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Abstract: Background/Objectives: Histopathological diagnosis of invasive carcinoma breast samples
includes the scoring of mitotic activity. This is a tedious and time-consuming task with high
interpathologist variability. Methods: As an assistance to pathologists, we developed a deep learning
based pipeline for mitosis detection and mitotic scoring according to the Elston and Ellis grading
system on Whole Slide Images (WSI) for the first time here described. Results: We present its
performance on routine data through a clinical study which clearly demonstrates its value. When
assisted by Artificial Intelligence (Al), pathologists show better accuracy and reproducibility on the
mitotic score. Conclusions: To the best of our knowledge, this is the first study to demonstrate that
Al can successfully assist pathologists for mitotic score determination in human breast WSl in routine
practice.

Keywords: Invasive breast carcinoma; mitoses; digital pathology; WSI; artificial intelligence; deep
learning mitotic score reproducibility; clinical study

1. Introduction

Diffusion in daily pathological practice of slide digitization and Al-based solutions promises to
facilitate routine practice, enabling faster, more accurate and reproducible diagnoses for better
patient care. In case of breast pathology, numerous studies have successfully applied computer vision
tools to analyse whole slide images (WSI) of breast carcinoma specimens. Some research studies focus
on lesion detection [1-3] while others aim to identify specific biomarkers such as tumor-infiltrating
lymphocytes [4,5] or microcalcifications [6]. Comprehensive lesion diagnosis often involves multiple
complex and tedious tasks.

For instance, in cases of breast NST invasive carcinoma (IC), pathologists must identify the area
with the highest mitotic density (known as hotspots) and count the cells undergoing division, termed
mitoses, within this region.

Integrated into the Nottingham histoprognostic score [7], the mitotic score (MS) is derived from
the mitotic count (MC) performed on the most mitotic area of IC, referred to as mitotic hotspots (MH)
[8]. There is three mitotic scores (1, 2 and 3). This mitosis counting is a laborious and time-consuming
task. Moreover, a study by Rakha et al. [9] demonstrated significant inter-observer variability in
mitotic counts, with discrepancies depending on the count’s location. Mitoses are small and must be
counted at high magnification (40x), making thorough tumor inspection challenging. Furthermore,
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identifying mitotic figures can be subjective, as they can be mistaken for cells undergoing
degeneration, apoptosis, or necrosis. The introduction of AI tools in this field enhances
reproducibility, speed, and ease of performing these tasks.

Automatic mitosis detection using Al-based tools could reduce variability, increase accuracy,
and save time in pathologists” daily routines. A recent study [10] suggested that AI would likely be
routinely used for mitosis counting by 2030. In 2023, the French Society of Pathology (SFP) surveyed
165 French pathologists regarding the potential contributions of Al to the field: 56.4% identified
mitotic activity assessment as the most challenging aspect of the Nottingham scoring system, while
84.2% indicated a need for diagnostic support solutions, including automated quantitative
measurements like mitotic counting. Recent studies on mitosis detection in WSIs have shown
significant advancements in accuracy and efficiency through deep learning models. Notable
approaches include combining Faster R-CNN and YOLOV5, achieving an F1-score of 84% with a
large annotated dataset and providing an end-to-end web-based platform for image analysis and
diagnosis [11,12]. Another innovative method, “Mitosis Detection, Fast and Slow” employs a two-
stage framework for candidate segmentation and refinement, enhancing sensitivity and
computational efficiency by initially processing downscaled images and refining them with deeper
Convolutionnal Neural Networks (CNNs) [13]. Efforts to address domain shifts in WSIs through
color augmentation and stain normalization have also been explored to improve model
generalizability across different imaging conditions [13].

To date, no study has practically compared the use of an automatic mitosis detection solution
by pathologists to pathologists couting mitosis alone. We developed an automatic mitotic detection
pipeline within WSI that also locates relevant hotspots. A clinical study on routine practice WSI
evaluate whether this tool assists pathologists in determining the mitotic score. To the best of our
knowledge, this is the first study to demonstrate that Al could successfully aid pathologists in
determining mitotic score in breast WSL

2. Materials and Methods

2.1. Data Description

The data used to train and test our models originate from two sources of WSI : MIDOG 2021 [14]
and Bicétre Hospital. This double origin was chosen to increase the variability of mitotic patterns and
slide quality.

