confusion classification network Dy to predict the domain labels dy ( fo (%)) and dy (fa(xt)) for the
features of the source fp(xs) and target domains fy(x¢);
14: Compute the loss for the batch according to Eq. (7);
15: Update the parameters of backbone network: 6; <~ AdamW (V] (6, ¢, €),6:_1);
16: Update the parameters of task classification network: ¢; +— AdamW(V L. (6,¢€),¢:-1);
17: Update the parameters of domain confusion classification network: ¢ <— AdamW(V L;,(6,¢), p;—1;
18: end if
19: end for

20: end
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5. Experimental Results and Analysis

5.1. Experimental Setup

5.1.1. RF Signal Dataset

To assemble the RF signal dataset for both wireless channel scenarios, this section initially
employs Software-Defined Radio (SDR) technology [33] within a G2G setting to authentically capture
RF signals associated with AMR and RFFI tasks, thereby establishing the G2G channel RF signal
dataset. Subsequently, the RF signal dataset construction methodology constructs the A2G channel
scenario model using real-world measured and calibrated channel parameters [34]. The RF signals
for the A2G channel scenario are then produced by integrating the RF signals gathered from the G2G
channel scenario with simulated sample data of RF signal.

The A2G channel scenario features an urban and suburban terrain. An unmanned aerial vehicle
functions as the transmitter, operating at an approximate altitude of 600 meters above ground level,
traversing distances ranging from 1.64 km to 41.49 km from the receiver, and maintaining speeds
between 74.2 m/s and 92 m/s. A consistent LOS transmission exists between the receiver and the
transmitter. The A2G channel fading model is divided into two components: large-scale fading and
small-scale fading. Large-scale fading encompasses path loss and shadowing, with a closed-form
expression provided as follows:

PL = Lo + 10nlog;, (;;) +(F+ X, (19)
where L is the path loss defined with a value of Ly=98.2 at an initial distance dj, the path loss exponent
is denoted by n=1.7, and the initial distance is set at dy =1.3 km, { assumes the values of +1, where
¢ =1and { = —1 correspond to the UAV moving away from and towards the receiver, respectively.
Additionally, F = 1.1 represents a heading adjustment factor, and X is a Gaussian random variable
with a mean of zero and a standard deviation o = 3.1, which is utilized to model shadow fading.

For small-scale fading, the A2G channel is characterized by LOS propagation. The complex
baseband impulse response for multipath fading is given by the following expression:

h(T,t) = apos(H)o(T — () + aa(t)e 21s(t — 1o(t))

£ Y 2B 05z — 7 (1), 20
k=3

where «, ¢ and 77 denote amplitude, phase and delay, respectively, z; € {0,1} denotes the probability
of occurrence of the kth intermittent multipath component (MPC); the subscripts LOS, 2 and k denote
the LOS component, the ground reflectance component, and the kth intermittent MPC, respectively,
where k € {3,4,---,9}; o 0s(t) and ay(t) are calculated jointly with the curved-earth two-ray model;
the relative power of the intermittent taps a7 /a7 ¢ follows a Gaussian distribution with a mean of
-23.3 dB and a standard deviation of 5.1 dB; and ¢ (¢) follows a uniform distribution from 0 to 27.

Table 5. Fitting coefficients for the occurrence probability of Tap 3-9 in the multipath decay model.

Tap Co 1y 0z
3 0.65 -0.09 0.39
4 -0.61 -0.08 0.32
5 -0.87 -0.10 0.46
6 -1.42 -0.10 0.57
7 -2.60 -0.02 0.48
8 -3.63 0.03 0.47
9 -4.53 0.048 0.67
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Based on the above channel modeling method, this section will simultaneously validate the AMR
and RFFI tasks across scenarios. In the AMR task, based on the RadioML 2018.01A datasets of multiple
modulation types in the G2G channel scenario collected using the SDR-based USRP B210 [35], the
modulated RF signal datasets under the A2G channel scenario are generated using the above channel
modeling method. Similarly, in the RFFI task, the ZigBee RF signal dataset under the A2G channel
scenario is simulated based on the ZigBee signal dataset of the same type of the ground channel
scenario constructed in previous work [30]. As a result, the RF signal datasets of the G2G and A2G
channel scenarios for the two tasks can be obtained to provide data support for the validation of the
cross-scenario domain adaptation method.

