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Abstract

The first attempt to control and mitigate an epidemic outbreak caused by a previously unknown virus
occurs primarily via non-pharmaceutical interventions (NPIs). In case of the SARS-CoV-2 virus,
which since the early days of 2020 caused the COVID-19 pandemic, NPIs aimed at reducing transmis-
sion enabling contacts between individuals. The effectiveness of contact reduction measures directly
correlates with the number of individuals adhering to such measures. Here, we illustrate by means
of a very simple compartmental model how partial noncompliance with NPIs can prevent these from
stopping the spread of an epidemic.

Keywords: non-pharmaceutical intervention, epidemic model, compliance, reproduction number,
COVID-19.

1 Introduction

Faced with an epidemic outbreak caused by a previously unknown virus, effective medication or vac-
cines are usually not available. Mitigation therefore tends to primarily rely on non-pharmaceutical
interventions (NPIs). This was no different in case of the SARS-CoV-2 virus, which causes the
COVID-19 pandemic. Most countries applied NPIs aimed at reducing contacts between infectious
and susceptible individuals. Such measures range from social distancing or school closure to most
severe lockdown periods. Reducing most contacts between individuals, NPIs necessarily reduce epi-
demiologically relevant contacts, or effective contacts, viz., those between infectious and susceptible
individuals during which the virus is successfully transmitted.

Obviously, the effectiveness of contact reduction measures directly correlates with the number of
individuals actually adhering to the measures. Is it better to have stricter measures followed by a
small fraction of the population or almost universally adopted moderate measures? There is an obvi-
ous trade-off. Stricter measures are more effective in reducing contacts between compliant individuals
but are also less likely to be realistically applicable to many people. Here, we illustrate by means of a
very simple mathematical model how partial noncompliance with NPIs can prevent them from stop-
ping the spread of an epidemic. Though the working example is the COVID-19 epidemic, specifically
in Germany in late summer/early fall of 2020, the model is generally valid and flexible to be applied
to other infectious diseases.
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2 Methods

The core of the model used in this note extends the known S-E-I-R (susceptibles–exposed–infected–
recovered) model for disease dynamics [4]. The ordinary differential equations (ODEs) approach that
we use assumes that the population is homogeneous and well-mixed within a region. Individuals are
classified according to their status with respect to the virus spread in the community. Susceptible
individuals (S) can be infected. The time between exposure to the virus (becoming infected) and
symptom onset, commonly known as “exposed phase” or incubation period is divided in three stages
(Ej , j = 1, . . . , 3), the last being presymptomatic and contagious.

Infections might be reported (I) or remain undetected (U). The compartment I also accounts for
severe infections, which might lead to death, the assumption being that all severe cases will be de-
tected. Deceased (D) and recovered (R) individuals are removed from the chain of transmission,
assuming long lasting immunity upon recovery. Susceptible individuals can be infected via contacts
with presymptomatic (transmission rate βE), undetected (transmission rate βU ), or detected (βI)
infectious individuals. We assume that presymptomatic and undetected infectious persons, lacking
knowledge about being infectious, do not restrict their contacts to others, and therefore have higher
transmission rates than detected infected individuals (βE , βU > βI) who are expected to quarantine
or isolate themselves at least to some degree. Further we include behavioral heterogeneity in the pop-
ulation. We assume that while everyone adheres to moderate restrictions being in place throughout
the period under consideration, a certain fraction of the population might not comply with stricter
measures as these are applied. Hence, we split the population into two groups, called compliant
(subscript c) and noncompliant (subscript n), respectively. As a simplifying assumption we take the
compliant group to perfectly adhere to prescribed contact reductions while the noncompliant group
maintains its contact level, regardless of imposed measures, be it because they do not accept the
measures or because they are not able to implement them.

An overview of the model variables is given in Table 1. The dynamics of the model shown in Figure 1
is given by the following system of differential equations:

Ṡm = − λm(t)Sm
Ė1,m = λm(t)Sm − γEE1,m

Ėi,m = γEEi−1,m − γEEi,m, i ∈ {2, 3}
U̇m = (1− τm)γEE3,m − (γU + ηm)Um
İm = τmγEE3,m + ηmUm − γIIm
Ṙm = (1− δ)γIIm + γUUm

Ḋm = δγIIm,

(1)

for m, k ∈ {c, n}, and with

λm =
∑
k=c,n

(βkm,EE3,k + βkm,UUk + βkm,IIk) . (2)

The force of infection, λm, is determined by the specific transmission rates

βkm,X = β0µXaksm (3)

between the infectious compartment X ∈ {E3,k, Ik, Uk | k ∈ {n, c}}, and the susceptible class
Sm, m ∈ {c, n}. Here β0 a basic transmissibility rate specific to the virus, ak is the specific infectious-
ness of population k (determined by their social behavior, in particular compliance with restriction
rules), sm the specific susceptibility of the susceptibles Sm (determined by their behavior), µX the
specific weight of infectiousness for stage X of the infection. It is yet unclear which amount of sec-
ondary cases of COVID-19 result from presymptomatic transmission, with estimates ranging from
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Figure 1: Model structure for the transmission dynamics of an infectious disease with
contact restrictions and partial compliance. Solid arrows indicate transition from one com-
partment to another, red/blue arrows indicate new infections by virus transmission due to contact
with infectious individuals. Upon infection, susceptible (S) individuals enter the exposed phase (E),
divided into three consecutively passed stages, E1, E2, E3, but represented as a single stage for better
clarity. After symptom onset, infections may be detected (I) or remain undetected (U). Severe cases
potentially leading to death are assumed to be always detected. Infected individuals who recovered
(R) or deceased (D) upon infections, are removed from the chain of transmission. All individuals
who are relevant to the disease transmission dynamics are classified as compliant (Sc, Ec, Uc, Ic) or
noncompliant (Sn, En, Un, In), depending on their behavior response to imposed contact restrictions.