MIDOG 2021 challenge released a multi-scanner mitotic dataset. It originates from 50 breast
cancer WSIs, stained with routine hematoxylin-eosin (HE) dye, and scanned with one of following
manufacturers Hamamatsu XR NanoZoomer 2.0, Hamamatsu S360 and Aperio ScanScope CS2. The
training set contains 1721 mitotic figures and 2714 hard examples (non-mitotic figures). Only mitotic
figures were used for our application.

Slides selected to build challenge datasets are generally believed to be of good quality: thin cuts
and limited amount of artefacts. Routine WSI can be much different. To design a robust pipe, ready
for laboratory use, a dataset was built upon daily practice hematoxylin-eosin-safran (HES) WSI in
collaboration with the Bicétre Hospital. Thirty-two WSI were scanned with P250 and P1000
3DHistech scanners at zoom x20 and digital magnification by 1.6. Labelling was performed by two
experienced pathologists used to digital pathology along the following process : one pathologist
annotates mitosis-like objects on the slides whatever they are normal, atypical or imposters and a
joint review is then carried out to reach a consensus to remove imposters. The labelling process was
performed using Cytomine software [15] and resulted in 1677 mitosis.

2.2. Pipeline Description

The detection pipeline is made of a two-stage process (Figure 1).
First a patch-based IC detector (described in [16]) is used to determine the area where the mitotic
analysis should be conducted.


https://doi.org/10.20944/preprints202502.2159.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2025 d0i:10.20944/preprints202502.2159.v1

3 of 16

Then, cancerous patches are fed to a two-step mitosis localization stage: first a 50x50 pixels object
detector, based on RetinaNet [17], locates mitosis-like objects. Then most probable objects go through
a final classifier, based on MobileNetV2 [18], that assesses whether they are true mitosis or not.
Objects with high enough classification confidence are finally considered as mitoses.

As a last step, hotspots regions are automatically located. Hotspots are regions with highest
mitotic density from where pathologists should start the mitotic count. We set hotspots as circular
regions with size 1 mm?, which was considered relevant by expert pathologists. For each patch p
containing a mitosis, a hostpot score hp is computed as

h, = nbMitosis; + € * nbMitosis,
p 1mm? 2mm?

where C,mm?isacircle of size k mm® centered on the patch. This score is the combination of mitoses
contained in a 1 mm? region and those in a surrounding region of 2mm?. The parameter € is
selected based on empirical analysis to favor a hotpot with surrounding mitotic activity over one that
contains the same number of mitosis but no mitosis nearby.

Both mitosis figures and top scored hotspots are finally shown to the pathologist as an aid for
mitotic scoring on a 2 mm? surface.

K >

(c) Mobilnet: classification

(d) Hotspot calculation
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(e) Mitosis and hotspot visualisation
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Figure 1. Overview of the detection pipeline. First, IC regions are detected (a) and parsed into 256x256 pixel
patches at zoom x20. Within IC patches, mitosis localization is performed through a two-stage process. First, a
Retinanet detector (b) locates mitosis-like objects. Then, each detected object is fed to a classifier (c) for further
validation. Only objects with a classification confidence over a threshold are kept. Finally, mitotic regions with
highest density (hotspots) are then automatically located (d). Results can finally be visualized in the in-house

software Cleo (e).
2.3. Data and Training

2.3.1. Datasets

In the following we refer to as train slides and test slides the WSI from which train data and test
data are extracted. We also refer to the detection train set and detection test set as the patch datasets
used to train and test the detection networks. Same naming is applied to classification. As illustrated
in Table 1 train slides contain every slide from MIDOG and a part of Bicétre slides, while the test is
performed on data from Bicétre only.

Table 1. Slides and patches distribution across datasets and tasks.

Slides Training 12 (Bicétre) and 150 (MIDOG21)
Testing 17 (Bicétre)

Patches Detection Classilication
Size 256 % 256px 50x50px
Zoom x20) x20

mitotic not mitotic mitosis artefacts

Training 2791 1341 3106 8638
Testing 146 24716 153 5081

Every false positive detected at this point is considered as a negative class instance in the
classification train set. The same is done on test slides to get artifacts for the classification test set.