In addition, in order to better solve the problem of the difficulty to collect and label sample data
of RF signal present in the target domain under cross-scenario, the sample size of the target domain
dataset is only half of that of the source domain, and all RF signal samples in the target domain
are unlabeled. The RF signal dataset constructed in this way under cross-scenario can be used to
verify the feasibility of the UDA-based RF signal attribute recognition method. Table 6 and Table 7
show the basic attributes of the RF signal dataset under the two tasks of AMR and RFFI, respectively.
Figure 2-Figure 5 present the time-domain waveform of G2G and A2G scenarios in these two tasks.

Table 6. RF signal dataset for the AMR task across G2G—A2G and A2G—G2G scenarios.

Ground-to-ground —Air-to-ground | Air-to-ground—Ground-to-ground

. (G2G—A2G) (A2G—G2G)
Dataset settings
‘ Source ‘ Target ‘ Source ‘ Target
Sample size | 84480 | 42240 | 84480 | 42240
Percentage with label ‘ 100% ‘ 0% ‘ 100% ‘ 0%
Signal dimension ‘ 1024x2
SNR ‘ -10dB to 10dB, with a interval of 2dB
Training: testing ‘ 9:1
) 8 modulation types:
Type of modulation OOK, QPSK, 8PSK, 16APSK, 16QAM, FM, GMSK, OQPSK

Table 7. RF signal dataset for the RFFI task across G2G—A2G and A2G—G2G scenarios.

Ground-to-ground— Air-to-ground | Air-to-ground—Ground-to-ground
Dataset settings (G2G—A26) (A2G—G26)
Source Target Source Target
Sample size 38640 19320 38640 19320
Percentage with label 100% 0% 100% 0%
Signal dimension 1024x2
SNR -20dB to 20dB, intervals 2dB
Training: testing 9:1
Type of ZigBee devices 8 ZigBee devices: 0,1, 2,3,4,5,6,7

5.1.2. Experimental Setup

The experimental setup is presented across two dimensions: software and hardware. On the
software front, the Ubuntu 18.04 operating system is selected, with Python 3.8 serving as the primary
programming language for the experiments conducted herein. The deep learning framework of choice
is PyTorch, which is integrated with CUDA acceleration libraries to utilize the full computational
capabilities of GPUs.

Regarding the hardware configuration, an NVIDIA TITAN XP graphics card with 12 GB of
memory and an architecture optimized for parallel computing is used, thereby expediting the model
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training process. Supplementing this is an Intel Xeon E5-2650 V4 processor and 64 GB RAM, endowing
the computing platform with ample computational resources and memory to handle data processing
and model training efficiently.

5.1.3. Experimental Performance Evaluation

In experimental performance evaluation, accuracy serves as the primary metric in this study. In
multi-class scenarios, accuracy represents the proportion of samples correctly classified across the
entire test set. The formula for calculating the accuracy of radio frequency signal attribute recognition
is as follows:

1 C
Accuracy = N Z n;, (21)
i=1

where 11; denotes the number of correctly recognized samples for the i-th attribute, C is the total number
of attribute categories, and N is the total number of samples in the test set. This metric provides an
intuitive assessment of the model’s overall performance in recognizing different modulation schemes.
Moreover, we also introduce the t-distributed Stochastic Neighbor Embedding (t-SNE) for visual
representation and analysis of results. t-SNE is a nonlinear dimensionality reduction technique that
maps high-dimensional data to two or three-dimensional spaces while preserving local relationships
between data points. Through t-SNE, one can observe the distribution of outputs from different
methods, gaining insight into the cohesion within different emitter categories and the separation
between them. This visual analysis aids in understanding the model’s performance in multi-class
classification tasks and comparing the merits and demerits of different feature extraction.

