

Article

Not peer-reviewed version

In Vitro Anthelmintic Effect of *Piper auritum* Kunth and *Capsicum annuum* L. on Goat Intestinal Nematodes

[Alfonso Pedro Santos-Martínez](#) , [Héctor Maximino Rodríguez-Magadan](#) , Magaly Aquino-Cleto , Teodulo Salinas-Rios , Jorge Hernández-Bautista , [Héctor Ulises Bernardino-Hernández](#) , Dagoberto E Alavez-Solano , [Araceli Mariscal-Méndez](#) *

Posted Date: 23 July 2025

doi: [10.20944/preprints202507.1884.v1](https://doi.org/10.20944/preprints202507.1884.v1)

Keywords: animal health; anthelmintic plants; bioactive compounds; ethnoveterinary; phytotherapy

Preprints.org is a free multidisciplinary platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

In Vitro Anthelmintic Effect of *Piper auritum* Kunth and *Capsicum annuum* L. on Goat Intestinal Nematodes

Alfonso P. Santos-Martínez ¹, Héctor M. Rodríguez-Magadán ¹, Magaly Aquino-Cleto ¹, Teodulo Salinas-Ríos ¹, Jorge Hernández-Bautista ¹, Héctor U. Bernardino-Hernández ², Dagoberto E. Alavez-Solano ³ and Aracely Mariscal-Méndez ^{1,*}

¹ Universidad Autónoma Benito Juárez de Oaxaca, Facultad de Medicina Veterinaria y Zootecnia

² Universidad Autónoma Benito Juárez de Oaxaca, Facultad de Ciencias Químicas

³ Universidad Autónoma Benito Juárez de Oaxaca, Facultad de Sistemas Biológicos e Innovación Tecnológica

* Correspondence: mariscalma@hotmail.com

Abstract

Parasitosis caused by gastrointestinal nematodes in ruminants is a problem that affects production by reducing feed conversion, reducing reproduction, and even causing animal death. This negatively impacts producers' economy, also, there are constant reports of cases of anthelmintic resistance to commercial drugs. The objective was to evaluate the larvicidal effect of an ethanolic extract of *Piper auritum* and *Capsicum annuum* on gastrointestinal nematodes in goats under in vitro conditions. Concentrations of 100, 350, 1000, and 3500 $\mu\text{g mL}^{-1}$ were used with three replicates, with albendazole 2 mg mL^{-1} and distilled water as controls. ANOVA was used to compare means and Tukey's test for contrast; LC50 and LC90 were estimated with Probit analysis, with significance (≤ 0.05). In *Capsicum annuum* concentrations, mortalities were observed (100:63.69%, 350:67.45%, 1,000:76.98% and 3,500:93.82%). In *Piper auritum* (100:32.76%, 350:34.03%, 1,000:59.69% and 3,500:88.09%). The LD50 of *Capsicum annuum* extract was 47.16 $\mu\text{g mL}^{-1}$ and the LD90 was 3,703.09 $\mu\text{g mL}^{-1}$, while the LD50 of *Piper auritum* was 457.49 $\mu\text{g mL}^{-1}$ and LD90 was 7,780.48 $\mu\text{g mL}^{-1}$. In *Piper auritum* the presence of flavonoids, coumarins and alkaloids was revealed, as well as the availability of alkaloids, tannins and coumarins in *Capsicum annuum*. The two extracts showed the same trend, the higher concentration and time, the greater larvicidal effect.

Keywords: animal health; anthelmintic plants; bioactive compounds; ethnoveterinary; phytotherapy

1. Introduction

Intestinal parasitosis caused by helminths is one of the main health problems affecting goat and sheep production [1]. This disease involves the greatest expense in production systems, its infections lead to losses in milk production, meat, reproduction and even mortality [2]. This disease is multietiological in animals, since a complexity of genera and species of helminths can be found in an organism and these increase the susceptibility of the host to other opportunistic diseases [3].

The sharing of grazing areas predisposes small ruminants to infection with strongylids such as: *Oesophagostomum venulosum*, *Chabertia ovina* (superfamily Strongyoidea), *Nematodirus battus*, *Cooperia curticei*, *Trichostrongylus axei*, *Trichostrongylus columbriformis* and *Haemonchus contortus* (superfamily Trichostrongyoidea) [4].

The gastrointestinal nematodes that affect sheep and goats are the same, but the one of greatest concern is *Haemonchus contortus*, because it is hematophagous and highly prolific, so in flocks there are usually massive infections, also goats are more susceptible to this species [5].

Currently, the treatment of endoparasitosis with chemical control is compromised by the emergence of multi-drug resistant strains, which forces us to look for control alternatives, in which local knowledge focused on medicinal plants is gaining importance [6].

The inadequate use of conventional anthelmintics, in dosages, continuous application and greater frequency of the same active ingredient, has generated the problem of multiple resistance [7,8], also the accumulation of residues in products such as milk and meat, as well as damage to the environment [9]. In view of these problems, there is a need to develop alternative methods to treat intestinal helminth parasitosis, such as the use of plants used in traditional medicine, with secondary metabolites, which has become of international interest [10,11].

