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Abstract: Background/Objectives: Histopathological diagnosis of invasive carcinoma breast samples 

includes the scoring of mitotic activity. This is a tedious and time-consuming task with high 

interpathologist variability. Methods: As an assistance to pathologists, we developed a deep learning 

based pipeline for mitosis detection and mitotic scoring according to the Elston and Ellis grading 

system on Whole Slide Images (WSI) for the first time here described. Results: We present its 

performance on routine data through a clinical study which clearly demonstrates its value. When 

assisted by Artificial Intelligence (AI), pathologists show better accuracy and reproducibility on the 

mitotic score. Conclusions: To the best of our knowledge, this is the first study to demonstrate that 

AI can successfully assist pathologists for mitotic score determination in human breast WSI in routine 

practice.  

Keywords: Invasive breast carcinoma; mitoses; digital pathology; WSI; artificial intelligence; deep 

learning mitotic score reproducibility; clinical study 

 

1. Introduction 

Diffusion in daily pathological practice of slide digitization and AI-based solutions promises to 

facilitate routine practice, enabling faster, more accurate and reproducible diagnoses for better 

patient care. In case of breast pathology, numerous studies have successfully applied computer vision 

tools to analyse whole slide images (WSI) of breast carcinoma specimens. Some research studies focus 

on lesion detection [1–3] while others aim to identify specific biomarkers such as tumor-infiltrating 

lymphocytes [4,5] or microcalcifications [6]. Comprehensive lesion diagnosis often involves multiple 

complex and tedious tasks.  

For instance, in cases of breast NST invasive carcinoma (IC), pathologists must identify the area 

with the highest mitotic density (known as hotspots) and count the cells undergoing division, termed 

mitoses, within this region. 

Integrated into the Nottingham histoprognostic score [7], the mitotic score (MS) is derived from 

the mitotic count (MC) performed on the most mitotic area of IC, referred to as mitotic hotspots (MH) 

[8]. There is three mitotic scores (1, 2 and 3). This mitosis counting is a laborious and time-consuming 

task. Moreover, a study by Rakha et al. [9] demonstrated significant inter-observer variability in 

mitotic counts, with discrepancies depending on the count’s location. Mitoses are small and must be 

counted at high magnification (40x), making thorough tumor inspection challenging. Furthermore, 
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identifying mitotic figures can be subjective, as they can be mistaken for cells undergoing 

degeneration, apoptosis, or necrosis. The introduction of AI tools in this field enhances 

reproducibility, speed, and ease of performing these tasks. 

Automatic mitosis detection using AI-based tools could reduce variability, increase accuracy, 

and save time in pathologists’ daily routines. A recent study [10] suggested that AI would likely be 

routinely used for mitosis counting by 2030. In 2023, the French Society of Pathology (SFP) surveyed 

165 French pathologists regarding the potential contributions of AI to the field: 56.4% identified 

mitotic activity assessment as the most challenging aspect of the Nottingham scoring system, while 

84.2% indicated a need for diagnostic support solutions, including automated quantitative 

measurements like mitotic counting. Recent studies on mitosis detection in WSIs have shown 

significant advancements in accuracy and efficiency through deep learning models. Notable 

approaches include combining Faster R-CNN and YOLOv5, achieving an F1-score of 84%  with a 

large annotated dataset and providing an end-to-end web-based platform for image analysis and 

diagnosis [11,12]. Another innovative method, ”Mitosis Detection, Fast and Slow” employs a two-

stage framework for candidate segmentation and refinement, enhancing sensitivity and 

computational efficiency by initially processing downscaled images and refining them with deeper 

Convolutionnal Neural Networks (CNNs) [13]. Efforts to address domain shifts in WSIs through 

color augmentation and stain normalization have also been explored to improve model 

generalizability across different imaging conditions [13]. 

To date, no study has practically compared the use of an automatic mitosis detection solution 

by pathologists to pathologists couting mitosis alone. We developed an automatic mitotic detection 

pipeline within WSI that also locates relevant hotspots. A clinical study on routine practice WSI 

evaluate whether this tool assists pathologists in determining the mitotic score. To the best of our 

knowledge, this is the first study to demonstrate that AI could successfully aid pathologists in 

determining mitotic score in breast WSI. 

2. Materials and Methods 

2.1. Data Description 

The data used to train and test our models originate from two sources of WSI : MIDOG 2021 [14] 

and Bicêtre Hospital. This double origin was chosen to increase the variability of mitotic patterns and 

slide quality. 