5.1.4. Experimental Comparison of Baseline Methods

To compare and highlight the effectiveness of the proposed UDA method, we have set up an
experimental framework where the performance of baseline methods is systematically analyzed. In
this experimental setup, the results obtained by supervised training on labeled data from the target
domain and testing directly within the same domain serve as the lower limit of the baseline comparison.
Conversely, the results achieved by training and testing on all available signal data in the target domain,
with true labels, represent the upper limit of the baseline comparison. Additionally, this study employs
two methods designed to address distribution discrepancies in cross-domain data: LTS-SEI and DANN.
The LTS-SEI method is used for unsupervised domain adaptation in RFFI, enhancing cross-scenario
performance in RF signal attribute recognition. DANN, a pivotal method in domain adaptation,
employs adversarial training to adjust the model to the data feature distribution in new scenarios,
effectively overcoming the limitations traditional methods face when dealing with inconsistencies in
data distribution between source and target domains. Thus, these four baseline methods provide a
comprehensive assessment of the effectiveness and robustness of the UDA method proposed herein,
thereby better understanding its potential and limitations in practical applications.
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Figure 2. Time-domain waveforms of various modulated signals for G2G channel scenarios at
SNR=10dB.
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Figure 3. Time-domain waveforms of various modulated signals for A2G channel scenario at
SNR=10dB.
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Figure 5. Time-domain waveform of ZigBee signals for A2G channel scenario at SNR=10dB.

5.1.5. Experimental Settings

Experimental model training configurations are pivotal in the realm of UDA. The choice of
parameter settings during model training significantly influences the learning outcomes. Initially, the
balancing factors are crucial for modulating the influence of various loss functions, ensuring seamless
model transfer across domains. Specifically, the parameters «, 3, 7y, and 5 govern the noise perturbation
consistency loss, the sample-level maximum correlation loss, the distribution-level maximum similarity
loss, the domain adversarial loss, and the classification loss, respectively. Proper tuning of these
parameters aids in maintaining the model’s performance stability during different datasets, such as
from G2G to A2G and vice versa. Furthermore, the learning rate A impacts the model’s optimization
velocity and convergence quality. An inappropriate learning rate, whether too high or too low, may
result in learning process instability or delayed convergence. A comprehensive consideration of these
parameters enhances the model’s generalization and adaptability. Table 8 provides a comprehensive
overview of the specific values for these five critical parameter configurations across the four transfer
scenarios examined in the experiments.
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Table 8. Experimental configuration for two tasks.
Tasks Hyperparameters
- P v U Ir
AMR s
RFFI ed

5.2. Results and Analysis

5.2.1. Performance Degradation Cross Various Communication Scenarios

Table 9 presents the test results for modulation recognition and radio frequency fingerprint
identification tasks within the G2G and A2G channel scenarios, without domain adaptation, where the
number of training signal samples is consistent across all scenarios.

Table 9. Performance degradation of AMR and RFFI tasks cross various communication scenarios.

Accuracy (%)
R AMR RFFI
. — TestScenario | 0 | Axg | G2 | A2c
Train Scenario
G2G 729 | 349 | 959 | 793
A2G 535 | 69.3 | 555 | 949

In the AMR task, the accuracy for training and testing within the same channel scenario, G2G and
A2G, were 72.9% and 69.3%, respectively. However, the model trained in the G2G scenario and tested
in the A2G scenario yielded an accuracy of 34.7%, representing a substantial decrease from 69.3% to
34.7%, a relative drop of 49.6%. Similarly, the model trained in the A2G scenario and tested in the G2G
scenario achieved an accuracy of 53.5%, indicating a decline from 72.9% to 53.5%, or a 26.6% reduction
relative to the original accuracy.

In the RFFI task, training and testing within the A2G scenario achieved an accuracy of 94.9%.
When the model trained in the G2G scenario was tested in the A2G scenario, the accuracy dropped
to 79.3%, a relative decrease of 16.4% from the initial 94.9%. Conversely, training and testing within
the G2G scenario resulted in an accuracy of 95.9%. When the model trained in the A2G scenario was
tested in the G2G scenario, the accuracy plummeted to 55.5%, indicating a significant performance
decline from 95.9% to 55.5%, or a 42.1% decrease.

These experimental findings indicate that models trained and tested in different scenarios exhibit
varying degrees of performance degradation when tested across scenarios. This decline in performance
prevents the practical deployment and application of trained models across different channel scenarios.

