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Abstract: Generative artificial intelligence (AI) has emerged as a disruptive paradigm in molecular 

science, enabling algorithmic navigation and construction of chemical and proteomic spaces through 

data-driven modeling. This review systematically delineates the theoretical underpinnings, 

algorithmic architectures, and translational applications of deep generative models—including 

variational autoencoders (VAEs), generative adversarial networks (GANs), autoregressive 

transformers, and score-based denoising diffusion probabilistic models (DDPMs)—in the rational 

design of bioactive small molecules and functional proteins. We examine the role of latent space 

learning, probabilistic manifold exploration, and reinforcement learning in inverse molecular design, 

focusing on optimization of pharmacologically relevant objectives such as ADMET profiles, synthetic 

accessibility, and target affinity. Furthermore, we survey advancements in graph-based molecular 

generative frameworks, LLM-guided protein sequence modeling, and diffusion-based structural 

prediction pipelines (e.g., RFdiffusion, FrameDiff), which have demonstrated state-of-the-art 

performance in de novo protein engineering and conformational sampling. Generative AI is also 

catalyzing a paradigm shift in structure-based drug discovery via AI-augmented molecular docking 

(e.g., DiffDock), end-to-end binding affinity prediction, and quantum chemistry-informed neural 

potentials. We explore the convergence of generative models with Bayesian retrosynthesis planners, 

self-supervised pretraining on ultra-large chemical corpora, and multimodal integration of omics-

derived features for precision therapeutics. Finally, we discuss translational milestones wherein AI-

designed ligands and proteins have progressed to preclinical and clinical validation, and speculate 

on the synthesis of generative AI, closed-loop automation, and quantum computing in future 

autonomous molecular design ecosystems. 

Keywords: Generative AI; Molecular Design; Protein Engineering; Diffusion Models; Drug 

Discovery 

 

1. Introduction 

Drug discovery is traditionally costly, slow, and failure-prone (1). Preclinical discovery takes 

over five years, consuming one-third of total costs (2). With fewer than 10% of candidates succeeding, 

R&D expenditure per new drug exceeds $2 billion, mainly due to failures (3,4). Many failures stem 

from safety/efficacy issues emerging late (5). AI has recently accelerated in silico modeling across the 

pipeline, improving QSAR-based virtual screening and ML-driven protein engineering (6). 

Historically, rule-based de novo drug design (e.g., LUDI, PRO_LIGAND) explored limited 

chemical space due to human bias (6,7,8). Generative AI overcomes this by learning molecular 

patterns and creating novel compounds (10). Unlike classical methods that recombine known motifs, 

it explores uncharted chemical space (11). Given an estimated >1060 drug-like molecules, AI efficiently 

samples viable candidates via chemical manifolds (12). AI designs millions of molecules in the time 

it takes for manual design, optimizing multiple properties simultaneously (13). Recent pipelines 

enhance synthetic feasibility and drug-likeness. 
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AI-driven discovery integrates generative models with computational chemistry, transitioning 

from empirical screening to rational design (14). Mid-20th-century drug discovery relied on trial-and-

error; later, structure-based (X-ray) and ligand-based (pharmacophore) methods emerged (15). The 

2000s saw docking and QSAR improvements (16). AI now creates novel molecules, with the first AI-

designed drug (DSP-1181) entering trials in 2020 (17). 

In AI workflows, generative models design de novo molecules, filtered via predictive models 

(binding affinity, ADMET) (18,19). Top hits undergo docking, synthesis planning, and wet-lab 

validation. Retrosynthesis AI suggests lab synthesis routes, while experimental feedback refines 

models (20). AI continuously self-improves, navigating chemical space intelligently. Future 

directions include autonomous discovery, quantum computing, and regulatory frameworks (21). 

2. Deep Generative Models: Core Architectures 

Deep generative models enable de novo molecular design by learning statistical patterns in 

chemical datasets to generate novel, valid compounds. The five principal architectures and 

optimization strategies are illustrated in Figure 1, providing a conceptual overview of their roles in 

molecular generation 

2.1. Variational Autoencoders (VAEs) 

A VAE comprises an encoder that compresses a molecule (typically represented as a SMILES 

string or molecular graph) into a continuous latent vector, and a decoder that reconstructs the 

molecule from this vector (22). Trained on large compound datasets, the encoder maps structurally 

similar molecules to proximate points in latent space, effectively learning a continuous chemical 

manifold (23). The training objective is to maximize data reconstruction likelihood while enforcing 

the latent vectors to follow a smooth, multi-dimensional Gaussian distribution using Kullback–

Leibler (KL) regularization, enabling meaningful interpolation (24). The model optimizes the 

evidence lower bound (ELBO): 

𝐿𝑉𝐴𝐸 = 𝐸
𝑞∅(

𝑧
𝑥

)
[ln 𝑝𝜃 (
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Where 𝑞∅(
𝑧

𝑥
)  is the encoder (approximate posterior), and 𝑝𝜃 (

𝑥

𝑧
)  is the decoder (likelihood). 

Once trained, a random vector 𝑧 ~ 𝑝(𝑧) can be decoded into a novel molecule. Demonstrated for 

drug-like molecules by Gómez-Bombarelli et al. (2016–2017), VAEs enabled direct optimization in 

latent space to search for molecules with improved properties (25). The continuous latent space 

allows smooth interpolation between compounds (chemical morphing) to explore analogs (26). 

However, early SMILES-based VAEs often generated invalid or implausible structures (27). To 

address this, chemically informed decoders like Junction-Tree VAE were introduced, generating 

molecules as a tree of substructures, ensuring valency constraints are satisfied (28). VAEs have also 

been extended to 3D molecular conformations (23). 

VAEs provide a principled framework grounded in Bayesian inference, ensuring training 

stability and interpretability (29). Despite limitations in output validity and reconstruction bias, VAEs 

are frequently combined with latent space optimization techniques such as Bayesian optimization or 

gradient-based methods to identify latent vectors yielding molecules with desirable properties (30). 

While their abstract latent space can hinder direct property optimization, VAEs remain foundational 

in molecular generation (31). 