The labeling process is a tedious task and some mitotic patterns may have been forgotten by
annotators. The set of generated artifacts thus contains true mitotic patterns, detected by the
RetinaNet but considered as false positives since they were not annotated. To clean this artifact
dataset, only objects with a detection confidence below a threshold are kept. This preserves the sanity
of classification sets and proved to improve performance.

2.3.2. Data Augmentation

Data augmentation techniques, including color jitter, cutout, blur, and geometric
transformations, were randomly applied for both detection and classification. They strongly
enhanced models' generalization abilities.

2.3.3. Training Configuration

The RetinaNet model is trained with a standard L1-loss for bounding box regression and a Focal
loss [17] for instance classification. Optimization is performed through a stochastic gradient descent
optimizer with piecewise constant decay learning-rate. The classifier has a MobileNetV2 [18]
architecture, it is trained with a binary cross entropy loss and Adam [19] optimizer.
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2.3.4. Detection Metrics

Test slides were processed by our algorithms. Those slides contain 153 mitosis split among 24862
IC patches. The detector achieves a recall of 56.2% with a precision of 12.6%. Upon incorporating the
classifier, the detection metrics yield a recall of 43.8% and a precision of 27.6%.

2.4. Design of the Clinical Study

2.4.1. Patients and Tissue Selection

The study was performed on 50 slides randomly selected between February 2020 and June 2021
from the Pathology department of the Bicétre Hospital, not seen during training nor testing. The set
contains a balanced combination of biopsies and surgical specimens. Table 2 shows the patient and
tumor characteristics of the 50 cases.

Table 2. Patient and tumor characteristics of the cohort used in the study.

Cohort (n = 50)
Number of cases

Gender
Female 50 (100.0%%)
Male 0 (0.0%)
Age
== 5l years 42 (B4.09%)
=2 Bl years 8 (16.0%)

Pathologic tumor stage
(Tor breast resection only - 25 cases)

pTl 18 (72.0%)
pT2 1 (16.0%)
pT3 1 (4.0%)
pT4 2 (8.0%)

Pathologic lymph node stage
(Tor breast reseciion only - 25 cases)

NO {including isolated tumor cells) 12 (48.0%%)
N1 9 (36.0%)
N2 0 (0.0%)
N3 1 (4.0%)
Nx 3 (12.0%)
Histologic subtype
Invasive carcinoma of no special type 39 (T8.0%)
wnth newroendocrine differentialion 2 (4%)
Mixed Invasive carcinoma of no special type
with muecinows carcinomao 1 (29%)
with invasive micropapillary carcinoma 1 (2%)
Invasive lobular carcinoma 6 (129)
Mure invasive micropapillary carcinoma 1 (2%)
Tumor ER/PR, HER2 status
ER+/PR+/HER2- 39 (738%)
ELR+/PR-/HER2- 6 (129%)
ER-/I'R-/HER2- 2 (4%)
ER-/PR-/HER2+ 3 (6%)
Lymphovascular invasion
Negative A7 (94%)
Mositive 3 (6%)
In situ carcinoma associated
Yes 18 (36%)
No 32 (64%)
Mitotic score
1 29 (58%)
2 12 (24%)
2

0 9 (18%)
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Biopsies underwent fixation in 4% neutral buffered formalin for a minimum of 6 hours, while
surgical specimens were sampled following fixation in 4% buffered formalin for 24 to 48 hours.
Subsequently, the specimens underwent dehydration and impregnation using a Sakura Tissue-Tek®
VIP® machine in accordance with departmental protocol. Paraffin embedding procedures differed
for surgical specimens and biopsies, with automated embedding performed on a Sakura Tissue-Tek®
AutoTEC® and manual embedding on a Sakura Tissue-Tek® system, respectively. Sections, cut to a
thickness of 3 pm using a Leica or Microm microtome, were mounted onto SuperFrost™ glass slides
and dried at 60°C for 30 minutes before undergoing staining with Hematoxylin-Eosin-Safran on a
Leica ST5020® automated system. Slides were then mounted using Pertex® mounting medium on a
Leica CV5030® and dried for a minimum of 5 minutes in the machine.