5.2.2. Comparison of Unsupervised Domain Adaptation Methods

Table 10 showcases the recognition performance of the proposed PMS-UDA and baseline methods
in cross-scenario tasks of RF signal attribute recognition for G2G—A2G and A2G—G2G scenarios. The
accuracy of lower limit, representing the results of supervised training on source domain signal data
followed by direct testing in the target domain without any knowledge transfer, is used to measure
the performance enhancement facilitated by the UDA method. This lower limit corresponds to the
results of supervised training on target domain RF signal samples, which are half in number compared
to the source domain. As shown in Table 9, compared to not implementing domain adaptation, the
PMS-UDA method improved recognition accuracy by 29.1%, 16.4%, 9.8%, and 18.3%, respectively.

Moreover, the accuracy of upper limit in Table 10 indicates the results obtained by directly using
target domain signal data for supervised training and testing. This upper limit serves as a benchmark
to compare against the performance of the UDA method approximating supervised training results.
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According to Table 10, the accuracy of the PMS-UDA method in RF signal attribute recognition
compared to the upper limit are 95.1%, 99.1%, 94.8%, and 77.8%. Except for the A2G—G2G scenario,
the PMS-UDA method achieves recognition accuracies greater than 90.0% in other cross-scenario
tasks, closely approaching supervised training performance. This indicates that the PMS-UDA method
effectively facilitates the transfer of essential prior knowledge from the source to the target domain.

Table 10 reveals that LTS-SEI outperforms DANN, primarily due to the inclusion of domain
classification and cross-entropy loss functions within LTS-SEI. Across the four cross-scenario cases,
the PMS-UDA method shows an average improvement of 0.9%, 0.1%, 3.9%, and 9.8% over baseline
methods. Thus, the PMS-UDA method exhibits the highest average recognition accuracy among the
three UDA methods examined.

Furthermore, Figure 6 demonstrates that, compared to the performance prior to the application
of the PMS-UDA method, the model exhibits enhanced recognition accuracy under both tasks across
various SNRs after applying the PMS-UDA method. This indicates that the PMS-UDA method
effectively facilitates the transfer of prior knowledge across scenarios under both high and low SNR
conditions.

Consequently, this experiment concludes that the PMS-UDA method effectively achieves prior
knowledge transfer across scenarios and closely approximates the performance of supervised training;
additionally, it demonstrates superior cross-scenario knowledge transfer capability relative to baseline
methods.

Table 10. Comparison of UDA methods for cross-scenario RF signal attribute recognition in two tasks.

Accuracy(%)
Method AMR RFFI
G2G—A2G | A2G—G2G | G2G—A2G | A2G—G2G

Lower limit 34.9 53.5 79.3 55.5
DANN 62.6 68.3 83.8 58.3
LTS-SEI 63.7 70.2 86.7 69.7
PMS-UDA (ours) 64.0 69.9 89.1 73.8
Upper limit 67.3 70.5 94.0 94.8
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Figure 6. Comparison of the performance before and after using PMS-UDA method.

5.2.3. Ablation Study of the Optimization of Loss Functions

Table 11 illustrates the experimental results of an ablation study designed to assess the contribution
of each loss function within the proposed PMS-UDA method. When the noise perturbation consistency
loss, the sample-level maximum correlation loss, and the distribution-level maximum similarity loss
are omitted from the proposed UDA method, the accuracies for AMR are 52.7%, 51.5%, and 43.6%,
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respectively, representing decreases of 11.3%, 12.5%, and 20.4% from the complete model. The RFFI
task exhibits a similar trend; without these loss functions, the accuracies are 83.4%, 80.4%, and 84.4%,
with reductions of 5.7%, 8.7%, and 4.7%, respectively. This experiment confirms that these three types
of losses functions are pivotal in enabling effective knowledge transfer in the UDA methods.

Table 11. Ablation study of optimization loss function in G2G—A2G scenario.

Tasks ‘ Accuracy(%)

| PMS-UDA | w/oNPCL | w/0o SMCL/DMSL | w/o DAL
AMR | 640 | 527 | 51.5 | 436
RFFI | 891 | 84 | 80.4 | 844

As depicted in Figure 7, the version of the proposed UDA method without NPCL exhibits reduced
accuracy at low SNRs, indicating that incorporating noise perturbation consistency learning enhances
the method’s robustness against noise in low SNR conditions. This is achieved by introducing random
noise perturbation. Conversely, the variant of the PMS-UDA method without DAL shows a more
pronounced decline in performance at high SNRs. This suggests that domain adversarial learning is
instrumental in fostering the acquisition of domain-invariant features across different scenarios at high
SNRs, thereby enhancing the representation learning capacity of cross-scenario UDA methods.
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Figure 7. Ablation study of the optimization of loss function.