Plants contain a range of bioactive compounds to deal with various pathogens, these can act as fungicides, bactericides, antivirals and antiparasitics, these properties can lead to the development of new treatments. The groups of bioactive compounds that have gained relevance include terpenes, flavonoids, alkaloids, tannins, resins and their compounds [12,13].

The *in vitro* evaluation of anthelmintic plants allows confirming ovicidal and larvicidal activity, with the use of leaves, fruits, stems, roots and seeds, and the results are fast and economical [14]. The objective of the present work was to evaluate the larvicidal effect of ethanolic extract of *Piper auritum* and *Capsicum annuum* (tree chili) with gastrointestinal nematodes of goats under *in vitro* conditions.

2. Materials and Methods

2.1. Location

The experiments were carried out in the Biochemistry and cell biology laboratory of the Facultad de Medicina Veterinaria y Zootecnia of the Universidad Autónoma Benito Juárez de Oaxaca, located in Ex-Hacienda 5 Señores, Oaxaca, Mexico, between the coordinates 17°02'53"N 96°42'44"O and at 1,555 and 1,557 masl.

2.2. Plant Material

Piper auritum leaves and fruits of *Capsicum annuum* were collected in May 2025 in San Cristóbal Amatlán, Oaxaca, located between parallels 16°12' and 16°24' north latitude; meridians 96°18' and 96°28' west longitude, altitude between 1,300 and 3,200 masl [15]. Leaves of plants close to flowering and ripe fruits were selected, washed with distilled water and dried in an oven at 42±1 °C. Subsequently, they were ground to obtain particles of approximately 1 mm.

2.3. Extract Preparation

500 g of each powder was extracted in 1,000 ml of 75 % ethanol for 72 h at room temperature [16]. Chlorophylls and impurities were removed by filtration using activated carbon and filter paper. Solvent removal was performed using a rotary evaporator under reduced pressure to obtain crude extracts [17,18]. The yield of the extracts (%) was calculated with the following formula (1).

$$\text{Yield (\%)} = \frac{\text{Final weight}}{\text{Initial weight}} \times 100 \quad (1)$$

2.4. Chromatographic Profile

The compounds were separated on a column packed with silica gel containing 3.5 g of crude extract in a 1:30 ratio. Three different systems were used to obtain fractions: 1) 1:9 hexane/dichloromethane elution; 2) pure dichloromethane; and 3) 1:1 ethyl acetate/hexane, each yielding 12 fractions of 20 ml. The fractions were analyzed by thin-layer chromatography. The compounds were developed with white light, ultraviolet light at $\lambda = 365$ nm, and 2 % cerium sulfate solution [19].

2.5. Culture and Isolation of L3 Larvae

Feces were collected from the rectum of naturally infested goats, those with a high parasite load (>700 eggs per gram of feces) were considered. Stool cultures were prepared with approximately 30 g of feces pooled in glass jars, moistened, and incubated at 28±1°C for 15 days. Temperature, humidity, and ventilation were monitored daily. Larvae were recovered using the Baermann technique [20].

2.6. Identification of the Nematodes Used

From the L3 larvae obtained in the stool cultures, 25 mg per sample was used, and genomic DNA was extracted using the “Quick-DNA MiniPrep” kit (Zymo Research, USA) following the supplier’s instructions. Amplification and determination of the genera present in the samples was performed by PCR using 200 ng of DNA and oligonucleotides specific for *Haemonchus* spp. (ITS2GF 5'-CAC GAA TTG CAG ACG CTT AG and ITS2GR 5'-GCT AAA TGA TAT GCT TAA GTT CAG C), *Trichostrongylus* spp. (sp6C 5'-GAT TTA GGT GAC ACT ATA G and t7ch 5'-TAA TAC GAC TCA CTA TAG G) and *Oesophagostomum* spp. (oeso5 5'-TCG ACT AGC TTC AGC GAT G and oeso3 5'-CCA AAG CAT TCT TAG TCG CT). The conditions of each reaction were: 95 °C/3' initial denaturation; followed by 35 cycles, 95 °C/20”, 55 °C/20” and 72 °C/40” each; a final extension of 72 °C/5' in an AB Applied Biosystem thermal cycler (Thermo Fisher Scientific, Spain). The amplified products were visualized by electrophoresis in a 2% agarose gel to corroborate the size of each product.

2.7. Bioassays

Extracts of *Piper auritum* and *Capsicum annuum* were used as treatments at concentrations of 100, 350, 1000, and 3500 µg mL⁻¹, with three replicates. Albendazole 2 mg mL⁻¹ was used as a positive control and distilled water as absolute control.

