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Abstract: Purpose - This research investigates the effectiveness of established vulnerability metrics,
such as the Common Vulnerability Scoring System (CVSS), in evaluating attacks on Large Language
Models (LLMs), with a focus on Adversarial Attacks (AAs). The study explores the influence of both
general and specific metric factors in determining vulnerability scores, providing new perspectives
on potential enhancements to these metrics. Approach - This study adopts a quantitative approach,
calculating and comparing the coefficient of variation of vulnerability scores across 56 adversarial
attacks on LLMs. The attacks, sourced from various research papers, and obtained through online
databases, were evaluated using multiple vulnerability metrics. Scores were determined by averaging
the values assessed by three distinct LLMs. Findings - The results indicate that existing scoring-systems
yield vulnerability scores with minimal variation across different attacks, suggesting that many of
the metric factors are inadequate for assessing adversarial attacks on LLMs. This is particularly true
for context-specific factors or those with predefined value sets, such as those in CVSS. These findings
support the hypothesis that current vulnerability metrics, especially those with rigid values, are limited
in evaluating AAs on LLMs, highlighting the need for the development of more flexible, generalized
metrics tailored to such attacks. Value - This research offers a fresh analysis of the effectiveness and
applicability of established vulnerability metrics, particularly in the context of adversarial attacks on
Large Language Models, both of which have gained significant attention in recent years. Through
extensive testing and calculations, the study underscores the limitations of these metrics and opens up
new avenues for improving and refining vulnerability assessment frameworks specifically tailored for
LLMs.

Keywords: adversarial attacks; large language models; vulnerability metrics; risk assessment; descrip-
tive statistics

1. Introduction

Large Language Models (LLMs) have recently become a cornerstone in artificial intelligence (AI)
research and application, thanks to their remarkable ability to understand and generate human-like text
[10]. LLMs such as GPT [106], BERT [30], and others have achieved widespread adoption in a variety
of fields, including Natural Language Processing (NLP), machine translation, and conversational Al,
due to their capacity to generalize across diverse tasks [133]. However, this surge in popularity has
also exposed LLMs to a myriad of vulnerabilities, becoming an attractive target for various security
threats [1,50,79].

One of the most significant threats to LLMs is Adversarial Attacks (AAs) [101,119,164], which are
typically designed to fool Machine Learning (ML) models by modifying input data or introducing
carefully-crafted inputs that cause the model to behave inappropriately [50,130]. These attacks often
remain indistinguishable to humans but significantly impact the model’s decision-making process,
posing a significant threat to LLMs, as they can compromise the integrity, reliability, and security of
applications that rely on these models [14]. One significant example is the Crescendo attack [111]. This
sophisticated method manipulates LLMs by gradually escalating a conversation with benign prompts
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that evolve into more harmful requests, effectively bypassing safety mechanisms. Therefore, protecting
LLMs has become a critical concern for researchers and practitioners alike [66,167].

To effectively secure LLMs against AAs, it is crucial to assess and rank these threats based on
their severity and potential impact on the model. For instance, some attacks, like Prompt Injection [85],
are easy to execute and widely applicable, making them higher-priority threats. Others, like Backdoor
attacks [76], may require greater sophistication but can cause significant long-term damage [51]. This
prioritization allows security teams to focus on the most dangerous attacks first for mitigation efforts.
Existing vulnerability metrics, such as the Common Vulnerability Scoring System (CVSS) [114] and
OWASP Risk Rating [140], are commonly used to evaluate the danger level of attacks on traditional
systems, taking into account factors such as attack vector, attack complexity, and impact. However,
their applicability to LLMs remains questionable.

Most existing vulnerability metrics are tailored for assessing technical vulnerabilities in software
or network systems. In contrast, AAs on LLMs often target the model’s decision-making capabilities
and may not result in traditional technical-impacts, such as data breaches or service outages [161].
For example, attacks like Jailbreaks [24], which manipulate the model’s outputs to bypass ethical
or safety constraints, cannot easily be classified as technical vulnerabilities. These attacks focus on
manipulating the model’s behavior rather than exploiting system-level weaknesses. In other terms,
the context-specific factors used in existing metrics, such as CVSS, do not adequately account for the
unique characteristics of LLMs or the nature of AAs. Consequently, they may be ill-suited for assessing
the risk posed by these attacks on LLMs.

In this study, we aim to evaluate the suitability of known vulnerability metrics in assessing
Adversarial Attacks against LLMs. We hypothesize that: ‘the factors used by traditional metrics may
not be fully applicable to attacks on LLMs’, because many of these factors are not designed to capture
the nuances of AAs.

To test this hypothesis, we evaluated 56 different AAs across four widely used vulnerability
metrics. Each attack was assessed using three distinct LLMs, and the scores were averaged to provide
a final assessment. This multi-faceted approach aims to provide a nuanced understanding of how
well current metrics can distinguish between varying levels of threat posed by different adversarial
strategies, as relying solely on human judgment for security assessments would require domain
experts, and human evaluation could introduce biases.

Our findings indicate that average scores across diverse attacks exhibit low variability, suggesting
that many of the existing metric factors may not offer fair distinctions among all types of adversarial
threats on LLMs. Furthermore, we observe that metrics incorporating more generalized factors tend
to yield better differentiation among adversarial attacks, indicating a potential pathway for refining
vulnerability assessments tailored for LLMs.

The contributions of this paper are fourfold.

*  We provide a taxonomy of the various classification criteria of Adversarial Attacks existing in the
literature, showing the logic followed in classifying AAs into multiple types.

*  We present a list of 56 AAs specifically targeting LLMs, which serve as our test scenarios.

*  We provide a comprehensive evaluation of some vulnerability metrics, in the context of AAs
targeting LLMs, using differential statistics to analyse the variations of metric scores across
different attacks.

e We suggest that future work should focus on developing more general and LLM-specific vul-
nerability metrics that can effectively capture the unique characteristics of AAs targeting these
models.

This paper is structured in seven parts. We start in Section 2 by detailing the procedures we
employed in this study, especially concerning the data collection, vulnerability assessments through
LLMs, and mathematical analysis of the results. After that, we present in Section 3 an overview of AAs
and their existing classifications. In Section 4, we present a detailed list of AAs on LLMs, and propose
a classification based on the danger level in Section 5. Sections 6, 7, and 8 encompasses respectively,
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the evaluation of the vulnerability metrics on LLMs, the discussion of the results, and the perspectives
for future enhancements.

2. Methods

In this section, we outline the methodology adopted to evaluate vulnerabilities in attacks targeting
Large Language Models using established metrics such as DREAD [92], CVSS [114], OWASP Risk
Rating [140], and Stakeholder-Specific Vulnerability Categorization (SSVC) [128].

Our approach involves three key steps depicted below in Figure 1 : data collection, assessment,
and statistical interpretation.

Online Databases —>m—l
Research Papers Collection memmmg LLAMA3.2-90b

GitHub Repositories Perplexity AI

Coefficient of Variation
Interpretation

Shannon Entropy

Figure 1. Research process

2.1. Data collection

The first step in our methodology was to gather a comprehensive dataset of AAs targeting LLMs.
To ensure a thorough and systematic approach, we began by reviewing the literature on these attacks,
exploring existing types and classifications. This step provided a broad understanding of the main
categories of attacks commonly observed in the context of ML and NLP systems.

Following this foundational review, we focused on identifying recent AAs specifically targeting
LLMs. These attacks were grouped into seven primary types: Jailbreaks (White-box and Black-box)
[150], Prompt Injections [84], Evasion attacks [137], Model-Inference (Membership Inference) attacks
[57], Model-Extraction attacks [49], and Poisoning/Trojan/Backdoor attacks [76,88,131]. For each
type, we selected eight representative attacks, prioritizing those published in recent research or
demonstrated in practical scenarios. This effort resulted in a list of 56 attacks, covering a diverse range
of threat vectors and methodologies.

To enable a systematic ranking of these attacks based on their potential danger, we decided to
assess each attack using vulnerability metrics. By applying multiple metrics, we aimed to provide
a multi-faceted evaluation of each attack’s severity and to ensure that the dataset would serve as a
robust basis for further analysis and interpretation.

2.2. Score assessments

To evaluate the severity and danger level of the 56 gathered attacks, we began by identifying
widely recognized vulnerability assessment metrics to ensure a comprehensive analysis. After careful
consideration, we selected four metrics: DREAD [92], CVSS [114], OWASP Risk Rating [140], and SSVC
[128]. These metrics were chosen for their broad adoption and their focus on different factors, enabling
a more nuanced understanding of the vulnerabilities. Since the Adversarial Attacks we collected are
recent and not yet assessed in the literature, calculating their scores became essential to address this
gap.

Manually assessing 56 attacks across four metrics is a daunting task, requiring extensive expertise
from security analysts, system administrators, and other domain experts. The process involves
interpreting complex scenarios, considering varying factors for each metric, and ensuring consistency
between all evaluations. Completing such an effort manually could take months or even years, which
is impractical given the fast-evolving nature of adversarial threats.

To overcome this challenge and accelerate the process, we leveraged the capabilities of LLMs to
perform semi-automated scoring. Specifically, we utilized three state-of-the-art models: GPT-4o [97],
LLAMAS3.2-90b [38], and Perplexity Al [62]. Each model operated independently, assessing the attacks
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and vulnerabilities according to the factors defined by the selected metrics. For each scoring factor, we
calculated the average score provided by the three LLMs, rounded to the closest unit.

This approach offers several advantages. First, it enables rapid assessments. Second, using
multiple LLMs increases the robustness of the results by minimizing biases or errors from any single
model. Furthermore, the models” advanced text-processing capabilities allow them to analyze the
contextual details of each attack and provide scores that align with the logic of the vulnerability
metrics.

A recent work of Chopra et al. [23] proves that LLMs are able to identify and analyze software
vulnerabilities; but that they can lead to misinterpretations or oversights in understanding complex
vulnerabilities. To address such potential inconsistencies in the assessments, we incorporated a
Human-in-the-Loop (HitL) verification process. We reviewed the logic and reasoning behind each
LLM-provided score to ensure its accuracy and reliability. This step was essential to mitigate any errors
or misinterpretations that might arise from the LLMs, especially when handling complex scenarios.

To validate this methodology, we tested it on a set of Common Vulnerabilities and Exposures
(CVEs) that already have human validated scores with both CVSS and SSVC [128] to measure the gap,
as shown in Table 1. The details of each factor are further explained in Section 5.2.

The results demonstrate that our approach of aggregating the assessments of three LLMS yields
scores closely aligned with existing assessments, with few differences related mainly to the advance-
ments of technologies from the first assessment of those vulnerabilities to today. For instance, vulnera-
bilities such as ‘CVE-2015-5374° and ‘CVE-2019-9042° became less active than before, making their
exploitation value with SSVC change from Active to Proof-of-Concept (refer to Section 5.2.4 for more
details).

This experiment also shows that combining the computational efficiency of LLMs with human
oversight represents a practical solution for scoring new and unassessed attacks in the absence of
readily available experts. This innovative approach not only saves time but also ensures a balanced and
consistent evaluation process, enabling a deeper understanding of vulnerabilities and their potential

impact.
Table 1. Comparison between some existing and LLM-generated CVSS and SSVC values
CVE-ID SSVC Values CVSS (2.0 or 3.0) Values
CVE-2014-0751 NVD: EEN/U:L/T:T/P:S NVD: AV:N/AC:L/Au:N/C:P/I:P/A:P
LLMs: EEN/U:L/T:’/P: LLMs: AV:N/AC:L/Au:N/C:P/I:P/A:P

CVE-2015-1014 NVD: EEN/U.L/T:T/P:S NVD: AV.L/AC:L/PR:L/ULLR/S:U/C:H/I:H/A:H

LLMs: EEN/U:E/T:T/P:S LLMs: AV:L/AC:L/PR:L/UILLR/S:U/C:H/I.H/A:H

CVE-2015-5374 NVD: E:A/U:L/T:P/P:S NVD: AV:N/AC:L/Au:N/C:N/LN/A:C

LLMs: E:’/U:L/T:P/P:S LLMs: AV:N/AC:L/Au:N/C:N/IN/A:C
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CVE-ID

SSVC Values

CVSS (2.0 or 3.0) Values

CVE-2017-3183

NVD: EEN/U:E/T:T/P:M

LLMs: EEN/UE/T:I’/P:M

NVD: AV:N/AC:L/PR:L/ULN/S:U/C:H/I:-H/A:H

LLMs: AV:N/AC:L/PR:L/ULN/S:.U/C:H/I:H/A:

CVE-2017-5638

NVD: E:A/US/T.T/P:M

LLMs: E:A/US/T:T/P:

NVD: AV:N/AC:L/PR:N/ULLN/S:U/C:H/I:H/A:H

LLMs: AV:N/AC:L/PR:N/ULN/S:U/C:H/I:H/A:H

CVE-2017-9590

NVD: E:P/UE/T:T/P:M

LLMs: E:P/U:E/T:’/P:M

NVD: AV:N/AC:H/PR:N/ULN/S:U/C:H/I:N/A:N

LLMs: AV:N/AC:H/PR:N/ULI:N/S:U/C:H/I:N/A:N

CVE-2018-14781

NVD: E:P/U.L/T:P/P:M

LLMs: E:P/U:L/T:P/P:M

NVD: AV:A/AC:H/PR:N/UL:N/S:U/C:N/I:H/A:N

LLMs: AV:A/AC:H/PR:N/UIIN/S:U/C:N/I:-H/A:N

CVE-2019-2691

NVD: EEN/U:E/T:P/P:M

LLMs: EXN/U:S/T:P/P:M

NVD: AV:N/AC:L/PR:H/UL:N/S:U/C:N/I:N/A:H

LLMs: AV:N/AC:L/PR:H/ULLN/S:.U/C:N/I:N/A:H

CVE-2019-9042

NVD: E:A/U:L/T:-T/P:M

LLMs: E:’/U.L/T:T/P:M

NVD: AV:N/AC:L/PR:H/ULN/S:.U/C:H/I:H/A:H

LLMs: AV:N/AC:L/PR:N/ULN/S:.U/C:H/I:H/A:H

2.3. Results interpretations

Our approach provided a multi-dimensional analysis of Adversarial Attacks against LLMs by
leveraging four distinct vulnerability assessment metrics: DREAD, CVSS, OWASP Risk Rating, and
SSVC. This comprehensive evaluation allowed us to gain a broad perspective on how these metrics
reflect the severity and impact of attacks, as well as their usefulness in ranking and understanding
vulnerabilities in the LLM context.

To assess the utility and added value of each factor within the metrics, we analyzed their variabil-
ity across the 56 attacks, grouped by attack type. For the quantitative metrics (DREAD and OWASP
Risk Rating), we calculated the coefficient of variation (CV) for each factor to measure the relative
dispersion of scores. For the qualitative metrics (CVSS and SSVC), we used entropy [118] to quantify
the diversity or uniformity of categorical values.

3. Adversarial Attacks

The rise of AAs in the field of Machine Learning has posed significant security challenges,
especially for Large Language Models. These attacks exploit the vulnerabilities inherent in AI models
by manipulating inputs to achieve unintended or harmful outputs. This section provides a detailed
exploration of AAs, beginning with their formal definition and an analysis of why they are considered
particularly dangerous to LLMs. Then it introduces various types and classifications of AAs, offering
insight into the range of attack strategies used to compromise LLMs. Understanding these elements is
crucial for designing more robust defenses and enhancing the security of Al-driven systems.

3.1. Definition

Adversarial Attacks are intentional manipulations of input data designed to exploit vulnera-
bilities in ML models [43]. The concept of adversarial examples was first introduced in the domain
of Image Recognition by Szegedy [130], and it has since been widely explored across different ML
tasks, including NLP [33,105,161]. In the context of LLMs, adversarial inputs are carefully crafted
to cause the model to produce incorrect, biased, or harmful outputs [68]. Unlike traditional errors,
AAs are not random; but are strategically designed to exploit the decision boundaries of models by


https://doi.org/10.20944/preprints202412.2419.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024 d0i:10.20944/preprints202412.2419.v1

6 of 94

altering inputs in ways imperceptible to humans and effective against ML models [13]. These attacks
can involve minimal changes, such as swapping words, inserting seemingly harmless phrases, or
restructuring sentences, that lead to dramatically different responses from the model, often having
severe real-world consequences [61,67], particularly in safety-critical applications such as autonomous
driving, healthcare diagnostics, and security systems [100]. For example, an Adversarial Attack could
lead an autonomous vehicle to misinterpret road signs, resulting in catastrophic accidents [41,165].

On top of that, AAs can come in various forms, each exploiting different aspects of LLMs. These
attacks can be broadly categorized based on the attacker’s knowledge, the nature of the perturbations,
and the model’s vulnerability. The following section will explore the different types and classifications
of AAs, showing that each type has distinct strategies and potential impacts on LLMs.

3.2. Classifications of AAs

Adversarial Attacks have been classified in various ways in the literature, offering different
perspectives on how AAs operate and their potential impact on Machine Learning models. In this
section, we have gathered the most common classifications of AAs, based on criterias such as their
purpose, target, the attacker’s knowledge and strategy, life-cycle stages, CIA! triad, and the type of
data and control involved. We depict these classifications in Figure 2, and each one will be discussed

Classification Criteria

PERUIEE

in detail in the following subsections.

1

Knowledge —m
Training data Availibility
Breakdown
Jailbreak Testing data Integrity
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Figure 2. Taxonomy of the classification criterias of Adversarial Attacks

3.2.1. Based on the Purpose

One of the most widely used ways to classify AAs is by analyzing their intended purpose
[9,27,142]. Attacks can be designed either to evade detection by a model or to cause intentional
misclassifications, thereby compromising the system’s integrity or exploiting its weaknesses. Based
on these overarching objectives, several distinct types of AAs have emerged, including: Evasion
attacks [76,88,137], Jailbreak attacks [150], Prompt Injections [84], Model Inference attacks [57], Model
Extraction (Stealing) attacks [49], and Poisoning/Trojan/Backdoor attacks [76,88,131]. Each type
targets different aspects of a ML system, posing unique challenges to the robustness and security of
the models.

Evasion attacks:

In evasion attacks, adversaries craft inputs that evade detection or mislead the model into making
incorrect classifications. For instance, small changes in an image may lead a computer vision model to
misclassify it, while adversarial inputs in LLMs can bypass content filters [3,4,21].

1 Confidentiality, Integrity, and Availability
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Model jailbreaking;:

In jailbreak attacks, the attacker manipulates the model to bypass restrictions or constraints set by
the system such as ethical filters. For example, bypassing content filters in a chatbot by providing a
carefully crafted prompt that tricks the model into generating restricted outputs [28,29].

Prompt injections (PI):

In prompt injections, the attacker provides maliciously designed prompts that cause the model to
follow unintended instructions or generate harmful outputs. Unlike jailbreaking, PI typically involves
inserting harmful instructions within regular inputs rather than overriding system-level restrictions
[141]. An example is injecting hidden instructions within user input to manipulate a language model’s
behavior in ways not intended by the developers [70,84,87].

Model inference:

In Model (or Membership) Inference attacks, adversaries aim to determine whether specific data
was part of the training set. By analyzing model outputs, they can infer sensitive or proprietary
information from the training data, posing significant privacy risks [107,127].

Model Extraction:

Model Extraction (or Stealing) involves probing a black-box model to reconstruct its functionality
or recover sensitive data. For example, an attacker could steal a proprietary financial model by
systematically querying it and analyzing its responses [121,157].

Poisoning/Trojan/Backdoors:

These attacks aims at the integrity of the model during the training phase. The attacker injects
malicious data (poisoning) or patterns (trojan, backdoor) into the training set to influence the model’s
behavior at inference time. For instance, a Poisoning scenario would be introducing mislabeled data
to reduce model accuracy [155], and a Trojan scenario would be embedding a hidden trigger in the
training data to activate malicious behavior later, such as a trigger that could cause a traffic-light
recognition model to classify a red light as a green light in autonomous driving cars [32].

3.2.2. Based on the Target

Adversarial attacks can also be classified based on their target, which refers to whether the attack
is aimed at causing a specific or arbitrary misclassification [27].

Targeted:

In targeted attacks, the attacker aims to manipulate the model into misclassifying an input into
a specific, incorrect class [15]. For example, an attacker might craft an input to make a stop sign
consistently classified as a yield sign.

Non-targeted:

In non-targeted attacks, the goal is to cause the model to misclassify the input, but the specific
incorrect class is irrelevant to the attacker [143]. For instance, an adversarial input could cause a stop
sign to be classified as any incorrect traffic sign.

3.2.3. Based on the Attacker’s Knowledge

Another existing classification is categorizing AAs by the amount of knowledge the attacker
has about the target model [98,142]. These categories typically include white-box, black-box, and
sometimes grey-box attacks, although grey-box is not always explicitly classified.
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White-box:

In white-box attacks, the attacker has full access to the model’s architecture, parameters, and
training data, allowing them to exploit the model’s gradients for highly effective adversarial examples.
For instance, using gradient-based methods, an adversary can precisely manipulate inputs to deceive
the model [54,81].

Black-box:

In black-box attacks, the attacker has no direct access to the model’s internals and can only interact
with it by sending queries and observing outputs. Despite this limitation, attackers can use techniques
like transfer learning, where adversarial examples generated on a surrogate model are used to attack
the target model [60,83].

Grey-box:

In grey-box attacks, the attacker has partial knowledge of the model, such as knowing the
architecture but lacking access to the exact parameters or training data. These attacks may combine
both white-box and black-box techniques to exploit vulnerabilities effectively [90,148].

3.2.4. Based on the Life-Cycle

Adpversarial attacks can be categorised also by when they occur in the machine learning pipeline,
with some references focusing on the training and deployment phases only [98], and others adding
phases such as pre-training, post-training, and inference phase [144].

Pre-training;:

Pre-training attacks are conducted before the model training begins, often during the data collec-
tion phase. For example, poisoned-data injection into a dataset to compromise the model’s integrity
once training commences [73,80].

Training:
Training-phase attacks occur during the actual model training process. A notable example is

backdoor injection, where adversaries embed specific triggers in the training data to manipulate the
model’s behavior later [35,147].

Post-training:
Post-training attacks take place immediately after the training process concludes, before the model

is deployed. These attacks might involve modifying the model parameters in a way that alters its
predictions without detection [104,163].

Deployment:

Deployment-phase attacks are executed after the model has been deployed on a hardware device,
such as a server or mobile device. An example includes modifying model parameters in memory
through techniques like bit-flipping, which can lead to unexpected behaviors [6,20].

Inference:

Inference attacks are performed by querying the model with test samples. A specific instance is
backdoor activation, where an adversary triggers the model’s malicious behaviors by providing inputs
that match the previously embedded backdoor conditions [34,69].

3.2.5. Based on the CIA Violation

A fifth classification of AAs is made according to the targeted aspect of the CIA triad, which
encompasses confidentiality, integrity, and availability violations [98,112].
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Availability breakdown:

In availability breakdown attacks, the attacker aims to degrade the model’s performance during
testing or deployment. This can involve energy-latency attacks that manipulate queries to exhaust
system resources, leading to denial of service or reduced responsiveness [8,124].

Integrity violations:

Integrity violation attacks target the accuracy and reliability of the model’s outputs, resulting in
incorrect predictions. For instance, poisoning attacks during training can introduce malicious data,
causing the model to produce erroneous results when deployed [47,53].

Privacy compromise:

Privacy compromise attacks focus on extracting sensitive information about the model or its
training data. Model-extraction attacks exemplify this by allowing an adversary to reconstruct the
model’s functionalities or retrieve confidential data used during training [18,63].

3.2.6. Based on the Type of Control

Adversarial attacks are classified in other sources based on the type of control the attacker exerts
over various elements of the ML model, with some highlighting the control of training and testing
data [112], and others [98] proposing more aspects of control, such as the control of the model, source
code, and queries, as well as a limited control on the data labels.

Training data:

In training data attacks, the attacker manipulates the training dataset by inserting or modifying
samples. An example is data poisoning attacks, where malicious inputs are added to influence the
model’s learning process [138].

Testing data:

Testing data attacks involve altering the input samples during the model’s deployment phase.
Backdoor poisoning attacks serve as an example, where specific triggers are embedded in the testing
data to manipulate the model’s predictions under certain conditions [113].