MIDOG 2021 challenge released a multi-scanner mitotic dataset. It originates from 50 breast 

cancer WSIs, stained with routine hematoxylin-eosin (HE) dye, and scanned with one of following 

manufacturers Hamamatsu XR NanoZoomer 2.0, Hamamatsu S360 and Aperio ScanScope CS2. The 

training set contains 1721 mitotic figures and 2714 hard examples (non-mitotic figures). Only mitotic 

figures were used for our application. 

Slides selected to build challenge datasets are generally believed to be of good quality: thin cuts 

and limited amount of artefacts. Routine WSI can be much different. To design a robust pipe, ready 

for laboratory use, a dataset was built upon daily practice hematoxylin-eosin-safran (HES) WSI in 

collaboration with the Bicêtre Hospital. Thirty-two WSI were scanned with P250 and P1000 

3DHistech scanners at zoom x20 and digital magnification by 1.6. Labelling was performed by two 

experienced pathologists used to digital pathology along the following process : one pathologist 

annotates mitosis-like objects on the slides whatever they are normal, atypical or imposters and a 

joint review is then carried out to reach a consensus to remove imposters. The labelling process was 

performed using Cytomine software [15] and resulted in 1677 mitosis. 

2.2. Pipeline Description 

The detection pipeline is made of a two-stage process (Figure 1). 

First a patch-based IC detector (described in [16]) is used to determine the area where the mitotic 

analysis should be conducted.  
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Then, cancerous patches are fed to a two-step mitosis localization stage: first a 50x50 pixels object 

detector, based on RetinaNet [17], locates mitosis-like objects. Then most probable objects go through 

a final classifier, based on MobileNetV2 [18], that assesses whether they are true mitosis or not. 

Objects with high enough classification confidence are finally considered as mitoses. 

As a last step, hotspots regions are automatically located. Hotspots are regions with highest 

mitotic density from where pathologists should start the mitotic count. We set hotspots as circular 

regions with size 1 𝑚𝑚2, which was considered relevant by expert pathologists. For each patch p 

containing a mitosis, a hostpot score hp is computed as 

ℎ𝑝 = 𝑛𝑏𝑀𝑖𝑡𝑜𝑠𝑖𝑠𝐶1𝑚𝑚²
+  𝜖 ∗ 𝑛𝑏𝑀𝑖𝑡𝑜𝑠𝑖𝑠𝐶2𝑚𝑚²

 

where 𝐶𝑘𝑚𝑚² is a circle of size 𝑘 𝑚𝑚² centered on the patch. This score is the combination of mitoses 

contained in a 1 𝑚𝑚2  region and those in a surrounding region of 2 𝑚𝑚2 . The parameter ϵ is 

selected based on empirical analysis to favor a hotpot with surrounding mitotic activity over one that 

contains the same number of mitosis but no mitosis nearby. 

Both mitosis figures and top scored hotspots are finally shown to the pathologist as an aid for 

mitotic scoring on a 2 𝑚𝑚2 surface. 
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Figure 1. Overview of the detection pipeline. First, IC regions are detected (a) and parsed into 256x256 pixel 

patches at zoom x20. Within IC patches, mitosis localization is performed through a two-stage process. First, a 

Retinanet detector (b) locates mitosis-like objects. Then, each detected object is fed to a classifier (c) for further 

validation. Only objects with a classification confidence over a threshold are kept. Finally, mitotic regions with 

highest density (hotspots) are then automatically located (d). Results can finally be visualized in the in-house 

software Cleo (e). 

2.3. Data and Training 

2.3.1. Datasets 

In the following we refer to as train slides and test slides the WSI from which train data and test 

data are extracted. We also refer to the detection train set and detection test set as the patch datasets 

used to train and test the detection networks. Same naming is applied to classification. As illustrated 

in Table 1 train slides contain every slide from MIDOG and a part of Bicêtre slides, while the test is 

performed on data from Bicêtre only. 

Table 1. Slides and patches distribution across datasets and tasks. 

 

Every false positive detected at this point is considered as a negative class instance in the 

classification train set. The same is done on test slides to get artifacts for the classification test set. 

The labeling process is a tedious task and some mitotic patterns may have been forgotten by 

annotators. The set of generated artifacts thus contains true mitotic patterns, detected by the 

RetinaNet but considered as false positives since they were not annotated. To clean this artifact 

dataset, only objects with a detection confidence below a threshold are kept. This preserves the sanity 

of classification sets and proved to improve performance.  