Table 1: Model variables

Notation Description
Sc/n compliant/noncompliant susceptible individuals
Ei,c/n compliant/noncompliant exposed individuals in stage i = 1, 2 (not yet infectious)
E3,c/n compliant/noncompliant exposed individuals in stage 3 (already infectious)
Uc/n compliant/noncompliant undetected infectious individuals
R recovered individuals
D deceased individuals

6.4% [19] to 46% [10], or even above 50% [11]. Here we assume that βE = 1.5βU , accounting for
a presymptomatic infectious phase of 1-2 days. Disease progression through the different infectious
stages is given by the rates γX , that is, 1/γX is the average duration of the stage X. The incubation
time 3/γE is split equally among the three compartments Ej . Detection may occur with probability
τm by the end of the incubation period. Later detection, when individuals are already in compartment
Um, may depend on the compliant/noncompliant status, m, of the infectious person and occurs with
rate ηm. Detected individuals might die with probability δ.

For the simulations shown below we set the total population N to approximately 83 million, roughly
Germany’s population.

The basic reproduction number R0 for the pre-intervention phase

As in the pre-intervention phase both the compliant and the noncompliant group are assumed to
behave the same, for easiness of notation we omit the compliant/noncompliant index in the following
computation. To employ the next generation matrix (NGM) approach for calculation of the basic
reproduction number R0 [7], we split the compartments into infected (x = (E1, E2, E3, U, I)T ) and
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non-infected (y = (S,R,D)T ) and write system (1) as

x′ = F(x, y)− V(x, y)
y′ = g(x, y)

where F captures the inflow of new individuals into x from the non-infected compartments,

F(x, y) = (λS, 0, 0, 0, 0)T ,

while V collects the progression within the infected compartments as well as the outflow (recovery,
deaths). Linearizing the equation for x about the disease free equilibrium (DFE) x̄ = 0, ȳ = (N, 0, 0),
we obtain

x′ ≈ Fx− V x

where

V =


γE 0 0 0 0
−γE γE 0 0 0

0 γE γE 0 0
0 0 −(1− τ)γE γU + η 0
0 0 −τγE −η γI

 , and F =


0 0 βE

N
βU
N

βI
N

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

are the Jacobians of F and V, respectively, evaluated at the DFE. For the DFE to be locally asymp-
totically stable, all eigenvalues of F − V must lie in the left half plane, or equivalently, the dominant
eigenvalue of FV −1 must be smaller than 1. The dominant eigenvalue being the first entry of FV −1,
corresponds indeed to the basic reproduction number R0 [7]. Short computation leads to

R0 = RI +RU +RE ,

with
RI = βI((η + γU )τ + η(1− τ))

(η + γU )γI
= βI(η + τγU )

(η + γU )γI
, RU = βU (1− τ)

η + γU
, RE = βE

γE
.

Let us now go back to the distinction into compliant and noncompliant groups. We shall assume
that strict control measures are introduced in a very early phase of the outbreak (when we are very
close to the DFE) and denote by ρ the fraction of individuals that comply with the measures. That
is we introduce one infectious individual in an entirely susceptible population split into compliant,
Sc(0) = ρN , and noncompliant, Sn(0) = (1 − ρ)N , group. Compliance corresponds to a reduction
of effective contacts to a fraction r ∈ [0, 1] of the original value. With these notations the initial
controlled reproduction number would be

Rc = (1− (1− r)ρ)R0. (4)

The straightforward but somewhat lengthy derivation is given in the appendix. In Fig. 6b we show
the ratio between Rc and R0 in dependence of ρ and r. The trivial limit cases are (i) r = 0 and
ρ = 1, that is full compliance and reduction to zero contacts, yielding Rc = 0, and (ii) r = 1, that is
no intervention, or ρ = 0, no compliance, yielding Rc = R0.

3 Results

The simulations that we show below are not calibrated on any specific time series but parametrized
in a way to approximately reproduce the COVID-19 dynamics in different phases of the pandemic.
We start the simulations with initial low incidence under moderate control measures, such that the
resulting reproduction number is slightly larger than one. For a certain initial period, both the
compliant and the noncompliant group behave the same, that is, the two subpopulations have the
same transmission rates (βkm,J = βlp,J , for all k, l,m, p ∈ {c, n}, J ∈ {E,U, I}). After this initial
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phase we assume that transmission rates, hence the effective reproduction number, Rt, slightly increase
over time. In the context of COVID-19, this setting might mimic the transition from the controlled
situation in the summer 2020 to the fall 2020 in Germany and other European countries. We suppose
that stricter intervention measures aiming at the reduction of the reproduction number are introduced
when a daily incidence of ≈ 20, 000 cases is reached. As an effect of the control measures, contacts in
the population should significantly decrease and, if the whole population was behaving in compliance
with the prescribed measures, contact rates would be reduced to a certain fraction r < 1 of their
value before intervention. Upon the introduction of stricter control measures the compliant and
noncompliant groups start behaving differently: noncompliants maintain their behavior (activity and
susceptibility). In other words, if the whole population was noncompliant, the reproduction number
Rt would remain the same as before intervention. By a slight abuse of notation we shall denote by R0
the reproduction number before the modeled intervention though in the case of COVID-19 this was
already affected by some control measures. Here we set R0 ≈ 1.5, approximately the value estimated
for COVID-19 in late summer/early fall 2020 in Germany [18]. This value is significantly smaller than
the uncontrolled reproduction number of SARS-CoV-2, mostly estimated above 2 [20, 14].