Model:

Model attacks occur when the attacker gains control over the model’s parameters, often by altering
the updates applied during training. This can happen in Federated Learning (FL) environments, where
malicious model updates are sent to compromise the integrity of the aggregated model [132].

Source code:

Source code attacks involve modifying the underlying code of the model, which can include
changes to third-party libraries, especially those that are open source. This allows attackers to introduce
vulnerabilities directly into the model’s functionality [159].

Queries:

Query-based attacks allow the attacker to gather information about the model by submitting
various inputs and analyzing the outputs. Black-box evasion attacks exemplify this, as adversaries
attempt to craft inputs that evade detection while learning about the model’s behavior through its
responses [42].

Label limit:

In label limit attacks, the attacker does not have control over the labels associated with the training
data. An example is clean-label poisoning attacks, where the adversary influences the model without
altering the labels themselves, making detection more difficult [116].
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3.2.7. Based on the Type of Data

An seventh classification of Adversarial attacks is based on the type of data they target, high-
lighting the diverse methodologies employed across different modalities. Some underline attacks
targeting data types as images, text, tabulars, cybersecurity, and even multimodal [98], while other
works mention attacks on audio data [16], and graph-based data [25].

Image:

In image-based attacks, the attacker crafts adversarial images designed to cause misclassification.
An example includes perturbing images to deceive object detectors or image classifiers, leading to
incorrect identification [129].

Text:

Text attacks involve modifying text inputs to mislead NLP models. For instance, an adversary
might introduce typos or antonyms to trick sentiment analysis tools or text classifiers into generating
false outputs [46].

Tabular:

Tabular data attacks target models that operate on structured data, often seen in applications like
finance or healthcare. A common example is poisoning attacks, where malicious entries are inserted
into tabular datasets to manipulate model behavior [17].

Audio:

Audio-based attacks involve crafting adversarial noise or altering audio inputs to cause misclas-
sification in systems like voice recognition. For example, specific sound patterns can be designed to
mislead voice-activated systems, resulting in incorrect command interpretations [78].

Graphs:

Graph-based attacks manipulate graph structures and attributes to deceive Graph Neural Net-
works (GNNs). An attacker might alter edges or node features to induce misclassification or misleading
outputs from graph-based models [93].

Cybersecurity:

In the cybersecurity domain, AAs target systems like malware detection or intrusion detection
systems. An example is poisoning a spam email classifier, where attackers introduce deceptive emails
to degrade the model’s performance [135].

Multimodal:

Multimodal attacks involve exploiting systems that integrate multiple data types. In these cases,
attackers might gain insights by submitting queries that encompass different modalities, such as text
and image combinations [145].

3.2.8. Based on the Strategy

Last but not least, Adversarial attacks can also be categorized based on the strategy employed by
the attacker, distinguishing between passive and active approaches [112].

Passive:

In passive attacks, the attacker seeks to gather information about the application or its users
without actively interfering with the system’s operation. An example is reverse engineering, where an
adversary analyzes a black-box classifier to extract its functionalities and gain insights into its behavior
[22].
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Active:

Active attacks are designed to disrupt the normal functioning of an application. The attacker may
implement poisoning attacks that introduce malicious inputs, aiming to trigger misclassifications or
degrade the model’s performance during operation [59].

4. Adversarial Attacks on LLMs

In recent years, LLMs have been increasingly targeted by AAs [68,119,154], posing various threats
to their reliability, safety, and security. These attacks can take multiple forms and serve distinct
purposes, each exploiting different vulnerabilities within the model or its deployment. In this section,
we present a comprehensive taxonomy of 56 recent AAs targeting LLMs, following the purpose-based
classification of AA (refer to Section 3). We consider 7 types of AAs: White-box Jailbreak attacks,
Black-box Jailbreak attack, Prompt Injection, Evasion Attacks, Model Extraction, Model Inference, and
Poisoning/ Trojan/Backdoor. Each attack type includes 8 prominent examples, which are detailed in
the following subsections.

4.1. Jailbreak Attacks

The type of AAs that we begin with are model Jailbreaking attacks, which are designed to bypass
safety measures. We consider two approaches in jailbreak attacks according to the targeted model:
White-box, and Black-box model jailbreaking.

4.1.1. White-box attacks

The first type are White-box Jailbreak attacks, where the attacker has complete access to the
model’s architecture, parameters, and training data. This level of knowledge allows the attacker to
design specific inputs that exploit vulnerabilities in the model, often related to the model gradients, in
order to bypass its restrictions or safety measures.

4.1.2. Black-box attacks

The second type of attacks are Black-box Jailbreak attack, in which, in contrast to white-box
attacks, the attacker has no access to the model’s internal workings or training data. Instead, the
attacker can only interact with the model by providing inputs and observing the outputs, often relying
on trial and error to discover effective prompts able to bypass the model’s safeguards.

We present in Table 2 a list of recent white-box and black-box jailbreak attacks existing in the literature
[125], and if they are Open Source (OS) or not, as each has a different strategy and implementation.
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Table 2. Examples of jailbreak attacks against LLMs

Type Attack Concept 0s?

GCG [166] Adding adversarial suffixes using greedy and gradient-based searches v’

Visual Mod. [96] Jailbreaking an LLM using a corresponding Multimodal LLM X
PGD [48] Jailbreaking attack using Projected Gradient Descent X
SCAV [149] Guiding Jailbreak attacks against white-box LLMs X
W-box
Soft Prp. [115] Attacking the continuous embedding representation of input tokens v
DrAttack [74] Decomposition and Reconstruction of prompts for LLM jailbreaking v
RADIAL [36] Generating instructions based on LLMs’ Inherent Response Tendency X
ReNeLLM [31] Using generalized and nested jailbreak prompts to fool LLMs v
PAIR [19] Automatic jailbreaking of black box LLMs X
Privacy att. [71] Extracting people-information memorised by GPT-4o0 v
DAN [120] Tricking GPT-4o to break its policies with a role-play v
Ad. Att. [2] Adding adversarial suffixes using random searches v
Brbox GCQ [56] Enhancing GCG algorithm using best-first search algorithm X
PAL [126] Token-level attack using gradients from an open-source proxy v
IRIS [108] Using the same LLM to target itself X
Tastle [146] Framework of black-box jailbreak for automated red-teaming X

4.2. Prompt Injection

The third type of attacks that we illustrate are Prompt injections, where the adversary manipulates
the input prompts and queries to deceive the model into producing unintended or harmful outputs.
This technique is ranked among the most dangerous attacks against LLMs by OWASP [99]. To illustrate
the diverse strategies attackers employ to exploit LLMs with PIs, we have gathered eight different
attacks, utilizing both direct injections, where the attacker append a malicious input to a prompt, and
indirect injection methods, where the attacker append malicious prompts through file or external
inputs. These attacks are presented in Table 3
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Table 3. Examples of prompt injection attacks against LLMs
Attack Concept 0s?
Ign. Pp. [102] A direct prompt injection technique to mislead the LLM in ignoring instructions v/
Ind. PI[52] An indirect prompt injection technique through file input to compromise LLMs v/
Frm. PI [86] General framework for formalizing prompt injection in LLMs v
Mit. PI [5] Using images and sounds for indirect prompt injection in multi-modal LLMs v
Unv. PI [82] An automatic and indirect prompt injection attack v
Vrt. PI[152] Backdooring a prompt injection under a triggered scenario v
Chat Tmp. [139] Creating misleading contexts acceptance elicitation and word anonymization X
JudgeDeceiver [122] Deceiving LLM-as-a-Judge to choose a response among multiple choices X

4.3. Evasion Attacks

The forth type of attacks we illustrate are Evasion attacks, in which attackers aim to deceive
language models by crafting inputs designed to bypass detection or classification. These attacks often
target sentiment analysis and text classification models, seeking to manipulate their outputs through
subtle modifications. In Table 4, we have gathered eight different examples and techniques of evasion
attacks presented in the literature, some of which employ text perturbations to alter the original input,
while others leverage LLMs to generate sophisticated evasion samples against their counterparts.

Table 4. Examples of evasion attacks against LLMs

Attack Concept 0s?

Hot-Flip [39] Flipping letters in a word to mislead the LLM to make incorrect classifications X

PWWS [109] Changing some words with their synonyms to mislead text classification tasks v
Typo-Att. [103] Preforming character-level perturbations on a QWERTY keyboard v
VIPER [40] Changing some letters to symbols in harmful words to avoid detection v
Checklist [110] Performing Word-level perturbations using a predifined word checklist v
BERT-Att. [72] Using BERT to generate adversarial samples against other LLMs v
GBDA [55] Gradient-based white box attack using words flipping to mislead text classifiers v/

TE-Att. [77] Generating adversarial examples with critical units of sentences using LLMs X

4.4. Model Extraction

Model extraction attacks are the fifth type we illustrate in this section. These attacks aim to recreate
or steal a language model’s functionality by querying it and using the responses to reconstruct the
model, this poses a significant threat as they allow adversaries to duplicate proprietary models without
access to their internal details. We present below in Table 5, eight examples of Model Extraction attacks,
showcasing different methods adversaries use to probe black-box LLMs and either extract training
data of the model, or precise personal information of users.
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Table 5. Examples of model extraction attacks against LLMs
Attack Concept 0S?
User Extr. [12] Extracting personal data of users memorised by LLMs using model queries X
LLM Tricks [156] Tricks to enhance data extraction capabilities on LLMs v
PII Leakage [89] Extraction/Inference attacks for analysing personally identifiable information (PII) v/
ETHICIST [162] Data extraction with Loss Smoothed Soft Prompting v
Scalable Extr. [95] Extracting training data from Production LLMs X
Output2Prompt [158] Extracting user prompts by knowing only their outputs v
PII Compass [94] Extracting phone numbers from LLM using black-box queries X
Alpaca-Vicuna [64] Using an LLM to perform data extraction on another LLM X

4.5. Model Inference

Model inference (or Membership Inference) are the sixth type of attacks we focus on in this study.
These attacks determine whether specific data samples, especially sensitive information, were part
of the training set of an LLM. These attacks can compromise the privacy of users or organizations by
revealing training data patterns. We gathered in Table 6 eight examples of model inference attacks,
which demonstrate how attackers exploit LLMs to infer confidential training data and gain insights
into the model’s behavior.

Table 6. Examples of inference attacks against LLMs

Attack Concept 0s?
LIRA [11] Combining difficulty scores and well-Calibrated Gaussian Likelihood Estimate =~ v/
Ngb. Comp. [91] Detecting training data using neighbor text comparison X
PII Leakage [89] Extraction/Inference attacks for analysing PII leakage v
Data Detect. [123] Detecting pretraining samples of an LLM using minimal probabilities v
ProPILE [65] Probing framework to assess the likelihood of a PII in the training set X
MIA-LLM [45] Membership Inference based on Self-calibrated Probabilistic Variation v
DeCop [37] Detecting copyrighted content in training sets using multiple-choice questions v/
ConRecall [134] Using Contrastive Decoding to detect LLM’s pre-training data v

4.6. Poisoning/Trojan/Backdoors

The last attacks on LLM we show are Poisoning, Trojan, and Backdoor attacks, which involve
injecting malicious data or hidden triggers during the training phase of an LLM. This can lead
to incorrect or dangerous behavior at deployment, allowing attackers to manipulate the model’s
responses. We have compiled in Table 7 eight examples of these attacks, where adversaries either
corrupt the training process with poisoned data, or plant triggers to exploit models during inference,
demonstrating the serious risks these methods pose to LLMs.
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Table 7. Examples of poisoning, trojan, and backdoor attacks against LLMs

Attack Concept 0s?
TrojLLM [151] Inserting Trojans into text prompts in black-box LLM APIs v
Bst-of-Vnm. [7] Attacking RLHF by injecting Poisoned Preference Data X

CodeBreaker [153] Instering Backdoors on code-completion LLMs to sugget vulnerable code v/

Rtv. Poison. [160] Misleading LLMs during the RAG process with malicious documents X
Clinical LLM [26] Editing LLMs to reveal serious implications in clinical settings X
BackdoorLLM [75] Comprehensive benchmark for studying backdoor attacks on LLMs v
CBA [58] Composite Backdoor Attacks against LLMs v
TA2? [136] Injecting trojan steering vectors into the activation layers of LLMs v

5. Classification of Adversarial attacks on LLMs based on their danger level

After presenting the existing classifications of AAs and some of the most-recent attacks against
LLMs, we propose in this section a new criterion for classifying AAs on LLMs. We present the idea
and methodology in the following subsections.

5.1. Principle

Seeing the list of AAs on LLMs presented in Section 4 and how frequent they are, one question
that comes across the mind is what attacks should be mitigated first to secure LLMs? In order to
answer this question, we need to rank the available attacks based on their danger level against LLMs
in order to know what attacks is a model most-vulnerable to. This can be done by calculating the
vulnerability score those of attacks using Vulnerability-assessment metrics [117].

5.2. Vulnerability-assessment Metrics

Vulnerability assessment metrics are critical tools for evaluating and ranking potential security
threats based on their severity and likelihood of exploitation. Various methodologies, such as DREAD
[92], CVSS [114], OWASP Risk Rating [140], and SSVC [128], provide frameworks for assessing
vulnerabilities by considering different factors, including technical attributes, potential impacts, and
contextual elements. By systematically analyzing attacks based on their danger, these assessment tools
facilitate informed decision-making in an ever-evolving threat landscape, allowing organizations to
strengthen their security posture and better protect their assets.

Vulnerability Metrics
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Figure 3. Examples of known vulnerability assessment metrics
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5.2.1. DREAD [92]

Originally developed by Microsoft, DREAD is a qualitative risk assessment model that ranks,
prioritizes, and evaluates the severity of vulnerabilities and potential threats based on five factors:
Damage potential (D), Reproducibility (R), Exploitability (E), Affected users (A), and Discoverability
(D) of the attack.

Calculations

The vulnerability score is calculated with DREAD as an average score of the five factors, each
assessed with a value out of 10. The details of each factor and their values are shown in Table 8 below.

Table 8. Metric factors of DREAD [92]

Factor Definition Values
Damage Potential (D) How much damage can be caused
Reproducibility (R) How easy is it to reproduce the attack

Exploitability (E) How easy is it to exploit the vulnerability ~ [1 (Low), 10 (High)]

Affected Users (A) How many users would be affected

Discoverability (D)  How easy is it to discover the vulnerability

A value in the range [1, 4] is labeled as “Low” in the level of criticality, a value in the range [4, 7]
labeled as “Medium’ in criticality, and values over 7 are labeled as “High” in criticality. The final score
is calculated following this equation:

Score=(D+R+E+A+D)/5 (1)

Limitations

The DREAD model, previously popular for qualitative risk assessment, has several limitations that
have reduced its use in favor of more structured frameworks. First of all, its five categories (Damage,
Reproducibility, Exploitability, Affected Users, and Discoverability) are highly subjective, leading to
inconsistent scoring and prioritization across different assessors and organizations. Moreover, DREAD
overlooks contextual factors like the specific environment and business impact, limiting its adaptability
for complex needs. Finally, it also fails to account for dynamic threats or mitigation measures, making
it less effective for ongoing risk management.

5.2.2. CVSS (Common Vulnerability Scoring System) [114]

Created by the FIRST? (Forum of Incident Response and Security Teams), the CVSS is an industry-
standard scoring system for rating the severity of software vulnerabilities out of 10. It is encompasses
three main metrics:

¢  Base Metrics: Represent the vulnerabilities that are constant over time. It contains factor related
to the exploitability of an attack (how easy it is to exploit the vulnerability) like the Attack Vector
(AV), Attack Complexity (AC), Privileges Required (PR), User Interaction (UI), and the Scope (S) of
the attack. And factors related to the impact of an attack on the CIA triad, such as Confidentiality
Impact (C), Integrity Impact (I), and Availability Impact (A).

2 https:/ /www.first.org/
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e  Temporal Metrics (Optional): Represent the vulnerabilities that might change over time in order

to update the base score, it encompasses three factors, Exploit Code Maturity (E), Remediation
Level (RL), and Report Confidence (RC).
¢  Environmental Metrics (Optional): Vulnerabilities that are unique to a user environment, such

as the Confidentiality Requirements (CR), Integrity Requirement (IR), Availability Requirement
(AR), and the modified Base Metrics.

Calculations

The values in CVSS factors are not explicitly numerical; but selected from a specific range of

choices, with each qualitative value having a corresponding coefficient. The details of each factor and

of the Base Metric and their values according to CVSS version 3.1° are presented below in Table 9, and

their equivalent decimal values are detailed in Table 10.

Table 9. Base metric factors of CVSS 3.1 [44]

Factor Definition Values
Attack Vector (AV) o . Network (N), Adjacent (A),
From where the exploitation is possible Local (L), Physical (P)
Attack 5:3 plexity How complex is the exploitation Low (L), High (H)
Privileges Required = How much privileges are needed for the .
(PR) explot None (N), Low (L), High (H)
User Interaction (UI) Is a user interaction r?qulred in the None (N), Required (R)
compromise
Scope (S) Does the scope of the attack change Unchanged (U), Changed (C)
Confidentiality . . . -
Impact (C) How much impacted is the confidentiality
Integrlty I mpact (I) How much impacted is the integrity None (N), Low (L), High (H)
Availability Impact . . A
A) How much impacted is the availability

Table 10. Numerical values of each CVSS 3.1 factor [44]

Factor Value Decimal Value
Network (N) 0.85
Adjacent (A) 0.62
AV ol () 055
Physical (P) 0.22
Low (L) 0.77
AC —Heh @ 0.44
None (N) 0.85
PR Low (L) 0.62 (if S=U), 0.68 (if S=C)
High (H) 0.27 (ifS=1),0.50 (if S=C)
Ul None (N) 0.85
Required (R) 0.62
None (N) 0.00
CIA Low (L) 0.22
High (H) 0.56

3 Although version 4.0 is the most recent, version 3.1 is still the most used in vulnerability assessment.

d0i:10.20944/preprints202412.2419.v1
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After assessing a value for each metric, the Base Score of the CVSS is calculated using two different
equations depending on the Scope (S), which is either Changed (C) or Unchanged (U). Below are the
full details of the equations for both cases:

remy Base Score = roundup (min (Impact,; + Exploitability, 10) x 1.08) 2)
Impact;; =642x (1-(1-C) x (1 -1I) x (1—-A)) 3)
Exploitability = 8.22 x AV x AC x PR x Ul 4)

IfS=C:
Base Score = roundup (min(1.08 x (Impact + Exploitability), 10)) (5)
Impact- = 7.52 x (I —0.029) — 3.25 x (I —0.02)" (6)
I=1-(1-C)x (1-1)x(1—A) @)

The exploitability remains the same.

The final Base Score ranges from 0 to 10, with the same criticality assignment as in DREAD, adding to
it that a base score of 9 or more is considered a “Critical’ vulnerability.

Limitations

CVSS is a widely used standard for scoring vulnerabilities but has several limitations that affect its
real-world effectiveness. Firstly, it tends to oversimplify calculations by focusing on technical aspects
like attack complexity and impacts on confidentiality, integrity, and availability, while neglecting
business impact and regulatory considerations. Additionally, the Temporal score of CVSS, intended to
reflect changing conditions, relies on manual updates rather than real-time adjustments, making it
less responsive to evolving threats. Finally, CVSS can be inconsistent, as different organizations may
interpret scoring criteria differently, leading to varying assessments for the same vulnerability.

5.2.3. OWASP Risk Rating [140]

Developed by the Open Web Application Security Project (OWASP), it is a risk assessment
methodology that evaluates vulnerabilities and categorizes security risks in web applications by
assessing likelihood (based on threat agent and vulnerability characteristics) and impact (considering
technical and business factors) to produce an overall risk score.

e Likelihood: Calculates the probability of the attack to be exploited based on two components:
—  Threat Agent (TA): Quantifies the skill level, motivation, opportunity, and size of the threat-
agent population
- Vulnerability (V): Quantifies the ease of discovery, ease of exploit, awareness, awareness of
the system administrators, and the intrusion detection level.
e  Impact: Calculates the impact or loss produced by the attacks, it encompasses two types of
impact:
- Technical Impact (TT): Quantifies the impact on Confidentiality, Integrity, and Availability.
—  Business Impact (BI): Quantifies the financial damage, reputation damage, non-compliance,
and privacy violation

Calculations

The vulnerability score is calculated based on the average score of each component. The values
and definitions of each factor of OWASP Risk Rating is presented in Table 11.

4 https://owasp.org/
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Table 11. Metric factors of OWASP Risk Rating [140]

Factor Definition Values
Skill Level (SL) How much expertise is needed
Motivation (M) How much motivated is the attacker
Opportunity (O) How easy is it to exploit the vulnerability
Size of TA (S) How many attackers can be there

Ease of Discovery (ED) How easy is it to discover the vulnerability

Ease of Exploit (EE) How easy is it to exploit the vulnerability

Awareness (A) How much aware are the defenders
Intrusion Detect. (ID) How difficult is it to detect the attack
[1 (Low), 10 (High)]
Confidentiality (LC) How much is confidentiality impacted
Integrity (LI) How much is the integrity impacted
Availability (LAV) How much is the availability impacted
Financial Dmg. (FD) How much financial loss can result

Reputation Dmg. (RD)  How much the reputation can be harmed

Non-Compliance (NC) How much legal violations can happen

Privacy Violation (PV) How much users’ privacy is violated

In this metric, a value in the range [1, 3[ is considered an attack of ‘Low’ criticality. The ‘Medium’
criticality range is [3, 6[, and the values starting from 6 are labeled as ‘High’ in criticality. After assessing
all the values, the final score is a multiplication between the score of Likelihood and the score of Impact
as shown below:

OWASPScore = Likelihood * Impact (8)

The score of Likelihood is calculated as the mean of the Threat Agent and the Vulnerability scores:
Likelihood = (Scorer + Scorey) /2 )
And the score of Impact is calculated as the mean of the Technical and Business impact scores
Impact = (Scorer; + Scorepy) /2 (10)
Where the score of each component (TA, V, T1, BI) are respectively the average score of their factors:
Scorery = (SkillLevel + Motivation + Opportunity + Sizera)/4 (11)

Scorey = (Easeo f Discovery + Easeo f Exploit + Awareness + IntrusionDetection) /4 (12)
Scorer; = (Con fidentiality + Integrity + Availability)/3 (13)

Scoreg; = (FinancialDmg + ReputationDmg + NonCompliance + PrivacyViolation)/4  (14)
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The rank of the final OWASP severity-score (Low, Medium, High, Critical) is defined based on the
combinations shown in the Table 12. For example, if the Likelihood = 5/10 (Medium criticality) and
the Impact = 6/10 (High criticality), the final score according the matrix is High.

Table 12. Criticality Matrix of OWASP Risk Rating [140]

High Medium High Critical
Medium Low Medium High
Impact
Low Note Low Medium
Low Medium High
Likelihood

Limitations

The OWASP Risk Rating methodology, though widely used for web application security assess-
ment, has notable limitations. Its reliance on subjective evaluations of factors like threat agent skill
and impact severity can result in inconsistent ratings across different assessors and lead to biased
outcomes. Additionally, OWASP Risk Rating lacks specificity for environments like cloud or mobile
and does not adapt to rapidly changing threat landscapes, making it less responsive in dynamic
security contexts. Finally, having many factors increases the complexity of this metric and its reliance
on experts knowledge to assess each factor precisely.

5.2.4. SSVC (Stakeholder-Specific Vulnerability Categorization) [128]

The SSVC is a framework that prioritizes vulnerabilities based on qualitative decision trees
tailored to specific stakeholder roles, instead of numerical severity scores. The main two stakeholders
represented are:

*  Suppliers: They decide how urgent it is to develop and release patches for their systems based on
reports about potential vulnerabilities. Their decision tree is based on factors such as Exploitation,
Technical Impact, Utility, and Safety Impact.

¢  Deployers: They decide when and how to deploy the patches developed by the suppliers. Their
decision tree is based on similar factors such as Exploitation, System Exposure, Automation, and
Human Impact.