2.2. Generative Adversarial Networks (GANs)  

GANs approach generation differently. Instead of modeling data likelihood explicitly, GANs set 

up a two-player game between a generator and a discriminator (32). The generator creates molecules 

from random noise, while the discriminator distinguishes real from generated samples. Adversarial 

training forces the generator to produce realistic molecules (33). Applied to molecules in 2018 (e.g., 

ORGAN by Insilico Medicine), GANs used an RNN generator to output SMILES strings and a 

discriminator that rewarded drug-like outputs (34). Conditional GANs guide generation towards 

desired properties (e.g., target binding) by conditioning on context (35). 
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Figure 1. Architectures of deep generative models and latent space optimization in molecular design. (A) 

Variational Autoencoders (VAEs), (B) Generative Adversarial Networks (GANs), (C) Transformer-based 

models, and (D) Denoising Diffusion Models generate molecules using distinct mechanisms. (E) Latent space 

optimization explores continuous chemical manifolds to design molecules with desired properties. 

GANs face challenges in molecular domains due to discrete outputs: the generator’s character-

sequence output is non-differentiable. Solutions include policy gradient reinforcement learning and 

differentiable relaxations. Insilico’s Adversarial Threshold Neural Computer integrated GANs with 

reinforcement learning, using a differentiable neural computer as the generator and providing 

external rewards based on pharmacological properties (36). This hybrid generated a high percentage 

of valid, unique, and property-optimized molecules, while also incorporating synthesizability 

constraints (37). MolGAN, another milestone, generated molecular graphs (atom and bond matrices) 

directly. It achieved nearly 100% validity, improved synthetic accessibility, and solubility profiles 

compared to ORGAN (38). 

Despite these advances, GANs may suffer from mode collapse and training instability. Their 

learned distribution might not cover the full chemical space (39). However, conditional GANs remain 

powerful for generating analogs of lead compounds (40). Overall, GANs introduce adversarial 

learning into molecular design, emphasizing realistic outputs and targeted objectives, though 

maintaining output diversity and validity requires care. 

2.3. Transformer-Based Models  

Transformer-based models, originally developed for NLP, are also applied to molecular science 

(41). Their self-attention mechanism captures long-range dependencies in sequences. For small 

molecules (SMILES or SELFIES) and protein sequences, transformers treat chemistry as a language. 

For example, ChemBERTa, trained on millions of SMILES strings using masked token prediction, 

produces rich, label-free molecular embeddings suitable for downstream tasks such as property 

prediction or generative modelling (42,43). 

Transformers can generate molecules token-by-token (GPT-style), learning chemical syntax 

analogous to grammar. Such models can be conditioned to bias outputs toward specific property 

profiles (44). In lead optimization, transformers have proposed structural analogs based on known 

series (45). Protein language models (e.g., ProGen with 1.2B parameters trained on ~280M protein 

sequences) treat amino acid sequences like sentences. ProGen has generated functional enzymes with 

catalytic activity comparable to natural lysozymes, despite ~30% sequence identity. X-ray 

crystallography confirmed correct folds and active-site geometries (46,47). Transformers also support 

sequence-to-sequence tasks like codon optimization or property prediction (48). 

These models bridge sequence and structure, enabling protein and molecule generation via 

attention-based encoding of complex dependencies. They leverage large unlabeled datasets for self-

supervised learning, yielding representations useful for property prediction, structure generation, 

and analog design (49,50). 

2.4. Denoising Diffusion Models (DDPMs)  
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DDPMs represent the latest generative modeling wave. They iteratively corrupt data with 

Gaussian noise and learn to reverse this process. A forward Markov chain adds noise over T steps 

until the sample becomes pure noise. A neural network then learns to reverse the corruption by 

predicting denoised data at each step. Training minimizes a reweighted variational bound, typically 

reducing to the loss between predicted and true noise, equivalent to learning the score function 

∇ log 𝑝(𝑥𝑡) (51). 

Generation begins from random noise and progressively reconstructs data, enabling generation 

in the original space (e.g., 3D coordinates of atoms) rather than latent space. This supports highly 

diverse and high-quality outputs (52,53). Diffusion models have been applied to 2D molecular 

graphs, 3D conformations, and protein structures (54). For instance, graph diffusion models like 

GeoDiff (55) and RFdiffusion (56) add noise to adjacency and node feature matrices or 3D coordinates 

and reconstruct valid molecular structures, preserving symmetry and chemical rules. DiffDock (57), 

using SE(3)-equivariant diffusion, generates ligand poses in binding sites by diffusing atomic 

positions. 

Mathematically, as 𝑇 → ∞ , the model can approximate any data distribution, offering 

theoretical guarantees absent in VAEs or GANs (58). Though generation is slow due to multiple 

neural evaluations, recent innovations like DDIMs have reduced required steps. Diffusion models 

enable unconditional generation with high validity and conditional generation guided by context 

(e.g., pharmacophores, protein pockets). RFdiffusion can be prompted with a protein backbone motif 

to generate a full structure incorporating it, resulting in functional de novo binders (54,56). 

VAEs, GANs, transformers, and diffusion models each offer a distinct lens on learning and 

sampling chemical space (59). VAEs provide continuous latent embeddings and stable training. 

GANs deliver adversarial realism and property-driven design (60). Transformers model long-range 

dependencies in molecular/protein sequences, leveraging large datasets. Diffusion models refine 

samples from noise with high fidelity, especially in complex structured outputs. Modern workflows 

often combine models: e.g., using a transformer or VAE to generate candidates, then refining with a 

Diffusion model, or using a GAN to further optimize properties. Hybrid architectures (e.g., Diffusion 

models using transformers, or VAEs with GAN-style discriminators) are increasingly common (60–

64). 

2.5. Theoretical Considerations in Chemical Space Exploration 

2.5.1. Latent Space Optimization and Chemical Manifolds 

Generative models operate in high-dimensional chemical spaces and must ensure output 

validity and synthesizability, while efficiently identifying rare, high-quality candidates (14). VAEs 

and certain autoregressive models learn latent chemical manifolds, where distances correspond to 

structural similarity. In theory, optimizing in this latent space (via Bayesian or gradient methods) 

enables design of potent analogs near known actives (65–67). Yet, not all latent directions map to 

valid molecules. Some lead off the learned manifold, producing invalid or strange outputs (68). 

Techniques like property-conditioned latent spaces and validity filters help mitigate this (69). 

Alternatively, methods like PASITHEA invert differentiable property predictors to optimize input 

molecules directly (70). 