2.3.2. Data Augmentation 

Data augmentation techniques, including color jitter, cutout, blur, and geometric 

transformations, were randomly applied for both detection and classification. They strongly 

enhanced models' generalization abilities. 

2.3.3. Training Configuration 

The RetinaNet model is trained with a standard L1-loss for bounding box regression and a Focal 

loss [17] for instance classification. Optimization is performed through a stochastic gradient descent 

optimizer with piecewise constant decay learning-rate.  The classifier has a MobileNetV2 [18] 

architecture, it is trained with a binary cross entropy loss and Adam [19] optimizer. 
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2.3.4. Detection Metrics 

Test slides were processed by our algorithms. Those slides contain 153 mitosis split among 24862 

IC patches. The detector achieves a recall of 56.2% with a precision of 12.6%. Upon incorporating the 

classifier, the detection metrics yield a recall of 43.8% and a precision of 27.6%.  

2.4. Design of the Clinical Study 

2.4.1. Patients and Tissue Selection 

The study was performed on 50 slides randomly selected between February 2020 and June 2021 

from the Pathology department of the Bicêtre Hospital, not seen during training nor testing. The set 

contains a balanced combination of biopsies and surgical specimens. Table 2 shows the patient and 

tumor characteristics of the 50 cases. 

Table 2. Patient and tumor characteristics of the cohort used in the study. 
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Biopsies underwent fixation in 4% neutral buffered formalin for a minimum of 6 hours, while 

surgical specimens were sampled following fixation in 4% buffered formalin for 24 to 48 hours. 

Subsequently, the specimens underwent dehydration and impregnation using a Sakura Tissue-Tek® 

VIP® machine in accordance with departmental protocol. Paraffin embedding procedures differed 

for surgical specimens and biopsies, with automated embedding performed on a Sakura Tissue-Tek® 

AutoTEC® and manual embedding on a Sakura Tissue-Tek® system, respectively. Sections, cut to a 

thickness of 3 µm using a Leica or Microm microtome, were mounted onto SuperFrost™ glass slides 

and dried at 60°C for 30 minutes before undergoing staining with Hematoxylin-Eosin-Safran on a 

Leica ST5020® automated system. Slides were then mounted using Pertex® mounting medium on a 

Leica CV5030® and dried for a minimum of 5 minutes in the machine. 

Case scanning was conducted using two 3DHISTECH slide scanners, P1000 for surgical 

specimens and P250 for biopsies, each equipped with two Plan-Apochromat lenses (x20 and x40) and 

an Adimec QUARTZ Q-12A180 camera, providing a resolution of 4096 × 3072 pixels (pixel size: 5.5 

μm × 5.5 μm) for digital magnification by 1.6. 

All 50 cases were scanned in .mrxs format at a resolution of 0.24 μm/pixel using the x20 lens 

with a digital magnification factor of 1.6, following a protocol consistent with routine diagnostic 

practices within the department. 

2.4.2. Study Design 

Three expert pathologists familiar with digital pathology performed a mitotic count (MC) on 

every slide. These experts are referred to as expert annotators. Discordance, defined as disagreement 

in scoring between the experts, was observed in 17 out of 50 slides. For these slides, a consensus was 

reached through joint review. Their identification of mitosis was made in accordance with the 

definitions proposed by Ibrahim et al [20]. 

Those slides were then submitted to two junior pathologists, referred to as investigators, who 

performed the MC and evaluated the MS of each slide. This evaluation was conducted on a crossover 

scheme where half of the cases were read without the algorithm and the other half with the algorithm 

and then reversed after the wash-out period. For both investigators, cases read with and without the 

algorithm in the first and second readings were opposed in each of the two phases. Investigators were 

free to perform their MC in the area that they considered most appropriate, even when using the 

algorithm. Investigators performed their reading blind to each other and to the expert consensus.  

The study workflow is illustrated in Figure 2. 

 

Figure 2. 2a: process for consensus establishment. 2b: process for pathologist readings with and without AI 

support. 
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2.4.3. Statistical Analysis 

First, we studied the accuracy of the MS. It is defined as the proportion of WSIs for which the 

investigator attributed a correct MS (e.g the same as the ground truth) over the total number of WSI. 