Calculations

In our case, we consider LLMselves as Suppliers trying to assess the potential vulnerabilities
impacting their LLM. Table 13 below show the different factors used in evaluating vulnerabilities using
SSVC as a supplier.
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Table 13. Metric factors of SSVC for a supplier [128]

Factor Definition Values
.y . . o None (N), Proof-of-Concept
Exploitation (E) In which state is the exploitation (P), Active (A)
Automatable (A) Can the attack be automatable No (N), Yes (Y)
Value Density (V) How valuable is the information Diffuse (D), Concentrated (C)

accessed by the attacker
How much useful is the exploit for the Laborious (L), Efficient (E),
attacker Super Efficient (S)
Technical Impact (T) How much impe.act does the Partial (P), Total (T)
vulnerability do
Public-Safety Impact How much impact has vulnerability on
S) the public

Utility (U)

Minimal (M), Significant (S)

The value of Utility (U) is calculated based in the values if Automatable (A) and Value Density (V)
as follows:

The final decision is taken by following the logic described in Figure 4. There four main possible
outcomes ranked from the lowest priority to the highest one are: Defer, Scheduled, Out-of-cycle, and
Immediate. Each one of them represents the emergency level for developing corresponding patches.
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Figure 4. Decision Tree for Suppliers in SSVC [128]

Limitations

The SSVC metric has several limitations. It relies heavily on qualitative decision points, which may
lead to subjective interpretations and inconsistencies across stakeholders. Additionally, the absence
of numerical scoring might limit its integration with existing risk management systems that rely on
quantitative data, potentially requiring significant adjustments to current workflows. Lastly, SSVC is
tailored for specific stakeholder roles, which may make it be less effective in hybrid roles or complex
environments where stakeholders overlap.

6. Assessment of AAs on LLMs with Vulnerability Metrics

In this section, we present and interpret the results of assessing the criticality of AAs against
LLMs, grouped in seven types: White-box Jailbreak, Black-box Jailbreak, Prompt Injection, Evasion
attacks, Model Extraction, Model Inference, and Poisoning/Trojan/Backdoor attacks. The detailed
scores of these attacks given by the 3 LLMs (GPT-40, LLAMA, and Perplexity) and their average are
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presented in Appendix A. We represent the results in score-vectors and in spider-graph formats for
more interpretability.

Note that for the qualitative factors of CVSS and SSVC, we represent their values numerically in
the spider graph following this logic:
¢  For CVSS Factors:

- If they have four values (eg. AV), they are represented with values from 1 to 4.

—  If have three values (eg. PR, C, I, A), they are represented with values from 1 to 3.

- If they have two values (eg. AC, UI, S), they are represented with the values 2 and 4.
¢  For SSVC Factors:

- If they have three values (eg. E, U), they are represented with values from 1 to 3.
—  If they have two values (eg. A, V, T, P), they are represented with the values 1 and 3.

6.1. Assessment of White-box Jailbreak attacks

We start by evaluating White-box jailbreak attacks, the chosen attacks are the same presented
in Section 4.1.1 earlier: (1) GCG [166], (2) Visual Modality [96], (3) PGD [48], (4) SCAV [149], (5) Soft
Prompt Threats [115], (6) DrAttack [74], (7) RADIAL [36], (8) ReNeLLM [31].

6.1.1. With DREAD

We start by evaluating the eight White-box jailbreaks attacks using DREAD [92]. Here are below
the attack vectors of each attack:

e (1) — (D:8/R:9/E:8/A:8/D:6) = 7.8 (High)
e (2) > (D:6/R:6/E:6/A:6/D:5) =
e (3)— (D:7/R:7/E:7/A:7/D:5) =
e (4) — (D:7/R:6/E:5/A:6/D:5) =
e (5) — (D:8/R:9/E:7/A:7/D:6) =7.4 (High)
e (6) — (D:8/R:8/E:7/A:8/D:6) =7.4 (High)
e (7) = (D:7/R6/E:7/A:6/D:5) =
e (8) = (D:8/R:9/E:8/A:7/D:6) =7.6 (High)

The detailed calculations for these attacks are presented in Table A1, with assessments supervised
by a Human-in-the-Loop (HitL) to minimize misconceptions. For instance, GPT-4o initially scored
8/10 for the Discoverability factor in DREAD for the first attack [166], while LLAMA-3 and Perplexity
Al both assigned a score of 6/10. GPT-40’s higher score stemmed from a misunderstanding of the
factor’s meaning, interpreting Discoverability as the level of researcher awareness about the threat
rather than the ease with which it can be discovered. After clarifying this distinction, GPT-4o revised
its score to 5/10, aligning more closely with the intended definition of the metric.

A different issue arose when evaluating the impact of attacks. For example, the Damage factor of
the second attack [96] was rated 6/10 by GPT-40 and 5/10 by LLAMA-3, reflecting moderate damage
due to situational input requirements, such as specific visual input use cases. However, Perplexity Al
assigned a higher score of 8/10, citing potential scenarios where the attack could have a significant
impact on the targeted system. In this case, the discrepancy was due to differing interpretations rather
than misunderstandings, making it difficult to standardize the scores. To address this, averaging the
three scores provided a balanced result, aligning closely with the consensus of GPT-40 and LLAMA-3.

Using this approach, we reduced inconsistencies in the scoring process. The final DREAD scores
are illustrated in a spider graph, highlighting that White-box Jailbreak attacks can inflict considerable
damage on systems while being relatively easy to reproduce. However, discovering these threats
remains a significant challenge.
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6.1.2. With CVSS

Then, we evaluate the assessment of these attacks using CVSS [114]. The corresponding CVSS
Vectors are shown below:

e (1) = (AVIN/AC:H/PR:N/ULN/S:C/C:L/I:H/A:N) = 7.5 (High
* (2) = (AVIN/AC:H/PR:N/ULN/S:.C/C:L/I:H/A:N) = 7.5 (High
* (3) = (AVIN/AC:H/PR:IN/ULN/S:.C/C:L/I:H/A:N) = 7.5 (High
e (4) = (AV:N/AC:H/PR:N/ULN/S:C/C:L/I:H/A:N) = 7.1 (High
e (5 — (AV:N/AC:L/PR:L/ULN/S:C/C:L/I:H/A:N) = 8.5 (High)
e (6) = (AV:IN/AC:L/PR:L/ULN/S:C/C:L/I:H/A:N) = 8.5 (High)
e (7) = (AV:N/AC:H/PR:N/ULR/S:C/C:L/T:H/A:N) =

e (8 — (AVIN/AC:L/PR:N/ULR/S:C/C:L/I:H/A:N) = 8.2 (High)

)
)
)
)

The detailed scores are presented in Table A2. During the analysis, some LLMs encountered
challenges in correctly interpreting the characteristics of each attack. For instance, GPT-4o initially
concluded that White-box jailbreak attacks only impact the Confidentiality of data, with no effect
on Integrity—a conclusion that was refuted by the other two LLMs. It was crucial to identify such
misunderstandings and guide the models to recognize their errors. Rather than providing direct
corrections, we prompted GPT-40 with questions such as: Do these attacks target Integrity given that
they involve manipulation of gradients and embeddings? This approach enabled the model to identify and
rectify its own mistake while fostering greater caution in subsequent assessments.

This process highlights another key advantage of using multiple LLMs: they provide diverse
perspectives and explanations, which help identify and address unconventional or erroneous analyses.
Moreover, there was also other slight divergence in scoring factors such as the Scope and User
Interaction; but using an averaging method helps align the final scores to the majority.

After averaging the final values, we visualized the scores using a spider chart for clarity. The
CVSS scores reveal that White-box attacks are typically executed through the network, requiring
low-to-medium privileges and primarily targeting the Integrity of systems.

d0i:10.20944/preprints202412.2419.v1
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6.1.3. With OWASP Risk Rating

A third evaluation of white-box jailbreak attacks is done using OWASP RR [140]. The correspond-
ing vulnerability vectors of each attack is:

U (1) = (SL:7/M:6/0:6/S:6 /ED:7 /EE:8/A:5/1D:5/LC:5/LL.7 /LA:4/FD:7 /RD:8 /NC:4/PV:4) = 3.6
(High)
U (2) = (SL:7/M:6/0:5/5:5/ED:5/EE:7/ A:5/1D:5/LC:5/L1:6 /LA:3/FD:6/RD:7/NC:4/PV:4) =

. (3) = (SL:7/M:7/0:5/5:6 /ED:6/EE:7/ A:5/1D:5/LC:5/LI:7/LA:3/FD:6/RD:7 /NC:6/PV:5) =
. (4) — (SL:5/M:6/0:4/5:3/ED:4/EE:6/A:5/1D:4/LC:4/LI:6/LA:1/FD:5/RD:6/NC:3/PV:4) =

e (5) > (SL:6/M:7/0:6/S:5/ED:6/EE:7/A:6/1D:5/LC:5/L1:7/LA:1/FD:6/RD:7/NC:4/PV:4) = 2.8
(High)

e (6) — (SL:7/M:7/0:6/5:6/ED:6/EE:7/A:5/1D:5/LC:5/L1:7/LA:2/FD:6/RD:7/NC:4/PV:5) = 3.2
(High)

e (7) — (SL:6/M:6/0:5/S:4/ED:5/EE:6/A:5/1D:5/LC:4/L1:6/LA:1/FD:5/RD:6/NC:3/PV:3) =

e (8) — (SL:7/M:7/0:7/S:5/ED:7/EE:7/A:6/1D:5/L.C:4/LL.7/LA:1/FD:6/RD:7/NC:4/PV:4) = 3.1
(High)

The scores assigned by each LLM are detailed in Table A3. With its multiple factors, the OWASP
Risk Rating provided a more comprehensive analysis of each attack. However, we encountered
some interpretation discrepancies, particularly with Perplexity Al This model argued that these
attacks have a Medium-to-High impact on Confidentiality—an assessment that differed from its CVSS
evaluation of the same attacks. This highlights the inherent subjectivity in scoring, as analyzing
identical attacks in separate conversations can yield inconsistent results. In contrast, the other two
LLMs provided scores consistent with the CVSS evaluation for Confidentiality and Integrity, along
with a Low-to-None impact on Availability. Averaging the scores mitigated such discrepancies while
preserving the unique perspectives offered by each LLM, especially in factors like Non-Compliance
and Privacy Violation. Notably, LLAMA-3 failed to detect any impact in these areas, whereas GPT-40
and Perplexity Al highlighted their significance.
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Another challenge we observed was the tendency of LLMs to rely on memorized values when
evaluating attacks across multiple factors. For example, GPT-4o initially assigned identical scores to
the first two attacks [96,166]. Upon prompting it to provide objective and distinct evaluations, GPT-40
revised its scores, adjusting the ED value from 6/10 to 5/10, the Availability impact from 6/10 to 5/10,
and the NC value from 6/10 to 7/10. It justified these changes by acknowledging similarities between
the attacks while ensuring the scores reflected nuanced differences.

The averaged scores are visualized below for clarity. These results align with the CVSS evaluation
in terms of technical impact and ease of exploitation, while also shedding light on the reputational
damage that could arise if such attacks are exploited. Moreover, they emphasize that White-box attacks
have a medium impact on Non-Compliance and Privacy Violation.

Assessment of White-box model jailbreaking attacks with OWASP RR
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6.1.4. With SSVC

Finally, we evaluate these attacks using SSVC [128]. The corresponding vectors, as a supplier, are
shown below:

e (1) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
* (2) = (EP/AN/V:C/UE/TT/P:S) = Immediate (Very High)
*  (3) = (EP/ANN/V:C/UE/TT/P:S) = Immediate (Very High)
e (4)— (EP/AN/V:C/UE/T:P/P:M) =

e (5 = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (6) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (7) = (E:P/A:N/V:C/UE/TP/P:M) =

e (8 — (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)

Table A4 presents the detailed SSVC assessment scores provided by each LLM. As SSVC is
relatively straightforward to apply, the LLMs performed the evaluations without significant issues.
The primary role of the HitL in this context was to interpret the rationale behind the values assigned by
the LLMs, particularly for the Exploitation factor. For instance, when evaluating the second White-box
jailbreak attack [96], GPT-40 determined there was no PoC for the attack, as its implementation was not
publicly available, and accordingly assigned it a "None" value. In contrast, LLAMA-3 and Perplexity
Al offered a different perspective. Both argued that the paper provided sufficient detail about the
attack, making it possible to reproduce with some effort. Consequently, they concluded that a PoC
exists. With the majority of models agreeing, the average score reflected their viewpoint, recognizing
the presence of a PoC.

d0i:10.20944/preprints202412.2419.v1
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The final SSVC scores are visualized below in a spider chart. These results indicate that White-box
jailbreak attacks can be automated and highly rewarding, underscoring their significant risks to both
technical systems and public safety.

Assessment of White-box model jailbreaking attacks with SSVC
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6.2. Assessment of Black-box Jailbreak attacks

We evaluate now Black-box jailbreak attacks, the eight attacks are the same presented in Section
4.1.2 earlier: (1) Privacy attack on GPT-4o [71], (2) PAIR [19], (3) DAN [120], (4) Simple Adaptive Attack
[2], (6) PAL [126], (6) GCQ [56], (7) IRIS [108], (8) Tastle [146].

6.2.1. With DREAD

We start with the evaluation using DREAD [92]. Below are the DREAD vectors of each of the
eight Black-box Jailbreak attacks:

e (1) — (D:8/R:7/E:7/A:8/D:5) =7 (High)

e (2) —»(D:8/R:8/E:8/A:7/D:5) =7.2 (High)
e (3) = (D:8/R:8/E:7/A:7/D:6) =7.2 (High)
e (4) — (D:9/RS/E:8/A:8/D:6) = 7.8 (High)
e (5)— (D:8/R9/E:8/A:7/D:5) = 7.4 (High)
e (6)— (D:8/R:6/E:7/A:7/D:5) =

e (7)— (D:9/R8/E:9/A8/D:5) = 7.8 (High)
e (8 — (D:8/R:7/E:7/A:7/D:5) =

The details are presented in Table A5. This time, no misunderstandings occurred, as the corrections
made during the DREAD assessment of White-box attacks were already in place. However, some
divergences in attack analysis still arose. For instance, the Exploitability factor of the first attack [71]
was rated 6/10 by GPT-40, which noted that the attack requires specific query patterns but is still
manageable to execute. In contrast, LLAMA-3 and Perplexity Al assigned a score of 8/10, arguing that
the implementation details provided in the paper make the attack easily exploitable.

Another challenge was the potential memorization of values. For example, LLAMA-3 gave
identical scores for the fourth, fifth, and seventh attacks [2,108,126], justifying this by highlighting
the similar characteristics of these attacks. While this explanation is plausible, as the scores were
consistent with those of the other LLMs, averaging the scores across all models helped mitigate these
analytical inconsistencies by favoring the majority consensus.

d0i:10.20944/preprints202412.2419.v1
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After averaging the scores, we visualized the results in a spider chart for clarity. The DREAD
scores indicate that Black-box Jailbreak attacks, like their White-box counterparts, can inflict significant
damage while being highly reproducible and exploitable, yet challenging to detect.

Assessment of Black-box model jailbreaking attacks with DREAD
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6.2.2. With CVSS

In this second assessment of Black-box Jailbreak, we evaluate the attacks using CVSS [114]. The
corresponding CVSS Vectors are shown below:

e (1) = (AV:IN/AC:L/PR:N/ULN/S:U/CL/LL/AN) =

¢ (2) = (AVIN/AC:L/PR:N/ULN/S:U/C:L/I:H/A:N) = 8.2 (High)
+  (3)— (AV:IN/AC:L/PR:N/ULN/S:U/C.L/LL/AN) =

* (4) = (AVIN/AC:L/PR:IN/ULN/S:C/C:L/I:N/A:N) = 7.2 (High)
* (5 — (AV:IN/AC:L/PR:N/ULN/S:C/C:L/I:N/A:N) = 7.2 (High)
e (6) — (AV:N/AC:H/PR:N/ULN/S:U/C:L/I:N/A:N) =

e (7) = (AVIN/AC:L/PR.L/ULN/S:U/C:L/LH/AN) = 7.1 (High)
e (8 - (AV:N/AC:L/PR:IN/ULN/S:U/C:L/I:H/A:N) = 8.2 (High)

Table A6 outlines the detailed CVSS scores for the Black-box Jailbreak attacks. As observed with
previous assessments, the three LLMs displayed some divergence in evaluating the technical impact
of each attack. However, averaging the scores allowed us to establish a balanced consensus that
moderated the variations in their evaluations.

One notable issue arose with LLAMA-3 in interpreting the User Interaction factor, which assesses
whether a user other than the attacker must interact with the system for the attack to succeed. In the
case of Black-box jailbreaks, where most attacks are executed remotely, no additional user interaction
is required—a point accurately identified by GPT-40 and Perplexity Al. However, LLAMA-3 initially
marked the Ul factor as "Required," justifying this based on the attacker’s interaction with the system.
The HitL clarified through prompts that the Ul factor refers specifically to interactions by users other
than the attacker. Following this explanation, LLAMA-3 adjusted its evaluation, aligning with the
"None" rating given by the other LLMs.

After averaging the scores, the final results are visualized below in a spider chart. The CVSS scores
highlight that Black-box jailbreak attacks are easier to reproduce compared to White-box jailbreaks,
require no privileges, and have a low-to-moderate impact on both integrity and confidentiality.
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6.2.3. With OWASP Risk Rating

A third evaluation of is done with OWASP Risk Rating [140]. The corresponding vulnerability
vectors of each attack is:

e (1) — (SL:6/M:8/0:8/S:6/ED:6/EE:7/A:5/1D:6/LC:8/LL:2/LA:1/FD:6/RD:8/NC:5/PV:7) = 3.3

U E;lg—}:)(SLﬁ/M:S/O:8/S:6/ED:6/EE:7/A:6/ID:6/LC:8/LI:1/LA:l/FD:6/RD:8/NC:4/PV:6) =3
U E;I%)(SLA/M:S/O:8/S:6/ED:7/EE:8/A:7/ID:7/LC:9/LI:1 /LA:1/FD:7/RD:8/NC:5/PV:9) =3.8
o EZI%)(SL:7/M:8/O:7/S:5/ED:6/EE:8/A:6/ID:8/LC:8/LI:1 /LA:1/FD:6/RD:8/NC:5/PV:8) =3.5
J E;lg—})l)(SLﬁ/M:S/O:8/S:5/ED:6/EE:8/A:5/ID:7/LC:7/LI:1/LA:l/FD:5/RD:7/NC:5/PV:7) =3
o Eglg—}:)(SLﬁ/M:S/O:8/S:6/ED:6/EE:8/A:6/ID:7/LC:7/LI:2/LA:1/FD:6/RD:7/NC:5/PV:7) =3
o E;lg—}:)(SLﬁ/MQ/O:S/S:5/ED:6/EE:8/A:5/ID:7/LC:8/LI:3/LA:1 /FD:6/RD:9/NC:7/PV:8) = 3.8
. Eglg—tl)(SLﬁ/M:S/O:WS:S/ED:6/EE:8/A:5/ID:7/LC:8/LI:3/LA:1 /FD:6/RD:8/NC:5/PV:8) =34
(High)

Table A7 presents the detailed OWASP RR assessments conducted using three LLMs. Unlike
previous evaluations, no significant errors were observed in the scoring provided by the models.
However, some divergence was noted in specific factors. For example, when assessing the Opportunity
factor for the sixth attack [56], GPT-40 and LLAMA-3 scored it 8/10 and 9/10, respectively, arguing that
these attacks target online LLMSs, thereby increasing the availability of opportunities for exploitation.
In contrast, Perplexity Al assigned a score of 6/10, reasoning that the attacks are not immediately
apparent or straightforward to execute, resulting in a medium-to-high Opportunity rating. To maintain
neutrality and objectivity, we chose not to modify or influence these values, allowing the models’
perspectives to remain intact. Averaging the scores enabled a balanced consideration of all three points
of view.

The final scores are visualized below in the spider chart. The results indicate that Black-box
jailbreak attacks have a significant impact on the confidentiality of data, as they can extract sensitive

d0i:10.20944/preprints202412.2419.v1
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information from the models. In contrast, their impact on integrity is minimal, and they have no
impact on availability. The OWASP RR metric further highlights the severe implications these attacks
have on privacy violations and the reputation of the targeted organization.

Assessment of Black-box model jailbreaking attacks with OWASP RR
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6.2.4. With SSVC

The forth evaluation is performed using SSVC [128] in a supplier role. The corresponding
vulnerability vectors are detailed below:

e (1) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (2)— (E:P/AY/V.D/UE/T:P/P:M) =

e (3) = (EA/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (4)— (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (5 = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
U (6) = (E:P/A:Y/V:D/UE/T:P/P:M) =

. (7) = (E:A/A:Y/V:C/U:S/T:T/P:S) = Immediate (Very High)
. (8) — (E:P/A:Y/V:C/U:S/T:T/P:S) = Immediate (Very High)

Table A8 presents the SSVC scores assigned by the three LLMs. The primary challenge encoun-
tered during this assessment was the ability of the LLMs to remain up-to-date. Specifically, some
attacks might have been actively exploited in the past but are now less prevalent. For example, in
the case of the third and fourth attacks [2,120], some LLMs classified these as "Active," while others
evaluated them at the "Proof-of-Concept" stage. Determining which LLM is correct in such scenarios is
challenging. To address this, we prompted the LLMs to confirm their assessments by asking clarifying
questions such as: "Are there proofs of recent active exploitations of these attacks?” This approach led to
adjustments in certain scores. For instance, LLAMA-3 revised its assessment for the third attack from
"Active" to "Proof-of-Concept," explaining that while the attack was previously active, there is no
current evidence of active exploitation.

The final scores are visualized below in the spider chart. The results indicate that the SSVC scores
align closely with those of DREAD, demonstrating that these Black-box jailbreak attacks are highly
dangerous and straightforward to exploit, regardless of whether they target the CIA triad or financial
aspects.
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For the subsequent assessments, we will present only the results, as the justifications follow the
same reasoning outlined for the White-box and Black-box Jailbreak attacks.

6.3. Assessment of Prompt Injection attacks

The third assessment is that of PI attacks, we evaluate the attacks described earlier in Section 4.2:
(1) Ignore Previous Prompt [102], (2) Indirect Instruction Injection [52] (3) Formalised Prompt Injection
[86], (4) Injection through file input [5], (5) Universal Prompt Injection [82], (6) Virtual Prompt Injection
[152], (7) Chat History Tampering [139], (8) JudgeDeceiverAttack [122].