2.5.2. Validity and Synthesizability Constraints 

A well-trained generative model maps continuous latent vectors to discrete molecular space (71). 

Ensuring this mapping is smooth and chemically realistic remains an open challenge (72). Validity 

and synthesizability are essential. Early SMILES generators often violated valency rules (73). Modern 

models use graph-based construction, fragment-based methods (e.g., junction trees), or validity 

filters, achieving >95% valid molecules (28). Synthesizability remains difficult to measure. Some 

models use synthetic accessibility scores or predicted retrosynthesis steps as proxies (74). 

Reinforcement learning agents can be rewarded for generating molecules requiring fewer synthesis 

steps (75). TRACER, a conditional transformer, generates both molecules and plausible reaction paths 

using learned transformations, ensuring synthetic feasibility (76). 
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2.5.3. High-Dimensional Chemical Space 

Exploring high-dimensional chemical space is computationally demanding. A typical drug-like 

molecule has 20–70 heavy atoms, leading to enormous combinatorial possibilities (77). Generative 

models, trained on bioactive molecules, bias outputs toward favorable motifs (78). From a theoretical 

view, this is importance sampling: the model learns a distribution q(x) focused on regions where the 

true utility distribution p(x) is high. 

Techniques like reinforcement learning (RL) and Monte Carlo tree search (MCTS) efficiently 

guide search (79). In RL, the model acts as an agent adding atoms or groups, receiving rewards for 

desirable properties (e.g., potency, low toxicity), enabling targeted exploration (80). For example, a 

DDR1 kinase inhibitor was discovered within 21 days using RL-guided generative models (81). 

Genetic algorithms (GAs), which evolve molecular populations using crossover and mutation, also 

explore chemical space (82). Modern GAs use neural networks to bias mutations or select crossover 

points (83). 

Exploration balances exploitation (refining known scaffolds) with discovering novel ones. This 

balance is adjustable via model hyperparameters (e.g., softmax temperature, diffusion noise variance) 

(84). Some models explicitly incorporate exploration-exploitation tradeoffs, using strategies like 

Thompson sampling or multi-objective optimization (85). 

Generative models must also contend with the curse of dimensionality: high-dimensional 

property landscapes are complex, with many local optima (86). Generative models, trained on real 

data, implicitly learn some of this structure. But they rely on property predictors or experiments to 

evaluate novel molecules. Thus, the best strategy is integrating generation, prediction, and 

optimization. This closed loop, used in Bayesian optimization and active learning, iteratively 

improves candidates with fewer evaluations (73,78,87,88). 

Navigating chemical space with AI requires smooth, chemically realistic mappings, valid and 

synthesizable outputs, and strategic exploration (89). Embedding generative models within 

predictive-evaluative frameworks enables discovery of novel bioactives that would be infeasible by 

brute force (90). Future models may guarantee validity and bound synthetic complexity, further 

expanding the reach of AI-driven drug design (91). 

3. Generative AI for Molecular Structure Prediction and Optimization 

With the foundations in place, we turn to the practical applications of generative AI in designing 

new molecular structures and optimizing them for drug-like properties. These applications fall into 

two categories: small molecule design (drug-like compounds) and macromolecule/protein design 

(biologics, enzymes, antibodies). Generative models are used in conjunction with other AI techniques 

(self-supervised pretraining or reinforcement learning) to achieve specific goals, such as improving a 

lead compound’s potency or inventing a protein that binds a given target (14). This section discusses 

molecular optimization (Section 3.1) and protein design (Section 3.2), highlighting representative 

methods. 

With the foundations in place, we turn to the practical applications of generative AI in designing 

new molecular structures and optimizing them for drug-like properties (Figure 2). 

3.1. AI-Driven Small Molecule Design 

Designing small-molecule drugs is a multi-objective optimization problem: achieving potency 

against the target while satisfying other criteria (selectivity, pharmacokinetics, safety, etc.). Three 

approaches in AI-driven molecule design are: self-supervised learning of molecular representations, 

reinforcement learning for goal-directed optimization, and graph-based generative models. 

3.1.1. Self-Supervised Learning for Molecular Representations 

A critical aspect of molecular optimization is having a rich representation of molecules. Self-

supervised learning (SSL) trains models on large chemical databases using tasks like predicting 

masked atoms or contrastive learning between molecule augmentations (92–94). Models such as 

ChemBERTa were trained to learn chemical context through a masked token prediction task on 

millions of SMILES. The resulting models can predict properties or initialize generative tasks (42). 
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For example, transformer models pre-trained to predict missing atoms can generate complete 

molecules from partial fragments (95). Denoising autoencoders, trained to reconstruct a molecule 

from a corrupted version, can propose modifications to lead compounds, such as filling in missing 

parts (96). 

 

Figure 2. Generative AI strategies for molecular and protein design. (A–C) Approaches for small molecule 

optimization using self-supervised learning (ChemBERTa), reinforcement learning (ReLeaSE), and graph-based 

models (DeepScaffold). (D–F) Protein design methods, including diffusion models (RFdiffusion), large language 

models for sequence generation, and applications in antibody and enzyme engineering. 

3.1.2. Reinforcement Learning (RL) for Molecular Optimization: 

Generative models can be coupled with reinforcement learning (RL) to optimize objectives (97). 

Generation of a molecule is treated as a sequential decision process, where a generative model (e.g., 

an RNN or transformer) chooses actions like which atom to add at each step. A reward function 

reflects design goals, e.g., high reward for molecules predicted to bind a target and low reward for 

those likely to be toxic (14,28). ReLeaSE (Reinforcement Learning for Structural Evolution) uses two 

neural networks—one for generation and one for predicting properties like biological activity (98). 

RL algorithms like policy gradients or Q-learning guide the model towards molecules with better 

scores. RL can discover non-intuitive modifications to improve a molecule’s profile (99,100). 
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3.1.3. Graph-Based Generative Models: 

Since molecules are naturally graphs, generative models often use graph neural networks 

(GNNs). In graph grammar-based approaches, molecules are built by adding atoms or larger 

fragments to a partial graph (101,102). DeepScaffold uses CNN-based GNNs to add substituents to a 

predefined scaffold. These models ensure that molecules remain valid and incorporate medicinal 

chemistry rules (103). Some models allow scaffold hopping, generating a different core structure that 

still satisfies activity requirements (104). Combined with reinforcement learning, graph-based design 

is particularly useful in lead optimization, generating analogs of a given lead compound that improve 

properties (98). 