A total of 43 ± 11 L3 suspended in 100 µl of distilled water was added, and 100 µl of extract was added. These were placed in 12-well cell culture plates, each well representing an experimental unit. The larvae were stored at 28±1°C for 36 hours. Treatments were inspected every eight hours under a stereoscopic microscope. Larvae that were coiled or rigid and motionless were considered dead [21]. The percentage of larval mortality (LM) was calculated with the formula 2:

$$\text{Larval mortality (\%)} = \frac{\# \text{ of dead L3 larvae}}{\# \text{ total of larvae L3 in each well}} \times 100 \quad (2)$$

2.8. Data Analysis

Since the data followed a normal distribution, the comparison of treatment means by time was performed using analysis of variance (ANOVA) and Tukey’s post hoc test, with a significance level of $\alpha = 0.05$. Probit analysis was used to estimate the mean concentration (LC50) and lethal dose (LC90) with the SPSS statistical package for Windows.

3. Results

3.1. Yield and Bioactive Compounds of the Extracts

The yield of the extracts in dry mass was determined to be 2.23 % for *Piper auritum* and 2.61 % for *Capsicum annuum*. The presence of flavonoids, coumarins, and alkaloids in *Piper auritum* was revealed, as well as the availability of alkaloids, tannins, and coumarins in *Capsicum annuum* according to the chromatographic patterns described by Torres-Rodriguez et al. [22], are shown in the Table 1.

Table 1. Secundary metabolites detected.

Plants	Group secundary metabolites				Yield
	Flavonoids	Coumarins	Tannins	Alkaloids	
<i>Piper auritum</i>	+	+	-	+	2.23 %

<i>Capsicum annuum</i>	-	+	+	+	2.61 %
* + present, - absent.					

3.2. Larvicidal Activity

Exposure of L3 caprine nematode larvae to ethanolic extracts of *Capsicum annuum* and *Piper auritum* at different concentrations for 32 hours showed larvicidal activity. A trend toward increased mortality was observed over time, compared to the negative control, which demonstrated natural larval survival (Table 1).

Table 2. Mortality of L3 larvae of goat nematodes exposed to extracts at different doses.

Treatment	Concentration μg mL ⁻¹	Mortality of L3 larvae (%)				
		0 hr	8 h	16 h	24 h	32 h
<i>Capsicum annuum</i>	100	0	29.27±14.31 ^{cde}	37.45±13.96 ^{cd}	53.94±7.47 ^{cd}	63.69±5.85 ^{bc}
	350	0	39.79±19.69 ^{bcd}	53.33±11.28 ^{bc}	56.30±11.02 ^{cd}	67.45±7.08 ^{bc}
	1,000	0	43.83±13.46 ^{bcd}	59.91±7.70 ^{bc}	69.30±8.20 ^{bc}	76.98±9.09 ^{abc}
	3,500	0	67.81±17.21 ^b	78.52±12.80 ^{ab}	89.32±4.02 ^{ab}	93.82±2.75 ^a
	100	0	5.95±7.00 ^e	19.42±6.22 ^{de}	28.89±10.11 ^{def}	32.76±10.70 ^d
<i>Piper auritum</i>	350	0	5.32±2.75 ^e	8.65±7.91 ^e	23.98±27.16 ^{ef}	34.03±16.10 ^d
	1,000	0	14.43±10.89 ^{de}	25.27±6.39 ^{de}	32.75±7.91 ^{de}	59.69±17.75 ^c
	3,500	0	45.54±8.20 ^{bc}	60.89±14.85 ^{abc}	79.74±7.24 ^{abc}	88.09±6.24 ^{ab}
	2,000	0	100±0.00 ^a	100±0.00 ^a	100±0.00 ^a	100±0.00 ^a
Albendazole						
Water	00	0	5.32±4.45 ^e	3.12±1.20 ^e	4.16±1.71 ^e	4.02±1.70 ^e
		F= 27.94	F= 42.09	F= 30.89	F= 20.42	
		Sig.= .000	Sig.= .000	Sig.= .000	Sig.= .000	

With the *Capsicum annuum* extract at 100 μg mL⁻¹, a 63.69 % mortality rate was achieved, with 350 μg mL⁻¹ an effectiveness of 67.45% was observed, followed by the 1,000 μg mL⁻¹ concentration achieving a 76.98 % reduction, with the 3,500 μg mL⁻¹ dose being the best with 93.82 % effectiveness. Likewise, with the *Piper auritum* extract, after 32 hours of exposure to different concentrations of larvae, 100 μg mL⁻¹ achieved 32.76% effectiveness, 350 μg mL⁻¹ showed 34.03 % mortality, 1,000 μg mL⁻¹ achieved 59.69 % mortality, and 3,500 μg mL⁻¹ increased to 88.09 % effectiveness. The two extracts showed the same trend: higher concentrations and longer durations increased the larvicidal effect.