6.3.1. With DREAD

As done before, we start by evaluating the eight prompt injection attacks using DREAD [92], and
we find the corresponding vulnerability vectors as follows:

e (1) — (D:8/R:9/E:8/A:7/D:6) = 7.6 (High)
* (2) = (D:8/R:8/E:8/A:7/D:6) = 7.4 (High)
e (3)—(D:7/R9/E:7/A:6/D:7) =7.2 (High)
e (4)—(D:7/R:8/E:8/A:8/D:5) =7.2 (High)
e (5 — (D:8/R:9/E:9/A:8/D:6) = 8 (High)

e (6) — (D:8/R:8/E:7/A:8/D:5) =7.2 (High)
e (7)— (D:7/R:6/E:6/A:7/D:5) =

e (8) = (D:7/R6/E:7/A:6/D:5) =

The detailed scores are shown in Table A9, with the final results visualized in the Spider-chart
below. The DREAD analysis reveals that Prompt-Injection attacks cause significant damage to systems
and impact a wide range of users, but they are comparatively harder to exploit and reproduce than
Jailbreak attacks.
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6.3.2. With CVSS
The second assessment of PI attacks is done with CVSS [114]. The corresponding CVSS Vectors

are shown below:

. (1) = (AV:N/AC:L/PR:IN/ULN/S:U/C:N/I:-H/A:N) = 7.5 (High)

. (2) —» (AV:N/AC:H/PR:N/ULR/S:U/C:L/I:H/A:N) =

* (3) = (AVIN/AC:L/PR:N/ULN/S:U/C:L/I:H/A:N) = 8.2 (High)

e (4)— (AV:N/AC:H/PR:N/ULR/S:C/C:L/T:H/A:N) =

e (5) = (AV:N/AC:L/PR:N/ULN/S:C/C:L/I:H/A:N) = 9.3 (Critical)
e (6) = (AV:N/AC:H/PR:N/ULR/S:C/C:L/T:H/A:N) =

e (7)— (AV:N/AC:H/PR:N/ULR/S:U/C:L/I.H/A:N) =

¢ (8) = (AV:N/AC:H/PR:N/ULN/S:U/C:.L/T.H/A:N) =

The detailed CVSS results are presented in Table A10, with the final scores visualized in the Spider-
chart below. The analysis indicates that Prompt-Injection attacks share similarities with Jailbreak
attacks, as they are primarily executed remotely through the network. However, they are slightly more
complex to perform than Jailbreak attacks. These attacks predominantly target system integrity, have a

lesser impact on confidentiality, and do not affect availability.
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6.3.3. With OWASP Risk Rating

Another evaluation of Prompt Injection attacks is done with OWASP Risk Rating [140]. The
corresponding vulnerability vectors of each attack is:

e (1) — (SL:6/M:8/0:7/S:5/ED:6/EE:8/A:6/1D:6/LC:3/LL:8/LA:3/FD:6/RD:8/NC:4/PV:4) = 3.3

(High)

e (2) > (SL:6/M:8/0:7/S:6/ED:6/EE:7/A:5/1D:7 /LC:5/L1:8/LA:3/FD:7/RD:8/NC:4/PV:6) = 3.8
(High)

e (3) — (SL:6/M:8/0:7/S:5/ED:6/EE:8/A:6/1D:6/LC:5/L1:8/LA:3/FD:7/RD:8/NC:4/PV:5) = 3.7
(High)

e (4 — (SL:6/M:8/0:7/5:6/ED:6/EE:8/A:6/1D:7/LC:6/LL.7/LA:3/FD:7/RD:8/NC:5/PV:7) = 4.1
(Critical)

e (5) = (SL:5/M:8/0:7/S:6/ED:6/EE:8/A:6/1D:7 /1L.C:6/L1:7/LA:3/FD:7/RD:8/NC:5/PV:6) = 3.8
(High)

e (6)— (SL:7/M:8/0:8/5:6/ED:5/EE:8/A:5/1D:8/LC:7/L1:9/LA:3/FD:7/RD:8/NC:5/PV:7) =4.4
(Critical)

e (7) = (SL:6/M:8/0:7/5:6/ED:5/EE:7/A:5/1D:6/LC:4/LI:8/LA:3/FD:6/RD:7/NC:3/PV:5) =

e (8 — (SL:6/M:7/0:6/5:6/ED:5/EE:6/A:4/1D:6/LC:3/LI:8/LA:1/FD:5/RD:7/NC:2/PV:3) =

The assessments conducted using three LLMs are detailed in Table A11, and the final scores are
depicted in the Spider-chart below for enhanced visualization. The OWASP RR results corroborate that
Prompt-Injection attacks exert a greater impact on integrity than on confidentiality and availability.
Additionally, they highlight the significant influence these attacks have on privacy violations and
reputation damage, which are critical factors beyond the technical scope. Notably, the assessments
also reveal a general lack of awareness among public users regarding these specific threats.
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6.3.4. With SSVC

A last evaluation is performed using SSVC [128] as done before, the results of the assessments are
presented below:

e (1) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (2) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (3) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (4)— (EP/AY/V:C/USS/T:T/P:S) = Immediate (Very High)
e (5 — (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (6) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (7)) = (EEN/AN/V:D/U:L/T:P/P:M) = Defer (Low)

e (8 — (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)

Table A12 provides the detailed SSVC assessments conducted with the three LLMs. These scores
offer additional insights beyond those captured by other metrics, emphasizing that Prompt Injection
attacks are highly automatable, posing significant risks to both technical systems and public safety.
The averaged results are visualized in the Spider-chart below for enhanced clarity.
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6.4. Assessment of Evasion attacks

The forth experiment is evaluating eight Evasion attacks described in Section 4.3: (1) Hot Flip
[39], (2) PWWS [109], (3) TypoAttack [103], (4) VIPER [40], (5) CheckList [110], (6) BertAttack [72], (7)
GBDA [55], (8) TF-Attack [77].

6.4.1. With DREAD

The first evaluation is done using DREAD [92]. The corresponding vulnerability vectors as
follows:

e (1)— (D:7/R:7/E:6/A:7/D:5) =

e (2) > (D:7/R:9/E:8/A:7/D:5) =7.2 (High)
e (3)— (D:6/R:8/E:6/A:6/D:5) =

e (4 — (D:8/R:8/E:7/A:7/D:5) =7 (High)

e (5 — (D:6/R9/E:7/A:7/D:6) =7 (High)

e (6)— (D:8/R:8/E:8/A:8/D:5) = 7.4 (High)
e (7)— (D:9/R:8/E:8/A:8/D:5) =7.6 (High)
e (8 — (D:8/R:8/E:8/A:8/D:5) = 7.4 (High)

Table A13 presents the detailed assessments conducted with the three LLMs, with the final scores
visualized in the Spider-chart below. The DREAD evaluation reveals that evasion attacks generally
cause medium-to-high damage and are highly reproducible, easily exploitable, and difficult to detect,
while having the potential to impact a wide range of users. This underscores the critical need to
mitigate such attacks.
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6.4.2. With CVSS

The second assessment of Evasion attacks is done with CVSS [114]. The corresponding CVSS
Vectors are shown below:

e (1) = (AV:N/AC:L/PR:N/ULN/S:U/C:N/I:lH/A:N) = 7.5 (High)
* (2) = (AVIN/AC:L/PR:IN/ULN/S:U/C:N/I:H/A:N) = 7.5 (High)
e (3) > (AV:N/AC:H/PR:N/ULN/S:U/C:N/ILH/A:N) =
e (4) — (AV:N/AC:H/PR:N/ULN/S:U/C:N/ILH/A:N) =
e (5 — (AVIN/AC:L/PR:N/ULN/S:U/C:N/I:H/A:N) = 7.5 (High)
e (6) = (AVIN/AC:L/PR:N/ULN/S:U/C:N/I:H/A:N) = 7.5 (High)
e (7)) — (AV:N/AC:H/PR:N/ULN/S:U/C:N/I:-H/A:N) =
e (8 — (AVIN/AC:L/PR:N/ULN/S:U/C:N/I:H/A:N) = 7.5 (High)

Table A14 displays the scores provided by the three LLMs along with their average. For enhanced
clarity and ease of interpretation, the score vectors are visualized in the Spider-chart below.

The CVSS evaluations reveal a consistent scoring pattern for evasion attacks, emphasizing their
typical characteristics. These attacks are often performed over a network, require minimal complexity,
and do not necessitate privileges or user interaction. While they have no impact on data Confidentiality
or Availability, they can significantly affect Integrity.
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6.4.3. With OWASP Risk Rating

Another evaluation of Evasion attacks is done with OWASP Risk Rating [140]. The corresponding
vulnerability vectors of each attack is:

U (1) — (SL:7/M:7/0:5/5:4/ED:5/EE:7/ A:5/1D:6/LC:1/LI:8 /LA:0/FD:5/RD:7/NC:4/PV:3) =

U (2) — (SL:6/M:7/0:6/S:5/ED:5/EE:7/A:5/1D:6/LC:1/LI:8/LA:0/FD:6/RD:7/NC:5/PV:3) =

U (3) — (SL:6/M:7/0:5/S:5/ED:5/EE:6/A:4/1D:5/1L.C:1/LL1:7/LA:1/FD:5/RD:6 /NC:4/PV:3) =

U (4) — (SL:7/M:8/0:6/S:5/ED:5/EE:7/A:5/1D:6/LC:2/LI:8/LA:1/FD:7/RD:8/NC:5/PV:4) =3
(High)

e (5 — (SL:6/M:7/0:6/S:5/ED:5/EE:7/A:5/1D:6/LC:1/LL.7/LA:1/FD:6/RD:7/NC:5/PV:4) =

e (6) > (SL:7/M:8/0:7/S:5/ED:6/EE:7/A:6/1D:7 /L.C:2/L1:9/LA:1/FD:7/RD:8/NC:6/PV:5) = 3.5

(High)

e (7)—> (SL:7/M:8/0:7/S:5/ED:6/EE:7/A:6/1D:7 /LC:2/L1:9/LA:1/FD:7/RD:8/NC:6/PV:5) = 3.5
(High)

e (8) — (SL:7/M:8/0:7/S:6/ED:6/EE:8/A:6/1D:7/LC:1/LI1:8/LA:1/FD:7/RD:8/NC:5/PV:4) = 3.2
(High)

The detailed OWASP RR scoring is outlined in Table A15, offering insights consistent with those
from the CVSS assessments. It highlights that evasion attacks demand only a moderate level of skill
and motivation to be executed, are easily exploitable, and are relatively unknown to defenders, making
them challenging to detect and mitigate. These attacks pose a significant threat to data integrity while
remaining harmless to Confidentiality and Availability. Additionally, OWASP RR sheds light on the
substantial financial and reputational impact these attacks can impose on targeted organizations.
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6.4.4. With SSVC

We continue the evaluation of Evasion attacks with SSVC [128] as a last metric, the results of the
assessments are shown and detailed below:

e (1) = (EP/AY/V:C/U:S/T:P/P:S) = Immediate (Very High)
e (2) = (EP/AY/V:C/U:S/T:P/P:S) = Immediate (Very High)
e (3) = (E:A/AY/V:C/U:S/T:P/P:S) = Immediate (Very High)
e (4)— (EP/AY/V:C/U:S/T:P/P:S) = Immediate (Very High)
e (5) > (E:P/AN/V:D/U.L/T:P/P:M) =

e (6) = (EP/AY/V:C/U:S/T:P/P:S) = Immediate (Very High)
e (7)) = (EP/AY/V:C/U:S/T:P/P:S) = Immediate (Very High)
e (8 — (EP/AY/V:C/U:S/T:P/P:S) = Immediate (Very High)

The scores are visualized below in a Spider-chart, with the detailed assessments provided in
Table A16. Notably, the SSVC results align with those of DREAD and OWASP RR, emphasizing that
evasion attacks are frequently exploited by attackers. Additionally, SSVC highlights that these attacks
are highly automatable and rewarding, making them particularly valuable to adversaries. However,
it suggests that while evasion attacks pose minimal technical threats to organizations, their primary
danger lies in their significant potential to compromise public safety, especially in scenarios involving
object detection and classification.
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6.5. Assessment of Model Extraction attacks

Model Extraction are the fifth attacks we evaluate with the five vulnerability metrics. The
attacks were presented earlier in Section 4.4 and are respectively: (1) User Data Extraction [12], (2)
LLM Tricks [156], (3) Analysing PII Leakage [89], (4) ETHICIST [162], (5) Scalable Extraction [95], (6)
Output2Prompt [158], (7) PII-Compass [94], (8) Alpaca VS Vicuna [64].

6.5.1. With DREAD

We start evaluating Extraction attacks using DREAD [92]. The corresponding vulnerability vectors
as follows:

e (1) = (D:9/R:8/E:8/A:8/D:5) =7.6 (High)
e (2) > (D:8/R:9/E:8/A:7/D:5) =7.4 (High)
e (3) —(D:9/R:8/E:8/A:9/D:6) = 8 (High)

e (4 — (D:8/R:8/E:7/A:7/D:5) =7 (High)

e (5)— (D:8/R:5/E:6/A:8/D:4) =

e (6)— (D:7/R:7/E:7/A:7/D:6) =

e (7)— (D:8/R:6/E:7/A:8/D:4) =

e (8 — (D:7/R:7/E:7/A:6/D:5) =

The detailed scores for this fifth type of attack are shown in Table A17, with the score vectors
visualized in a Spider-chart below for clarity. The DREAD assessment reveals that the exploitability and
discoverability of model extraction attacks vary depending on the specific implementation. However,
all these attacks share a high level of danger to systems due to their potential to cause significant
damage. Additionally, the analysis highlights that such attacks can directly or indirectly affect multiple
users, while remaining relatively challenging to detect.
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6.5.2. With CVSS

The second assessment of Model Extraction attacks is done with CVSS [114]. The corresponding
Vectors are:

e (1) = (AV:N/AC:H/PR:N/ULN/S:C/C:H/IN/A:N) =
e  (2) = (AV:IN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)
e  (3) = (AVIN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)
e (4) — (AV:N/AC:H/PR:N/ULN/S:C/C:H/IN/A:N) =
e (5)— (AV:N/AC:H/PR:N/ULN/S:C/C:H/IN/A:N) =
e (6) = (AV:IN/AC:H/PR:N/ULN/S:C/C:H/IN/A:N) =
e (7)) — (AV:IN/AC:H/PR:N/ULN/S:C/C:H/IN/A:N) =
e (8 — (AVIN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)

The CVSS scores assigned by each LLM are detailed in Table A18, with the final vectors visualized
in the Spider-chart below. Compared to DREAD, CVSS provides more granular insights into the nature
of the damage caused by these attacks, particularly their impact on confidentiality. Additionally, the
assessment highlights that these attacks typically do not require specific privileges or user interaction
for execution. However, their scope can vary depending on the type of data extracted, making them
broader in target range than previous attack types.
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6.5.3. With OWASP Risk Rating

A third evaluation of Model Extraction attacks is done using OWASP RR [140]. The corresponding
vulnerability vectors of each attack is:

e (1) — (SL:7/M:8/0:7/S:6/ED:5/EE:6/A:5/1D:7/LC:8/LL:1/LA:1/FD:7/RD:8/NC:7/PV:8) = 3.5

(High)

e (2) > (SL:6/M:8/0:7/S:5/ED:6/EE:7/A:5/1D:7 /L.C:8/L1:2/LA:2/FD:7/RD:9/NC:7 /PV:8) = 3.8
(High)

e (3) — (SL:6/M:8/0:7/S:6/ED:6/EE:6/A:5/1D:8/LC:9/LL:1/LA:1/FD:7/RD:8/NC:7/PV:9) = 3.7
(High)

e (4 — (SL:6/M:8/0:7/S:6/ED:5/EE:7/A:5/1D:7 /LC:8/LI:1/LA:1/FD:7/RD:9/NC:7/PV:9) = 3.6
(High)

e (5) — (SL:6/M:8/0:7/S:6/ED:5/EE:6/A:4/1D:7 /LC:8/LI:1/LA:1/FD:7/RD:8/NC:7/PV:9) = 3.4
(High)

e (6) — (SL:6/M:7/0:7/S:5/ED:5/EE:6/A:5/1D:7 /LC:8/L1:2/LA:2/FD:7/RD:9/NC:6/PV:8) = 3.5
(High)

e (7)— (SL:6/M:8/0:7/S:5/ED:5/EE:6/A:5/1D:7 /LC:9/L1:2/LA:2/FD:7/RD:9/NC:7 /PV:9) = 3.8
(Critical)

e (8) — (SL:7/M:8/0:7/S:6/ED:5/EE:6/A:5/1D:8/LC:8/LI:1/LA:1/FD:7/RD:9/NC:7/PV:9) = 3.7
(High)

The detailed scores assigned by the LLMs are presented in Table A19, with the final scores of each
attack shown in the chart below for better visualization of their assessments. The OWASP RR scores
align with the findings from DREAD and CVSS, offering additional insights. This metric reveals that
Model Extraction attacks require only a moderate level of skill and motivation to be performed, and are
easily exploitable. Notably, system administrators and defenders often lack awareness of these attacks
and their potential risks, particularly their significant impact on data confidentiality. Additionally,
these attacks pose a substantial threat to an organization’s finances and reputation, while also leading
to privacy violations that can result in increased audit challenges.
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6.5.4. With SSVC

The forth and last evaluation of Model-Extraction attacks is done with SSVC [128] as previously,
the results of the assessments are shown and detailed below:

e (1) — (E:P/AY/V:C/US/T.T/P:S) = Immediate
e (2) > (E:P/AY/V:C/US/T.T/P:S) = Immediate
e (3) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (4)— (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (5 — (EP/ANN/V:C/UE/T.T/P:S) = Immediate (Very High)
e (6) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (7) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (8 — (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)

Very High)
Very High)

o~~~ o~

Table A20 presents the individual scores provided by each LLM along with their average, which is
visualized below in a spider chart for a clearer understanding of the characteristics of Model-Extraction
attacks.

The SSVC assessments highlight the ease of automation and high rewards associated with these
attacks, making them particularly effective for adversaries. Notably, this metric emphasizes the
significant impact these attacks can have on both the technical aspects of organizations and public
safety, particularly by jeopardizing the privacy of user data.
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6.6. Assessment of Model Inference attacks

The next type of attacks we assess are Model Inference attacks, presented in Section 4.5: (1) LIRA
[11], (2) Detecting Pretraining Data [123], (3) Neighborhood Comparison [91], (4) ProPILE [65], (5)
Analysing PII Leakage [89], (6) Conrecall [134], (7) MIA-LLM [45], (8) DeCop [37].

6.6.1. With DREAD

We start evaluating Model Inference attacks using DREAD [92]. The corresponding vulnerability
vectors as follows:

e (1) = (D:8/R:9/E:7/A:7/D:6) = 7.4 (High)
e (2)— (D:7/R:8/E:7/A:7/D:5) =

e (3)— (D:6/R:5/E:6/A:6/D:5) =

e (4)— (D:8/R:6/E:6/A:7/D:5) =

e (5 — (D:9/R:8/E:8/A:9/D:6) = 8 (High)

e (6)— (D:7/R:7/E:7/A:7/D:5) =

e (7)— (D:8/R:7/E:7/A:7/D:5) =

e (8 — (D:8/R:8/E:7/A:7/D:5) =

Table A21 provides the detailed scores for this sixth type of attack, as assessed by the three LLMs
along with their average. For better visualization and interpretation, these scores are represented
below in a spider chart.

The DREAD assessment reveals that Model Inference attacks share many characteristics with
Model Extraction attacks. Both pose significant damage to systems and organizations, are highly
reproducible and exploitable, and can impact a large number of users either directly or indirectly. They
are also moderately challenging to discover. The primary distinction lies in their danger levels—Model
Extraction attacks are slightly more harmful as they enable the extraction of models or user data,
whereas Model Inference attacks are more specific, allowing adversaries to determine whether certain
data was part of the training set.
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6.6.2. With CVSS

The second assessment of Model Inference attacks is done with CVSS [114]. The corresponding
Vectors are:

e (1) = (AV:IN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)
*  (2) = (AV:IN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)
e (3) > (AV:N/AC:H/PR:N/ULN/S:C/C:H/I:N/A:N) =

e (4)— (AV:N/AC:H/PR:N/ULN/S:C/C:H/I:N/A:N) =

e (5 = (AV:IN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)
e (6) = (AVIN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)
e (7) = (AV:IN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)
e (8 — (AVIN/AC:L/PR:N/ULN/S:C/C:H/I:N/A:N) = 8.6 (High)

The complete list of scores is detailed in Table A22, with the final averaged scores visualized
below in the spider chart. The chart closely resembles that of Model Extraction attacks, differing
primarily in that Model Inference attacks are less complex to execute.

Notably, these attacks can be carried out remotely via the network without requiring any user
privileges or interaction. They have a significant impact on confidentiality and exhibit a variable scope,
as the extracted information can be used to target other systems or users.
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6.6.3. With OWASP Risk Rating

A third evaluation of Model Inference attacks is done using OWASP RR [140]. The corresponding
vulnerability vectors of each attack is:

e (1) — (SL:6/M:7/0:7/S:6/ED:5/EE:7/A:6/1D:7 /L.C:8/LI:1/LA:2/FD:7/RD:8/NC:7 /PV:8) = 3.5
(High)
. (2) — (SL:6/M:7/0:7/5:6 /ED:5/EE:6/A:4/1D:6/LC:8/LI:2/LA:2/FD:7/RD:8/NC:8/PV:8) =

. (3) — (SL:5/M:7/0:7/S:5/ED:5/EE:6/A:5/1D:6/LC:8/LL:11/LA:2/FD:6/RD:7 /NC:7 /PV:8) =
e (4 — (SL:6/M:7/0:7/S:6/ED:5/EE:6/A:6/1D:6/LC:8/LI:1/LA:2/FD:7/RD:7/NC:7/PV:8) =

e (5) > (SL:6/M:8/0:7/S:6/ED:5/EE:6/A:6/1D:8/LC:9/LI:1/LA:2/FD:8/RD:8/NC:8/PV:9) = 4
(Critical)

. (6) — (SL:6/M:7/0:6/S:6 /ED:5/EE:6/A:5/1D:7/LC:8/LI:2/LA:2/FD:8/RD:8/NC:8/PV:9) = 3.7
(Critical)

. (7) — (SL:6/M:8/0:7/S:6 /ED:6/EE:6/A:5/1D:7/LC:8/LL:2/LA:2/FD:8/RD:8 /NC:7/PV:9) = 3.8
(Critical)

e (8) — (SL:5/M:7/0:7/S:6/ED:6/EE:7/A:6/1D:7 /LC:7/L1:2/LA:2/FD:8/RD:8/NC:8/PV:6) = 4.2
(Critical)

The detailed assessments are provided in Table A23, with their averages visualized in the chart
below.

The OWASP RR scores align closely with those of CVSS, reaffirming that Model Inference attacks
primarily impact confidentiality. These attacks are easy to discover and exploit but are challenging for
defenders to detect due to limited awareness of their risks. Additionally, the assessments emphasize
that Model Inference attacks significantly violate privacy while being less complex than Model Extrac-
tion attacks. Instead of extracting various data from a training set, Model Inference attacks determine
whether specific data was included in the training process.
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6.6.4. With SSVC

The last evaluation of Model-Inference attacks is performed using SSVC [128], and the results are
shown and detailed below:

e (1) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e  (2) = (EP/AY/V:C/USS/T:T/P:S) = Immediate (Very High)
e (3) = (EP/ANN/V:D/UE/T:P/P:M) =

e (4)— (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (5 = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (6)— (E:P/AY/V:D/UE/T:P/P:M) =

e (7)) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (8 — (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)

The detailed SSVC scores are presented in Table A24, with the final averages visualized in the
chart below. Similar to previous attacks, SSVC aligns with the insights provided by other metrics.
However, it uniquely highlights that Model Inference attacks are highly automatable and rewarding,
making them particularly effective for adversaries. These attacks pose a significant impact not only on
the technical aspects of systems but also on user safety and data privacy.
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6.7. Assessment of Poisoning/Trojan/Backdoor attacks

The last type of attacks we assess are Poisoning, Trojan, and Backdoor attacks, already presented
in Section 4.6: (1) TrojLLM [151], (2) Best-of-Venom [7], (3) CodeBreaker [153], (4) Retrieval Poisoning
[160], (5) Clinical LLMs [26], (6) BackdoorLLM [75], (7) CBA [58], (8) TAZ2 [136].

6.7.1. With DREAD

We start evaluating Poisoning, Trojan, and Backdoor attacks using DREAD [92]. The correspond-
ing vulnerability vectors as follows:

e (1) — (D:8/R:8/E:8/A:8/D:6) =7.6 (High)
e (2)— (D:8/R:6/E:7/A:7/D:5) =

e (3) = (D:8/R:8/E:8/A:8/D:6) =7.6 (High)
e (4)— (D:7/R:6/E:6/A:6/D:4) =

e (5 — (D:9/R:7/E:6/A:9/D:5) =7.2 (High)
e (6) = (D:8/R:9/E:8/A:8/D:6) =7.8 (High)
o (7) - (D:8/RS/E7/A7/D:5) = 7 (High)

o (8) — (D:8/RS8/E:8/A:8/D:6) = 7.6 (High)

The detailed scores for this final type of attack are provided in Table A25, with their averages
visualized in the chart below.

The DREAD analysis reveals that Poisoning, Trojan, and Backdoor attacks generally cause sig-
nificant damage—often surpassing other attack types like Jailbreak or Evasion. Their reproducibility,
exploitability, and the number of affected users vary depending on the specific attack but typically
range from medium to high. However, these attacks are notably difficult to detect, making them
particularly dangerous to LLMs. Addressing these vulnerabilities presents a significant challenge for
system administrators.
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6.7.2. With CVSS

The second assessment of these attacks is done with CVSS [114]. The corresponding Vectors are:

e (1) = (AV:IN/AC:H/PR:N/ULN/S:C/C:L/I:H/A:N) = 7.5 (High)

e (2)— (AV:L/AC:H/PR:L/ULN/S:U/C:L/I:H/A:N) =

¢ (3) = (AV:IN/AC:L/PR.L/ULN/S:C/C:L/I:H/A:N) = 8.5 (High)

e (4)— (AV:N/AC:H/PR:.L/ULN/S:U/C.L/:H/A:N) =

¢ (5 — (AV:N/AC:H/PR:.L/ULN/S:U/C.L/I:H/A:N) =

e (6) = (AV:N/AC:L/PR:IN/ULN/S:C/C:L/I:H/A:N) = 9.3 (Critical)
e (7) = (AV:N/AC:H/PR:N/ULN/S:C/C:L/I:H/A:N) = 7.5 (High)

e (8 — (AV:N/AC:H/PR:N/ULN/S:C/C:L/I:H/A:N) = 7.5 (High)

These vectors are presented below in a Spider-chart for better visualization, the detailed scores
are shown in Table A26.