3.2. AI-Driven Protein Design 

Designing proteins with specific structures or functions is a grand challenge, and AI is 

revolutionizing this process. Unlike small molecules, proteins are large macromolecules with 

complex folding patterns and vast design spaces. Generative AI tackles these problems using 

techniques like diffusion models for protein structures, large language models for protein sequences, 

and specialized models for antibody or enzyme design. 

3.2.1. Diffusion Models for Protein Folding & Stability Prediction: 

Diffusion models, like RFdiffusion, treat the 3D coordinates of a protein backbone as data to be 

diffused. Starting from a random initial backbone, the model iteratively refines it into a physically 

plausible structure (56,105). RFdiffusion generates novel protein structures that are computationally 

predicted to be stable and experimentally verified to fold and function. This model excels at designing 

symmetric protein assemblies and enzyme active site scaffolds. The success rate of generating 

foldable proteins was significantly higher than prior methods. Diffusion models incorporate physical 

and evolutionary constraints, learning rules of protein folding that guide the generation process, 

leading to more stable and functional designs. 

3.2.2. LLMs for De Novo Protein Sequence Generation: 

Sequence-based generative models, particularly large language models (LLMs), have opened 

new pathways in protein engineering (106,107). Trained on large sequence databases (e.g., Uniprot), 

these models capture evolutionary patterns like motifs and domains that relate to protein function. 

LLMs can generate protein variants and rank them by their likelihood of being functional. Sampling 

in high-probability regions produces novel proteins that might not exist in nature. LLMs complement 

structure-first methods by generating sequences that can be predicted to fold into desired structures 

using tools like AlphaFold. This reduces the need for extensive wet-lab testing by filtering out likely 

failures in silico (107–111). 

3.2.3. Antibody and Enzyme Design Using AI: 

Two significant application areas are antibody design and enzyme design, where generative AI 

proves highly effective. 

• Antibody Design: AI can design antibodies by generating complementarity-determining region 

(CDR) sequences likely to bind a target antigen or by generating 3D conformations of antibody 

loops that complement antigen surfaces (112). DiffAb, a diffusion model, generates antibody 

structures conditioned on the 3D structure of the target antigen’s epitope, effectively growing an 

antibody loop to fit into the epitope pocket (113). The success of AbSci’s model in creating 

functional antibodies in silico indicates that these methods can produce viable therapeutic 

candidates (114). 

• Enzyme and Biocatalyst Design: Enzymes catalyze chemical reactions, and AI is transforming 

enzyme design by improving active site modeling and exploring backbone arrangements. 

RFdiffusion has been used to design enzyme active sites, with some designs showing promising 

activity. AI can also optimize existing enzymes by proposing mutations that stabilize them or 

alter their substrate scope. Generative models can propose multi-enzyme pathways for synthetic 

routes, offering a new approach to metabolic network design (115–117). 
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In both antibody and enzyme design, integrating experimental feedback accelerates the process. 

AI-generated designs are tested through high-throughput experiments, and the resulting data refines 

the models. This experiment-AI loop is becoming more efficient with automated laboratories that 

integrate robotics and AI for real-time analysis (118,119). 

4. Computational Strategies for AI-Guided Drug–Target Interactions 

A critical aspect of drug design is not just proposing molecules, but understanding and 

predicting how those molecules will interact with biological targets (proteins, nucleic acids, etc.). This 

involves docking (predicting the binding pose of a ligand in a protein’s active site), scoring and 

predicting binding affinity, and efficiently searching through large libraries for those interactions 

(virtual screening). Traditional computational chemistry methods like molecular docking programs 

and physics-based scoring functions have been standard for decades, but they have limitations in 

accuracy and speed. AI-driven approaches are now enhancing or outright replacing these steps: 

diffusion models are redefining molecular docking, deep neural networks are predicting binding 

affinities with high accuracy, and generative models are enabling ultra-large virtual screens by 

focusing on the most promising candidates. In this section, we explore how generative AI and related 

models contribute to drug–target interaction prediction, covering DiffDock and modern docking, 

binding affinity prediction, and large-scale virtual screening. 

4.1. DiffDock and Beyond: AI in Molecular Docking 

Molecular docking is the computational prediction of a ligand’s preferred orientation (pose) and 

position when bound to a target protein, typically an early step in in silico drug screening. Classical 

docking programs (AutoDock, DOCK, Glide, etc.) use physics-inspired scoring functions to evaluate 

many possible poses but often treat the protein as rigid and use approximations that can mis-rank 

good binders. Enter AI: methods like DiffDock have reframed docking as a generative modeling 

problem. DiffDock uses a 3D diffusion model to generate candidate ligand poses in a given protein 

binding site. It starts with random orientations and positions, then iteratively “denoises” its 

translation and rotation, guided by a learned scoring potential to bring the ligand toward likely 

binding modes. 

DiffDock doesn’t use a traditional scoring function; instead, it was trained on a large dataset of 

known protein–ligand complexes, learning an implicit representation of shape complementarity and 

interactions. On standard benchmarks, DiffDock significantly outperformed traditional docking 

tools. For example, at a 2 Å RMSD threshold, DiffDock placed ~22% of predictions within that range, 

more than double the success rate of traditional methods, which often hovered around ~10%. It also 

maintained strong performance on difficult cases where other methods failed. This success is 

attributed to DiffDock’s ability to implicitly account for protein flexibility, learning a distribution of 

likely poses that might correspond to slight protein side-chain movements, something rigid docking 

struggles with. 

DiffDock includes a confidence model that estimates the reliability of its predicted pose. This 

confidence score correlates well with pose accuracy, helping to prioritize high-confidence 

predictions. DiffDock also provides speed combined with accuracy, enabling high-throughput 

docking campaigns. Additionally, as a generative model, DiffDock produces multiple plausible 

poses, reflecting possible binding modes or tautomeric states of the ligand, giving medicinal chemists 

a richer view of ligand binding. The DiffDock approach, along with AI-enhanced virtual screening 

and affinity prediction strategies, is illustrated in Figure 3. 