3.1 Scenarios for different contact reduction and compliance levels

In the following we show different scenarios for the dynamics of the outbreak under the variation of
two major unknown factors:

1. Reduction of contacts. We assume that in accordance with control measures contacts would
be reduced by a factor 75%, 50%, or 20% of the level previous interventions. This would lead,
in case of perfect compliance, to a reduction to 25%, 50%, or 80% of the reproduction number
R0 before interventions, corresponding to r = 0.25, 0.5, or 0.8, respectively.

2. Compliant fraction of the population. We vary the fraction ρ ∈ [0, 1] of the popula-
tion complying with restriction measures. We assume that the differentiation into compli-
ant/noncompliant individuals occurs only once, namely at the time of intervention, and that
individuals do not switch to the opposite behavior (noncompliant/compliant) for the entire
course of the simulations.

We fix the relative infectiousness parameters (µX , X ∈ {E,U, I}) in the definition of βkm,X in a way
that 30% to 40% of new infections are caused by individuals in stage E3, and such that detected cases,
I, do barely contribute to the spread of the disease:

RU ' RE � RI .

This relation is based on (i) reported data for COVID-19 asserting that almost half the infections
are transmitted from pre- or asymptomatic infectious individuals [13, 5] and (ii) the assumption that
detected cases are well isolated and significantly reduce their contacts.

For the following scenarios we furthermore consider two possible assumptions for the time of de-
tection. We show as next the late detection setting, with τ = 0.1 (corresponding to 10% of cases
detected by symptom onset), η = 0.6γU (≈ 38% of U detected). This leads to approximately 45% de-
tection at low prevalence, and we further assume that the detection rate decreases for large prevalence
of (undetected) cases due to finite testing capacity, e.g.,

η = η̄
K

Uc + Un + αE3,c + αE3,n +K
(5)

for some constant K and a maximal detection rate η̄. This resembles the effect of limited testing
capacity. As long as the total number of undetected infectious individuals is small as compared to
K, the correction factor is close to one, but as the prevalence approaches the order of K, an increas-
ing proportion of infections goes undetected. We remark that this nonlinearity does not affect the
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calculation of R0 or Rc but may well affect the reproduction number Rt far away from the disease
free equilibrium. This makes intuitive sense: Since detected infectious individuals are assumed to
(self-) isolate and produce few secondary infections after being detected, any reduction in detection
rates will accelerate the spread of the epidemic while at the same time making reported case numbers
appear smaller. A motivation for the precise shape of the correction factor is given in the appendix.
An early detection setting, with τ = 0.3 (corresponding to 30% of cases detected by symptom onset),
η = 0.25γU (corresponding to 20% of U detected), yielding a comparable total detection ratio, was
also considered, but simulations are shown or discussed only when differences with the late detection
setting are significant.

Scenario 1: Rc = 0.25R0 at full compliance.
The first scenario considered is a prescribed contact reduction that would lead to a control reproduc-
tion number Rc being at 25% of R0. Assuming an initial R0 ≈ 1.5, this would lead to Rc ≈ 0.375.
The results are shown in Fig. 2. We observe that at full compliance (100% of the population, ρ = 1),
the incidence would indeed quickly decrease. For lower levels of compliance, the decrease is expectedly
slower. However, if only half the population adheres to the measures (50% compliance), this contact
reduction is only sufficient to stall the rising incidence. This happens because the effective reproduc-
tion number Rt, resulting from transmission rates of compliant and noncompliant populations under
the implemented control measured, approaches values close to 1 about two weeks after intervention.
Fig. 2(a) evidences that the 50% noncompliant individuals make up way more than 50% of the cases.
At even lower compliance, the measures may help to slow down the increase but are no longer suffi-
cient to stop it.
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Figure 2: Scenario 1: Rc = 0.25R0. The upper left panel in (a) shows the incidence before the
intervention. For different compliant fractions (ρ) of the total population we show (a) the evolution in
time of daily cases reported among compliant (blue) and noncompliant (red) individuals, and (b) the
currently known active cases (Ic+ In, continuous curves) and susceptible individuals (Sc+Sn, dashed
curves). The vertical dashed line shows the time of intervention. The effect of contact reduction is
not immediately evident since new infections are not detected until several days later.

In Fig. 2b, the red curve (ρ = 0) indicates the course of the epidemic with no compliance at all
with the NPIs introduced in week 13. This corresponds to a situation without any new intervention
measures, and five weeks after the (non-)intervention, already some 25% of the population would have
been infected (cf. the dashed curve for the susceptible population). The number of detected cases
does not rise as quickly as the the loss of susceptibles would suggest. This is due to the limited test
capacity, cf. (5), and the decreasing detection ratio as the prevalence becomes too large.

Scenario 2: Rc = 0.5R0 at full compliance.
The second scenario, shown in Fig. 3, assumes that at 100% compliance, the transmission rates and
hence the control reproduction number would be cut in half, leading to Rc ≈ 0.75 at R0 = 1.5. Still,
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at perfect compliance, the incidence would start falling several days after the intervention but now
even 70% compliance would not be sufficient to prevent the case numbers from rising.
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Figure 3: Scenario 2: Rc = 0.5R0. The upper left panel in (a) shows the incidence before the
intervention. For different compliant fractions (ρ) of the total population we show (a) the evolution in
time of daily cases reported among compliant (blue) and noncompliant (red) individuals, and (b) the
currently known active cases (Ic+ In, continuous curves) and susceptible individuals (Sc+Sn, dashed
curves). The vertical dashed line shows the time of intervention. The effect of contact reduction is
not immediately evident since new infections are not detected until several days later.