Case scanning was conducted using two 3DHISTECH slide scanners, P1000 for surgical
specimens and P250 for biopsies, each equipped with two Plan-Apochromat lenses (x20 and x40) and
an Adimec QUARTZ Q-12A180 camera, providing a resolution of 4096 x 3072 pixels (pixel size: 5.5
pum x 5.5 um) for digital magnification by 1.6.

All 50 cases were scanned in .mrxs format at a resolution of 0.24 um/pixel using the x20 lens
with a digital magnification factor of 1.6, following a protocol consistent with routine diagnostic
practices within the department.

2.4.2. Study Design

Three expert pathologists familiar with digital pathology performed a mitotic count (MC) on
every slide. These experts are referred to as expert annotators. Discordance, defined as disagreement
in scoring between the experts, was observed in 17 out of 50 slides. For these slides, a consensus was
reached through joint review. Their identification of mitosis was made in accordance with the
definitions proposed by Ibrahim et al [20].

Those slides were then submitted to two junior pathologists, referred to as investigators, who
performed the MC and evaluated the MS of each slide. This evaluation was conducted on a crossover
scheme where half of the cases were read without the algorithm and the other half with the algorithm
and then reversed after the wash-out period. For both investigators, cases read with and without the
algorithm in the first and second readings were opposed in each of the two phases. Investigators were
free to perform their MC in the area that they considered most appropriate, even when using the
algorithm. Investigators performed their reading blind to each other and to the expert consensus.

The study workflow is illustrated in Figure 2.

25 specimens (S) Independent cases Joint review of
_’ reading for MC and MS ’ discordant cases to
determination by establish a MS
3 expert pathologists consensus
25 biopsies
B
(B) @)
7Sand 18 B 7Sand 18B
18Sand 7B 18Sand78B
1rst read 4 weeks 2nd read
wash-out
18Sand 7B 18Sand78B
7Sand 18B 7Sand 18 B
(b)

Figure 2. 2a: process for consensus establishment. 2b: process for pathologist readings with and without Al

support.
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2.4.3. Statistical Analysis

First, we studied the accuracy of the MS. It is defined as the proportion of WSIs for which the
investigator attributed a correct MS (e.g the same as the ground truth) over the total number of WSL
This accuracy is measured in two configurations: when investigators are assisted by IA, and when
they are not. Then we focussed on the analysis of the agreement between investigators both on the
MS and the MC. The measure of the investigators agreement on the MS was assessed with the
Cohen’s kappa reproducibility together with its confidence interval (CI) on one hand, and with the
Intraclass Correlation Coefficient (ICC) on the other hand. The agreement on the slide regions where
the MC is performed is defined as the proportion of slides where the counting zones chosen by each
investigator intersect.

We aim to evaluate whether the observed variability in MC can be attributed to the practice of
different pathologists conducting their assessments in varying regions of the slides [21], and whether
our tool has the potential to reduce this gap. For the reproducibility of the MC, the recommendations
of Koo and Li [22] from 2016 were considered for interpretation of agreement. For reproducibility of
the MS, McHugh’s 2012 recommendations [23] were used for interpretation of agreement. Accuracies,
kappas, ICC and confidence intervals were calculated using package on R software (version 4.0.4,
cran, The R Foundation for Statistical Computing, http://cran.r-project.org) and R Studio (version
2022.02.2 Build 485 © 2009-2022 RStudio, PBC, http://www.rstudio.com).

3. Results

3.1. Study Outcomes

In this clinical study conducted on a crossover scheme without and then with the aid of our
detection pipeline on WSI breast IC without any draw of ROI, MS accuracy increased from 62% to
76% and from 64% to 78% for investigators 1 and 2 respectively when using Al assistance (Figure 3).