Beyond DiffDock, other AI methods like EquiBind (120), a one-shot GNN-based method, also 

show promise, though DiffDock’s diffusion approach is more accurate for many targets. Another 

extension, DiffDock-PP (121), applies diffusion to protein–protein docking, which is a more complex 

scenario of two flexible bodies coming together, and has shown promising results. 

AI in docking also integrates with scoring refinement. Once DiffDock places a ligand, one can 

use a brief physics-based minimization or a neural network rescoring model to refine the pose and 

binding score, further improving accuracy. This synergy of AI-guided generation and traditional 

force-field refinement can deliver both speed and data-driven insights, plus fine-detail adjustment 
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from physics. DiffDock's ability to learn a statistical potential for interactions from data also implicitly 

captures difficult-to-model effects like entropy and solvation, helping it outperform hand-crafted 

scoring functions (122,123). 

What does this mean for drug discovery? In practice, DiffDock accelerates drug target 

identification. Researchers can now screen a library of compounds by docking them with DiffDock 

to a target, triaging huge libraries in a day. DiffDock also supports polypharmacology studies, 

screening a drug against many proteins in silico to predict off-targets or new uses (124). The model 

can help elucidate mechanisms of action for novel phenotypic screening hits by docking them to 

panels of protein structures. 

 

Figure 3. AI-driven strategies for drug–target interaction prediction. (A) DiffDock uses diffusion models for pose 

generation and refinement. (B) AI-enhanced virtual screening accelerates compound prioritization via deep 

learning and optimized docking. (C) AI-based models, such as GNNs, outperform traditional scoring in binding 

affinity prediction. 
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4.2. Protein–Ligand Binding Affinity Prediction 

Accurately predicting the binding affinity (e.g., Kd or IC50) of a small molecule to its target protein 

is crucial for lead optimization. Traditional methods like scoring functions or physics-based free 

energy calculations can be unreliable or slow. AI-driven models now provide data-driven predictions 

that can quickly estimate binding affinities with high accuracy. 

End-to-end deep learning models have been developed that take protein–ligand complexes as 

input (either 3D coordinates or interaction lists) and output binding affinities or scores. These models 

often use 3D convolutional neural networks or graph neural networks (GNNs) that treat the protein–

ligand pair as a combined graph (125,126). GNN models represent protein residues and ligand atoms 

as nodes, with edges representing interactions (contacts, hydrogen bonds, etc.), learning to predict 

affinity (127,128). Some deep models have achieved a Pearson correlation of ~0.8 on benchmarks like 

PDBBind (129), significantly outperforming traditional methods. 

Quantum + AI hybrid models are also emerging, combining quantum mechanics with AI to 

improve binding predictions, particularly in cases where electronic effects or polarization are critical. 

These hybrid models use quantum mechanical descriptors as inputs to machine learning models or 

even quantum circuits to represent parts of the model, potentially improving predictions of subtle 

electronic interactions. While quantum methods are still in the early stages, quantum + AI 

combinations are showing promise for more accurate binding affinity predictions (130–133). 

Binding affinity prediction also embraces multi-task and multi-modal learning. A single model 

can be trained to predict not just affinity, but also other experimental readouts like activity in a cell 

assay or entropy of binding. This allows the model to be more robust through shared representations. 

Additionally, coupling binding prediction with generative design is powerful: generative models 

propose analogs, and deep affinity predictors quickly estimate their potency, enabling thousands of 

designs to be tested in seconds (134,135). 

4.3. Large-Scale Virtual Screening 

Virtual screening (VS) evaluates large compound libraries to identify hits for a target, often using 

docking or pharmacophore matching. With AI and improved prediction models, VS is evolving to 

handle ultra-large libraries and AI-guided combinatorial library generation. 

Recent efforts have led to the creation of vast purchasable libraries, like Enamine REAL, 

containing >1 billion compounds. Screening these with traditional docking is impractical, but deep 

learning models can predict docking scores or binding likelihood for all compounds, rapidly 

reducing the library size to a manageable set for further evaluation. 

Another approach uses similarity in latent space: if one has a known active ligand, one can 

encode the compounds into a learned embedding space and do a nearest-neighbor search to find 

those most similar in relevant ways, faster than traditional docking. AI can also generate focused 

libraries on the fly, sampling virtual compounds biased toward predicted binders and screening them 

for efficacy, blurring the line between virtual screening and de novo design. This approach, 

demonstrated during the COVID-19 pandemic, has the potential to vastly increase the scale of virtual 

screening. 

AI-guided combinatorial chemistry further enhances screening by intelligently selecting which 

combinations of building blocks to synthesize. AI models evaluate subsets of possible products, 

learning which parts contribute to desired activity, and pruning the search space to focus on 

promising combinations. 

5. AI-Driven Synthesis Planning and Retrosynthesis 

Designing a promising molecule is only half the battle – one must also be able to make that 

molecule efficiently. Retrosynthesis planning is the process of identifying a sequence of chemical 

reactions to synthesize a target molecule from available starting materials. Historically tackled by 

expert chemists and rule-based software (like E.J. Corey’s LHASA or Synthia), AI is now playing a 

major role in retrosynthesis and synthesis planning, offering data-driven predictions and creative 

route suggestions. Key contributions of AI include predicting feasible reactions, using reinforcement 
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learning to navigate possible routes, and employing Bayesian optimization to propose optimal 

reaction conditions or pathways (Figure 4). 

Predicting synthetic feasibility: AI helps evaluate a molecule’s structure and suggests possible 

retrosynthetic disconnections. Transformer models and GNNs trained on millions of reactions can 

predict reaction patterns (20). For instance, IBM’s RXN for Chemistry uses a sequence-to-sequence 

transformer to predict reactants given a product. These models output multiple disconnections, 

which can be recursively applied to break the molecule down stepwise (136). AI retrosynthesis 

produces a retrosynthetic tree or network of possible routes, each step predicted with a confidence 

score. Early deep learning models, like RetroTransformer, have achieved success rates comparable to 

expert chemists and sometimes uncover routes human chemists might overlook (137). 