The CVSS assessment reveals that these attacks are generally complex to execute but predomi-
nantly impact two technical domains: they exert a high impact on integrity and a medium impact on
confidentiality. Furthermore, their execution often does not require elevated privileges, depending on
the attack’s complexity. This highlights the significant potential danger posed by these types of attacks.
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6.7.3. With OWASP Risk Rating

A third evaluation of Poisoning, Trojan, and Backdoor attacks is done using OWASP RR [140].
The corresponding vulnerability vectors of each attack is:

e (1) — (SL:6/M:8/0:7/S:6/ED:5/EE:7/A:5/1D:7 /LC:6/LL:7 /LA:4/FD:7 /RD:8 /NC:5/PV:6) = 3.9

(Critical)

e (2) — (SL:8/M:8/0:6/S:5/ED:5/EE:6/A:4/1D:5/LC:7/LL.7/LA:3/FD:7/RD:8/NC:6/PV:7) = 3.7
(High)

. (3) = (SL:7/M:8/0:8/S:6 /ED:6/EE:7/A:5/1D:6/LC:7/LL:8/LA:4/FD:7 /RD:8 /NC:6/PV:7) = 4.4
(Critical)

. (4) — (SL:7/M:8/0:6/S:6/ED:5/EE:6/A:4/1D:6/LC:6/L1:8/LA:4/FD:7/RD:8/NC:6/PV:6) = 4
(Critical)

e (5) > (SL:7/M:8/0:7/S:6/ED:4/EE:6/A:4/1D:8/LC:6/LI1:8/LA:3/FD:8/RD:9/NC:7/PV:6) = 4.2
(Critical)

e (6) — (SL:8/M:9/0:7/S:6/ED:4/EE:6/A:4/1D:9/LC:6/LI1:8/LA:4/FD:8/RD:9/NC:7/PV:6) = 4
(Critical)

e (7) — (SL:8/M:9/0:7/S:7/ED:5/EE:7/A:4/1D:9/LC:7/LI1:8/LA:4/FD:8/RD:9/NC:8/PV:7) =4.9
(Critical)

e (8 — (SL:8/M:8/0:7/S:6/ED:4/EE:6/A:4/1D:8/LC:6/L1:8/LA:4/FD:7/RD:8/NC:6/PV:6) = 4.1
(Critical)

The calculated values are detailed in Table A27 and visualized in the Spider-chart below. This
chart spans a wider area compared to others, emphasizing the significant danger posed by Poisoning,
Trojan, and Backdoor attacks. OWASP RR indicates that these attacks require advanced skills and high
motivation to execute, unlike simpler attacks such as Model-Inference. Additionally, a pronounced
lack of awareness among system administrators complicates their detection. These attacks often have
severe impacts on integrity, financial stability, and organizational reputation, as well as contributing
to non-compliance and privacy violations, making them some of the most impactful threats in the
assessment.
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6.7.4. With SSVC

The final evaluation is performed using SSVC [128] as done with previous attacks. The results of
this assessments are detailed below:

e (1) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (2) = (EP/AY/V:C/USS/T:T/P:S) = Immediate (Very High)
e (3) = (EP/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
e (4)— (E:P/ANN/V:D/U.L/T:P/P:M) =

U (5) — (E:P/AY/V:C/U:S/T:T/P:S) = Immediate (Very High)
U (6) — (E:P/A:Y/V:C/U:S/T:T/P:S) = Immediate (Very High)
. (7) = (E:P/A:Y/V:C/U:S/T:T/P:S) = Immediate (Very High)
. (8) — (E:P/A:Y/V:C/U:S/T:T/P:S) = Immediate (Very High)

Lastly, the SSVC scores are visualized in the chart below, with detailed assessments provided in
Table A28.

The chart aligns closely with those of previous attack types, indicating that these attacks are easily
automatable, which increases their exploitation and effectiveness for adversaries. Furthermore, this
analysis corroborates findings from other metrics, confirming that Poisoning, Trojan, and Backdoor
attacks have a substantial impact on both the technical aspects of a system and the financial stability
and safety of its users.
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7. Discussion

In this section, we present and analyze the results of our assessments of various attacks on large
language models using the four vulnerability assessment metrics: DREAD, CVSS, OWASP Risk Rating,
and SSVC. By examining the variations in metric values across all evaluated attacks, we aim to identify
patterns, inconsistencies, and strengths in each framework. This analysis will provide insights into how
effectively these metrics capture the severity and impact of adversarial attacks on LLMs. Ultimately,
we will assess the overall utility and reliability of these metrics in evaluating attacks specific to LLMs,
offering recommendations on their applicability and potential areas for improvement.

7.1. Evaluation of DREAD

To assess the relevance of the DREAD scoring model, we analyzed the Coefficient of Variation
(COV%) for each of its factors, as detailed in Table 14.

Our findings reveal that the factors exhibit varying levels of variability, though most are relatively
low. The Damage factor shows minimal variation, with COV% below 10% for five of the seven attack
classes and slightly higher values for Evasion (13.45%) and Model Inference (10.87%) attacks. Across
all 56 attacks, the Damage scores are consistently close, predominantly ranging between 7, 8, and 9 on
a scale of 10. Similarly, the Discoverability factor demonstrates low variability, with COV% near 10%
across all classes, and scores typically falling between 5 and 6. The same pattern is observed for the
Exploitability and Affected Users factors, both of which maintain intra-class COV% around 10%.

This limited variability suggests that these four factors provide insufficient differentiation between
adversarial attacks on LLMs. Their inability to distinguish effectively among attack classes renders
them unsuitable for ranking the relative danger or impact of these attacks.

The Reproducibility factor, in contrast, shows greater variability, although inconsistently across
attack classes. For example, White-box Jailbreaks and Prompt-Injection attacks exhibit higher COV%
values (17.64% and 21.06%, respectively), indicating that attack complexity significantly influences
reproducibility. However, this trend is not observed for Black-box Jailbreaks and Evasion attacks, which
are generally easier to execute. As a result, while Reproducibility shows potential for distinguishing
attacks, its inconsistent variability diminishes its overall utility, especially within individual attack-
classes.
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Table 14. Variations of DREAD assessments
(a) White-box jailbreak (b) Black-box jailbreak
N° D R E A D Ne D R E A D
1 8MH) 9H 8H 8®H 6M) 1 8H) 7H) 7H) 8MH) 5M)
2 6(M) 6M) 6M) 6M) 5(M) 2 8(H) 8MH) 8MH) 7H) 5M)
3 7MH 7H 7H 7H 5M) 3 8MH) 8MH 7MH 7H 6M)
4 7H 6M) 5 (M) 6(M) 5(M) 4 9 (H) 8 (H) 8H) 8(MH) 6M)
5 8H) 9(H) 7 (H) 7(H 6M) 5 8 (H) 9 (H) 8H) 7MH) 5M)
6 8(H) 8(H) 7 (H) 8H) 6MM) 6 8 (H) 6 (M) 7H) 7MH 5M)
7 7(H 6M) 7 (H) 6(M) 5MM) 7 9 (H) 8 (H) 9MH) 8(H) ™M)
8 8(H) 9H) 8H) 7H) 6e6M) 8 SH) 7®H) 7@ 7H) M)
x 7.38 7.5 6.75 6.88 5.5 x 8.25 7.63 7.63 7.38 5.25
o 0.69 1.32 0.94 0.78 0.5 o 0.43 0.85 069 048 043
COV 9.44% 17.64% 14.34% 11.35% 9.09% COV 525% 11.24% 9.13% 6.56% 8.25%
(c) Prompt-injection attacks (d) Evasion attacks
Ne° D R E A D N° D R E A D
1 8 (H) 9 (H) 8H) 7MH) 6@M™M) 1 7 (H) 7(H 6M) 7H) 5M™M)
2 8 (H) 8 (H) 8H) 7MH) 6M™M) 2 7 (H) 9 (H) 8 (H) 7(H) 5M)
3 7 (H) 9 (H) 7H e6M) 7H) 3 6 (M) 8H) 6M) 6M) 5M)
4 7 (H) 8 (H) 8H) 8MH) 5 4 8 (H) 8 (H) 7 (H) 7(H) 5@M)
5 8 (H) 9 (H) 9H) 8MH) 6(MM) 5 6(M) 9(H) 7 (H) 7H) 6@MM)
6 8 (H) 8 (H) 7H) 8MH) 5MM) 6 8 (H) 8 (H) 8 (H) 8H) 5M)
7 7 (H) 6M) 6M) 7MH) 5MM) 7 9 (H) 8 (H) 8 (H) 8(H) 5MM)
8 7 (H) 6 (M) 7H) 6M) 5(M) 8 8 (H) 8 (H) 8 (H) 8(H) 5MM)
X 7.5 7.88 7.5 7.13 5.63 X 7.38 8.13 7.25 7.25 5.13
o 0.5 1.66 0.87 0.78 0.69 1o 0.99 0.60 0.83 0.67 0.34
COV  6.67% 21.06% 11.6% 10.9% 12.2% COV 13.45% 7.38% 11.44% 9.12% 6.45%
(e) Model-extraction attacks (f) Model-inference attacks
N° D R E A D Ne° D R E A D
1 9(H) 8(H) 8 (H) 8 (H) 5 (M) 1 8 (H) 9 (H) 7 (H) 7H 6M)
2 8(H) 9((H) 8 (H) 7 (H) 5 (M) 2 7 (H) 8 (H) 7 (H) 7H 5@M)
3 9(H) 8(H) 8 (H) 9 (H) 6 (M) 3 6 (M) 5M) 6M) 6M) 5(M)
4 8(H) 8(H) 7 (H) 7 (H) 5 (M) 4 8 (H) 6(M) 6M) 7H) 5MM)
5 8H) 5M) 6M) 8(H) 4 (M) 5 9 (H) 8H) 8MH) 9MH) 6MM)
6 7 (H) 7 (H) 7 (H) 7 (H) 6 (M) 6 7 (H) 7 (H) 7 (H) 7H) 5M)
7 8H) 6M) 7(H) 8 (H) 5 (M) 7 8 (H) 7 (H) 7 (H) 7H) 5M)
8 7 (H) 7 (H) 7H 6M) 5 (M) 8 8 (H) 8 (H) 7 (H) 7H) 5M)
X 8 7.25 7.25 7.5 5.13 T 7.63 7.25 6.88 7.13 5.25
o 0.71 1.09 0.67 0.75 0.60 o 0.83 1.09 0.64 0.83 0.47
COV 8.88% 15.03% 9.12% 10.00% 11.72% COV 10.87% 15.03% 9.30% 11.65% 8.95%
(g) Poisoning/Trojan/Backdoor attacks
N° D R E A D
1 8(H) 8(H) 8 (H) 8 (H) 6 (M)
2 8(H) 6M) 7 (H) 7 (H) 5 (M)
3 8(H) 8(H) 8 (H) 8 (H) 6 (M)
4 7H) 6™ 6™ 6™ 4M)
5 o) 7H) 6™ 9MH) 5S5M)
6 8(H) 91 8 (H) 8 (H) 6 (M)
7 8(H) 8(H) 7 (H) 7 (H) 5 (M)
8 8(H) 8(H) 8H) 8H) 6M)
X 8 7.5 7.25 7.62 5.38
o 0.5 1.00 0.83 0.86 0.70
COV  6.25% 13.34% 11.45% 11.28% 13.03%

7.2. Evaluation of CV'SS assessments

The CVSS framework offers qualitative assessments, making Entropy (H) a more suitable measure

of variability than the COV%. The results of this analysis are summarized in Table 15.
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Table 15. Variations of CVSS assessments
(a) White-box jailbreak (b) Black-box jailbreak
N° AV AC PR Ul S C I A N° AV AC PR Ul S C I A
1 N H N N C L H N 1 N L N N U L L N
2 N H N N C L H N 2 N L N N U L H N
3 N H N N C L H N 3 N L N N U L L N
4 N H L N C L H N 4 N L N N C L N N
5 N L L N C L H N 5 N L N N C L N N
6 N L L N C L H N 6 N H N N ] L L N
7 N H N R C L H N 7 N L L N U L H N
8 N L N R C L H N 8 N L N N 8] L H N
M N H N N C L H N M N L N N 8] L LH N
pi 1 5/8 5/8 6/8 1 1 1 1 pi 1 7/8 7/8 1 6/8 1 3/8 1
H 0.00 095 095 0.81 0.00 0.00 0.00 0.00 H 0.00 054 054 000 081 0.00 1.56 0.00
(c) Prompt-injection attacks (d) Evasion attacks
N° AV AC PR Ul S C I A N° AV AC PR Ul S C 1 A
1 N L N N 18} N H N 1 N L N N U N H N
2 N H N R U L H N 2 N L N N 8] N H N
3 N L N N U L H N 3 N H N N 8] N H N
4 N H N R C L H N 4 N H N N 8] N H N
5 N L N N C L H N 5 N L N N U N H N
6 N H N R C L H N 6 N L N N U N H N
7 N H N R 18] L H N 7 N H N N U N H N
8 N H N N U L H N 8 N L N N 18] N H N
M N H N N,R 18) L H N M N L N N 18] N H N
pi 1 5/8 1 4/8 5/8 7/8 1 1 pi 1 5/8 1 1 1 1 1 1
H 0.00 095 0.00 1.00 0.95 0.54 0.00 0.00 H 0.00 095 0.00 0.00 0.00 0.00 0.00 0.00
(e) Model-extraction attacks (f) Model-inference attacks
N° AV AC PR Ul S C I A N° AV AC PR Ul S C I A
1 N H N N C H N N 1 N L N N C H N N
2 N L N N C H N N 2 N L N N C H N N
3 N L N N C H N N 3 N H N N C H N N
4 N H N N C H N N 4 N H N N C H N N
5 N H N N C H N N 5 N L N N C H N N
6 N H N N C H N N 6 N L N N C H N N
7 N H N N C H N N 7 N L N N C H N N
8 N L N N C H N N 8 N L N N C H N N
M N H N N C H N N M N L N N C H N N
pi 1 5/8 1 1 1 1 1 1 pi 1 6/8 1 1 1 1 1 1
H 0.00 095 0.00 0.00 0.00 0.00 0.00 0.00 H 0.00 081 0.00 0.00 0.00 0.00 0.00 0.00

(g) Poisoning/ Trojan/Backdoor attacks

N° AV AC PR Ul S C I A
1 N H N N C L H N
2 L H L N U L H N
3 N L L N C L H N
4 N H L N U L H N
5 N H L N U L H N
6 N L N N C L H N
7 N H N N C L H N
8 N H N N C L H N
M N H NL N C L H N

i 7/8 6/8 4/8 1 5/8 1 1 1

P
H 054 081 1.00 0.00 095 0.00 0.00 0.00

Similar to observations from DREAD, several CVSS factors exhibit minimal or no variability
across the attacks. For instance, the Attack Vector consistently takes the value "Network" for 55 out
of the 56 attacks, reflecting the predominance of network-based adversarial attacks targeting online
LLMs. This lack of differentiation renders the factor unsuitable for assessing the diversity of attack
mechanisms against LLMs.

Likewise, the Privileges Required and User Interaction factors show low variability. The Priv-
ileges Required factor is typically "None," except for White-box and Black-box Jailbreak attacks.
Similarly, User Interaction is also "None" for most attacks, apart from White-box Jailbreak and Prompt
Injection attacks. This suggests these factors are only relevant to specific types of attacks but fail to
provide meaningful insights across broader categories.
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The Confidentiality, Integrity, and Availability (CIA) Impact factors also demonstrate significant
limitations. Each type of AAs typically targets a specific aspect of the CIA triad, leaving the other factors
unused. For example, Model Extraction attacks heavily impact Confidentiality while leaving Integrity
and Availability unaffected, resulting in null entropy for the latter factors. Similarly, attacks such as
Poisoning, Trojan, and Backdoor primarily target Integrity, leaving Confidentiality and Availability
unchanged. While these factors vary across attack types, they remain static within individual attack
categories, limiting their ability to differentiate attacks at a granular level.

The Scope factor follows a similar trend, showing null entropy in four of the seven attack classes
(White-box Jailbreak, Evasion, Model Extraction, and Model Inference). Even within its variability, it
often remains uniform within a class, such as being consistently "Changed" for all Model Inference
attacks or "Unchanged" for all Evasion attacks.

This highlights the limitation of specific qualitative-factors in being suitable in some cases and
unsuitable in others.

Among the factors, only Attack Complexity shows relatively higher entropy, with most attacks
presenting two to three different values from the mode. This variability reflects the differing levels
of expertise required to execute various attacks, making this factor appropriate for assessing attack
difficulty. However, it could benefit from further refinement to enhance its precision.

7.3. Evaluation of OWASP Risk Rating assessments

Now we assess the utility of OWAS Risk Rating factors using their Coefficient of Variation
calculated in Table 16.

We start with the Skill Level factor, its median values for the seven attack classes generally fall
between 6 and 7, with variations of less than 10% in most cases. Similar patterns are observed for the
Motivation and Opportunity factors, where Motivation scores are predominantly between 7 and 8§,
and Opportunity scores range from 6 to 7, both exhibiting very low variability within each class. The
same holds true for the Size of Threat Agent factor, where the median consistently falls between 5 and
6, with a COV below 9.2% across six of the seven classes.

These consistent results can be attributed to the shared characteristics of AAs against LLMs:
attackers typically possess medium-to-high skill levels, show strong motivation, have significant
opportunities due to the accessibility of LLMs, and represent a medium-sized threat agent, as these
attacks are common but often conducted by individuals. This uniformity in attributes leads to repeated
values across the 56 attacks, limiting the ability of these metrics to differentiate between attacks
effectively.

A similar trend is observed for the Ease of Discovery, Ease of Exploit, Awareness of defenders,
and Intrusion Detection Capabilities factors. The median values for these factors remain consistently
around 5 and 6 across the seven classes, with COVs between 8% and 9%. This lack of variability within
attack types reduces the informativeness of these factors.

The Confidentiality, Integrity, and Availability factors show a similar limitation, as observed
with CVSS metrics. Depending on the attack type, at least one of these factors is often not relevant
and scores minimal values. However, due to OWASP RR’s broader scoring scale (values out of 10),
these factors exhibit relatively higher COV percentages compared to CVSS, providing slightly more
variability.

The Financial and Reputation Damages factors are critical for assessing attacks on LLMs, given
the potential for data breaches and information leaks that can erode customer trust. These factors
consistently score medium-to-high values across all attack types. However, their low COV percentages
within the same attack type make it challenging to rank attacks fairly based on these criteria.

For Non-Compliance and Privacy Violation, the results indicate that these factors are rel-
evant only for specific attack types, such as Model Extraction, Model Inference, and Poison-
ing/Trojan/Backdoor attacks. Other types, like White-box Jailbreaks and Model Evasion, exhibit
low-to-medium impacts on Non-Compliance, making these factors valuable for specific contexts but
less applicable across all attack types.
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Table 16. Variations of OWASP RR assessments
(a) White-box jailbreak
N° SL M o) S ED EE A D LC LI LA FD RD  NC PV
1 70D 6()  6(H) 6() 7@ 8@ 5M) 5M 50 7EH) 4M  7EH)  8EH)  4AM)  AM)
2 7(H) 6@ 50M) 50 50 7@ 5M 5M 5M 6(H) 3M 6| 7| 40 40
3 7)) 7@ 50 6@ 6@ 7@ 5M 5M 5M 7 3M 6 7(H) 6@ 50
I 5(M) 6(@H) 4(M) 3(M) 4(M) 6(H) 5M) 4M) 4M) 6(H) 1(@) 5(H) 6(H) 30 40\
5  6(H) 7(H) 6(H) 5M) 6(H) 7(H 6@ 5M 5M 7 1(0) 6 7(H 4M 4M)
6 7(0) 7(H) 6(H) 6 6(H) 7(H) 5M 5M 5M 7 2(0) 6 7(H 4M 5M)
7 6(H) 6(H) 5M) 4M) 5M) 6(H) 50 5M 4M) 6(H) 1(@0) 5M 6(H 3M 3M)
8 7| 7@ ) 7 50 7@ 7(H) 60 5M 4M 7(H) 1@ 6@ 7(H) 40 4(0M)
E; 65 65 563 513 600 688 525 488 462 662 200 588 675  4.00 112
- 071 050 075 0.78 089 060 043 033 048 048 112 060 066 087 0.60
COV "10.92% 7.69% 13.34% 15.23% 14.83% 8.72% 8.25% 6.78% 1047% 7.31% 55.90% 10.20% 9.80% 21.66% 14.53%
(b) Black-box jailbreak
N° SL M (o) S ED EE A D LC LI LA D RD NC PV
1 6(H) 8(H) 8(H) 6(H) 6(H) 7H 5M 6() 8() 2(@0) 1(@0) 61 8EH) 50 7(H)
2 5(M) 8(H) 8H) 6 6 7H 6(H) 6(H) 8H 1@ 1@ 6 8EH 4M) 6(H)
3 4(M) 8(H) 8H) 6MH) 7H 8@ 7@ 7H 9@ 1@ 1@ 7\ 8EH 5M) 9H)
1 7(H) 8(H) 7H 5M) 6(H) 8H 6(H) 8 8 1(@) 1(@) 6(H) 8H 5M) 8(H)
5 6(H) 8 8@ 5M) 6() 8@ 5M 7@ 7@ 1@ 10 50 7@ 50 70
6 6(H) 8(H) 8EH) 6@ 6 8@ 60 7@ 70 2@ 10 6@ 7@ 5M 70
7 6(H) 9(H) 8{H) 5M) 6(H) 8 5M 70 8EH 3M 10 6 9 7@  8(H)
8 6(H) 8(H) 7@ 5M) 6(H) 8@H 5M 70 8H 3M 1(0) 61 8EH) 5M) 8(H)
% 575 812 775 550 612 775 575 700 800 162 100 600 7.88 512 750
- 083 033 043 050 033 043 066 065 066 090 000 054 060 066 0.87
COV “14.42% 4.07% 559% 9.09% 540% 559% 11.48% 9.29% 8.25% 55.56% 0.00% 9.00% 7.63% 12.91% 11.60%