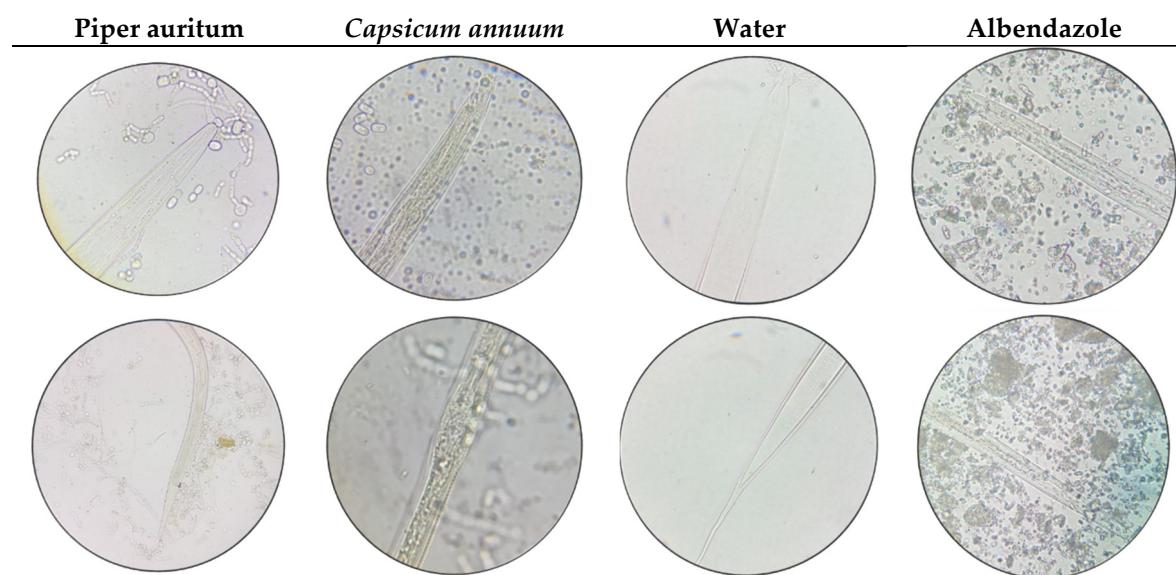

Likewise, lethal doses were estimated for 50 % and 90 % of larvae exposed to the evaluated extracts for 32 hours. These are shown in Table 2.

Table 3. Lethal doses of extracts against L3 larvae of gastrointestinal nematodes in goats.

Extract	LC50 μg ml ⁻¹	95 % confidence limits		LC90 μg mL ⁻¹	95 % confidence limits		Prediction equation	R ²	p
		Lower	Upper		Lower	Upper			
<i>Capsicum annuum</i>	47.16	5.37	113.31	3,703.09	1,593.48	29,182.84	y= - 0.62+0.79x	0.73	0.000

<i>Piper auritum</i>	457.49	216.49	875.89	7,780.48	2,837.40	110,579.69	y=	-	0.70	0.000
									2.99+1.13x	

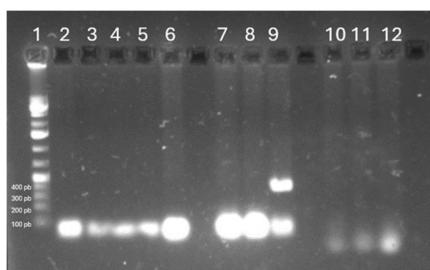

According to the Probit analysis, the LC50 of *Capsicum annuum* extract was 47.16 $\mu\text{g mL}^{-1}$ and the LC90 was 3,703.09 $\mu\text{g mL}^{-1}$, while the LC50 of *Piper auritum* was 457.49 $\mu\text{g mL}^{-1}$ and LC90 was 7,780.48 $\mu\text{g mL}^{-1}$, suggesting that *Capsicum annuum* has a greater anthelmintic effect than *Piper auritum*.

Figure 1. Larvae exposed to *Piper auritum* and *Capsicum annuum* extracts, water and albendazole, after 32 hours. Morphological alterations were observed in the larvae exposed to the treatments. It has been demonstrated that exposure to *Piper auritum* results in the infiltration of the extract through the pod, accompanied by deformations in the cuticle. Furthermore, muscle deterioration was observed throughout the body and digestive tract. In the case of *Capsicum annuum*, the transfer of the extract from the pod was observed, resulting in turgidity primarily in the anterior region. A thickening of the cuticle was observed, as well as muscle degeneration in the caudal region and the digestive system. Deterioration of the cuticle and muscle in the caudal region was also evident. Albendazole demonstrated lysis across the larval stage, accompanied by the decomposition of the entire digestive system, muscle deterioration, cuticle degradation, and pod ruptures in various regions of the body. Given the absence of compounds in the water sample, no discernible morphological alterations were observed.

3.3. Nematodes Identified

Figure 2 shows the agarose gel electrophoresis profile of the gene fragments of the nematode species used. Lane 1 contained the molecular marker, lane 2 the negative control, water with PCR reagent mix was used, lanes 3-6 show the PCR products of *Oesophagostomum* spp., then lanes 7-9 the PCR products of *Haemonchus* spp. and lanes 10-12 the PCR products of *Trichostrongylus* spp. This analysis resulted negative for the presence of *Oesophagostomum* spp. and *Trichostrongylus* spp., but *Haemonchus* spp. was detectable.

Figure 2. Profile of the gene fragments. The saline flotation technique detected four samples positive for *Haemonchus* spp., while no *Oesophagostomum* spp. or *Trichostrongylus* spp. were present.