This accuracy is measured in two configurations: when investigators are assisted by IA, and when 

they are not. Then we focussed on the analysis of the agreement between investigators both on the 

MS and the MC. The measure of the investigators agreement on the MS was assessed with the 

Cohen’s kappa reproducibility together with its confidence interval (CI) on one hand, and with the 

Intraclass Correlation Coefficient (ICC) on the other hand. The agreement on the slide regions where 

the MC is performed is defined as the proportion of slides where the counting zones chosen by each 

investigator intersect. 

We aim to evaluate whether the observed variability in MC can be attributed to the practice of 

different pathologists conducting their assessments in varying regions of the slides [21], and whether 

our tool has the potential to reduce this gap. For the reproducibility of the MC, the recommendations 

of Koo and Li [22] from 2016 were considered for interpretation of agreement. For reproducibility of 

the MS, McHugh’s 2012 recommendations [23] were used for interpretation of agreement. Accuracies, 

kappas, ICC and confidence intervals were calculated using package on R software (version 4.0.4, 

cran, The R Foundation for Statistical Computing, http://cran.r-project.org) and R Studio (version 

2022.02.2 Build 485 © 2009-2022 RStudio, PBC, http://www.rstudio.com). 

3. Results 

3.1. Study Outcomes 

In this clinical study conducted on a crossover scheme without and then with the aid of our 

detection pipeline on WSI breast IC without any draw of ROI, MS accuracy increased from 62% to 

76% and from 64% to 78% for investigators 1 and 2 respectively when using AI assistance (Figure 3). 
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Figure 3. 3a mitotic score accuracy for each reader compared to the ground truth consensus, with and without 

AI support. 3b linear weighted Cohen’s Kappa values for each reader compared to consensus. 3c ICC and linear 

weighted Cohen’s Kappa values computed between readers, with and without AI support. 3d percentage of 

slides where both readers counting zones intersect (Reader1 ∩ Reader1), with and without AI and the percentage 

of slides where an AI hotspot intersects a reader’s counting zone, for both readers, with and without AI support 

(AI∩Reader1 and AI∩Reader2). 

Corresponding linear weighted kappa increased from 0.378 to 0.629 and from 0.457 to 0.726 for 

investigator 1 and 2 respectively (Figure 3a-3b, raw confusion matrices can be found in 

Supplementary Material 1 and 2).  

Reproducibility on the MS, evaluated by measuring the weighted Cohen’s kappa (CK) between 

investigators, increased from 0.482 to 0.672 when using AI assistance. This is supported by the ICC 

evolution from 0.591 (CI: [0.375 - 0.746]) to 0.883 (CI: [0.803 - 0.932]) and their confidence intervals. 

(Figure 3c, raw confusion matrices can be found in Supplementary Material 3 and 4). 

The agreement between investigators on these ”counting zones”, defined as the existence of an 

intersection between investigators counting zones, increased from 44% to 60% when using IA (Figure 

3d). In 18% of cases, scores changed with the use of AI (8 and 10 for investigators 1 and 2, 

respectively). 

Metrics are computed for subgroups of slides that have the same ground truth MS (1, 2 or 3). 

Since tumor size differs between biopsies and specimens, results obtained for each type were also 

analyzed as shown in Table 3. 

Table 3. Metrics obtained at the subgroup level. Subgroups are defined by slide mitotic score and slide types - 

biopsies or specimens. 

 

AI led to an improvement on accuracy (resp. kappa) from 5.56% to 33.3% (resp. from 0 to 0.31) 

for WSI with a MS of 2 and from 29.17% to 66.67% (resp. from 0.31 to 0.47) for WSI with a MS of 3. It 

did not change accuracy and kappa for WSI with MS of 1. 

It also led to improvement on accuracy (resp. kappa) for both biopsies and specimens going from 

60% to 72% (resp. 0.17 to 0.53) and 66% to 82% (resp. 0.55 to 0.73). 

Over all subgroups, the biggest improvement for investigators counting zones’ intersection is 

found for WSI with MS of 3, going from 33.3% to 66.7%.  

The agreement between investigators and IA, computed as the proportion of slides 

for which the investigator's counting zone intersects an IA hotspot, increased from 

46% to 80% for investigator 1 and from 62% to 90% for investigator 2. Figure 4 is an 

illustration of counting zone intersections, different situations were observed, both 

on biopsies as surgical WSI: help to find MH (Figure 4a), refining in MC even 

when a significant hotspot is found (Figure 4b).
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Figure 4. Observed changes in MS and counting zones for both readers with and without AI. Surgical specimen 

(4a) and biopsy (4b) with consensus expert MS = 3. i (readers without AI support ) and ii (readers assisted by AI) 

; AI hotspots in yellow, and counting zones and MS obtained defined by both readers in blue and red. 