No Al support No Al support
mm Al support mmm Al support
80 5% 7E% 09
n 08 0.725
52% B4% !
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02
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Reader 1 Reader 2 Reader 1 Reader 2
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a) S 8
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Al support = Al support
10 W
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08
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g -1
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Figure 3. 3a mitotic score accuracy for each reader compared to the ground truth consensus, with and without
Al support. 3b linear weighted Cohen’s Kappa values for each reader compared to consensus. 3¢ ICC and linear
weighted Cohen’s Kappa values computed between readers, with and without Al support. 3d percentage of
slides where both readers counting zones intersect (Reader1 n Readerl), with and without Al and the percentage
of slides where an Al hotspot intersects a reader’s counting zone, for both readers, with and without Al support
(AInReaderl and AlnReader2).

Corresponding linear weighted kappa increased from 0.378 to 0.629 and from 0.457 to 0.726 for
investigator 1 and 2 respectively (Figure 3a-3b, raw confusion matrices can be found in
Supplementary Material 1 and 2).

Reproducibility on the MS, evaluated by measuring the weighted Cohen’s kappa (CK) between
investigators, increased from 0.482 to 0.672 when using Al assistance. This is supported by the ICC
evolution from 0.591 (CI: [0.375 - 0.746]) to 0.883 (CI: [0.803 - 0.932]) and their confidence intervals.
(Figure 3c, raw confusion matrices can be found in Supplementary Material 3 and 4).

The agreement between investigators on these ”counting zones”, defined as the existence of an
intersection between investigators counting zones, increased from 44% to 60% when using IA (Figure
3d). In 18% of cases, scores changed with the use of Al (8 and 10 for investigators 1 and 2,
respectively).

Metrics are computed for subgroups of slides that have the same ground truth MS (1, 2 or 3).
Since tumor size differs between biopsies and specimens, results obtained for each type were also
analyzed as shown in Table 3.

Table 3. Metrics obtained at the subgroup level. Subgroups are defined by slide mitotic score and slide types -

biopsies or specimens.

Seore 1 (n=29) Score 2 (n=9) Scorc 3 (n=12) Biopsics (n=25) Specimens (n=25)

Al support No Yes No Yes No Yes No Yes No Yes
Score accuracy (%) 94,83 94,83 5,56 33,33 29.17  66.67  60.00 72.00 66.00 82.00
Lincar weighted CK 0.47 / 0 0.31 0.31 0.47 0.17 0.53 0.55 0.73

% of slides where readers’ counting zone  48.3 48.3 444 55.6 33.3 66.7 32.0 60.0 56.0 60.0
intersect

% of slides where Al hotspot intersects:

- readerl’s counting zone 379 79.3 66.7 778 50.0 83.3 40.0 84.0 18.0 76.0

- reader2’s counting zone 58.6 89.7 778 88.9 68.7 91.7 60.0 100.0 68.0 88.0

Al led to an improvement on accuracy (resp. kappa) from 5.56% to 33.3% (resp. from 0 to 0.31)
for WSI with a MS of 2 and from 29.17% to 66.67% (resp. from 0.31 to 0.47) for WSI with a MS of 3. It
did not change accuracy and kappa for WSI with MS of 1.

It also led to improvement on accuracy (resp. kappa) for both biopsies and specimens going from
60% to 72% (resp. 0.17 to 0.53) and 66% to 82% (resp. 0.55 to 0.73).

Over all subgroups, the biggest improvement for investigators counting zones’ intersection is
found for WSI with MS of 3, going from 33.3% to 66.7%.

The agreement between investigators and 1A, computed as the proportion of slides
for which the investigator's counting zone intersects an IA hotspot, increased from
46% to 80% for investigator 1 and from 62% to 90% for investigator 2. Figure 4 is an
illustration of counting zone intersections, different situations were observed, both
on biopsies as surgical WSI: help to find MH (Figure 4a), refining in MC even
when a significant hotspot is found (Figure 4b).


https://doi.org/10.20944/preprints202502.2159.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2025 d0i:10.20944/preprints202502.2159.v1

9 of 16

P

(a) MS=3 (i) red=2, blue=2 (i1) red=3, blue=3

g . -

#
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Figure 4. Observed changes in MS and counting zones for both readers with and without Al Surgical specimen
(4a) and biopsy (4b) with consensus expert MS = 3. i (readers without Al support ) and ii (readers assisted by Al)
; Al hotspots in yellow, and counting zones and MS obtained defined by both readers in blue and red.