4. Discussion

Plants and extracts have long been used in ethnoveterinary medicine to treat diseases in domestic animals [23]. Furthermore, it has been studied that small ruminants can self-medicate against nematodosis by consuming specific plants [24]. For these reasons, the plants evaluated in the present study were chosen because they are used in traditional medicine as dewormers for ruminants.

In vitro product testing is widely used in veterinary parasitology in the search for new anthelmintic active ingredients for use in ruminants, due to its low cost, direct contact of the compounds with the parasites, simplicity, and rapid results [25]. However, there may be divergence when used in vivo, since the compounds can be affected by physiological processes of metabolism or by the ruminal microbiota [26]. Furthermore, when administering anthelmintic plants in vivo, it is complex to dose a specific amount of bioactive compounds compared to solvent extraction.

Several in vitro studies with hydroalcoholic extracts show larvicidal effects of L3 on gastrointestinal nematodes in goats and sheep. 50 mg mL⁻¹ of *Cyrtocarpa procera* extract showed a 50 % larvicidal effect against *Haemonchus contortus* [27], also, with the *Leucaena leucocephala* pod extract at a dose of 50 mg mL⁻¹ killed 22 % of larvae, most frequently in *Haemonchus contortus* and *Cooperia* spp. [28], also, it is reported that 100 mg mL⁻¹ of extracts of *Pluchea sericea* and *Artemisia tridentata* achieved 92.67 and 83% mortality of larvae [21] respectively, similarly, with doses of 6.25 mg mL⁻¹ and 200 mg mL⁻¹ of *Acacia cochliacantha* extract achieved 22 and 100 % mortality of *Haemonchus contortus* larvae respectively [29]. These concentrations were higher with the doses of the plant extracts used in this study, and it is also deduced that they have a greater larvicidal effect on *Haemonchus* spp, a nematode of great importance because it is hematophagous.

A similar study with low doses of extracts was studied with tropical legumes, with 1,200 µg mL⁻¹, 35 % inhibition of larval migration of *Haemonchus contortus* was achieved [30]. In the present study it was demonstrated that the effectiveness of the plants used dependent on the availability of secondary metabolites, related to the conditions in which the plants were developed, phenological stage, parts used, as well as the seasons of the year in which they are collected [14]. There is a history of in vitro evaluation of *Piper auritum* against *Fasciola hepatica*, with 500 µg mL⁻¹ an efficacy of 83 % of ovicidal activity was obtained [31], however, there are few reports on the evaluation of *Capsicum annuum*, as well as *Piper auritum* as anthelmintics.

The anthelmintic potential of plants is attributed to the mechanisms of action of bioavailable compounds [32]. Secondary metabolites can affect nematodes in various ways, such as damage to the cuticle, paralysis, starvation, growth, reproduction, among others [33]. Tannins act on the glycoprotein of the cuticle and the proteins of the digestive tract, by binding to the receptors it causes autolysis [34,35]. Alkaloids intercalate into the microtubules of the cuticle, causing paralysis of helminth larvae; their improper use in in vivo tests can generate toxicity [36,37]. Flavonoids interact with the lipid bilayer of helminth membranes and interfere with protein transport processes, preventing energy production and effectively paralysis in larvae [38]. They are also responsible for the inhibition of oxidative phosphorylation [39]. Alkaloids block acetylcholine receptors and inhibit the transmission of nerve signals, resulting in paralysis of the larvae and subsequent death [40]. Coumarin acts to block larval hatching, which suggests that it acts as a marker of bioactivity [41]. The larvicidal effect of the extracts used is associated with the mechanisms of action of the flavonoids, coumarins, alkaloids and tannins mentioned above.

5. Conclusions

Chromatography identified secondary compounds available in the plants *Piper auritum* and *Capsicum annuum*, which exhibited larvicidal activity against *Haemonchus* spp. in L3 goats, with

concentration-dependent efficacy. These results suggest their use in vivo as a sustainable strategy for the control and treatment of parasitic infections in small ruminants. Consideration should also be given to isolating pure compounds and standardizing dosage and potential adverse effects.

Author Contributions: For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used "Conceptualization, A.P.S.-M., A.M.-M. and H.M.R.-M.; methodology, A.P.S.-M., J. H.-B, H.M.R.-M. And D.E.A.-S.; software, H.U.B.-H.; validation, H.M.R.-M. and A.M.-M.; formal analysis, H.U.B.-H.; investigation, A.P.S.-M., A.M.-M. and H.M.R.-M.; resources, M.A.-C.; data curation, A.P.S.-M. and H.M.R.-M.; writing—original draft preparation, A.P.S.-M., A.M.-M. and H.M.R.-M.; writing—review and editing, A.P.S.-M., A.M.-M., T. S.-R. and H.M.R.-M.; visualization, M.A.-C. and D.E.A.-S.; supervision, A.M.-M.; project administration, A.M.-M. and H.M.R.-M.; funding acquisition, H.M.R.-M. All authors have read and agreed to the published version of the manuscript.

Funding: Please add: This research received no external funding.

Data Availability Statement: The data used in this study are available upon request from the corresponding author.