 

Figure 4. AI-driven synthesis planning pipeline for retrosynthesis and reaction optimization. The process 

begins with a target molecule (top left), where AI models predict retrosynthetic disconnections. Transformer 

models and graph neural networks (GN004Es) are trained on reaction databases to identify viable bond 

disconnections, yielding confidence scores for each prediction. Monte Carlo Tree Search (MCTS) is then 

employed to optimize synthetic pathways by evaluating and pruning possible routes. After selecting an optimal 

pathway, AI-based Bayesian optimization algorithms identify optimal reaction conditions to maximize yield. 

The entire process culminates in an experimentally feasible and optimized synthesis route. 

However, AI doesn’t fully replace human planning; it acts as a powerful assistant. The model 

proposes several routes, and a chemist reviews and refines them. A limitation is that AI models are 

trained on known reaction data, making it difficult for them to suggest truly novel chemistry (138). 

Reinforcement Learning for Retrosynthesis: The space of possible synthetic routes is vast, 

resembling a game with many reactions as possible moves. AI uses methods like Monte Carlo Tree 

Search (MCTS) guided by learned policies to explore the retrosynthesis tree efficiently (139,140). Deep 

reinforcement learning (RL) has been applied, with an RL agent proposing retrosynthesis steps and 

receiving rewards when reaching purchasable building blocks. This approach minimizes the number 

of steps, rediscovering many known strategies (141). AI-guided search prunes unlikely paths, making 

it more efficient than traditional rule-based programs. A challenge is ensuring that the predicted steps 

are not only theoretically plausible but also practically executable. 

Reaction condition optimization: Once a route is chosen, AI/ML techniques like Bayesian 

optimization automate reaction condition optimization. Bayesian optimization treats reaction yield 
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as a function of conditions and selects which conditions to try next. A cost-aware Bayesian optimizer 

can factor in the time/resource cost of experiments, focusing on cost-effective routes (142–146). 

Integration of synthesis planning in design: Generative models can guide design toward more 

synthesizable regions of chemical space in real-time. Combined design-synthesis optimization 

frameworks, like TRACER and Syn-MolOpt, optimize both molecular properties and synthetic 

accessibility (147). For example, a complex molecule predicted to be difficult to synthesize can be 

deprioritized in favor of a more synthesizable alternative, ensuring a balance between potency and 

ease of synthesis (148). 

AI-driven synthesis planning is narrowing the gap between the molecules we can design and 

synthesize. By predicting synthesis pathways and optimizing reaction conditions, generative 

pipelines focus on candidates that are both innovative and realizable. Reinforcement learning and 

search algorithms enable retrosynthesis tools to handle complex targets. This fusion of design and 

synthesis planning accelerates the drug discovery cycle and minimizes the risk of pursuing infeasible 

designs. 

6. AI for Pharmacokinetics and Toxicity Prediction 

While potency and synthesizability are crucial, a successful drug must also possess suitable 

pharmacokinetic (PK) and safety profiles. This includes absorption (can it get into the bloodstream?), 

distribution (does it reach the target tissue?), metabolism (is it broken down too quickly or into toxic 

metabolites?), excretion (can it be eliminated from the body?), and toxicity (does it harm cells or 

organs, or cause side effects?). These properties are encapsulated in the acronym ADME/Tox. 

Generative AI models and predictive machine learning are being used to evaluate and optimize these 

factors early in the design process, aiming to produce drug candidates that are not only effective but 

also drug-like and safe. 
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Figure 5. AI-driven strategies for optimizing pharmacokinetics, toxicity, and personalized drug discovery. (A) 

AI predicts ADME/Tox properties to guide early drug optimization. (B) Generative models balance potency with 

ADME/toxicity profiles. (C) AI leverages multi-omics data for patient-specific drug design in precision medicine. 

6.1. ADME/Tox Predictions 

Drug-likeness constraints: Medicinal chemists apply rules (like Lipinski’s Rule of 5) to ensure 

oral bioavailability. AI can learn nuanced drug-likeness patterns from large datasets of known drugs 

and failed compounds. Models like neural networks and ensemble methods (random forests, 

gradient boosting) distinguish drug vs non-drug molecules, capturing subtle features. Generative 

models incorporate drug-likeness as part of their scoring function, co-optimizing for favorable 

ADME properties. 

Absorption and distribution: AI models predict permeability, solubility, and plasma protein 

binding. Deep learning regression models predict Caco-2 cell permeability or blood-brain barrier 
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penetration based on molecular structure. Models for human intestinal absorption can classify 

compounds as high vs low absorption, guiding early elimination of very polar compounds. 

Metabolism and elimination: AI methods (MetPred, RS-WebPredictor) predict metabolic 

stability and sites of transformation (e.g., CYP450 enzymes). More advanced models predict 

metabolite structures using sequence-to-sequence learning. Models predict P450 inhibition to avoid 

drug-drug interactions, penalizing molecules likely to inhibit major isoforms like CYP3A4. 

Toxicity and off-target effects: AI predicts various toxicities: 

• In vitro cytotoxicity using Tox21 challenge data. 

• Organ toxicity (hepatotoxicity, cardiotoxicity), including hERG channel inhibition, predicted by 

ML models. 

• Genotoxicity and carcinogenicity predictions using Ames test data or animal studies. 

• Reactive functional group alerts: AI identifies substructures causing nonspecific reactivity or 

toxicity, learning broader patterns of reactivity beyond known PAINS. 

In practice, AI-driven ADMET tools are applied in lead optimization, predicting properties like 

logP, solubility, permeability, clearance, and hERG risk. Multi-parameter optimization (MPO) 

frameworks balance potency and ADMET properties. AI helps navigate trade-offs; for instance, 

improving solubility might reduce CNS toxicity but also lower permeability. AI proposes 

modifications to improve one property without overly harming others (149,150). By identifying 

ADME/Tox issues early, AI saves time and cost by avoiding failure due to pharmacokinetic issues or 

toxicity. 

Predicting off-target interactions: AI models trained on bioactivity databases predict unwanted 

off-target interactions, guiding generative design. Multi-task neural networks like prOCTOR predict 

activity across multiple off-targets, enabling in silico “safety pharmacology” panels. Generative 

design can penalize compounds with high affinity for undesirable anti-targets, actively minimizing 

off-target effects (151). 

Modern AI-driven drug design optimizes multi-factor properties (potency, ADME, toxicity), 

ensuring compounds have a balanced profile. This approach embodies “fail fast, fail cheap” by 

identifying potential failures early, reducing costly animal studies. 