4. Discussion

The clinical study here reported proves that the automatic mitosis detection pipeline developped
and applied is a valuable support for pathologists in assessing mitotic scores. With Al assistance,
pathologists achieve greater accuracy and reproducibility.

Numerous studies have focused on automatic mitosis detection. Several have applied standard
computer vision techniques to detect or classify mitoses on WSIs. For instance, in the works of Irshad
[24], F. Boray Tek [25], and Veta and al. [? ], nuclei are located using conventional image processing
techniques such as active contour models or thresholding, and handcrafted features are used to
determine whether they are mitoses. As Mathew and al. [26] stated, deep learning techniques gained
prominence in the mid-2010s. Most studies employ deep networks for localization [5,27] or
segmentation [28,29] to locate mitotic cells, followed by a classification model to remove false
positives. Typically, these algorithms are calibrated and tested on public datasets such as CCMCT
[30], MITOS [31], or MITOS-ATYPIA [32]. The MIDOG2021 [14] challenge also released a public
dataset with mitoses labeled from WSI originating from various scanners. Although these studies
report promising analytical performance, they do not demonstrate increased accuracy and
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reproducibility or pathologists using such software in routine practice on WSI without any prior
intervention from the pathologist to propose regions of interest to analyse. Pantanowitz et al. [33]
showed that pathologists were more accurate and efficient in quantifying mitotic figures in digital
images of IC with Al assistance.

However, the count was performed on pre-extracted fields of invasive carcinoma, and the
assistance provided by Al in finding relevant mitotic hotspots was not assessed, despite its crucial
role in determining the mitotic score. A study by Veta and Van Diest [34] compared mitotic counting
results with and without Al assistance by two pathologists using both WSI and light microscopy. It
showed that WSI mitotic counts are more comparable to light microscopy counts when using Al
However, the pathologist had to interactively draw the area of interest (ROI) which was not
automatically proposed. Balkenhol’s study [35] demonstrated a strong agreement between two
pathologists in determining the mitotic score using Al-determined mitotic hotspots. However, the
assessment was limited to a predefined 2 mm? hotspot area, not the entire slide as would be typical
in routine practice. All these studies have three clear limitations. First, mitotic detection is performed
on limited infiltrative carcinomatous patch regions, requiring pathologists to manually define the
ROIL. For efficient assistance, mitosis detection should be included in a WSI processing workflow that
detects infiltrative carcinoma, locates mitoses within the infiltrative tumor, proposes hotspots, and
facilitates mitotic counting within the selected hotspot. Second, public datasets are assumed to be
composed of research-quality slides with clear mitotic figures, whereas routine data may be more
challenging for mitotic detection. Finally, the assistance provided to pathologists by such tools has
not been yet adequately evaluated.

Our algorithm’s performance demonstrates moderate recall and low precision, attributable to
two factors. First, to address real-world scenarios and the inherent imbalance in WSI, we assessed
our algorithm on a highly imbalanced dataset consisting of 153 mitotic patches and over 24,000 non-
mitotic patches. This fundamental difference from the MIDOG test dataset results in lower raw
metrics compared to the best results achieved in the MIDOG challenge using the same pipeline.
Additionally, as mentioned in Section 3, the annotation process can be improved, as many objects
identified as false positives are actually mitoses that were not labeled due to oversight. Although not
every mitosis is detected and some false positives exist, the pipeline allows pathologists to quickly
identify mitotic patterns and relevant hotspots. Accuracy in mitotic score is notably improved for
both investigators when assisted by Al For example, investigator 1’s accuracy increased from 62%
without Al support to 76% with Al support (Figure 3a,b).

Measured Cohen’s kappa coefficients confirmed that score reproducibility between
investigators and consensus is significantly higher with Al support, improving from low and
minimal (k=0.378 and 0.457) to moderate (k=0.629 and k=0.726) for both investigators, according to
McHugh’s 2012 recommendations. Notably, the levels of agreement achieved by investigators when
assisted by Al were comparable to those between each pair of experts determining the consensus.