Acknowledgments: Thanks to the Secretariat of Science, Humanities, Technology and Innovation (SECIHITI) for the scholarship awarded to the first author during the Master's program.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Olmedo-Juárez, A.; De Jesús-Martínez, X.; RojasHernández, S.; Villa-Mancera A.; Romero-Rosales, T.; Olivares-Pérez, J. Eclosion inhibition of *Haemonchus contortus* eggs with two extracts of *Caesalpinia coriaria* fruits. *Bio Sciences Magazine* **2022**, 9. <https://doi.org/10.15741/revbio.09.e1121>.
2. Knoll, S.; Dessì, G.; Tamponi, C.; Meloni, L.; Cavallo, L.; Mehmood, N.; Jacquiet, P.; Scala, A.; Cappai, M.G.; Varcasia, A. Practical guide for microscopic identification of infectious gastrointestinal nematode larvae in sheep from Sardinia, Italy, supported by molecular analysis. *Parasites & Vectors* **2021**, 14, 505. <https://doi.org/10.1186/s13071-021-05013-9>.
3. Borges, E.A.; Reinoso, P.M.; Espinosa, R.R.; Avello, O.E. (2020). In vitro anthelmintic activity of aqueous extracts obtained from the edible biomass of *Dichrostachys cinerea* (L.) Wight et Arn. *Journal of Animal Production* **2020**, 32(2), 92–102.
4. Degla, L.H.; Kuiseu, J.; Olounlade, P.A.; Attindehou, S.; Hounzangbe-Adote, M.S.; Edorh, P.A.; Lagnika, L. Use of medicinal plants as alternative for the control of intestinal parasitosis: assessment and perspectives. *Agrobiological Records* **2022**, 7, 1-9. <https://doi.org/10.47278/journal.abr/2021.011>.
5. Oliveira-Santos, F.; Morais-Cerdeira, A.P.; Branco, A.; Moreira-Batatinha, M.J.; Borges-Botura, M. Anthelmintic activity of plants against gastrointestinal nematodes of goats: a review. *Parasitology* **2019**, 1–14. <https://doi.org/10.1017/S0031182019000672>.
6. Davuluri, T.; Chennuru, S.; Pathipati, M.; Krovvidi, S., & Rao, G. S. (2020). In vitro anthelmintic activity of three tropical plant extracts on *Haemonchus contortus*. *Acta parasitologica*, 65, 11-18. <https://doi.org/10.2478/s11686-019-00116-x>.
7. Vergara, D.; Sagüés, F.; Passucci, J.; Späth, E.J.; Lloberas, M.M.; Saumell, C.A.; Moreno, F.C. In vitro antiparasitic efficacy of quebracho extract (*Schinopsis balansae*) on infective larvae of *Haemonchus contortus* of sheep. *Rev Med Vet Zoot.* **2021**, 68(3), 189-199. <https://doi.org/10.15446/rfmvz.v68n3.99899>.
8. Arsenopoulus, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A chal lenging parasitic infection of sheep and goats. *Animals* **2021**, 11(2), 363. <https://doi.org/10.3390/ani11020363>.
9. Ibañez-Lujan, L.; Sánchez-Rojas, C.; Caja-Campos, C. In vitro effect of *Cymbopogon citratus* essential oil on the embryogenesis and viability of *Trichuris ovis* eggs. *REBIOL* **2022**, 42(1), 20-28. <http://dx.doi.org/10.17268/rebiol.2022.42.01.03>.