Scenario 3: Rc = 0.8R0 at full compliance.
The implementation of moderate measures, reducing the transmission rate among compliant individ-
uals by only 20%, leads to a reproduction number of Rc ≈ 1.2 at perfect compliance. As shown in
Fig. 4, this is not sufficient to stop the increasing case numbers even if the whole population would
adhere to the measures. The effect is due to the limited efficacy of the control measures (reducing the
reproduction number from 1.5 to at best 1.2), rather than to the level of compliance.
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Figure 4: Scenario 3: Rc = 0.8R0. The upper left panel in (a) shows the incidence before the
intervention. For different compliant fractions (ρ) of the total population we show (a) the evolution
in time of daily cases reported among compliant (blue) and noncompliant (red) individuals, and (b)
the currently known active cases (Ic + In, continuous curves) and susceptible individuals (Sc + Sn,
dashed curves). The vertical dashed line shows the time of intervention. The limited effect of contact
reduction is not stopping the increase in daily new cases and there is no qualitative difference between
full compliance (ρ = 1) and full noncompliance (ρ = 0).

Scenario 2′: Rc = 0.5R0 at full compliance, with early detection
The assumptions on the reproduction numbers are the same as in Scenario 2, but here we consider
the case of earlier detection (τ = 0.3, η = 0.25γU ). Qualitatively, the results shown in Fig. 5 are the
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same as in Scenario 2 (cf. Fig 3), that is, for compliance levels below 50% the daily new cases keep
increasing. Due to early case detection, however, the incidence of detected cases follows more closely
the time course of ”actual” new daily infections (γE(E3,c+E3,u)). A consequence of this effect is that
for 50% compliance, for which Rt is rather close to 1, after an initial drop the incidence increases
again after a few days. The initial brief drop reflects transiently falling new infections. In case of
late detection (cf. Fig 2a, compliance 50%) this effect is smoothed out and not visible in the daily
incidence time series.
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Figure 5: Scenario 2′: Rc = 0.5R0. If infections are detected in an early stage, the case incidence
follows closely the true incidence of new infections. The upper left panel in (a) shows the incidence
before the intervention. For different compliant fractions (ρ) of the total population we show (a) the
evolution in time of daily cases reported among compliant (blue) and noncompliant (red) individuals,
and (b) the currently known active cases (Ic + In, continuous curves) and susceptible individuals
(Sc + Sn, dashed curves). The vertical dashed line shows the time of intervention. Notice (panel
(a)) the drop in incident cases at 50% compliance, followed by a slow increase. Due to the shorter
detection delay, the number of active detected cases drops (in case of high compliance) faster than in
the corresponding settings in Fig. 3a.

3.2 Reduction levels necessary to either significantly reduce incidence or afford
stagnation

So far, we have seen how the incidence of new detected cases progresses at different compliance levels
if a given reduction of effective contacts among compliant individuals is prescribed. Let us now take a
different point of view. For a given compliance level we ask how strong the reduction in transmission
among compliant individuals needs to be in order to

(i) reduce the incidence to 25% or 50% of the value at intervention time within 5 weeks after
intervention, or

(ii) reach permanent stagnation of incidence, meaning that after 3 weeks post intervention the
incidence shall not increase anymore beyond a small tolerance.

To this end, we performed simulations for 201 compliance levels (0% through 100% in steps of 0.5
percentage points) and screened for the reduction levels sufficient to achieve either of the goals (i) or
(ii). Results are shown in Fig. 6. Since we start with a reproduction number R0 (pre-intervention)
of about 1.5, hence rising incidence, it is not surprising that for low compliance even the complete
elimination of contacts among compliant individuals (βcc ≈ 0) is not sufficient to achieve either one
of the above goals. The population of susceptible noncompliant individuals is still sufficiently large
and a significant reduction in the daily incidence is not feasible. At compliance levels close to 40%
a very strong reduction in transmission among compliant individuals (βcc ≈ 0) allows to stall the
rising incidence. In order to achieve the desired 50% reduction in daily cases, as stated in point (i),
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a compliance level of nearly 50% or more is necessary. Reducing the incidence to 25% within the
same time requires even higher compliance levels. Conversely, even at full compliance, the contact
reductions need to be sufficiently large in order to achieve stagnating or falling incidence. This is in
agreement with what was already shown in Fig. 4, where a reduction of effective contacts by 20%
was not sufficient to keep the incidence from rising further. Here, we see that reduction of effective
contacts by a factor 0.4 to 0.6 of the pre-intervention level is required to either reach stagnation or
significant reduction of daily incidence. Qualitatively, the same conclusions are also obvious from
consulting the reproduction numbers shown for comparison in Fig. 6b.

Simulated curves for the evolution of daily incidence in time corresponding to the limit cases (stag-
nation or reduction to a fixed percentage of pre-intervention value just being achieved) in Fig. 6a are
shown in the appendix, Fig. A1a.
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(a) Simulated reduction-compliance curves (b) Rc/R0 according to (4), with R0 = 1.5.

Figure 6: (a) Required reduction of transmission among compliant individuals in order to achieve
stagnation (blue) or a desired reduction within five weeks to 25% (red) or 50% (black) of case incidence
compared to the value at the time of intervention. (b) Ratio between the control reproduction number,
Rc, and the pre-intervention reproduction number, R0, according to (4). Notice that reaching Rc = 1
from R0 = 1.5 implies a ratio of 2/3 and that the corresponding level set (dashed line) is indeed very
similar to the curve of required reductions for achieving stagnating incidence in (a). This level set
being shifted to the left reflects the fact that the simulations do not operate at the DFE.