6.2. Personalized Drug Discovery 

AI is paving the way for precision medicine, tailoring drug discovery to individual patient data 

(e.g., genomic, multi-omic). Unlike traditional drug discovery, AI in personalized medicine aims to 

design drugs for specific subpopulations or individual patients. Generative AI can leverage multi-

omics datasets (genomics, transcriptomics, proteomics) to discover novel therapeutic strategies or 

patient-specific drug candidates. 

In oncology, AI models design molecules targeting mutant proteins without affecting normal 

variants. For example, AI could propose a drug combination for a tumor with specific oncogene 

dependencies. These applications are illustrated in Figure 5, which highlights AI-driven strategies 

for ADME/Tox prediction, multi-parameter optimization, and personalized drug design. Generative 

AI optimizes drugs to reverse a disease-specific expression signature in transcriptomic-driven drug 

design. AI models predict gene expression changes based on structure and optimize accordingly. 

Multi-omics-based generation: AI analyzes rich patient data to identify novel targets or 

pathways. For example, AI might stabilize an atypical protein conformation in a tumor, thereby 

blocking its function. AI can also design personalized vaccines, creating neoantigens optimized for 

an individual’s HLA type. This was successfully demonstrated with AI-generated therapeutic 

vaccines tailored to a patient's tumor mutations. 

Generative AI also aids in rare disease drug discovery. For example, AI could design a 

pharmacological chaperone for a unique pathogenic mutation. Moreover, AI suggests drug 

repurposing for patients with specific gene expression signatures, identifying existing drugs with 

profiles opposite to the disease state. 

While personalized generative drug design is emerging, AI can integrate patient data to suggest 

personalized therapeutic molecules. This could lead to AI-designed drugs tested on a patient’s cells 

or organoids, with the potential for rapid, precise treatments. While challenges exist, AI in precision 
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drug discovery promises the long-envisioned goal of “the right drug for the right patient at the right 

time.” 

7. Experimental Validation and AI-Augmented Pipelines 

No matter how powerful our in silico methods are, experimental validation is the ultimate 

proving ground for any AI-designed molecule or protein (Figure 6). In this section, we discuss how 

AI-designed candidates are being validated in the lab (and some notable success stories), as well as 

how experiments themselves are becoming more integrated with AI (creating a closed-loop discovery 

pipeline). We cover wet lab validation of AI-designed drugs (7.1) and how AI assists in protein 

engineering and biotechnology (7.2), including real-world examples where AI-designed proteins 

have been synthesized and tested. 

7.1. Wet Lab Validation: Case Studies of AI-Designed Drugs and Challenges in Translation 

Over the past few years, we’ve seen AI-designed molecules advancing into experimental and 

clinical stages. A landmark in 2020 was the first fully AI-designed drug (DSP-1181 for OCD, designed 

by Exscientia) entering Phase I clinical trials (152). This small molecule, optimized for activity on a 

GPCR target, went from concept to clinic in 12 months, instead of the usual 4–5 years. Similarly, 

Insilico Medicine’s AI-discovered drug for idiopathic pulmonary fibrosis entered Phase I trials in 

2022, reducing time and cost compared to traditional programs. 

Another exciting case is AbSci’s 2023 AI-designed de novo antibody, which was synthesized and 

confirmed to bind and neutralize its target. The FDA also granted Orphan Drug Designation to an 

Insilico-designed drug for a rare disease in 2023, further validating AI's role in drug development 

(153). 
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Figure 6. AI-augmented pipelines in drug discovery and biotechnology. (A) AI accelerates drug discovery 

through molecular design, high-throughput screening, and iterative validation. (B) AI enables de novo protein 

design, enzyme engineering, and synthetic biology applications, enhancing experimental efficiency and 

precision. 

However, not all AI-designed candidates succeed. Some molecules have failed to meet efficacy 

endpoints or faced unforeseen issues, such as one report where AI-derived molecules did not 

outperform traditional leads. These instances highlight that while AI expedites clinical candidate 

development, rigorous experimental validation is essential. AI predictions can be wrong, as 

compounds predicted to be non-toxic may show toxicity due to overlooked factors, like rare 

metabolic byproducts. 

To mitigate risks, AI-driven projects adopt a fail-fast approach: generating multiple top 

candidates, testing them in vitro, and iterating. For instance, if AI yields five candidates with similar 
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profiles, all might be tested for potency, solubility, metabolic stability, and toxicity (e.g., hERG patch-

clamp assay). Insilico’s fibrosis drug underwent ~6 AI design iterations, testing dozens of 

compounds, before identifying the clinical candidate. 

AI augmenting experiments: AI also aids in experiment planning and analysis. In high-

throughput screening, AI can detect patterns in assay readouts, identifying hits that work via desired 

mechanisms and distinguishing false positives. In robotics and automation, AI directs experiments 

like flow chemistry setups to optimize reaction conditions, updating the model in real-time. In 

microfluidics, AI designs experiments, executes them, and analyzes the data with minimal human 

intervention (154–158). 

Challenges in translation: A major issue is the predictive gap. AI models may fail to account for 

real-world variables, such as molecule instability or dynamic protein structures. Verifying binding 

through biophysical methods like X-ray crystallography is crucial. Some AI-designed ligands have 

matched their predicted binding poses with targets, reinforcing confidence in the design (159–163). 

Chemical novelty vs synthetic familiarity is another challenge. AI sometimes proposes novel 

structures that present synthetic difficulties or unexpected reactivity. Medicinal chemists often apply 

a “chemical intuition filter” to make these designs more practical. 

Despite these challenges, each successful case of an AI-designed drug reaching clinical trials 

validates the approach. By 2024, over 15 AI-designed molecules were in clinical trials, suggesting that 

in the next decade, many new clinical candidates may involve AI (164). 

Experimental validation is essential for testing AI-designed solutions. Proof-of-concept that AI-

designed molecules can become real drugs and proteins function as intended marks a significant 

achievement. The challenges are addressed through iterative testing and improved models, and with 

advances in AI and laboratory automation, the gap between design and validation will continue to 

narrow. 

7.2. Protein Engineering in Biotechnology: AI-Augmented Enzyme and Pathway Design 

Generative AI is profoundly impacting protein engineering and biotechnology. AI is being used 

to design industrial enzymes, optimize metabolic pathways, and create synthetic biological parts. AI-

designed enzymes and proteins, as discussed in previous sections, are having significant 

applications. 