10. Mumed, H.; Nigussie, D.R.; Musa, K.S.; Demissie, A.A. In vitro anthelmintic activity and phytochemical screening of crude extracts of three medicinal plants against *Haemonchus contortus* in sheep at Haramaya Municipal Abattoir, Eastern Hararghe. *J Parasitol Res.* **2022**. doi: 10.1155/2022/6331740.
11. Birhan, M.; Gesses, T.; Kenubih, A.; Dejene, H.; Yayeh, M. Evaluation of anthelmintic activity of tropical taniferous plant extracts against *Haemonchus contortus*. *Vet Med Research Reports* **2020**, *11*, 109-117.
12. Rodríguez-Garza, N.E.; Gomez-Flores, R.; Quintanilla-Licea, R.; Elizondo-Luévano, J.H.; Romo-Sáenz, C.I.; Marín, M.; Sánchez-Montejo, J.; Muro, A.; Peláez, R.; López-Abán, J. In vitro anthelmintic effect of mexican plant extracts and partitions against *Trichinella spiralis* and *Strongyloides venezuelensis*. *Plants (Basel)* **2024**, *13*(24). doi: 10.3390/plants13243484.
13. Adak, M., Kumar, P. Herbal anthelmintic agents: a narrative review. *J Tradit Chin Med* **2022**, *42*(4):641-651. doi: 10.19852/j.cnki.jtcm.2022.04.007.
14. López, C.J.; Garduño, R.G.; Torres, H.G.; Gutiérrez, C.S.; Gómez, V.V.; Reyes, M.F. In vitro anthelmintic effect of plant extracts on gastrointestinal nematodes of hair sheep. *Agricultural Production and Sustainable Development* **2015**, *4*, 11-25. <https://doi.org/10.5377/payds.v4i0.3961>.
15. INEGI. National Institute of Statistics and Geography. Compendium of Municipal Geographic Information. San Cristóbal Amatlán, Oaxaca, 2010. <https://www.inegi.org.mx/app/areasgeograficas/?ag=07000020#collapse-Resumen>.
16. Cabrera, F.J. Primary identification of secondary metabolites of *Ulex europaeus* (thorny broom) and their biological activity. *Universidad de La Salle, Bogotá D.C.* **2020**. <https://hdl.handle.net/20.500.14625/35016>.
17. Rodino, S.; Butu, M. Herbal Extracts - New Trends in Functional and Medicinal Beverages. *Functional and Medicinal Beverages* **2019**, *73*-108. doi:10.1016/b978-0-12-816397-9.00003-0.
18. Castro, L.M.; Pinto, N.B.; Moura, M.Q.; Villela, M.M.; Capella, G.A.; Freitag, R.A.; Berne, M.E. Antihelminthic action of the *Anethum graveolens* essential oil on *Haemonchus contortus* eggs and larvae. *Brazilian Journal of Biology* **2021**, *81*(1), 183-188. <https://doi.org/10.1590/1519-6984.225856>.
19. Pupo-Blanco, Y.G.; Burgueño-Tapia, E.M.; Vargas-Batis, B. Identification of compounds with antifungal action in leaf extracts of *Plectranthus amboinicus* (Lour) Spreng. *Cuban Journal of Chemistry* **2024**, *36*(1), 10-21.
20. Santos-Martínez, A.P. Techniques for obtaining and cultivating L3 larvae of gastrointestinal nematodes in ruminants. *Veterinary Sciences and Animal Production* **2024**, *2*(1), 22-32. <https://doi.org/10.29059/cvpa.v2i1.20>.
21. Luck-Montero, R.; Avendaño-Reyes, L.; Ail-Catzim, C.E.; Cuéllar-Ordaz, J.; Muñoz-Tenería, F.; Macías-Cruz, U. Ovicidal and larvicidal activity of aqueous extracts of *Pluchea sericea* and *Artemisia tridentata* in *Haemonchus contortus*. *Ecosystems and Agricultural Resources* **2018**, *5*(13), 149-156. <https://doi.org/10.19136/era.a5n13.1370>.
22. Torres-Rodríguez, E.; Núñez-Romero, Y.A.; Mojena-Guerra, Y.; Fung-Boix, Y.; Fonseca-Turruella, Y. Phytochemical analysis of aerial parts of *Sida pyramidalis* Cav. aura herb. *Cuban Journal of Chemistry* **2021**, *33*(3), 401-414.
23. Hoste, H.; Torres-Acosta, J.F. Nonchemical control of helminths in ruminants: adapting solutions for changing worms in a changing world. *Veterinary Parasitology* **2011**, *180*, 144-154. <https://doi.org/10.1016/j.vetpar.2011.05.035>.
24. Giovanelli, F.; Mattellini, M.; Fichi, G.; Flamini, G.; Perrucci, S. In vitro anthelmintic activity of four plant-derived compounds against ovine gastrointestinal nematodes. *Veterinary Sciences* **2018**, *5*(3), 78. <https://doi.org/10.3390/vetsci5030078>.
25. Zenebe, S.; Feyera, T.; Assefa, S. In vitro anthelmintic activity of crude extracts of aerial parts of *Cissus quadrangularis* L. and leaves of *Schinus molle* L. against *Haemonchus contortus*. *BioMed research international* **2017**, *1*. <https://doi.org/10.1155/2017/1905987>.
26. Ferreira, L. E., Castro, P. M. N., Chagas, A. D. S., França, S. C., & Beleboni, R. O. In vitro anthelmintic activity of aqueous leaf extract of *Annona muricata* L.(Annonaceae) against *Haemonchus contortus* from sheep. *Experimental parasitology* **2013**, *134*(3), 327-332. <http://dx.doi.org/10.1016/j.exppara.2013.03.032>.
27. De Jesús-Martínez, X.; Rivero-Pérez, N.; Zamilpa, A.; González-Cortazar, M.; Olivares-Pérez, J.; Zaragoza-Bastida, A.; Mendoza-de Gives, P.; Villa-Mancera, A.; Olmedo-Juárez, A. In vitro ovicidal and larvicidal

activity of a hydroalcoholic extract and its fractions from *Cyrtocarpa procera* fruits on *Haemonchus contortus*. *Exp Parasitol.* **2024**, *262*. doi: 10.1016/j.exppara.2024.108777.