4 Conclusion and discussion

In order to illustrate possible effects of less than perfect compliance with non-pharmaceutical inter-
ventions (NPIs) on their effectiveness in curbing the spread of infectious diseases, we modeled and
simulated a situation mimicking the status of the COVID-19 epidemic in Germany in the fall of 2020.
The model captures both (i) reduced susceptibility of individuals adhering to the proposed NPIs (an
effect similar to protection which could be achieved via vaccination) and (ii) reduced transmission
from compliant individuals (acting similar to quarantine or treatment, cf. chapter 9 in [15]). The
simulations show that in implementing NPIs to rapidly reduce daily cases, a concurrence of a suf-
ficient level of compliance (ρ) in the population and a significant reduction, r, of effective contacts
among compliant individuals is required. For example, let the pre-intervention reproduction number
be about 1.5, and let both the effective infectiousness, ac, and the susceptibility, sc, of half the pop-
ulation (compliance level ρ = 0.5) be reduced by about 30% each. This leads to a 51% reduction
of transmission among compliant individuals, cf. (3), r = 0.49, which is by far not enough to stop
the rise in new cases, as can be seen in the upper right panel in Fig. 3a. Only if the measures are
sufficiently effective in reducing transmission and a large proportion of the population implements
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such measures, a stagnation or even reduction of case numbers can be achieved in a reasonably short
time (in the above simulations: 5 weeks).

Moreover, if infections are detected and reported rather quickly (Scenario 2′, Fig. 5), reduced trans-
mission among compliant individuals can lead to a brief reduction in newly reported cases before these
start rising again (cf. Fig. 5 compliance 50% or 70%). If reported cases are used as a daily proxy for
evaluating the effectiveness of control measures, such a short-time decline could be misleading.

The system (1) for transmission dynamics used for the above simulations was developed as a sim-
plification of our previous models for COVID-19 in Germany [2, 3]. For the sake of simplicity we
decided not to include age groups, stages of infection, hospitalizations or cases requiring intensive
care, nor considered any reduction of contact rates due to self-control of individuals to high inci-
dence values [6, 9]. Further we assume that individuals are either compliant or noncompliant for the
whole duration of control measures, and that there is no behavioral switching between the two groups.
The model could be extended to include such a switch, as was done in the past by other authors [16, 8].

We should note that all the simulations discussed above presume that most of the population is
still susceptible at the time of intervention. This leads to the effective reproduction number Rt being
only slightly smaller than the basic reproduction numberR0 (before intervention) or the control repro-
duction number Rc (after intervention). This is one reason why the theoretical threshold curve shown
in Fig. 6b is rather close to those found in Fig. 6a showing the required reduction of transmission
among compliant individuals for given compliance levels. Clearly, the smaller the susceptible fraction
of the population is at the beginning, the faster the relative change in the number of susceptibles over
time and the more pronounced will the effect of depleting the pool of susceptibles be.

References

[1] Acuña-Zegarra M.A., Santana-Cibrian M., Velasco-Hernandez J.X. Modeling behavioral change
and COVID-19 containment in Mexico: A trade-off between lockdown and compliance. Math.
Biosc. 325: 108370 (2020)

[2] Barbarossa, M. V. et al. Modeling the spread of COVID-19 in Germany: Early assessment and
possible scenarios. PLOS One 15(9): e0238559 (2020)

[3] Barbarossa, M. V. and Fuhrmann, J. Germany’s next shutdown - Possible scenarios and out-
comes. Influenza Other Respi Viruses doi.org/10.1111/irv.12827 (2020)

[4] Brauer F., Castillo-Chavez C., Feng Z., Mathematical Models in Epidemiology. Springer (2019)

[5] Buitrago-Garcia D. et al.Occurrence and transmission potential of asymptomatic and presymp-
tomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med 17(9):
e1003346 (2020)

[6] Capasso V. and Serio G. A generalization of the Kermack-McKendrick deterministic epidemic
model. Math. Bioscie. 42, 43–61 (1978)

[7] Diekmann O., Heesterbeek J.A.P., Metz J.A.J., On the definition and the computation of the
basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J.
Math. Biol. 28(4): 365–382 (1990)

[8] D’Onofrio, A. and Manfredi, P. The interplay between voluntary vaccination and reduction of
risky behavior: a general behavior-implicit SIR model for vaccine preventable infections. In Cur-
rent Trends in Dynamical Systems in Biology and Natural Sciences (pp. 185-203). Springer
(2020)

10

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 February 2021                   doi:10.20944/preprints202102.0178.v1

https://doi.org/10.20944/preprints202102.0178.v1


[9] Fenichel E. P., et al. Adaptive human behavior in epidemiological models. Proc. Nat. Acad. Sci.
USA 108(15), 6306—6311. (2011)

[10] Ferretti L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital
contact tracing. Science 368(6491): eabb6936 (2020)

[11] Ganyani T. et al. Estimating the generation interval for coronavirus disease (COVID-19) based
on symptom onset data, March 2020. Euro Surveill. 25(17):pii=2000257. (2020)

[12] He, X. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med.
26(5):672–675 (2020)

[13] Johansson M.A. et al. SARS-CoV-2 Transmission From People Without COVID-19 Symptoms.
JAMA Netw Open 4(1):e2035057 (2021)

[14] Kucharski, A. J. et al. Early dynamics of transmission and control of COVID-19: a mathematical
modelling study. The Lancet Inf. Diseases 20(5), 553–558 (2020)

[15] Martcheva M., An Introduction to Mathematical Epidemiology. Springer (2015)