(c) Prompt-injection attacks

N°  SL M o) S ED  EE A D LC LI LA D RD NC PV
1 6() 8@ 7(0) 5M 6(H) 8() 6(H) 6(H) 3M) 8 3M 6(H) 8@ 40 4M)
2 6(H) 8@ 7 6@ 6@ 7@ 5(M 7(H) 5M 8H 3M 7 8@ 4M 6(H)
3 6(H) 8(H) 7(H) 5(M) 6(H) 8(H) 6() 6(H) 5(M) 8(H) 3M) 7(H) 8EH) 4M) 5M)
4 6 8@ 7)) 6@ 6(H) 8@ 6@ 7(H) 60 7H 3M 7 8@ 5M 70
5  5(M) 8(H) 7(H) 6@ 6(H) 8 60 7() 6(H) 7@ 3M) 7(H) 8H) 5M)  6(H)
6 7() 8@ 8MH 6(H) 5M 8H 5M 8 70MH) 9(H) 3M) 7(H) 8H) 5M 7(H)
7 6() 8@ 7 6@ 50 7@ 5M 6 4M SHEH) 3M 6@ 70 30 5M)
8 6() 7() 6(H) 6 5M 6(H) 4M) 6(H) 3(M) 8@H) 1(@L) 5M 7 2@L) 3M)
¥ 612 788 625 575 562 762 550 675 475 788 262 650 775 400 550
¢ T 048 033 066 043 048 069 064 066 114 060 088 071 043 087 1.09
COV "7.88% 4.18% 1056% 7.48% 8.54% 9.08% 11.64% 9.78% 24.00% 7.63% 33.59% 10.92% 555% 21.75% 19.82%
(d) Evasion attacks
N°  SL M o) S ED  EE A D LC LI LA D RD NC PV
1 7@ 7@ 5M) 4(M) 5M) 7)) 5M) 6(0) 1(L) 8@) O0(@L) 5M 7)) 4M) 3M)
2 6() 7)) 6() 5M 50 70 5M 6(H) 10 8HEH) 00 6@ 7@ 50 3M)
3 6(M) 7(H) 5M) 5(M) 5M) 6(H) 4M) 5M 1@ 7@ 1) 5M) 6 4M) 3M)
4 7M) 8@ 60 5M 50M 70 5M 6(H) 2(0) 8@ 1(0) 7@ 8@ 50 4M)
5  6() 7(H) 6(H) 5M) 5M 7)) 5M) 6() 10 7@ 1(@L) 6(H) 7)) 5M) 4M)
6 7)) 8@ 7(H) 5M 6(H) 7 6@ 7(H) 2(@) 9@\ 1(0L) 7(H) 8H 6H) 5M)
7 7@ 8@ 7@ 5M 6@\ 7@ 6@ 7@ 2@ 9@\ 10 7@\ 8@ 6@ 5M)
8§ 7(H) 8() 7(0) 6 6(H) 8 6() 7 1) 8@ 1(@L) 7() 8EH) 5M) 4M)
¥ 675 750 612 512 538 712 538 650 125 800 0.5 638 750 512 £.00
¢ T047 050 069 047 048 048 064 064 062 075 062 075 066 066 0.83
COV "6.96% 6.67% 11.29% 9.18% 8.92% 6.76% 11.90% 9.85% 49.60% 9.38% 82.67% 11.76% 8.80% 12.91% 20.75%
(e) Model-extraction attacks
N° SL M (o) S ED EE A D LC LI LA FD RD NC PV
1 7MH) B8(H) 7() 6(H) 5M) 6(H) 5M) 7H) 8(H) 1(0L) 1(L) 7() 8(H) 7(H) 8(H)
2 6(H) 8(H) 7)) 5M) 6(H) 7(H) 5M) 7() 8H) 2@ 2(L) 7)) 9H) 7(H 8H)
3 6(H) 8 7 6 60 6FH 5M 8@ 9@ 1(@0) 1@ 7@ 8@ 7@ 9@
I 6(H) 8 7(H) 6 5M 7@ 5MM 7@ 8@ 1(0L) 10 7@ 9@ 7@ 9@
5  6(H) B8(H) 7(H) 6(H) 5M) 6(H) 4M) 7(H) 8(H) 1(L) 1(L) 7() 8(H) 7(H) 9(H)
6 6() 7MH) 7(H) 5M) 5M) 6(H) 5M) 7H) 8(H) 2(L) 2(UL) 7)) 9H) 6(H) 8(H)
7 6(H) 8(H) 7@ 5M) 5M) 6(H) 5M 7 9@ 2(L) 2@ 7@ 9@ 7@ 9
8§ 7)) 8MH) 7@ 6 5M 6(H) 5M 8H 8@ 1(L) 1@ 70 9@ 7H 9
x 638 788 700 575 525 638 488 738 825 125 125 700 862 688 862
o 048 033 000 043 043 048 033 048 047 062 062 000 060 033 060
COV "7.53% 4.18% 0.00% 7.48% 8.20% 7.53% 6.78% 6.50% 5.67% 49.60% 49.60% 0.00% 6.96% 4.80% 6.96%
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Table 16. Cont.
(f) Model-inference attacks

N° SL M o) S ED EE A D LC L1 LA FD RD  NC PV
1 60 70 70D 6@ 50 7(0) 60 70 8@ 1) 20) 70 8@ 70 8
2 6@ 7@ 7 6@ 5M  6(H) 4M)  6(H) 8@H)  2(L) 2@ 7@ 8EH 8 8(H)
3 5M) 7)) 70 5(M 50 6(H) 5M 60 8@ 1L 2(0@0) 60 7@ 70 8(H)
1 6 7(H) 70 6 6() 5M 61 6(H) 8@ 1(0L) 2L 7@ 7| 70 8@
5 6(0) 8 70 6@ 50 6(H) 6 8MH 9@ 1M 2@ 8@ 8EH) 8 9(H)
6 6 7@ 6() 6@ 5M 6@ 5M 7@ 8@ 20 2@ 8@ 8@ 8@ 9@
7 6() 8(H) 70 60 6(H) 6(H) 5M 7 8@ 2(L) 2() 8@ 8H) 70 9(H)
8 5M) 7@ 70 6@ 6\ 7\ 6@ 7@ 7@ 20 2@ 8@ 8EH) 8 6(H)

x 588 725 688 600 525 638 550 700 800 125 200 750 775 750 850

- 048 047 033 045 043 048 064 065 050 062 000 066 043 050 064
COV "817% 6.48% 4.80% 7.50% 8.20% 7.53% 11.64% 9.9% 6.25% 49.60% 0.00% 8.80% 5.55% 6.67% 7.53%

(g) Poisoning/ Trojan/Backdoor attacks

N° SL M [9) S ED EE A D LC LI LA FD _ RD NC PV
1 6 8@ 70 60D 5M 70 50 70D 60 7@ 4™ 7@ SEH) 50 60
2 8(H) 8(H) 6(H) 5M 5M 6H 4M 5M 7H 7H 3M 7H SH 6@ 70
3 7@ 8@ 80 60D 6() 7@ 5M  64H 70) s@ 4™ 7@ SEH) 6@ 70
4 7(H) 8H) 6() 6() 5M) 6 4M) 6 6() 8EH) 4M) 7(H) 8H) 6H)  6(H)
5 7@ S@E) 7)) 6(0) 4M 6(0) 4M 8@ 60 8@ 3™ 8@ 9@ 7@ 6@
6  8(H) 9@ 7@ 60 4M 6@ 4M) 9@ 60 8@ 4™ 8@ 9@\ 7@ 6\
7 8 9@ 7@ 7EH) 5M 7HEH  4AM 9@  7EH) s@H 4M  s@H 9@ 8@ 70
8 8 8@ 7@ 6() 4M 6@ 4™ 8@ 6@ s@ 4™ 7@ SEH) 6@ 60
E; 738 825 700 612 488 650 425 725 650 800 375 750 825 650 650
- 0690 047 060 048 064 050 047 109 050 050 047 050 047 083 050
COV ~935% 567% 857% 7.84% 13.12% 7.69% 11.06% 15.03% 7.69% 6.25% 1253% 6.67% 5.67% 12.77% 7.60%

While these OWASP RR factors provide extensive information about each attack, they are not
consistently effective in distinguishing between them. However, the broader scoring range (values out
of 10) used by OWASP RR does introduce more variability compared to CVSS, making it somewhat
more adaptable for attack differentiation.

7.4. Evaluation of SSVC assessments

For SSVC, Entropy was calculated to evaluate the variability of its qualitative factors, the results
are presented in Table 17.

The Exploitability factor, which reflects the existence of an implementation for the attack, demon-
strates minimal variability. Among the 56 attacks analyzed, 53 had an associated Proof-of-Concept,
making this factor largely uniform across the dataset. This lack of differentiation suggests that this
factor provides little valuable information when assessing adversarial attacks against LLMs.

A similar observation applies to the Automatable and Value-Density factors. Most adversarial
attacks on LLMs are automatable, and they yield significant rewards, such as exposing private or
sensitive information from the models. Consequently, these factors also fail to offer meaningful
distinctions in the scoring process.

The separation of the Technical and Public-Safety Impacts provides a better understanding of
the danger posed by AAs. Although these factors show some degree of variation across attacks within
the same category, the differences remain limited. For instance, most attacks are assessed as having
"Total" control over the system and "Significant" impacts on finance, reputation, or public health. These
assessments, while varying slightly, are overly broad and rely on only two or three possible values,
limiting their utility for nuanced analysis or differentiation.
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Table 17. Variations of SSVC assessments

(a) White-box jailbreak (b) Black-box jailbreak
N° E A \Y% T P N° E A A T P
1 P Y C T S 1 P Y C T S
2 P N C T S 2 P Y D P M
3 P N C T S 3 P Y C T S
4 P N C P M 4 P Y C T S
5 P Y C T S 5 P Y C T S
6 P Y C T S 6 P Y D P M
7 P N C P M 7 A Y C T S
8 P Y C T S 8 P Y C T S
M P N,Y C T S M P Y C T S
pi 1 4/8 1 6/8 6/8 pi 7/8 1 6/8 6/8 6/8
H 0.00 1.00 0.00 0.81 0.81 H 054 0.00 081 0.81 0.81
(c) Prompt-injection attacks (d) Evasion attacks
N° E A Vv T P N° E A A% T P
1 P Y C T S 1 P Y C P S
2 P Y C T S 2 P Y C P S
3 P Y C T S 3 A Y C P S
4 P Y C T S 4 P Y C P S
5 P Y C T S 5 P N D P M
6 P Y C T S 6 P Y C P S
7 N N D P M 7 P Y C P S
8 P Y C T S 8 P Y C P S
M P Y C T S M P Y C P S
pi 7/8 7/8 7/8 7/8 7/8 pi 7/8 7/8 7/8 1 7/8
H 054 054 054 054 0.54 H 054 054 054 0.00 0.54
(e) Model-extraction attacks (f) Model-inference attacks
N° E A A% T P N° E A A% T P
1 P Y C T S 1 P Y C T S
2 P Y C T S 2 P Y C T S
3 P Y C T S 3 P N D P M
4 P Y C T S 4 P Y C T S
5 P N C T S 5 P Y C T S
6 P Y C T S 6 P Y D P M
7 P Y C T S 7 P Y C T S
8 P Y C T S 8 P Y C T S
M P Y C T S M P Y C T S
pi 1 7/8 1 1 1 pi 1 7/8 6/8 6/8 6/8
H 0.00 054 0.00 0.00 0.00 H 000 054 081 081 0.81

(g) Poisoning/ Trojan/Backdoor attacks

N E A V T P
1 P Y C T S
2 P Y C T S
3 P Y C T S
&4 P N D P M
5 P Y C T S
6 P Y C T S
7 P Y C T S
8 P Y C T S
M P Y C T S
pi 1 7/8 7/8 7/8 7/8
H 7000 054 054 054 0.54
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8. Suggestions for Future Solutions

The analysis conducted in the previous sections validates the hypothesis proposed in Section
1: existing vulnerability scoring metrics are inadequate for assessing Adversarial Attacks against
Large Language Models. This inadequacy is primarily due to the lack of variability in factor scores,
which limits the metrics’ ability to distinguish between different types of attacks effectively.

The shortcomings of current vulnerability scoring systems stem from several key issues:

1.  Overemphasis on CIA Impact: Existing metrics focus heavily on the technical impact on Confi-
dentiality, Integrity, and Availability, which are not the primary targets of AAs against LLMs.

2. Lack of Contextual Consideration: Factors such as Attack Vector, Opportunity, and Intrusion
Detection lack relevance when applied to LLM-specific scenarios due to the absence of target-
specific context.

3.  Subjectivity in Quantitative Scores: The use of quantitative scoring systems introduces subjec-
tivity, reducing the reliability of assessments.

4.  Limited Qualitative Scoring Options: Scoring systems with qualitative factors often offer too
few choices, resulting in repetitive and non-discriminative assessments.

These limitations highlight the urgent need for the research community to address these gaps and
develop scoring metrics specifically tailored for AAs against LLMs, particularly given the increasing
adoption of these models in critical applications.

While proposing new metrics is beyond the scope of this study, we suggest the following directions
for future research:

1.  Customized Technical Impact Metrics: Metrics should account for the unique impacts of AAs
on LLMs, such as trust erosion, misinformation dissemination, or generating biased and harmful
outputs. These factors better reflect the consequences of LLM-specific attacks.

2. Context-Aware Factors: Metrics should consider the architecture and nature of the targeted LLM.
For example:

¢ Larger models (e.g., GPT, LLAMA) are more susceptible to AAs due to complex decision
boundaries.

*  Attacks targeting LLMs trained on sensitive personal data pose greater risks than those on
public datasets.

¢  Multimodal LLMs may face distinct vulnerabilities (e.g., malicious image injection), which
text-only models do not encounter.

3. Incorporating Success Rates: Success rates could serve as a valuable factor in ranking attacks,
although challenging to measure. For instance:

*  Prompt Injection attacks can exhibit varying success rates depending on implementation.
* Jailbreak attacks may not succeed consistently with a single query but can have cumulative
success over multiple attempts, which is important to account for.

4. Enhanced Qualitative Scoring Systems: Implementing multiple-choice qualitative factors can
strike a balance between complexity and subjectivity. For instance, adding more nuanced lev-
els to factors like "Attack Complexity" (e.g., Minimal, Medium, Very High) could create finer
distinctions between attacks and increase score variability.

By exploring these directions, researchers can contribute to the development of robust, context-
sensitive metrics that provide meaningful and actionable assessments for adversarial attacks against
LLMs. This advancement is crucial for enhancing the security posture of these increasingly prevalent
models.

9. Conclusion

This study has critically examined the applicability of established vulnerability metrics, such as
DREAD, CVSS, OWASP Risk Rating, and SSVC, to assess Adversarial Attacks on LLMs. Through a
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detailed analysis of 56 AAs across multiple metrics, the findings demonstrate that existing metrics fail
to adequately differentiate between attacks, primarily due to their rigid, context-limited factors and a
focus on traditional technical impacts rather than the nuanced threats posed by AAs.

Key observations highlight that factors such as technical-impact, the motivation of attackers, and
the limited-options of qualitative scoring systems are inadequately addressed in existing frameworks.
These limitations restrict the variability and relevance of vulnerability scores, confirming the hypothesis
that traditional metrics are not fully suitable for assessing the risks associated with AAs on LLMs.

While the development of new metrics was beyond the scope of this work, the study identifies
several promising directions for improvement. These include integrating tailored technical-impact
assessments, context-specific factors, and multiple-choice qualitative scoring options to enhance the
granularity and applicability of future metrics. Furthermore, incorporating attack success rates, though
complex, could provide a more comprehensive evaluation of adversarial threats.

The contributions of this research are multifaceted, providing a taxonomy of adversarial attack
classifications, a curated list of 56 AAs targeting LLMs, and an in-depth statistical evaluation of existing
vulnerability metrics. These findings not only underscore the limitations of current approaches but also
serve as a call to action for the development of more robust, flexible, and LLM-specific vulnerability
assessment frameworks.

Future research should focus on refining these metrics to account for the unique challenges posed
by Adversarial Attacks on LLMs, ensuring that the security of these increasingly vital systems is both
effective and adaptive to emerging threats.
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Appendix A. Assessment details

This appendix provides a comprehensive breakdown of the evaluation results for the seven types
of AAs assessed using the four vulnerability metrics: DREAD, CVSS, OWASP Risk Rating, and SSVC.
Each attack type was evaluated across multiple LLMs, with detailed scores recorded for every attack
and metric. The appendix outlines the methodology used to compute average scores by consolidating
the evaluations from three distinct LLMs, ensuring an accurate representation of the results.

This detailed presentation of results supports the main text by providing transparency into the
scoring process and offering a robust reference for further analysis of the metrics and calculations used
in this study.
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Appendix A.1. White-box Jailbreak

Table A1l. Detailed assessment of White-box Jailbreak attacks with DREAD

d0i:10.20944/preprints202412.2419.v1

Ne° LLM D R E A D Score

GPT-4o 8MH) 8MH) 7H) 7MH) 5M™M) 7(H)

1 LLAMA3 8MH) 9MH) 8MH) 8MH) 6M) 78(H)
Perplexity 9(H) 9MH) 8MH) 8MH) 6M) 8(H)
Avg 8H) 9MH) 8MH 8H) 6M 7.8(H)

GPT-40 6M) 5M) 6H) 6M) 5(M)

5 LLAMA3 5M) 6(M) 5M) 5M™M) 4M)
Perplexity 8(H) 7H) 8MH) 7MH) 5M) 7(H)
Avg 6M) 6M 6M 6M) 5(M)

GPT-40 6M) 5M) 7H) 6M) 5MM)

3 LLAMA3 7H) 7MH) 6M) 7MH) 5MM)
Perplexity 9(H) 8MH) 8MH) 8MH) 5M) 7.6(H)
Avg 7TH) 7H) 7H 7MH 5M)
GPT-4o 7H) 5M™M 6M) 7H) 5@M™M)
4 LLAMA3 6M) 5M) 4M) 6MM) 4M)
Perplexity 7(H) 7H) 6M™M) 6M) 6(M)
Avg 7TH) 6M) 5M 6M 5M)
GPT-4o 8H) 9MH) 7H) 7MH) 6M™M) 74(H)
5 LLAMA3 9MH) 9MH) 8MH) 8MH) 6M) 8(H)
Perplexity 8(H) 9MH) 7H) 7H) 5M) 72(H)
Avg 8H) 9H) 7H) 7H) 6M 74(H)

GPT-4o 8H) 8MH) 6M) 7H) 5M™M)

6 LLAMA3 8H) 9MH) 8H) 8MH) 6M) 7.8(H)
Perplexity 9(H) 8MH) 8MH) 8MH) 6M™M) 7.8(H)
Avg 8H) 8MH) 7MH) 8MH 6M) 7.4(H)

GPT-4o 7H) 6M) 6M) 7H) 6M™M)

- LLAMA3 6M) 6M) 6M) 6M) 4M) 56(M)
Perplexity 7(H) 6M) 7H) 6M) 5M)
Avg 7TH) 6M 7H) 6M 5M)

GPT-40 8H) 8MH) 7H) 7MH) 6M™M) 72(H)
LLAMA3 8H) 9MH) 8H) 8MH) 6M) 7.8(H)
Perplexity 8(H) 9MH) 8MH) 7H) 6MM) 7.6(H)

Avg 8H) 9H) 8MH) 7H) 6M) 7.6(H)
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Table A2. Detailed assessment of White-box Jailbreak with CVSS

N° LLM AV AC PR Ul S§ C I A Base

GPT-40 N H N N C H H N 87H)

1 LLAMA3 N L N R C N H N 74(H)
Perplexty N H N N U N H N

Avg N H N N C L H N 75(H)

GPT-40 N H N N C H H N 87H)
» LLAMA3 N H L R C N H N
Perplexty N H N N U N H N

Avg N H N N C L H N 75MH

GPT-40 N H N N C H H N 87H)

3 LLAMA3 N L N R C N H N 74(H)
Perplexity N H N N U N H N

Avg N H N N C L H N 75MH

GPT-40 L H H N C H H N 72(H)

4 LLAMA3 N L N R C N H N 74(H)
Perplexty N H N N U N H N

Avg N H L N C L H N 71H)

GPT-40 L L H N C H H N 79(H)

5 LLAMA3 N L N R C N H N 74(H)

Perplexity N L N N U N H N 75(H)

Avg N L L N C L H N 85(H)

GPT-40 L L H N C H H N 79(H)

6 LLAMA3 N L N R C N H N 74(H)

Perplexity N L N N U N H N 75(H)

Avg N L L N C L H N 85(H)

GPT4o N H N R C H H N 8

” LLAMA3 N L N R C N H N 74(H)
Perplexty N H N N U N H N
Avg N H N R CL H N

GPT-4o0 N L N R C H H N 93

8 LLAMA3 N L N R C N H N 74(H)
Perplexty N H N N U N H N

Avg N L N R C L H N 82(H
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Table A3. Detailed assessment of White-box Jailbreak with OWASP Risk Rating

N° LLM SK MT OP SZ ED EE AW ID C I A FD RD NC PV Score

GPT-40 7 7 6 7 6 7 5 6 8 6 6 7 8 6 7 43O

1 _LLAMA3 8 6 8 5 8 9 6 4 0 8 0 6 8 0 0 21(H)

Perplexity 7 6 5 6 6 7 5 4 8 7 5 7 8 5 6 3.8(H)

Avg 7 6 6 6 7 8 5 5 5 7 4 7 8 4 4 3.6(H)

GPT-40 7 7 6 7 5 7 5 6 8 6 5 7 8 7 7 430

, _LLAMA3 7 5 5 4 6 7 5 5 0 7 0 5 6 0 0 14(1)
Perplexity 6 7 5 4 5 6 6 3 7 5 4 6 7 5 5
Avg 7 6 5 5 5 7 5 5 5 6 3 6 7 4 4

GPT-40 7 8 6 7 6 7 5 6 8 6 5 7 8 6 7 44(0)

3 LLAMA3 8 6 5 5 7 8 5 5 0 8 0 4 6 8 0 22(H)

Perplexity 7 6 5 6 6 7 5 4 8 6 5 7 8 5 7 38(H)
Avg 7 7 5 6 6 7 5 5 5 7 3 6 7 6 5
GPT-40 4 8 4 3 3 5 3 3 7 7 0 5 7 5 7

4 _LLAMA3 6 5 5 4 6 7 5 5 0 7 0 5 6 0 0 14(L)
Perplexity 5 4 3 2 4 5 6 3 6 5 4 5 6 3 4
Avg 5 6 4 3 4 6 5 4 4 6 1 5 6 3 4
GPT-40 5 8 5 5 6 6 5 6 7 7 0 5 7 7 7

5 _LLAMA3 8 6 8 5 8 9 6 4 0 8 0 6 8 0 0 21(H)
Perplexity 6 7 5 4 5 6 6 4 7 5 4 6 7 5 6

Avg 6 7 6 5 6 7 6 5 5 7 1 6 7 4 4 28(H)

GPT-40 6 8 5 7 6 7 5 8 7 7 0 5 7 7 7  3.6(H)
6 _LLAMA3 7 5 8 5 7 8 5 5 0 8 0 5 6 0 0

Perplexity 7 8 5 6 6 7 5 3 8 6 5 7 8 5 7 39(H)

Avg 7 7 6 6 6 7 5 5 5 7 2 6 7 4 5 3.2(H)

GPT-40 7 8 8 7 6 6 5 8 6 7 0 5 7 7 6 3.7 (H)

- _LLAMA3 6 5 5 4 6 7 5 5 0 7 0 5 6 0 0 14()
Perplexity 5 4 3 2 4 5 6 3 5 4 3 4 5 2 3
Avg 6 6 5 4 5 6 5 5 4 6 1 5 6 3 3

GPT-40 7 8 8 7 8 6 6 8 6 7 0 5 7 7 6 39(H)

8 LLAMA3 7 6 8 5 8 9 6 4 0 8 0 6 8 0 0 21(H)
Perplexity 6 7 5 4 5 6 6 3 7 5 4 6 7 5 6

Avg 7 7 7 5 7 7 6 5 4 7 1 6 7 4 4 3.1(H
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Table A4. Detailed assessment of White-box Jailbreak attacks with SSVC

Ne LLM E AV UT P Score
GPT-40 P Y C S T S Immediate
1 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT40o0 N N D L P M Defer
2 LLAMA3 P N C E T S Immediate
Perplexity P Y C S T S Immediate
Avg P N C E T S Immediate
GPT40 P N D L P M
3 LLAMA3 P N C E T S Immediate
Perplexity P Y C S T S Immediate
Avg P N C E T S Immediate
GPT-40 P N C E T S Immediate
4 LLAMA3 P N C E P M
Perplexity N N D L P M Defer
Avg P N C E P M
GPT40 P Y C S T S Immediate
5 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
6 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT40 P N C E P M
” LLAMA3 P N C E P M
Perplexity N N D L P M Defer
Avg P N C E P M
GPT40 P Y C S T S Immediate
8 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T § Immediate
Avg P Y C S T S Immediate

d0i:10.20944/preprints202412.2419.v1
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Appendix A.2. Black-box Jailbreak

Table A5. Detailed assessment of Black-box Jailbreak attacks with DREAD

d0i:10.20944/preprints202412.2419.v1

NO

LLM

D

R

E

A

D

Score

1

GPT-40

8 (H)

7 (H)

6 (M)

8 (H)

5 (M)

LLAMA3

9 (H)

8 (H)

8 (H)

9 (H)

5M)

7.6 ()

Perplexity

8 (H)

7 (F)

8 (H)

7 (H)

5M)

7 ()

Avg

8 (H)

7 (H)

7 (H)

8 (H)

5 (M)

7 (H)

GPT-40

8 ()

7 (H)

8 (M)

7 ()

5 (M)

7 (0)

LLAMA3

8 (H)

8 (H)

7 (H)

8 (H)

5M)

7.2 ()

Perplexity

7 (F)

8 (H)

9 (F)

6 (M)

5M)

7 ()

Avg

8 (H)

8 (H)

8 (H)

7 (H)

5 (M)

7.2 (H)

GPT-40

7 (H)

8 (H)

7 (H)

7 (H)

6 (M)

7 (H)