4. Discussion 

The clinical study here reported proves that the automatic mitosis detection pipeline developped 

and applied is a valuable support for pathologists in assessing mitotic scores. With AI assistance, 

pathologists achieve greater accuracy and reproducibility. 

Numerous studies have focused on automatic mitosis detection. Several have applied standard 

computer vision techniques to detect or classify mitoses on WSIs. For instance, in the works of Irshad 

[24], F. Boray Tek [25], and Veta and al. [? ], nuclei are located using conventional image processing 

techniques such as active contour models or thresholding, and handcrafted features are used to 

determine whether they are mitoses. As Mathew and al. [26] stated, deep learning techniques gained 

prominence in the mid-2010s. Most studies employ deep networks for localization [5,27] or 

segmentation [28,29] to locate mitotic cells, followed by a classification model to remove false 

positives. Typically, these algorithms are calibrated and tested on public datasets such as CCMCT 

[30], MITOS [31], or MITOS-ATYPIA [32]. The MIDOG2021 [14] challenge also released a public 

dataset with mitoses labeled from WSI originating from various scanners. Although these studies 

report promising analytical performance, they do not demonstrate increased accuracy and 
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reproducibility or pathologists using such software in routine practice on WSI without any prior 

intervention from the pathologist to propose regions of interest to analyse. Pantanowitz et al. [33] 

showed that pathologists were more accurate and efficient in quantifying mitotic figures in digital 

images of IC with AI assistance. 

However, the count was performed on pre-extracted fields of invasive carcinoma, and the 

assistance provided by AI in finding relevant mitotic hotspots was not assessed, despite its crucial 

role in determining the mitotic score. A study by Veta and Van Diest [34] compared mitotic counting 

results with and without AI assistance by two pathologists using both WSI and light microscopy. It 

showed that WSI mitotic counts are more comparable to light microscopy counts when using AI. 

However, the pathologist had to interactively draw the area of interest (ROI) which was not 

automatically proposed. Balkenhol’s study [35] demonstrated a strong agreement between two 

pathologists in determining the mitotic score using AI-determined mitotic hotspots. However, the 

assessment was limited to a predefined 2 mm² hotspot area, not the entire slide as would be typical 

in routine practice. All these studies have three clear limitations. First, mitotic detection is performed 

on limited infiltrative carcinomatous patch regions, requiring pathologists to manually define the 

ROI. For efficient assistance, mitosis detection should be included in a WSI processing workflow that 

detects infiltrative carcinoma, locates mitoses within the infiltrative tumor, proposes hotspots, and 

facilitates mitotic counting within the selected hotspot. Second, public datasets are assumed to be 

composed of research-quality slides with clear mitotic figures, whereas routine data may be more 

challenging for mitotic detection. Finally, the assistance provided to pathologists by such tools has 

not been yet adequately evaluated.  

Our algorithm’s performance demonstrates moderate recall and low precision, attributable to 

two factors. First, to address real-world scenarios and the inherent imbalance in WSI, we assessed 

our algorithm on a highly imbalanced dataset consisting of 153 mitotic patches and over 24,000 non-

mitotic patches. This fundamental difference from the MIDOG test dataset results in lower raw 

metrics compared to the best results achieved in the MIDOG challenge using the same pipeline. 

Additionally, as mentioned in Section 3, the annotation process can be improved, as many objects 

identified as false positives are actually mitoses that were not labeled due to oversight. Although not 

every mitosis is detected and some false positives exist, the pipeline allows pathologists to quickly 

identify mitotic patterns and relevant hotspots. Accuracy in mitotic score is notably improved for 

both investigators when assisted by AI. For example, investigator 1’s accuracy increased from 62% 

without AI support to 76% with AI support (Figure 3a,b). 

Measured Cohen’s kappa coefficients confirmed that score reproducibility between 

investigators and consensus is significantly higher with AI support, improving from low and 

minimal (k=0.378 and 0.457) to moderate (k=0.629 and k=0.726) for both investigators, according to 

McHugh’s 2012 recommendations. Notably, the levels of agreement achieved by investigators when 

assisted by AI were comparable to those between each pair of experts determining the consensus. 