[16] Poletti, P. et al. Spontaneous behavioural changes in response to epidemics. J. Theor. Biol.,
260(1), 31-40 (2009)

[17] Robert Koch Institute Coronavirus Disease 2019 (COVID-19). Daily Situation Re-
port of the Robert Koch Institute. Updated status for Germany 10/31/2020. https:
//www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/
Okt_2020/2020-10-31-en.pdf?__blob=publicationFile

[18] Robert Koch Institute Coronavirus Disease 2019 (COVID-19). Daily Situation Re-
port of the Robert Koch Institute. Updated status for Germany 11/10/2020. https:
//www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/
Nov_2020/2020-11-10-en.pdf?__blob=publicationFile

[19] Wei, W. E. et al. Presymptomatic Transmission of SARS-CoV-2—Singapore, January 23-
–March 16, 2020. MMWR, 69(14), 411 (2020)

[20] Zhao, S. et al. Preliminary estimation of the basic reproduction number of novel coronavirus
(2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the
outbreak. Int. J. Inf. Diseases 92, 214–217 (2020)

Appendix A. Calculation of the control reproduction number

For the calculation of the basic reproduction number R0 we apply the next generation matrix (NGM)
approach from [7]. The population can be split into not infected compartments, y = (Sc, Sn, R,D)T ,
and infected compartments x = (E1,c, E1,n, E2,c, E2,n, E3,c, E3,n, Uc, Un, Ic, In)T . The disease free equi-
librium is

y = (ρN, (1− ρ)N, 0, 0)T , x = 0
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where ρ denotes the compliance level, i.e., the fraction of the population that is compliant. By the
NGM approach we construct the 10× 10 matrices

F = β0



0 0 0 0 µEacscρ µEanscρ acscρ anscρ µIacscρ µIanscρ
0 0 0 0 µEacsnρ µEansnρ acsnρ ansnρ µIacsnρ µIansnρ
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


,

where we wrote the transmission rates as βmk,X = µXamsk, and

V =



γE 0 0 0 0 0 0 0 0 0
0 γE 0 0 0 0 0 0 0 0
−γE 0 γE 0 0 0 0 0 0 0

0 −γE 0 γE 0 0 0 0 0 0
0 0 −γE 0 γE 0 0 0 0 0
0 0 0 −γE 0 γE 0 0 0 0
0 0 0 0 −(1− τc)γE 0 γU + ηc 0 0 0
0 0 0 0 0 −(1− τn)γE 0 γU + ηn 0 0
0 0 0 0 −τcγE 0 −ηc 0 γI 0
0 0 0 0 0 −τnγE 0 −ηn 0 γI


.

In what follows, we assume τc = τn =: τ and ηc = ηn =: η, meaning that the chance of detection is
independent of the behavior1. Then, the inverse of V is

V −1 =



1
γE

0 0 0 0 0 0 0 0 0
0 1

γE
0 0 0 0 0 0 0 0

1
γE

0 1
γE

0 0 0 0 0 0 0
0 1

γE
0 1

γE
0 0 0 0 0 0

1
γE

0 1
γE

0 1
γE

0 0 0 0 0
0 1

γE
0 1

γE
0 1

γE
0 0 0 0

1−τ
γU +η 0 1−τ

γU +η 0 1−τ
γU +η 0 1

γU +η 0 0 0
0 1−τ

γU +η 0 1−τ
γU +η 0 1−τ

γU +η 0 1
γU +η 0 0

τγU +η
(γU +η)γI

0 τγU +η
(γU +η)γI

0 τγU +η
(γU +η)γI

0 η
(γU +η)γI

0 1
γI

0
0 τγU +η

(γU +η)γI
0 τγU +η

(γU +η)γI
0 τγU +η

(γU +η)γI
0 η

(γU +η)γI
0 1

γI



.

1This assumption may be motivated as follows. Although it may be expected that individuals who deliberately ignore
the proposed contact reduction measures will be less likely to have themselves tested upon minor suspicions of being
infected, the opposite may be true for those who cannot easily reduces their contacts due to their profession (e.g. medical
doctors or caregivers). Individuals in this category could be tested periodically, making detection of asymptomatic or
pauci-symptomatic infections more likely.
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The next generation matrix is hence

FV −1 = β0



(
µI(τγU +η)
(γU +η)γI

+ 1−τ
γU +η + µE

γE

)
acscρ

(
µI(τγU +η)
(γU +η)γI

+ 1−τ
γU +η + µE

γE

)
anscρ ∗ · · · ∗(

µI(τγU +η)
(γU +η)γI

+ 1−τ
γU +η + µE

γE

)
acsn(1− ρ)

(
µI(τγU +η)
(γU +η)γI

+ 1−τ
γU +η + µE

γE

)
ansn(1− ρ) ∗ · · · ∗

0 0 0 . . . 0
...

...
...



= β0

(
µI(τγU + η)
(γU + η)γI

+ 1− τ
γU + η

+ µE
γE

)
︸ ︷︷ ︸

R0


acscρ anscρ ∗ · · · ∗

acsn(1− ρ) ansn(1− ρ) ∗ · · · ∗
0 0 0 . . . 0
...

...
...

 .
That the common factor is R0 can be noted by recalling that βX = µXβ0as in the pre-intervention
setting. Since we are interested in the dominant eigenvalue of this matrix and all but the first two
rows are filled with zeros, we only need to calculate the eigenvalues of the upper 2× 2 minor(

acscρ anscρ
acsn(1− ρ) ansn(1− ρ)

)
.