Enzyme design and metabolic engineering: AI is enabling the de novo design of enzymes with 

functions not found in nature. For example, a de novo enzyme was designed to hydrolyze 

organophosphates, showing measurable activity in breaking them down—useful in bioremediation. 

AI-designed enzymes often function without experimental optimization, which was rare with 

traditional methods (165,166). 

In metabolic pathway engineering, AI identifies enzyme variants that improve pathway 

efficiency, specificity, or by-product formation. For example, AI may suggest enzyme variants for a 

rate-limiting step or redesign enzymes to improve specificity. 

Synthetic biology and novel protein functions: AI is also used to design transcription factors, 

DNA-binding proteins, and self-assembling peptides. RFdiffusion, for instance, was used to design 

symmetric nanocages, confirmed by electron microscopy. These can be applied in drug delivery, 

vaccines, or biomaterials. AI can also design multi-enzyme complexes that streamline metabolic flux 

by channeling intermediates, reducing the need for separate enzymes (167–169). 

From AI design to biotech product: While AI-designed proteins still require substantial lab 

work, the models help reduce the number of variants to test. AI aids in designing proteins that 

fluoresce at specific wavelengths, expanding cell biology imaging capabilities. 

Real-world impact: AI is helping design solutions in environmental, industrial, agricultural, and 

medical applications. For example, AI has assisted in designing enzymes to degrade plastic waste, 

replacing traditional catalysts in pharmaceutical synthesis, and creating pest-resistant proteins in 

agriculture. AI is also enhancing therapeutics by designing proteins with fewer side effects by altering 

their surfaces to avoid undesired interactions. 

In the future, AI-augmented protein engineering will enable the rapid creation of custom 

enzymes or proteins on demand. Early results, such as AI-designed proteins binding insulin 
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receptors or enzymes accelerating novel reactions, indicate that AI will revolutionize biotechnology 

by enabling tailored solutions for various challenges. 

8. Future Perspectives: AI-Designed Medicines & Autonomous Discovery 

AI has initiated a shift in molecular science, promising more integration into drug and protein 

discovery, potentially leading to fully autonomous discovery pipelines. These systems could generate 

hypotheses, test them (virtually or physically via robotics), learn from outcomes, and improve with 

minimal human intervention. Existing components, like generative models proposing molecules and 

automated labs synthesizing and testing them, hint at what broader autonomous discovery could 

achieve. For example, a project used a flow chemistry robot and an AI planner to autonomously 

synthesize and test hundreds of analogs, improving target activity ten-fold without human chemists 

deciding each step (170). 

A particularly exciting prospect is self-driving AI that not only designs molecules but refines 

itself by learning from outcomes. An AI could design a drug, test it, adjust its parameters, and 

generate new hypotheses. These AI agents could handle data crunching and routine decision-

making, leaving scientists to focus on higher-level strategy and creative insights. 

8.1. Fusion with Quantum Computing 

AI combined with quantum computing could revolutionize drug design by solving quantum 

mechanical problems that classical computers struggle with, like binding free energies or reaction 

pathways. Quantum machine learning algorithms could operate in chemical Hilbert space, enabling 

simulations of large biomolecules or materials beyond classical reach. Companies are exploring 

quantum-enhanced generative models (like quantum GANs for molecules) , which may improve 

proposal quality and diversity. Quantum algorithms might also generate reaction pathways, aiding 

retrosynthesis. While practical quantum computing is emerging, it promises breakthroughs in 

complex systems like large drug-targets (171–173). 

8.2. Ethics and Regulation of AI-Designed Drugs 

As AI plays a larger role, ethical and regulatory questions arise. A key concern is accountability 

if an AI-designed drug causes adverse effects. Regulators might require additional validation steps 

and transparency in AI model decisions. Research is ongoing to make AI models interpretable, e.g., 

highlighting molecular substructures linked to low toxicity. Moreover, AI must avoid generating 

harmful compounds; an example showed an AI generative model could design chemical weapons if 

misdirected. Safeguards, such as filtering toxic outputs, are necessary. The FDA has approved AI-

designed drugs for trials , and regulators may soon require AI design methodology in submission 

dossiers, ensuring AI’s role is validated with empirical evidence for safety and efficacy (174–178). 

8.3. Personalized Drug Design Ethics 

In personalized drug design, regulators must address N-of-1 trials or adaptive trial designs. 

Equity concerns will arise, ensuring AI-designed therapies are accessible globally, not just to wealthy 

individuals. Automating the design process and reducing costs will make personalized treatments 

more accessible (179). 

The future of AI in molecular science promises transformative advances. AI will not replace 

humans but work alongside them, expanding creativity and accelerating innovation in drug 

discovery and protein engineering. With careful oversight and regulation, AI will help create cures 

at unprecedented speeds, addressing unmet medical needs, including for rare diseases and 

personalized therapies (180). 

9. Conclusions 

Generative AI has revolutionized drug discovery and protein design, shifting from rule-based, 

labor-intensive methods to AI-driven processes. Deep generative models, including VAEs, GANs, 

transformers, and diffusion models, enable the creation of novel molecular structures and protein 
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sequences with desired properties. This addresses challenges in early-stage drug discovery: 

navigating vast chemical space, optimizing multiple parameters, and overcoming human bias. 

AI-designed molecules have advanced from models to clinical trials , and AI-generated proteins 

now perform valuable functions. AI optimizes for multiple metrics simultaneously, producing 

balanced candidates less likely to fail. The future holds autonomous discovery systems where AI 

designs molecules and controls robotic experimentation, compressing the time from target 

identification to preclinical candidate. 

However, ethical and regulatory challenges remain. AI can generate harmful molecules, 

requiring safeguards and human oversight. Regulatory bodies must adapt, evaluating AI-designed 

drugs with predictive modeling results and ensuring safety and efficacy. 

Generative AI is transforming molecular science, uniting computational chemistry, structural 

biology, and systems biology. Advances in deep generative models, AI-guided docking like DiffDock 

, and diffusion models for protein design demonstrate rapid field progress. AI promises more 

effective, personalized medicines, biotech solutions, and faster responses to emerging health threats. 

Responsible integration will enhance the discovery of cures and engineered biomolecules. 
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