Table 3 shows that reproducibility depends on the slide score. Without AI, reproducibility is 

much higher for WSI with score 1 (kappa over 0.47 and accuracy over 94%) than for other scores. AI 

support significantly benefits WSI with a mitotic score of 2 and 3, leading to a 500% and 130% 

improvement in accuracy (kappa +0.31 and +0.16, respectively). The complexity of determining the 

mitotic score is closely tied to the level of mitotic activity. For slides with small tumors and few 

mitoses, the score may be straightforward to determine, but it becomes more complicated for 

intermediate and high-score cases. 

Furthermore, results in Table 3 indicate that the accuracy of mitotic score assessment is generally 

higher for specimens compared to biopsies, regardless of AI support. However, AI improves 

accuracy for both sample types, increasing from 60% to 72% for biopsies and from 66% to 82% for 

specimens. On biopsies, the selection of hotspots is more limited, yielding higher reproducibility 

compared to surgical specimens where the search area is broader. 

In this study, pathologists were provided with automatically located hotspots as possible 

starting points for their mitotic count but were free to choose other regions. Figure 3d shows that in 
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the majority of cases, pathologists began their count in hotspots proposed by the algorithm (80% for 

investigator 1 and 90% for investigator 2). 

Correspondingly, Figure 3c shows that agreement on counting zones between investigators 

increases with AI support (from 0.482 to 0.672), regardless of the mitotic score or WSI type. AI thus 

enhances reproducibility among pathologists. This finding is consistent with Balkenhol et al.'s study, 

which demonstrated strong agreement with a kappa coefficient of 0.814 (95% CI: 0.719 - 0.919) 

between two pathologists in determining mitotic scores. However, the kappa values are not directly 

comparable to our study as the assessment was limited to a predefined 2 mm² area rather than the 

entire slide. 

Overall, these findings highlight the potential of AI support to improve accuracy and reliability 

in mitotic score assessment, especially for WSI with moderate to high mitotic scores. 

A primary limitation of this study is the number of investigators. In the near future, a 

multicentric study with numerous participants will be conduct. Technically, we will work on model 

generalization, possibly using cycleGANs, as they have been shown to produce source-agnostic 

models [36]. Another limitation could be partially due to   the quality of the data used to train and 

test the algorithms.  Immunohistochemical pHH3 staining could be used to facilitate the learning to 

recognize mitoses on WSI by pathologists and so ease the labeling process [21]. Additionally, 

improving the algorithms using loss functions or frameworks better suited to noisy and imbalanced 

labels is a potential area for enhancement. 

This study focuses on the mitotic count and score on WSI. International recommendations [8] 

agree with making this score on a glass slide or a WSI. However, several publications report 

variations between glass slides and WSI [37–41]. Since then, studies published by the Nottingham 

group proved that the identification of mitosis on glass slides and on WSI did not follow from another 

and that learning to recognize mitoses on WSI is a necessary step when transition to digital pathology. 

It would be interesting to extend the results of this study to glass slides to determine if similar 

differences are observed when using this AI tool. We could even assume that the use of AI on WSI 

reduces these variations and even more improves the reproducibility of the results obtained by 

pathologists. 
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IC Invasive Carcinoma 
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SFP French Society of Pathology 

CNN Convolutionnal Neural Networks 

HE Hematoxylin Eosin 

HES Hematoxylin Eosin Safran 

CI Confidence Interval 

ICC Intraclass Correlation Coefficient 

CK Cohen’s Kappa 

  

Appendix A 

 

Figure A1. Cross comparisons for interobserver agreement for mitotic scores between investigator 1 and expert 

consensus with and without algorithm. 

 

Figure A2. Cross comparisons for interobserver agreement for mitotic scores between investigator 2 and expert 

consensus with and without algorithm. 

 

Figure A3. Cross comparisons for interobserver agreement for mitotic scores between investigators 1 and 2 

without algorithm. 
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Figure A4. Cross comparisons for interobserver agreement for mitotic scores between investigators 1 and 2 

without algorithm. 

 

Figure A5. Results displayed in the in-house interface. Mitosis appear as small purple squares with contour 

colored based on their classification confidence score. They can also be seen in the right panel for easy 

identification navigation between objects. Hotspots are displayed as colored circles, colors corresponding to their 

density score which lies between 0 and 100. 
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