Table 3 shows that reproducibility depends on the slide score. Without Al, reproducibility is
much higher for WSI with score 1 (kappa over 0.47 and accuracy over 94%) than for other scores. Al
support significantly benefits WSI with a mitotic score of 2 and 3, leading to a 500% and 130%
improvement in accuracy (kappa +0.31 and +0.16, respectively). The complexity of determining the
mitotic score is closely tied to the level of mitotic activity. For slides with small tumors and few
mitoses, the score may be straightforward to determine, but it becomes more complicated for
intermediate and high-score cases.

Furthermore, results in Table 3 indicate that the accuracy of mitotic score assessment is generally
higher for specimens compared to biopsies, regardless of Al support. However, Al improves
accuracy for both sample types, increasing from 60% to 72% for biopsies and from 66% to 82% for
specimens. On biopsies, the selection of hotspots is more limited, yielding higher reproducibility
compared to surgical specimens where the search area is broader.

In this study, pathologists were provided with automatically located hotspots as possible
starting points for their mitotic count but were free to choose other regions. Figure 3d shows that in
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the majority of cases, pathologists began their count in hotspots proposed by the algorithm (80% for
investigator 1 and 90% for investigator 2).

Correspondingly, Figure 3c shows that agreement on counting zones between investigators
increases with Al support (from 0.482 to 0.672), regardless of the mitotic score or WSI type. Al thus
enhances reproducibility among pathologists. This finding is consistent with Balkenhol et al.'s study,
which demonstrated strong agreement with a kappa coefficient of 0.814 (95% CI: 0.719 - 0.919)
between two pathologists in determining mitotic scores. However, the kappa values are not directly
comparable to our study as the assessment was limited to a predefined 2 mm? area rather than the
entire slide.

Overall, these findings highlight the potential of Al support to improve accuracy and reliability
in mitotic score assessment, especially for WSI with moderate to high mitotic scores.

A primary limitation of this study is the number of investigators. In the near future, a
multicentric study with numerous participants will be conduct. Technically, we will work on model
generalization, possibly using cycleGANSs, as they have been shown to produce source-agnostic
models [36]. Another limitation could be partially due to  the quality of the data used to train and
test the algorithms. Immunohistochemical pHH3 staining could be used to facilitate the learning to
recognize mitoses on WSI by pathologists and so ease the labeling process [21]. Additionally,
improving the algorithms using loss functions or frameworks better suited to noisy and imbalanced
labels is a potential area for enhancement.

This study focuses on the mitotic count and score on WSI. International recommendations [8]
agree with making this score on a glass slide or a WSI. However, several publications report
variations between glass slides and WSI [37—41]. Since then, studies published by the Nottingham
group proved that the identification of mitosis on glass slides and on WSI did not follow from another
and that learning to recognize mitoses on WSl is a necessary step when transition to digital pathology.
It would be interesting to extend the results of this study to glass slides to determine if similar
differences are observed when using this Al tool. We could even assume that the use of AI on WSI
reduces these variations and even more improves the reproducibility of the results obtained by
pathologists.
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WsI Whole Slide Images
1C Invasive Carcinoma
MS Mitotic Score

MC Mitotic Count

MH Mitotic Hotspot
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SFP French Society of Pathology
CNN Convolutionnal Neural Networks
HE Hematoxylin Eosin
HES Hematoxylin Eosin Safran
CI Confidence Interval
ICC Intraclass Correlation Coefficient
CK Cohen’s Kappa
Appendix A
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Figure A1l. Cross comparisons for interobserver agreement for mitotic scores between investigator 1 and expert

consensus with and without algorithm.
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Figure A2. Cross comparisons for interobserver agreement for mitotic scores between investigator 2 and expert

consensus with and without algorithm.
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Figure A3. Cross comparisons for interobserver agreement for mitotic scores between investigators 1 and 2

without algorithm.
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Figure A4. Cross comparisons for interobserver agreement for mitotic scores between investigators 1 and 2

without algorithm.
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Figure A5. Results displayed in the in-house interface. Mitosis appear as small purple squares with contour
colored based on their classification confidence score. They can also be seen in the right panel for easy
identification navigation between objects. Hotspots are displayed as colored circles, colors corresponding to their
density score which lies between 0 and 100.
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