LLAMA3

8 (H)

8 (H)

7 (F)

8 (H)

6 (M)

74 (H)

Perplexity

8 ()

7 (F)

8 (H)

7 (F)

6 (M)

72 (H)

Avg

8 (H)

8 (H)

7 (H)

7 (H)

6 (M)

7.2 (H)

GPT-40

8 ()

8 (H)

8 (H)

7 (H)

6 (M)

74 (H)

LLAMA3

9 (H)

9 (F)

8 (H)

9 (F)

6 (M)

82(H)

Perplexity

9 (H)

8 (H)

8 (H)

8 (H)

5 M)

7.6 ()

Avg

9 (H)

8 (H)

8 (H)

8 (H)

6 (M)

7.8 (H)

GPT-40

7 (H)

8 (H)

7 (0

7 (H)

5M)

LLAMA3

9 (H)

9 (F)

8 (f)

9 (F)

6 (M)

82 (0)

Perplexity

7 (F)

9 (H)

8 (H)

6 (F)

5M)

7 ()

Avg

8 (H)

9 (H)

8 (H)

7 (H)

5 (M)

7.4 (H)

GPT-40

7 (D)

6 (M)

7 ()

6 (M)

5MM)

LLAMA3

8 (H)

6 (M)

6 (M)

8 (H)

5 (M)

Perplexity

8 (0)

7 (H)

8 (H)

7 ()

6 (M)

72 (H)

Avg

8 (H)

6 (M)

7 (H)

7 (H)

5 (M)

GPT-40

8 (H)

8 (H)

9 (H)

8 (H)

4 (M)

74 (H)

LLAMA3

9 (H)

9 (F)

8 (H)

9 (F)

6 (M)

82 (H)

Perplexity

9 (H)

8 (H)

9 (H)

8 (H)

5M)

78 (H)

Avg

9 (H)

8 (H)

9 (H)

8 (H)

5 (M)

7.8 (H)

GPT-40

8 (H)

6 (M)

7 (H)

7 (H)

6 (M)

LLAMA3

8 (H)

8 (H)

7 (H)

8 (M)

5M)

72 (H)

Perplexity

7 (0)

7 ()

8 (M)

6 (M)

5 (M)

Avg

8 (H)

7 (H)

7 (H)

7 (H)

5 (M)
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Table A6. Detailed assessment of Black-box Jailbreak with CVSS

N° LLM AV AC PR Ul S§ C I A Base
GPT-4o N L N N U H L N 82(H)
1 LLAMA3 N L N N C H L N 82(H)
Perplexty N H N N U N H N
Avg N L N N U L L N
GPT-40 N L N N U N H N 75H)
» LLAMA3 N L N N C H L N 82(H)
Perplexty N L N N U N H N 75(H)
Avg N L N N U L H N 82(H)
GPT-40 N L N N U H N N 75H)
3 LLAMA3 N L N N C H L N 82(H)
Perplexity N H N N U N H N
Avg N L N N U L L N
GPT-40 N H N N C H N N
4 LLAMA3 N L N N C H L N 82(H)
Perplexity N L N N U N H N 75H)
Avg N L N N C L N N 72MH
GPT-40 N L N N C H N N 86
5 LLAMA3 N H L N C H L N
Perplexity N L N N U N H N 75(H)
Avg N L N N C L N N 72MH
GPT-40 N L N N U H L N 82(H)
6 LLAMA3 N H L N C H L N
Perplexty N H N N U N H N
Avg N H N N U L L N
GPT-40 N L N N U H H N 91(©
” LLAMA3 L L H N C H L N
Perplexty N H N N U N H N
Avg N L L N U L H N 71(H)
GPT-40 N L N N U H H N 91(©
8 LLAMA3 N L N N C H L N 82(H)
Perplexty N H N N U N H N
Avg N L N N UL H N 82(H
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Table A7. Detailed assessment of Black-box Jailbreak with OWASP Risk Rating

N° LLM SK MT OP SZ ED EE AW ID C I A FD RD NC PV Score
GPT-40 5 8 8 7 5 5 5 3 7 4 0 5 8 5 8 29(H)
1 _LLAMA3 6 8 9 5 8 9 6 8 8 0 0 4 8 5 8 33(H)
Perplexity 6 8 7 5 4 7 5 8 9 2 2 8 7 5 6 36(H)
Avg 6 8 8 6 6 7 5 6 8 2 1 6 8 5 7 33(H)
GPT-40 3 8 8 7 5 3 5 3 7 0 0 4 8 2 0
, _LLAMA3 7 9 9 5 9 9 7 9 9 0 0 5 9 6 9 36(H)
Perplexity 5 8 8 5 5 8 7 5 8 2 2 8 7 5 8 35(H)
Avg 5 8 8 6 6 7 6 6 8 1 1 6 8 4 6 3(H)
GPT-4o 2 9 9 9 9 9 9 3 9 0 0 9 9 6 9 42(H)
;3 _LLAMA3 6 8 9 5 8 8 6 8 8 0 0 4 8 5 8 32(H)
Perplexity 5 8 7 5 4 8 5 9 9 2 2 8 7 5 9 37
Avg 4 8 8 6 7 8 7 7 9 1 1 7 8 5 9 3.8(H)
GPT-4o0 7 7 8 6 6 7 6 5 7 0 0 4 7 5 6 26(H)
4 _LLAMA3 38 9 9 5 9 9 7 9 9 0 0 5 9 6 9 42(H)
Perplexity 5 8 5 5 4 7 5 9 8 2 3 8 7 5 8 34(H)
Avg 7 8 7 5 6 8 6 8 8 1 1 6 8 5 8 35(H
GPT-40 6 8 7 5 6 7 5 5 6 0 0 4 6 4 5 21(H)
5 LLAMA3 7 8 9 5 8 8 6 8 8 0 0 4 8 5 8 35(H)
Perplexity 5 8 7 5 4 8 5 9 8 2 2 8 7 5 8 35(H)
Avg 6 8 8 5 6 8 5 7 7 1 1 5 7 5 7 3(H
GPT-40 6 7 8 7 5 6 5 4 5 5 0 5 7 5 6 27(H)
¢ _LLAMA3 6 8 9 5 8 8 6 8 8 0 0 4 8 5 8 32(H)
Perplexity 5 8 6 5 4 9 6 8 9 2 2 8 7 5 6 35(H)
Avg 6 8 8 6 6 8 6 7 7 2 1 6 9 7 8 38(H)
GPT-40 6 8 8 8 6 7 4 3 7 7 0 5 8 6 7 35(H)
, _LLAMA3 7 9 9 5 9 9 7 9 9 0 0 5 9 6 9 36(H)
Perplexity 5 9 6 3 3 9 4 10 9 2 3 9 9 8 9 41(C
Avg 6 9 8 5 6 8 7 5 8 3 1 6 9 7 8 38(H)
GPT-4o 6 8 8 8 6 6 4 3 7 7 0 5 8 6 7 34(H)
g _LLAMA3 6 8 9 5 8 8 6 8 8 0 0 4 8 5 8 32(H)
Perplexity 5 9 3 3 3 9 4 10 8 2 2 8 7 5 9
Avg 6 8 7 5 6 8 5 7 8 3 1 6 8 5 8 34(H)
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Table A8. Detailed assessment of Black-box Jailbreak attacks with SSVC

N° LLM E AV UT P Score
GPT-40 P Y C S T S Immediate
1 LLAMA3 P N C L T S Immediate
Perplexity P Y C S T S  Immediate
Avg P Y C S T S Immediate
GPT-40o0 P Y D E P M
» LLAMA3 P N C L T S Immediate
Perplexity P Y D E P M
Avg P Y D E P M
GPT-40 A Y D E P M Out-of-Cycle
3 LLAMA3 P N C L T S Immediate
Perplexity A Y C S T S  Immediate
Avg A'Y C S T S Immediate
GPT-40 P Y C S T S Immediate
4 LLAMA3 A Y C S T S Immediate
Perplexity P Y C S T S  Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S  Immediate
5 LLAMA3 A Y C S T S  Immediate
Perplexity P Y C S T S  Immediate
Avg P Y C S T S Immediate
GPT-4o0 P Y D E P M
6 LLAMA3 P Y C S T S Immediate
Perplexity N N D L P M Defer
Avg P Y D E P M
GPT-40 A Y C S T S  Immediate
o LLAMA3 P Y C S T S Immediate
Perplexity A Y C S T S  Immediate
Avg A Y C S T S Immediate
GPT40 P N D L P M
8 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S  Immediate
Avg P Y C S T S Immediate
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Appendix A.3. Prompt Injection

d0i:10.20944/preprints202412.2419.v1

Table A9. Detailed assessment of Prompt Injection attacks with DREAD

Ne° LLM D R E A D Score

GPT-4o 8H) 9MH) 7H) 7H) e6M) 7.8(H)

1 LLAMA3 8MH) 9H) 8MH) 7H) 6M) 76(H)

Perplexity 8(H) 9H) 8MH) 7H) 6M) 7.6(H)

Avg 8H) 9(H) 8H) 7H 6MM) 7.6(H)

GPT-4o 8H) 9MH) 8MH) 7MH) 7H) 7.8((H)

5 LLAMA3 9(H) 8H) 9(MH) 8H) 5M™M) 78(H)
Perplexity 7(H) 8MH) 7H) 6M™M) 5M)

Avg 8H) 8MH) 8H) 7H 6M) 74(H)

GPT-40 8H) 9MH) 7H) 7MH) 6M) 74((H)

3 LLAMA3 7MH) 9H) 8MH) 6M) 8MH) 76(H)
Perplexity 6 (M) 9(H) 6M) 5M) 7(H)
Avg 7H 9MH) 7H) e6M 7H 72(H)

GPT-40 7H) 9MH) 8MH) 7H) 6M) 74(H)

4 LLAMA3 8MH) 8H) 9MH) 9MH) 5M™M) 78(H)

Perplexity 9(H) 7MH) 8MH) 8MH) 5M) 7.4(H)
Avg 7H) 8MH) 8H) 8H 5M) 72(H)

GPT-4o 8H) 9MH) 8MH) 8MH) 6M) 7.8(H)

5 LLAMA3 9MH) 8H) 9MH) 8H) 5M™M) 78(H)

Perplexity 8(H) 9H) 9H) 7H) 6MM) 7.8(H)
Avg 8H) 9H) 9H) 8MH) 6M) 8(H)

GPT-4o 9MH) 8MH) 7MH) 9MH) e6M) 7.8(H)

6 LLAMA3 8MH) 8MH) 8MH) 8H) 6M™M) 76(H)

Perplexity 8(H) 8MH) 7MH) o6M) 4M)

Avg 8H) 8MH) 7MH) 8MH) 5M) 7.2(H)

GPT-40 8H) 6(M) 6M) 7MH) 5MM)

” LLAMA3 6M) 7H) 6M) 7H 5M)
Perplexity 7(H) o6M) 7MH) 7H) 5M)
Avg 7TH) 6M) 6M) 7MH 5M)

GPT-40 8H) 6(M) 6M) 7MH) 6M)
LLAMA3 8MH) 8H) 8MH) 7H) 6M™M) 74(H)
Perplexity 6(M) 5M) 6M) 5M) 4(M)

Avg 7TH) 6M) 7MH 6M) 5(M)
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Table A10. Detailed assessment of Prompt Injection with CVSS

N° LLM AV AC PR Ul § C I A Base

GPT-40 N L N N U NH N 75H)

1 LLAMA3 N L N N C H H N 10(O

Perplexty N L N N U N H N 75(H)

Avg N L N N UN H N 75(H
GPT-40 N H N R UL H N

» LLAMA3 L H N R C H H N 74(H)
Perplexty N H N N U N H N
Avg N H N R U L H N

GPT-40 N L N N U N H N 75H)

3 LLAMA3 N L N N C H H N 10(O

Perplexity N L N N U N H N 75H)

Avg N L N N U L H N 82(H
GPT-40 N L N R C L L N

4 LLAMA3 N H N R C H H N 8()
Perplexty N H N N U N H N
Avg N H N R C L H N
GPT-40 N L N R C L L N

5 LLAMA3 N L N N C H H N 10O

Perplexity N L N N U N H N 75(H)

Avg N L N N C L H N 9300

GPT-40 N H N R C H H L 82(H)

6 LLAMA3 N H N R C H H N 8(H)
Perplexty N H N N U N H N
Avg N H N R C L H N
GPT-40 N H N R U L H N

” LLAMA3 L H N R C H H N 74(H)
Perplexty N H N N U N H N
Avg N H N R UL H N
GPT-40 N H N R U L H N

8 LLAMA3 N H N N C H H N 87(H)
Perplexty N H N N U N H N
N H N N UL H N

Avg
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Table A11. Detailed assessment of Prompt-Injection with OWASP Risk Rating

Ne° LLM SK MT OP SZ ED EE AW ID C I A FD RD NC PV Score
GPT-40 6 8 6 5 5 8 6 4 0 7 0 4 7 0 0

1 LLAMA3 6 8 9 5 8 9 6 8§ 6 8 5 8 9 6 8 52(C)

Perplexity 6 8 6 5 4 6 5 7 3 9 5 7 8 6 4 34(H)

Avg 6 8 7 5 6 8 6 6 3 8 3 6 8 4 4 33(H)
GPT-40 5 8 6 7 5 5 3 3 0 8 0 4 8 0 0

2 LLAMA3 8 9 9 6 9 9 7 9 8 9 6 9 9 7 9 6.6(C)

Perplexity 4 8 5 5 4 7 5 8§ 8 7 3 8 7 5 8 37(H)

Avg 6 8 7 6 6 7 5 7 5 8 3 7 8 4 6 3.8(H)
GPT-40 5 8 6 5 6 5 6 3 0 7 0 4 8 0 0

3 LLAMA3 7 8 9 6 8 9 6 8§ 7 8 5 8 9 6 8§ 54(C)

Perplexity 5 8 5 5 4 7 5 8§ 7 8 3 8 7 5 8 3.8(H)

Avg 6 8 7 5 6 8 6 6 5 8 3 7 8 4 5 3.7(H)

GPT-40 4 8 7 6 6 4 6 5 3 3 1 5 7 3 3 21(H)

4 LLAMA3 8 9 9 6 9 9 7 9 8 9 6 9 9 7 9  6.6(C)

Perplexity 5 8 5 5 4 7 5 8§ 8 8 3 8 7 5 8 39(H)

Avg 6 8 7 6 6 8 6 7 6 7 3 7 8 5 7  41(0)

GPT-40 4 8 7 7 6 4 6 5 3 4 1 4 7 3 3 22(H)

5 LLAMA3 7 8 9 6 8 9 6 8§ 7 8 5 8 9 6 8 54(C)

Perplexity 5 8 6 5 4 8 5 8§ 8 8 3 8 7 5 8 41(C)

Avg 5 8 7 6 6 8 6 7 6 7 3 7 8 5 6 3.8 (H)

GPT-40 6 8 8 7 4 7 5 8§ 7 8 2 5 8 3 7 3.8 (H)

6 LLAMA3 9 9 8 7 7 8 6 8§ 6 9 5 8 8 6 7 55(C)

Perplexity 5 8 7 5 4 8 5 9 8 9 3 8 8 5 8 44(C)

Avg 7 8 8 6 5 8 5 8 7 9 3 7 8 5 7 44O
GPT-40 5 8 6 7 6 5 3 3 0 7 0 4 8 0 0

” LLAMA3 8 8 8 6 6 7 7 5 5 8 5 7 7 5 6 42(C)

Perplexity 5 8 7 5 4 8 5 9 8 8 3 8 7 5 8 43(C)
Avg 6 8 7 6 5 7 5 6 4 8 3 6 7 3 5
GPT-40 5 8 6 7 6 5 3 3 0 8 0 4 8 0 0

8 LLAMA3 8 6 7 5 4 7 3 § 2 8 0 4 6 2 0 21(H)

Perplexity 5 8 6 5 4 7 5 8§ 7 8 3 9 7 5 8 39(C)
Avg 6 7 6 6 5 6 4 6 3 8 1 5 7 2 3
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Table A12. Detailed assessment of Prompt-Injection attacks with SSVC

N° LLM E A V UT P Score
GPT40 P Y D E P M
1 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT40o0 P N D L P M
2 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
3 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
4 LLAMA3 P Y C S T S Immediate
Perplexity A Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
5 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
6 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT40 P N D L P M
” LLAMA3 N N D L P M Defer
Perplexity N N D L P M Defer
Avg N N DL P M Defer
GPT40 N N D L P M Defer
8 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
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Appendix A.4. Evasion attacks

Table A13. Detailed assessment of Evasion attacks with DREAD

Ne° LLM D R E A D Score

GPT-40 6M) 8() 7() 6M) 5M)
LLAMA3 7() 6M) 5M) 7(D) 4(M)

1 Perplexity 8(H) 8MH) 7H) 7H) 6M) 72(H)
Avg 7 7H) 6M 7MH 5M)
GPT-4o 7H) 8MH) 8MH) 7H) 4M)
5 LLAMA3 8H) 9H) 7MH) 8H) 6M™M) 72(H)
Perplexity 7(H) 9MH) 8MH) o6M) 5M) 7(H)
Avg 7H) 9H) 8H) 7H 5M) 7.2(H)
GPT-40 5M) 7H) 6M) 6M) 5@M)
3 LLAMA3 6M) 9(H) 5M™M) 6(M) 5(M)
Perplexity 6(M) 8MH) 7MH) 5M) 6(M)
Avg 6(M) 8H) o6M) 6M) 5MM) 6.2(M)
GPT-40 8H) 7MH) 7MH) 7H 5M)
4 LLAMA3 8H) 9MH) 7MH) 8H) 6M™M) 76(H)
Perplexity 7(H) 7MH) 6M) 6M) 5M)
Avg 8H) 8MH) 7MH) 7H) 5M 7(H)
GPT-40 o6M) 9(H) 8MH) 7H 4M)
5 LLAMA3 6M) 9(H) 7MH) 8H) 6M™M) 72(H)
Perplexity 5(M) 9H) 6M) 5M) 7(H)
Avg  6M) 9 7MH 7H 6M 7(H
GPT-40 7H) 8MH) 7MH) 8MH) 4M)
6 LLAMA3 9H) 9H) 8MH) 9MH) 5M™M) 8(H)
Perplexity 8(H) 8MH) 8MH) 7H) 6M) 7.4(H)
Avg 8H) 8MH) 8MH) 8MH 5M) 7.4(H)
GPT-40 8H) 7H) 7MH) 7H 5M)
” LLAMA3 9H) 9H) 8MH) 9MH) 5M™M) 8(H)

Perplexity 9(H) 8MH) 8MH) 8MH) 5M) 7.6(H)
Avg 9H) 8MH) 8MH) 8MH 5M) 7.6(H)
GPT-40 7H 9MH) 8MH) 7MH) 4@M)
LLAMA3 9(MH) 8H) 8MH) 8MH) 5M) 7.6(H)
Perplexity 9(H) 9MH) 8MH) 8MH) 5M) 7.8(H)
Avg 9H) 9MH) 8MH) 8MH 5M) 7.8(H)
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Table A14. Detailed assessment of Evasion attacks with CVSS

N° LLM AV AC PR Ul § C I A Base
GPT-40 L L H N U N H N
1 LLAMA3 N L N N U N H N 75(H)
Perplexty N L N N U N H N 75(H)
Avg N L N N UN H N 75(H
GPT-40 L L H N U N H N
» LLAMA3 N L N N U N H N 75(H)
Perplexity N L N N U N H N 75(H)
Avg N L N N U N H N 75(H)
GPT-40 L L H N U N H N
3 LLAMA3 N H N N U N H N
Perplexty N H N N U N H N
Avg N H N N U NH N
GPT-40 N H N N U L H N
4 LLAMA3 L H N N U N H N
Perplexty N H N N U N H N
Avg N H N N U NH N
GPT-40 L L H N U N H N
5 LLAMA3 N H N N U N H N
Perplexity N L N N U N H N 75(H)
Avg N L N N U N H N 75(H)
GPT-40 N L N N U L H N 82
6 LLAMA3 N L N N U N H N 75(H)
Perplexity N L N N U N H N 75(H)
Avg N L N N U N H N 75H)
GPT-40 N H N N U L H N
” LLAMA3 N H N N U N H N
Perplexty N H N N U N H N
Avg N H N N UNUH N
GPT-40 L L H N U N H N
8 LLAMA3 N L N N U N H N 75(H)
Perplexty N H N N U N H N
Avg N L N N U N H N 75H
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Table A15. Detailed assessment of Evasion attacks with OWASP Risk Rating

Score

A FD RD NC PV

I

ID C

LLM SK MT OP SZ ED EE AW
6
8
6

NO

GPT-40
LLAMA3
Perplexity

2.9 (F)

1

Avg
GPT-40
LLAMA3
Perplexity

6
7
5

35 (H)

6
4

7
6

2

Avg
GPT-4o
LLAMA3
Perplexity

6
6
5

3

Avg
GPT-40
LLAMA3
Perplexity

2.8 (0)
2.8 ()

7
8
6

6
4
4

4

3 (H)

Avg
GPT-40
LLAMA3
Perplexity

6
7
6

35 ()

5

Avg
GPT-40
LLAMA3
Perplexity

2.8 (H)
13 (H)

2

6

8
6

6

3.5 (H)
2.5 (H)
13 (0
34 (H)
3.5 ()

5
2

Avg
GPT-4o

7
8
7

8
4

LLAMA3
Perplexity

7

5

Avg
GPT-40
LLAMA3
Perplexity

6

19 (H)
34 (H)
3.2 (0

9
4
4

9
7

8

Avg
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Table A16. Detailed assessment of Evasion attacks with SSVC

N° LLM E AV UT P Score
GPT-4o0 P Y D E P M
1 LLAMA3 P Y C S P S Immediate
Perplexity P Y C S P S  Immediate
Avg P Y C S P S Immediate
GPT-40 P Y C S P S Immediate
» LLAMA3 P Y C S P S  Immediate
Perplexity P Y C S P S  Immediate
Avg P Y C S P S Immediate
GPT-40 A Y D E P M Out-of-Cycle
3 LLAMA3 P Y C S P S Immediate
Perplexity A Y C S P S  Immediate
Avg A Y C S P S Immediate
GPT-40 P Y C S T S Immediate
4 LLAMA3 P Y C S P S  Immediate
Perplexity P Y C S P S Immediate
Avg P Y C S P S Immediate
GPT-4o0 P N D L P M
5 LLAMA3 P Y C S P S  Immediate
Perplexity N N D L P M Defer
Avg P N DL P M
GPT-40 P Y C S P S Immediate
6 LLAMA3 P Y C S P S Immediate
Perplexity P Y C S P S  Immediate
Avg P Y C S P S Immediate
GPT-40 P Y C S P S Immediate
” LLAMA3 P Y C S P S Immediate
Perplexity A Y C S P S  Immediate
Avg P Y C S P S Immediate
GPT-40 P Y C S P S Immediate
8 LLAMA3 P Y C S P S Immediate
Perplexity P Y C S P S  Immediate
Avg P Y C S P S Immediate
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Appendix A.5. Model Extraction

Table A17. Detailed assessment of Model Extraction with DREAD

Ne° LLM D R E A D Score

GPT-4o 9() 8(H) 7() 7() 4M) 7
LLAMA3 8(H) 9(H) 9@ 9@ 5M) 8

1 Perplexity 9(H) 8H) 8®H) 8MH) o6MM) 7.8(H)
Avg 9H) 8MH) 8MH) 8MH 5M 7.6(H)
GPT-4o 7H 8MH) 8H) 6M) 5MM)
5 LLAMA3 8MH) 9MH) 7MH) 8H) 6MM) 76(H)
Perplexity 8(H) 9H) 8MH) 7H) 5M) 7.4(H)
Avg 8H) 9MH) 8MH) 7H) 5M 7.4(H)
GPT-40 9MH) 7MH) 8MH) 9MH) 5M) 7.6((H)
3 LLAMA3 9MH) 9MH) 8MH) 9MH) 7MH) 84(H)
Perplexity 9(H) 9MH) 8MH) 8MH) 6M) 8(H)
Avg 9MH) 8MH) 8MH) 9MH) e6M 8(H)
GPT-40 7H) 7MH 7MH 6M) 4M)
4 LLAMA3 8MH) 9H) 7MH) 8H) 6M™M) 76(H)
Perplexity 8(H) 7MH) 7MH) 7H) 5M)
Avg 8MH) 8MH) 7MH) 7MH 5M™M) 7(H)
GPT-40 8H) 6M) 6M) 8(H) 3(L)
5 LLAMA3 7MH) 4M) 5M) 7H) 4M)
Perplexity 9(H) 6M) 7MH) 8MH) 5M) 7(H)
Avg 8H) 5M) 6M 8MH 4M)
GPT-40 7H) 7H) 7H) 7H 6M)
6 LLAMA3 8MH) 9MH) 7MH) 8H) 6M™M) 76(H)
Perplexity 7(H) o6M) 7MH) 6M) 5M)
Avg 7TH) 7H) 7H 7H 6M)
GPT-40 9MH) 6M) 7MH) 8MH) 5M™M) 7(H)
” LLAMA3 8MH) 5M) 6M) 8H) 5M)