This leads to
Rc = R0(acscρ+ ansn(1− ρ)),

which is remarkably independent of the detection parameters, meaning that the threshold for achiev-
ing Rc = 1 given any R0 > 1 should be the same for early and late detection, respectively. The ratio
between Rc and R0 in dependence of the level of compliance ρ and the fraction r = acsc to which
transmission rates among compliant individuals are reduced after intervention is shown in Fig. 6b.

Notice that this approach allows calculating the control reproduction number for the case that non-
compliant individuals slightly change their behavior but to a lesser degree than compliant individuals
(ac < an < 1 and/or sc < sn < 1). Having assumed, however, that noncompliant individuals keep
their pre-intervention behavior, we require that ansn = 1. Moreover, since we assumed the reproduc-
tion number to be reduced by a factor r < 1 if the compliance were 100% (meaning ρ = 1)2, we also
require r = acsc.

The simple formula for the control reproduction number (which would be equal to Rt if we started at
the DFE with a completely susceptible population) is therefore as given in (4),

Rc = (rρ+ 1− ρ)R0 = (1− (1− r)ρ)R0.

The controlled reproduction number can be hence obtained reducing R0 is reduced by a fraction
(1 − r)ρ. The latter corresponds to the practical efficacy of control measures, being the product of
the fraction effective contacts to be reduced by the measures and the compliance level.

If we drop the assumption on homogeneous detection (that is we allow τc 6= τn and ηc 6= ηn), then the
next generation matrix is calculated in a completely similar fashion:

FV −1 = . . .


= Acacscρ Ananscρ ∗ · · · ∗

Acacsn(1− ρ) Anansn(1− ρ) ∗ · · · ∗
0 0 0 . . . 0
...

...
...

 ,
2More precisely, we assume the reduction of transmission to result from (i) infectious compliant individuals spreading

the infection to a lesser degree, encoded in ac < 1, and (ii) susceptible infectious individuals being more cautious, hence
less susceptible, encoded by sc < 1. Both effects compound to reduced transmission between susceptible individuals by
a factor r = acsc.
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with the abbreviation

Am = µI(τmγU + ηm)
(γU + ηm)γI

+ 1− τm
γU + ηm

+ µE
γE

, m ∈ {c, n}.

The eigenvalues are again 0 and

Rc = β0(Acacscρ−Anansn(1− ρ)).

Assuming again the behavior of the noncompliant population to be unaffected by the intervention,
we obtain β0An = R0 and ansn = 1, leading to

Rc =
(
Ac
An

rρ− (1− ρ)
)
R0.

The ratio Ac
An

depends on the particular values of the parameters involved, but the important message is
thatRc does not depend on whether the reduction in transmission is mediated by infectious individuals
being cautious to not spread the virus or by susceptible individuals being cautious not to catch the
virus. This will clearly be different once we are sufficiently far into the epidemic, i.e., sufficiently far
away from the DFE. Since it should be expected that noncompliant individuals make up a larger share
of the infectious population than their share in the total population is, while compliant individuals
will more likely remain susceptible, the reduction ac in spreading activity will play a less significant
role compared to the reduction sc in susceptibility.

Appendix B. Derivation of the correction factor of detection rates

To motivate the shape of the correction factor for the detection rate, η, given in (5) we consider a
minimal model for an infectious disease with underascertainment. To this end, we track Susceptible,
Uundetected infectious, detected Infectious, and Reecovered/removed individuals. Moreover, we
consider the population of available T ests3. These are supplied at a given rate σ+ and are depleted by
being applied to individuals who are tested. Clearly, not all tested individuals are infectious, hence
tests are governed by the following quasi reactions:

∅ σ+−→ T, T + S
σS−→ S, T + U

σU−→ I, T + I
σI−→ I, T +R

σR−→ R,

the first reaction describing the constant supply and the other reactions describing the pairing of a test
with an individual (the individual being tested). The test results allows only undetected individuals
to change their state (from U to I), whereas leaves all other compartments unchanged. The resulting
system of equations reads

Ṫ = σ+ − (σSS + σUU + σII + σRR)T
Ṡ = − (βUU + βII)S
U̇ = (βUU + βII)S − γUU − σUUT
İ = σUUT − γII
Ṙ = γUU + γII.

It now makes sense to choose σ+ and the σX sufficiently large to ensure that T is small. This reflects
the fact that testing capacity cannot be stored since the limiting factor is laboratory time. Increasing
testing capacity would result in larger σ+ and would allow for larger σX , that is, a higher coverage,
but should not result in large residual values of T .

3More precisely: T corresponds to the capacity for administering and evaluating tests
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This motivates the idea of viewing the test population as a fast variable, setting it to a quasi steady
state

Ṫ ≈ 0 =⇒ T ≈ σ+
σSS + σUU + σII + σRR

and writing the only relevant testing term as

σUUT ≈
σ+

σSS + σUU + σII + σRR
U = σ+

σUK

K

K + U
U

where we put
K = σS

σU
S + σI

σU
I + σR

σU
R.

With the notation
η̄ := σ+

σUK

we recover an analogue of relation (5). There are several assumptions at play in this discussion.
First, we assume that σU is significantly larger than σS , σI , and σR, meaning that for any given
individual the chance of being tested is much larger if this individual is indeed infected. This chance
may be influenced by the individual showing symptoms or having been in close contact to a con-
firmed case. Otherwise, at low incidence, an unrealistically high number of tests would be required
to reach a meaningful detection ratio. For the sake of the argument, we may even assume σI = 0
since an already detected individual need not be detected again. We also assume the term K to be
approximately constant. This is true if either the susceptible population is much larger than all other
populations and σS is not much smaller than σR, or the rates σS and σR are approximately the same
and S + R � I. Both cases are plausible: If the detection ratio is high, most cases are detected
and there are few recovered individuals who were not detected. Given the official COVID-19 data
for Germany in the fall of 2020 [17], this would mean the large majority of the population is still
susceptible. If on the other hand, the detection ratio is low, there may be many recovered individuals
who were never detected, but from the point of view of a test, these individuals are in no way different
from susceptibles, and it should be expected that σS ≈ σR.