- 28. Rivero-Perez, N.; Jaramillo-Colmenero, A.; Peláez-Acero, A.; Rivas-Jacobo, M.; Ballesteros-Rodea, G.; Zaragoza-Bastida, A. Anthelmintic activity of *Leucaena leucocephala* sheath against ovine gastrointestinal nematodes (in vitro). *Abanico veterinaria* **2019**, *9*, e95. <https://doi.org/10.21929/abavet2019.95>.
- 29. Olmedo-Juárez, A.; Rojo-Rubio, R.; Zamilpa, A.; Mendoza de Gives, P.; Arece-García, J., López-Arellano, M.E. In vitro larvicidal effect of a hydroalcoholic extract from *Acacia cochliacantha* leaf against ruminant parasitic nematodes. *Veterinary Research Communications* **2017**, *41*(3): 227–32. DOI: 10.1007/s11259-017-9687-8.
- 30. Son-de Fernex, E.; Alonso-Díaz, M.A.; Valles-de la Mora, B.; Capetillo-Leal, C.M. In vitro anthelmintic activity of five tropical legumes on the exsheathment and motility of *Haemonchus contortus* infective larvae. *Experimental Parasitology* **2012**, *131*(4): 413-8. <https://doi.org/10.1016/j.exppara.2012.05.010>.
- 31. Alvarez-Mercado, J.M.; Ibarra-Velarde, F., Alonso-Díaz, M.Á., Vera-Montenegro, Y.; Avila-Acevedo, J.G.; García-Bores, A.M. In vitro anthelmintic effect of fifteen tropical plant extracts on excysted flukes of *Fasciola hepatica*. *BMC veterinary research* **2015**, *11*, 1-6. DOI 10.1186/s12917-015-0362-4.
- 32. Boyko, O.; Brygadyrenko, V. Survival of nematode larvae *Strongyloides papillosum* and *Haemonchus contortus* under the influence of various groups of organic compounds. *Diversity* **2023**, *15*(2). <https://doi.org/10.3390/d15020254>.
- 33. Da Silva, G.D.; de Lima, H.G.; de Sousa, N.B.; de Jesus, G.I.L.; Uzêda, R.S.; Branco, A.; Botura, M.B. In vitro anthelmintic evaluation of three alkaloids against gastrointestinal nematodes of goats. *Veterinary Parasitology* **2021**, *296*. <https://doi.org/10.1016/j.vetpar.2021.109505>.
- 34. Mahato, K.; Kakoti, B.B.; Borah, S.M.; Kumar, M. Evaluation of in vitro anthelmintic activity of *Heliotropium indicum* Linn. leaves in Indian adult earthworm. *Asian Pac J Trop Dis* **2014**, *4*(1): 259–262. doi: 10.1016/S2222-1808(14)60451-5.
- 35. Paixão, A.; Silvino, R.; Sánchez, L.M.; Bongo, A.L.; Simões, C.; Luombo, M.D.; Cunga, A.; Inácio, E. In vivo anthelmintic activity of *Tephrosia vogelii* on gastrointestinal strongylids in naturally infected goats. *Journal of Veterinary Medicine* **2021**, *43*, 51–60. <https://doi.org/10.19052/mv.vol1.iss43.5>.
- 36. Raghav, D.; Ashraf, S. M.; Mohan, L.; Rathinasamy, K. Berberine induces toxicity in HeLa cells by disrupting microtubule polymerization by binding to tubulin at a unique site. *Biochemistry* **2017**, *56*, 2594–2611. <https://doi.org/10.1021/acs.biochem.7b00101>.
- 37. Singh, N.; Sharma, B. Toxicological effects of berberine and sanguinarine. *Front. Mol. Biosci.* **2018**, *5*, 21. <https://doi.org/10.3389/fmolb.2018.00021>.
- 38. Delgado-Núñez, E.J.; Zamilpa, A.; González-Cortazar, M.; Olmedo-Juárez, A.; Cardoso-Taketa, A.; Sánchez-Mendoza, E.; Tapia-Maruri, D.; Salinas-Sánchez, D.O.; Mendoza, G.P. Isorhamnetin: a nematocidal flavonoid from *prosopis laevigata* leaves against *Haemonchus contortus* eggs and larvae. *Biomolecules* **2020**, *10*(5). <https://doi.org/10.3390/biom10050773>.
- 39. Chaibou, M.; Hamadou, H.H.; Moussa, A.N.; Bamba, Z.C.O.; Idrissa, M.; Tanimoune, A.; Ikhiri, K. In vitro study of the anthelmintic effects of ethanolic extracts of *Bauhinia rufescens* Lam.(Fabaceae) and *Chrozophora brocchiana* (Vis) Schweinf (Euphorbiaceae) two plants used as antiparasitic in Azawagh area in Niger. *Journal of Pharmacognosy and Phytochemistry* **2020**, *9*(1), 944-948.
- 40. Dubois, O.; Allanic, C.; Charvet, C.L. Lupin (*Lupinus spp.*) seeds exerted anthelmintic activity associated with their alkaloid content. *Sci Rep* **2019**, *9*, 9070 (2019). <https://doi.org/10.1038/s41598-019-45654-6>.
- 41. Escareño-Díaz, S.; Alonso-Díaz, M.A.; de Gives, P.M.; Castillo-Gallegos, E.; Von Son-de Fernex, E. Anthelmintic-like activity of polyphenolic compounds and their interactions against the cattle nematode *Cooperia punctata*. *Veterinary Parasitology* **2019**. <https://doi.org/10.1016/j.vetpar.2019.08.003>.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.