Perplexity 8(H) 7MH) 7MH) 7H) 5M)
Avg 8H) 6M) 7MH) 8H 5M)
GPT-40 7H) 8MH) 8MH) 6M) 5M)
LLAMA3 7MH) 6M) 6M) 7H) 5M)
Perplexity 6(M) 6M) 6M) 7H) 5M)
Avg 7TH) 7H) 7H 6M) 5M)
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Table A18. Detailed assessment of Model Extraction attacks with CVSS

N° LLM AV AC PR

GPT-4o
LLAMAS3
Perplexity

Avg

GPT-40
LLAMA3
Perplexity

Avg

GPT-40
LLAMA3
Perplexity

Avg

GPT-4o
LLAMA3
Perplexity

Avg

GPT-4o
LLAMA3
Perplexity

Avg

GPT-40
LLAMA3
Perplexity

Avg

GPT-40
LLAMA3
Perplexity

Avg

GPT-40
LLAMA3
Perplexity

Avg

=

Base

8.6 (0)

8.6 (1)
8.6 (0)
8.6 (H)

8.6 ()
8.6 (H)
8.6 (H)

8.6 ()

86 (M)

86 (M)

86 (0
8.6 ()
8.6 (H)

Z|Z| 2| Z| 2| Z| 2| Z\ Z| Z| Z| Z| 2| Z| Z| Z| Z| Z| Z| Z| Z| Z| Z| Z| 2| Z| 2| Z| Z| Z| Z| Z
! Runl o Jusi Jus(Rav fus(Fani Jao{Ran(N o funifas| N ou fan fusi fas{gav Nou | ¥ o/l an/ N o Bus{l ol N ou i/ Jusi Jo{fay Jusifan
Z|Z|z|\2|Z| 2| 2|2 2|2 2|2/ Z|Z|c| 2| Z| Z| |2 2| Z| | 2| Z| 2| Z| 2| Z| Z| T
Z|2|Z2|Z| 2| Z| Z| Z| 2| Z| Z| Z| Z| Z| Z| Z| 2| Z| Z| Z| 2| Z| Z| Z| Z| Z| Z| Z| 2| Z| Z| Z
OOIOOOOOIOIOOOIOOOOOOOIOOIOOOOIOOOOI0O 00N «»
asifas(JasiFasi fa=(Fasifavijasifas jas(fus(Fasi fas(Fasifav jusifasi juv Jus(Fasifa=(Jasigan JusifasifasJusifasi fa=(Fasifav Jas i o)
2| Z| 2| Z| 2| Z| 2| Z\ Z| 2| Z| Z| Z| Z| Z| Z| Z| Z| Z| Z| Z| 2| Z| Z| 2| Z| Z| Z| 2| Z| Z| Z| ~
Z2\Z2|Z| 2| Z| Z| Z| 2| Z| Z| Z| Z| Z| Z| Z| Z| Z| Z| Z| 2| Z| Z| Z| Z| Z| Z| Z| 2| Z| Z| Z| »>
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Table A19. Detailed assessment of Model Extraction with OWASP Risk Rating

N° LLM SK MT OP SZ ED EE AW ID C I A FD RD NC PV Score
GPT-40 8 9 8 8 6 6 7 8§ 8 0 0 8 9 9 8 45(H)
1 LLAMA3 6 8 7 5 4 6 3 9 9 2 1 6 8 5 9 33(H)
Perplexity 6 7 6 5 4 5 4 7 8 2 2 7 8 6 8
Avg 7 8 7 6 5 6 5 7 8§ 1 1 7 8 7 8 3.5 (H)
GPT-40 7 9 6 5 7 6 5 § 8 1 1 8 9 8 8 39(H)
2 LLAMA3 5 8 8 6 6 8 5 8§ 9 2 1 7 9 6 9 37(H)
Perplexity 5 7 6 5 5 6 5 6 8 2 3 7 8 6 8
Avg 6 8 7 5 6 7 5 7 8§ 2 2 7 9 7 8 3.8 (H)
GPT-40 7 8 8 8 6 8 7 8 8 0 0 8 9 8 9 42(H)
3 LLAMA3 6 8 7 5 7 5 4 9 9 2 1 6 8 5 9 33(H)
Perplexity 5 7 6 5 4 5 4 7 9 2 3 7 8 7 9 33(H)
Avg 6 8 7 6 6 6 5 8 9 1 1 7 8 7 9 37MH)
GPT-40 6 8 8 7 6 7 6 7 8 0 0 8 9 8 9 39(H)
4 LLAMA3 7 8 8 6 6 8 5 § 9 2 1 7 9 6 9 4 (H)
Perplexity 6 7 6 5 4 5 4 7 8 2 3 7 8 6 8
Avg 6 8 7 6 5 7 5 7 8 1 1 7 9 7 9 3.6(MH)
GPT-40 7 9 8 8 6 7 6 7 8 0 0 8 9 8 9 4 (H)
5 LLAMA3 5 8 7 5 4 6 3 9 9 2 1 6 8 5 9
Perplexity 6 8 6 6 4 5 4 6 8 2 3 7 8 7 9 33(H)
Avg 6 8 7 6 5 6 4 7 8§ 1 1 7 8 7 9 3.4 (H)
GPT-40 7 8 7 5 6 6 5 7 8 1 1 7 9 7 8 35(H)
6 LLAMA3 6 8 8 6 6 8 5 8§ 9 2 1 7 9 6 9 4 (H)
Perplexity 5 6 6 5 3 4 4 7 8 2 3 7 8 6 8
Avg 6 7 7 5 5 6 5 7 8§ 2 2 7 9 6 8 3.5 (H)
GPT-40 6 9 7 5 6 6 6 7 9 2 1 8 9 8 9 4(O)
” LLAMA3 7 8 8 6 6 8 5 8§ 9 2 1 7 9 6 9 4 (H)
Perplexity 5 7 6 5 4 5 4 7 9 2 3 7 8 7 9 33(H)
Avg 6 8 7 5 5 6 5 7 9 2 2 7 9 7 9 3.8(0)
GPT-40 8 8 8 8 6 6 7 8 8 0 0 8 9 8 8 4 (H)
8 LLAMA3 6 8 8 6 6 8 5 8§ 9 2 1 7 9 6 9 4 (H)
Perplexity 6 8 6 6 4 5 4 7 8 2 3 7 8 6 9
Avg 7 8 7 6 5 6 5 8§ 8 1 1 7 9 7 9 37MH)



https://doi.org/10.20944/preprints202412.2419.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2024

doi:10.20944/

reprints202412.2419.v1

Table A20. Detailed assessment of Model-Extraction attacks with SSVC

N° LLM E AV UT P Score
GPT-40 P Y C S T S Immediate
1 LLAMA3 P N C E T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
2 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
3 LLAMA3 P Y C S T S Immediate
Perplexity A 'Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
4 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
5 LLAMA3 P N C E T S Immediate

Perplexity N N D L P M Defer
Avg P N C E T S Immediate

GPT-4o0 P Y D E P M

6 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
” LLAMA3 P N C E T S Immediate
Perplexity A Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
8 LLAMA3 P N C E T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
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Appendix A.6. Model Inference

Table A21. Detailed assessment of Model Inference with DREAD

Ne° LLM D R E A D Score
GPT-4o 7H) 8MH) 7MH) 7H) 5@M™M)

1 LLAMA3 8MH) 9MH) 7H) 8MH) 6M) 7.6(H)

Perplexity 8(H) 9MH) 8MH) 7H) o6MM) 7.6(H)

Avg 8H) 9H) 7H) 7H) 6M 74(H)
GPT-4o 7H) 8MH) 8MH) 7H) 4@M™M)

5 LLAMA3 7MH) 9MH) 6M) 9MH) 5M™M) 72(H)
Perplexity 7(H) 8MH) 7MH) 6M™M) 5(M)
Avg 7H) 8MH) 7MH) 7H) 5M)
GPT-4o 7H) 6M™M) 7MH) 7H 6@M™M)
3 LLAMA3 6M) 4M) 5M) 6M) 4M)
Perplexity 6(M) 5M) 6M) 5M) 6(M)
Avg 6(M) 5(MM) 6M) 6(M) 5(M)
GPT-4o 8H) 6M) 6M) 8(H) 5M)
4 LLAMA3 8MH) 7MH) 5M) 8MH) 5M)
Perplexity 7(H) 6M™) 7H) 6M™M) 5(M)
Avg 8H) eM o6M) 7H 5MM)

GPT-4o 9MH) 7MH) 8H) 9MH) 5M) 76(H)

5 LLAMA3 H) 9MH) 8H) 9MH) 7H) 84(H)

Perplexity 9(H) 9MH) 8MH) 8MH) 6M) 8(H)

Avg 9H) 8H) 8MH) 9IMH e6M) 8(H)
GPT-4o 7H) 7H) 7H) 7H 5@M™M)

6 LLAMA3 8H) 9MH) 7H) 8MH) 6M) 7.6(H)
Perplexity 7(H) 6M) 7MH) 6M) 5M)
Avg TH) 7H) 7H 7MH 5M)
GPT-4o 8H) 6M) 7MH) 7MH) 4@M™M)
- LLAMA3 7H) 9MH) 6M) 7MH) 5MM)

Perplexity 8(H) 7MH) 7H) 7H) 6M) 7(H)
Avg S8H) 7H) 7H 7MH 5M)

GPT-40 7H) 8MH) 8H) 7MH) 5M™M) 7(H)
LLAMA3 8H) 9MH) 7H) 8MH) 6M) 7.6(H)
Perplexity 8(H) 7H) 7H) 6M) 5MM)

Avg 8H) 8MH) 7MH) 7H 5M 7.0(H)
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Table A22. Detailed assessment of Model Inference attacks with CVSS

N° LLM AV AC PR Ul § C I A Base

GPT-40 N L L N C H N N 77H)

1 LLAMA3 N L N N C H N N 86(H)

Perplexity N L N N C H N N 86()

Avg N L N N C H N N 86
GPT-40 N H N N C H N N

» LLAMA3 N L N N C H N N 86(H)

Perplexty N L N N C H N N 86()

Avg N L N N C H N N 860
GPT-40 N H N N U H N N
3 LLAMA3 N H N N C H N N
Perplexty N H N N C H N N
Avg N H N N CH N N
GPT-40 N H L N C H N N

4 LLAMA3 N L N N C H N N 86(H)
Perplexty N H N N C H N N
Avg N H N N CH N N
GPT-40 N H L N C H N N

5 LLAMA3 N L N N C H N N 86(H)

Perplexity N L N N C H N N 86

Avg N L N N C H N N 86
GPT-40 N H N N U H N N

6 LLAMA3 N L N N C H N N 86(H)

Perplexity N L N N C H N N 86(H)

Avg N L N N C H N N 86(H
GPT-40 N H N N U H N N

” LLAMA3 N L N N C H N N 86(H)

Perplexity N L N N C H N N 86(H)

Avg N L N N C H N N 86(H

GPT-4o0 N L N N C H L N 93

8 LLAMA3 N L N N C H N N 86(H)
Perplexty N H N N C H N N

Avg N L N N C H N N 86(H
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Table A23. Detailed assessment of Model Inference with OWASP Risk Rating

Ne° LLM SK MT OP SZ ED EE AW ID C I A FD RD NC PV Score
GPT-40 7 8 8 7 6 6 7 8 7 0 0 6 8 8 8 35(H)
1 LLAMA3 6 7 8 6 7 8 6 7 9 2 2 9 8 9 9 46(C)
Perplexity 5 6 6 5 3 6 4 6 7 2 3 6 7 5 8
Avg 6 7 7 6 5 7 6 7 8 1 2 7 8 7 8 3.5 (H)
GPT-40 7 8 6 8 4 5 3 6 7 3 3 7 8 6 5
» LLAMA3 6 7 8 6 7 8 6 7 9 2 2 9 8 9 9 34(0)
Perplexity 4 6 6 5 6 6 3 6 8 2 2 6 7 8 9
Avg 6 7 7 6 5 6 4 6 8 2 2 7 8 8 8
GPT-4o 5 8 7 5 6 6 6 7 9 0 0 6 8 9 9 34(C)
3 LLAMA3 5 6 7 5 5 6 5 5 8 2 2 7 6 7 7
Perplexity 5 6 6 5 4 5 4 7 8 2 3 6 7 6 8
Avg 5 7 7 5 5 6 5 6 8 1 2 6 7 7 8
GPT-4o 8 9 7 7 5 6 7 6 9 0 0 8 9 9 9 4 (H)
4 LLAMA3 5 6 7 5 5 6 5 5 8 2 2 7 6 7 7
Perplexity 5 7 6 5 4 5 5 7 8 2 3 6 7 6 8
Avg 6 7 7 6 5 6 6 6 8 1 2 7 7 7 8
GPT-4o0 8 9 8 8 5 6 8 9 9 0 0 8 9 9 9 45(H)
5 LLAMA3 6 7 8 6 7 8 6 7 9 2 2 9 8 9 9 34(C)
Perplexity 5 7 6 5 4 5 4 7 8 2 3 7 8 7 9 33(H)
Avg 6 8 7 6 5 6 6 8§ 9 1 2 8 8 8 9 4(C)
GPT-40 8 9 5 7 5 6 5 8 9 3 2 8 9 8 9 45(C)
6 LLAMA3 6 7 8 6 7 8 6 7 8 2 2 9 8 9 9 45(C)
Perplexity 5 6 6 5 4 5 4 7 8 2 3 7 8 7 9 32(H)
Avg 6 7 6 6 5 6 5 7 8 2 2 8 8 8 9 3.7 (C)
GPT-40 7 9 7 6 5 6 6 8§ 8 1 1 7 9 6 8 37(H)
o LLAMA3 6 7 8 6 7 8 6 7 8 2 2 9 8 9 9 45(0)
Perplexity 5 7 6 5 5 5 4 7 8 2 3 7 8 7 9 33(H)
Avg 6 8 7 6 6 6 5 7 8 2 2 8 8 7 9 3.8 (C)
GPT-40 5 8 7 7 6 8 8 7 7 2 0 8 8 9 0 32(H)
8 LLAMA3 6 7 8 6 7 8 6 7 6 2 2 9 8 9 9 42(0)
Perplexity 5 6 6 5 5 6 5 7 8 2 3 7 8 7 9 34(H)
Avg 5 7 7 6 6 7 6 7 7 1 2 8 7 6 8 4.2 (0)
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Table A24. Detailed assessment of Model-Inference attacks with SSVC

N° LLM E A V UT P Score
GPT-4o P Y C S T S Immediate
1 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT40 P Y D E P M
2 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT40 P Y D E P M
3 LLAMA3 P N C E P M Immediate
Perplexity N N D L P M Defer
Avg P NDE P M
GPT-40 P Y C S T S Immediate
4 LLAMA3 P N C E P M Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
5 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT40 P Y D E P M
6 LLAMA3 P Y C S T S Immediate
Perplexity N N D L P M Defer
Avg P Y D E P M
GPT-40 P Y C S T S Immediate
” LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
8 LLAMA3 P Y C S T S Immediate
Perplexity A Y C S T S Immediate
Avg P Y C S T S Immediate
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Appendix A.7. Poisoning/Trojan/Backdoor

Table A25. Detailed assessment of Poisoning/Trojan/Backdoor with DREAD

Ne° LLM D R E A D Score

GPT-40 (GPT-40) 7H 7H) 7H 7H 6M)
LLAMA3.2 (90b) 8H) 9H) 8MH) 8MH) 6MM) 7.8(H)
Perplexity (Standard) 9(H) 9MH) 8®H) 8H) 6M™M) 8.0(H)
Avg 8(H) 8MH) 8MH) 8MH 6M 7.6(H)

GPT-40 (GPT-40) 8H) 6M) 6M) 7H) 5M™M)

LLAMA3.2 (90b) 7H 6M) 6M) 7H) 5MM)
Perplexity (Standard) 8(H) 7MH) 8MH) 7H) 5M™) 7.0(H)

Avg s§H) M) 7MH) 7MH 5M™M)
GPT-40 (GPT-40) 8H) 7MH) 8MH) 7MH) 5MM) 7.0(H)
LLAMA3.2 (90b) 8H) 9MH) 8MH) 8MH) 6M) 7.8(H)
Perplexity (Standard) 9(H) 8MH) 9MH) 8MH) 6M™M) 8.0(H)
Avg 8H) 8MH) 8MH 8MH 6M) 7.6(H)

GPT-40 (GPT-40) 8H) 6M) 6M) 6MM) 4(L)

LLAMA3.2 (90b) 6(M) 6(M) 5M) 6(M) 4(L)

Perplexity (Standard) 8(H) 7MH) 7MH) 7H) 5M)

Avg 7H 6M 6M) 6(M) 4(L)

GPT-40 (GPT-40) 9H) 6M) 6M) 9MH) 4M)

LLAMA3.2 (90b) 8H) 6M) 6M) 8MH) 5M)
Perplexity (Standard) 9(H) 8MH) 7MH) 9MH) 5M™M) 7.6(H)
Avg 9H) 7H) M) 9MH) 5M™M 7.2(H)
GPT-40 (GPT-40) 9(H) 8MH) 8MH) 8MH) 6M) 7.8(H)
LLAMA3.2 (90b) 8H) 9MH) 8MH) 8MH) 6M) 7.8(H)
Perplexity (Standard) 8(H) 9MH) 8MH) 7H) 6M) 7.6(H)
Avg 8(H) 9(H) 8MH) 8MH 6M 7.8(H)

GPT-40 (GPT-40) 8H) 7H) 6M) 7MH) 5MM)
LLAMA3.2 (90b) 8H) 9(H) 8H) 8MH 6M) 7.8(H)
Perplexity (Standard) 9(H) 8MH) 8MH) 7H) 5M™M) 74(H)

Avg 8H) 8MH) 7MH)) 7H) 5M 7.0H)

GPT-4o0 8H) 7H) 7H) 7H 5M™M)
8 LLAMA3 8H) 9(H) 8MH) 8MH 6M) 7.8(H)
Perplexity 8MH) 9MH) 8MH) 8MH) 6M™M) 7.8(H)

Avg 8H) 8MH) 8MH) 8MH) 6(M) 7.6(H)
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Table A26. Detailed assessment of Poisoning/Trojan/Backdoor with CVSS

N° LLM AV AC PR Ul S§ C I A Base
GPT-4o N H L N C L H L 77H)
1 LLAMA3 N L N N C H H N 10(O
Perplexty N H N N U N H N
Avg N H N N C L H N 75(H)
GPT-40 L H H N C H H L 74(H)
» LLAMA3 L H H N U H H N
Perplexty N H N N U N H N
Avg L H L N U L H N
GPT-40 L L H N C H H L 81H)
3 LLAMA3 N L N N C H H N 10(O
Perplexity N L N N U N H N 75H)
Avg N L L N C L H N 85(H)
GPT-40 N H L N C L H L 77H)
4 LLAMA3 L H H N U H H N
Perplexty N H N N U N H N
Avg N H L N U L H N
GPT-40 N H L N C L H L 77H)
5 LLAMA3 L H H N U H H N
Perplexty N H N N U N H N
Avg N H L N U L H N
GPT-40 N H L N C L H L 77H)
6 LLAMA3 N L N N C H H N 10O
Perplexity N L N N U N H N 75(H)
Avg N L N N CL H N 930
GPT4o N H L N C L H L 77(0)
” LLAMA3 N L N N C H H N 10(0
Perplexty N H N N U N H N
Avg N H N N CL H N 75H
GPT-40 N H L N C L H L 77H)
8 LLAMA3 N L N N C H H N 10(O
Perplexty N H N N U N H N
Avg N H N N CL H N 75H
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Table A27. Detailed assessment of Poisoning/Trojan/Backdoor with OWASP Risk Rating

N° LLM SK MT OP SZ ED EE AW ID C I A FD RD NC PV Score
GPT-40 6 8 6 8 3 5 4 7 3 7 3 6 7 5 2

; _LLAMA3 6 8 9 5 8 9 6 8 8 6 5 7 8 5 8 49(0
Perplexity 6 8 6 5 5 6 4 7 8 7 5 7 8 6 7 41(O
Avg 6 8 7 6 5 7 5 7 6 7 4 7 8 5 6 390
GPT-40 7 8 5 6 3 5 3 3 7 7 2 6 7 7 7 3(H

, _LLAMA3 7 8 6 5 7 8 5 7 6 7 5 6 7 5 7 41(0
Perplexity 9 9 8 4 4 5 3 6 9 8 3 8 9 7 8 44(0)
Avg 8 8 6 5 5 6 4 5 7 7 3 7 8 6 7 37(H)
GPT-40 6 8 8 8 3 5 4 3 7 7 3 7 8 7 6 36(H)

; LLAMA3 6 8 9 5 8 9 6 8 8 7 5 7 8 5 8 50O
Perplexity 8 9 7 5 6 7 4 8 7 9 5 8 9 6 7 49(O
Avg 7 8 8 6 6 7 5 6 7 8 4 7 8 6 7 440
GPT-40 7 8 5 8 3 5 4 3 3 7 3 6 8 6 2

4 LLAMA3 7 8 6 5 7 8 5 7 6 7 5 6 7 5 7 41(0
Perplexity 6 8 8 5 5 6 3 9 8 9 4 8 9 7 8 47(O
Avg 7 8 6 6 5 6 4 6 6 8 4 7 8 6 6 4(0
GPT-40 8 8 5 8 3 5 4 7 3 8 3 7 8 6 2 31(H)

5 LLAMA3 6 8 7 5 4 6 3 8 9 6 3 8 9 7 9 43(H)
Perplexity 7 9 8 6 5 6 4 8 7 9 4 8 9 7 8 49(O
Avg 7 8 7 6 4 6 4 8 6 8 3 8 9 7 6 420
GPT-40 8 8 5 8 6 5 4 8 3 8 3 7 8 6 2 32(H)

¢ _LLAMA3 8 9 8 6 5 7 4 9 8 7 4 9 9 8 8 52(0
Perplexity 8 9 7 5 4 7 3 9 8 9 5 9 10 8 9 530
Avg 8 9 7 6 4 6 4 9 6 8 4 8 9 7 6 4(0
GPT-40 8 8 5 8 3 5 4 8§ 3 8 3 7 8 6 2 32(H)

, _LLAMA3 9 9 9 7 6 8 5 9 9 8 5 9 9 9 9 60O
Perplexity 8 9 7 6 5 7 4 9 8 9 5 9 10 8 9 56
Avg 8 9 7 7 5 7 4 9 7 8 4 8 9 8 7 49(0©
GPT-40 8 8 6 8 3 5 4 7 3 7 3 6 7 5 2 29(H

g _LLAMA3 8 8 8 6 5 7 4 8 8 7 4 8 8 7 8 48(0)
Perplexity 8 9 8 5 4 6 3 9 7 9 4 8 10 7 8 49(0
Avg 8 8 7 6 4 6 4 8 6 8 4 7 8 6 6 410
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Table A28. Detailed assessment of Poisoning/Trojan/Backdoor attacks with SSVC

N° LLM E AV U T P Score
GPT-4o P Y C S T S Immediate
1 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
» LLAMA3 P N C E T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
3 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT40 P Y D E P M
4 LLAMA3 P N D L P M
Perplexity N N D L P M Defer
Avg P N DL P M
GPT-40 P Y C S T S Immediate
5 LLAMA3 P N C E T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
6 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
” LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
GPT-40 P Y C S T S Immediate
8 LLAMA3 P Y C S T S Immediate
Perplexity P Y C S T S Immediate
Avg P Y C S T S Immediate
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