In comparison to the complete PMS-UDA method, the performance of the method lacking SMCL
and DMSL drops significantly at high SNRs. This underscores the necessity of addressing data
distribution discrepancies through optimization at both the sample and distribution levels. Such
optimization is essential for minimizing differences in cross-domain data distributions between the
source and target domains.

5.2.4. Ablation Study with Progressive Label Alignment Training Methods

Table 12 presents the accuracies of the proposed PLAT method with or without the employment
of the progressive label alignment method, across two tasks in the cross-scenario: G2G to A2G and
A2G to G2G. In the absence of the PLAT method, the accuracies of AMR task for two cross-scenarios
are 61.3% and 64.6%, respectively. When the PLAT method is employed, the accuracies improve to
64.0% and 69.9%, reflecting gains of 2.7% and 5.3%, respectively.

In the RFFI task, the method’s performance without PLAT yields accuracies of 83.1% for the
G2G—A2G scenario and 53.4% for the A2G to G2G scenario. Upon incorporating the progressive label
alignment method, these figures rise to 89.1% and 73.8%, demonstrating significant improvements
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of 6.0% and 18.8%, respectively. These results underscore the effectiveness of the progressive label
alignment method in facilitating domain knowledge transfer for both RF signal attribute recognition
tasks in the unsupervised domain adaptation.

Table 12. Ablation study of progressive label alignment method across scenarios.

Progressive label Accuracy(%)
alignment method AMR RFFI
G2G—A2G | A2G—G2G | G2G—A2G | A2G—G2G
X 61.3 64.6 83.1 55.0
v 64.0 69.9 89.1 73.8

5.2.5. Similarity of Feature Distribution via T-SNE Visualization

Figure 8 illustrates the experiment designed to showcase the evolution of feature distributions
through domain adaptation for the G2G— A2G scenario. Initially, as depicted in Figure 8(a) and (c),
there is a noticeable divergence in the feature distribution between the source domain G2G and the
target domain A2G. However, following domain adaptation, the scenario changes, as indicated in
Figure 8(b) and (d), with a increase in the similarity of the feature distributions between the two

domains.
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Furthermore, the accuracies for the source domain G2G scenario are observed to be 95.2% before
and 95.6% after domain adaptation, as shown in Figure 8(c) and (d). This minor yet significant
improvement of 0.4% post-adaptation not only enhances the recognition accuracy but also aligns the
feature similarities more closely with those in the target domain. A comparison between Figure 8(a)
and (b) reveals that the domain adaptation for A2G scenario exhibit greater inter-class dispersion and
tighter intra-class distribution compared to their pre-adaptation state.

The conclusions drawn from this experiment suggest that the proposed UDA method is effective
in achieving analogous feature distributions across the source and target domains. Additionally, it
fosters greater dispersion among classes and tighter cohesion within classes for RFFI in the target
domain.

6. Conclusion

In this paper, we propose a PMS-UDA method for RF signal attribute recognition, which demon-
strated remarkable robustness against noise and the maximum similarity of signal distribution across
communication scenarios. This method effectively enables the model to handle signals across various
SNRs by recognizing that samples perturbed by slight noise sharing the same label. Additionally, our
method incorporate a sample-level maximum correlation and distribution-level maximum similarity
optimization, enhancing the alignment and similarity of feature distribution between the source and
target domains. Through domain adversarial learning, the model extracts domain-invariant features,
minimizing the impact of channel scenario differences. A progressive label alignment training method
further refines this process by utilizing pseudo-labels from unlabeled samples in prior phases to
achieve maximum sample-level correlation and distribution-level similarity in subsequent phases.
Experimental results confirmed that our PMS-UDA method approached the upper limit of the target
domain supervised training. It also proved particularly effective under low SNR conditions, affirming
its utility in achieving feature distribution similarity between the source and target domains.
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