In fact, simulating the above system (results not shown here) for σS = σI = σR and, say, σU = 20σS ,
reveals that for most parameters, there is barely a difference between this system and the slow system

Ṡ = − (βUU + βII)S
U̇ = (βUU + βII)S − γUU − ηU
İ = ηU − γII
Ṙ = γUU + γII,

with
η = η̄

K

K + U
,

and K assumed to be constant. In contrast, the same system with constant η = η̄ shows significantly
higher reported case numbers as soon as the prevalence increases. Moreover, if βI is significantly
smaller than βU (as one would expect if detected cases are quarantined) the model with constant η
predicts a slower progression of the disease than both the model with test population and the one
with U -dependent detection rate.

Appendix C. Daily incidence in limit cases (cf. Fig. 6)

In Fig. 6a, we show the reductions of transmission required to achieve the goals of

(i) reducing within five weeks the incidence to 25% or 50% of the value at intervention, or
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(ii) preventing the incidence from significantly rising at any time within weeks 2 through 5 after
intervention,

introduced in subsection 3.1. Here we show the actual course of the incidence if contacts are reduced
by these exact threshold levels. The corresponding curves are shown in Fig. A1 for selected prescribed
compliance levels and under the assumptions of both late and early detection.

As already obvious from Fig. 6a for late detection (the curves for early detection being very sim-
ilar), neither goal (i) or (ii) can be achieved at 30% compliance, and even without any transmission
from or to compliant individuals (dashed curves, upper left panels in Fig. A1(a)-(b)) the incidence
will rise after possibly briefly falling. At 40% compliance, stagnating incidence levels can be achieved
but transmission among compliant individuals must be very small (blue curves, upper right panels
in Fig. A1(a)-(b)). As compliance rises to 50%, a reduction of the incidence to half the value at
intervention is possible within five weeks, and finally, if at least 60% of the population adhere to
the contact reductions, either goal can be achieved, though clearly at different contact reductions.
For compliance levels higher than 60% the incidence curves achieved by the threshold transmission
reductions do not change significantly. This means that there is no big difference in the outcome upon
very high compliance with moderately effective reduction measures, and moderate compliance with
very strong reductions in transmission.

30%,r1: n.a.,r2: n.a.,s: n.a.
stagnation
red. to 25%
red. to 50%

40%,r1: n.a.,r2: n.a.,s=0.05
stagnation
red. to 25%
red. to 50%

50%,r1: n.a.,r2=0.02,s=0.22
stagnation
red. to 25%
red. to 50%

60%,r1=0.03,r2=0.12,s=0.34
stagnation
red. to 25%
red. to 50%

70%,r1=0.11,r2=0.23,s=0.44
stagnation
red. to 25%
red. to 50%

80%,r1=0.2,r2=0.31,s=0.5
stagnation
red. to 25%
red. to 50%

0 5 10 15

90%,r1=0.28,r2=0.38,s=0.56
stagnation
red. to 25%
red. to 50%

0 5 10 15

100%,r1=0.34,r2=0.44,s=0.6
stagnation
red. to 25%
red. to 50%

(a) Late detection

30%,r1: n.a.,r2: n.a.,s: n.a.
stagnation
red. to 25%
red. to 50%

40%,r1: n.a.,r2: n.a.,s=0.04
stagnation
red. to 25%
red. to 50%

50%,r1: n.a.,r2=0.04,s=0.21
stagnation
red. to 25%
red. to 50%

60%,r1=0.04,r2=0.16,s=0.34
stagnation
red. to 25%
red. to 50%

70%,r1=0.14,r2=0.26,s=0.43
stagnation
red. to 25%
red. to 50%

80%,r1=0.23,r2=0.35,s=0.5
stagnation
red. to 25%
red. to 50%

0 5 10 15

90%,r1=0.3,r2=0.41,s=0.55
stagnation
red. to 25%
red. to 50%

0 5 10 15

100%,r1=0.37,r2=0.47,s=0.6
stagnation
red. to 25%
red. to 50%

(b) Early detection

Figure A1: Daily incidence for threshold cases in Fig. 6a. For different compliance levels (indicated
as percentage on the top of each panel), the incidence over time is shown for the critical reductions
according to Fig. 6a. When a certain goal cannot be attained (denoted by “n.a.”) at the given
compliance level, the incidence is shown for the case that no transmission occurs within the compliant
population (βcc = 0). The values r1 and r2 indicate the reduction of the transmission rate among
compliant individuals required for lowering the incidence to 25% or 50%, respectively, of the value at
the time of intervention, whereas s is the reduction factor required for stagnation.
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Another effect, already alluded to in the discussion of scenario 2′, becomes apparent from Fig. A1. In
the case of late detection, the threshold contact reduction that is just sufficient to keep the incidence
from rising further leads to the incidence to stop rising and leveling out close to the maximum value
which is reached when the full effect of the intervention starts showing in the reported case numbers.
Quite differently, for the case of early detection, the same threshold value leads to a significant decline
in newly detected cases before a plateau well below the maximum incidence is reached. This can
potentially lead to a deceptive situation where the rapidly falling incidence may make the contact
reductions to appear way more effective than they are and consequently reduce the sense of urgency
among the population. If this in turn leads to a lower level of compliance, the incidence instead of
falling further or stabilizing at a level slightly below the maximum may pick up steam and start rising
again.
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