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Abstract: 3D reconstruction from a single 2D input is a challenging problem that is trending in
literature. Until recently, it was an ill-posed optimization problem, but with the advent of learning-
based methods, the performance of 3D reconstruction has also significantly improved. Infinitely
many different 3D objects can be projected onto the same 2D plane, which makes the reconstructing
task very difficult. It is even more difficult for objects with complex deformations or no textures.
This paper serves as a review of recent literature on 3D reconstruction from a single view, with a
focus on deep learning methods from 2018 to 2021. Due to the lack of standard datasets or 3D shape
representation methods, it is hard to compare all reviewed methods directly. However, this paper
reviews different approaches for reconstructing 3d shapes as depth maps, surface normals, point
clouds, and meshes; along with various loss functions and metrics used to train and evaluate these
methods.
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1. Introduction

3D reconstruction is the task of inferring the geometric structure of a scene from a
set of 2D images. Given one or more 2D views of a scene, we want to know the 3D shape
and position in space of all the objects in the scene. This can be seen as mapping the 2D
points in the image space to 3D points in real-world space, where for each 2D point (x, y)
in the image, we want to recover the corresponding 3D point (x̄, ȳ, z̄) in world coordinates,
where z̄ is the distance of the point from the camera.

There are two main ways to reconstruct a 3D scene: monocular reconstruction from
a single image, or multi-view reconstruction from multiple images taken from different
perspectives. The goal of both tasks is to infer the 3D geometry of the scene, but monocular
reconstruction can be more difficult because you only have one view of the scene. Multi-
view reconstruction is easier because you get more information about the hidden faces of
objects from different angles, making it easier to infer their shape and position.

The literature also distinguishes between the reconstruction of a whole scene as
opposed to the reconstruction of a single object. A scene is usually made up of a set of
objects, and scene reconstruction involves reconstructing not only the geometry of all the
objects in the scene but also their relative positions. Reconstruction of a whole scene is
generally harder than reconstruction of a single object because it involves dealing with
more complex shadows and occlusions. An image can be a projection of infinitely many
different shapes, which makes correctly reconstructing the 3D shape from a single image
very hard. Reconstruction of the non-visible faces of the object is challenging in particular
as the input image often provides no information about their shape. Bautista et al. [1]
showed that many existing monocular 3D reconstruction networks learn shape priors over
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training object categories to solve this problem. This makes it difficult for these networks
to generalize to unseen object categories or scenes. Tatarchenko et al. [2] demonstrated that
single-view 3D reconstruction networks do not reason about the 3D geometry of the object
from visual shape cues, but rather rely on object recognition to perform the reconstruction.

The reconstruction task is also made more difficult when there are no textures in the
scene. Without any distinctive features, it becomes harder to infer the 3D shape of an object
from a 2D image. This makes it difficult to create a complete and accurate 3D model of the
scene.

3D reconstruction from visual data is a long-standing computer vision problem with
real-world applications in fields like robotic surgery, autonomous vehicles, and virtual and
augmented reality. In recent years, deep learning has replaced the traditional computer
vision algorithms for the problem of 3D reconstruction with promising results. Deep
learning networks have been shown to be more robust to noise and variations in input
data than traditional methods. Additionally, they are able to learn complex features from
data without any human intervention. This makes them well suited for tasks like 3D
reconstruction where there is a lot of variability in input images.

In this paper, we review different deep learning-based methods proposed for the
task of 3D reconstruction from a single view. We only focus on methods reconstructing
individual objects. Our main contributions include:

• Overview of the neural networks proposed for monocular 3D object reconstruction in
the last five years, including:

– Bednarik et al. [3] and Patch-Net [4] for reconstruction of depth and normal maps
using a real dataset of texture-less surfaces,

– HDM-Net [5] and IsMo-GAN [6], which reconstruct 3D point clouds from a
synthetic dataset of textured surfaces, and

– Pixel2Mesh [7], Salvi et al. [8] and Yuan et al.[9] for reconstruction of mesh-based
models using a subset of the ShapeNet [10].

• Summary of the major 3D datasets that are used by the discussed neural networks.
• Description of common metrics used to evaluate the 3D reconstruction algorithms.
• Comparison of the performance of these methods using different evaluation metrics.

The remainder of the paper is organized as follows. In Section 2, we present an
overview of related literature. Section 3 defines various methods of representing 3D data,
such as depth maps, normal maps, point clouds, 3D meshes, and voxels. In Section 4, we
introduce the major 3D datasets used by the networks reviewed in this paper. Then, we
discuss different deep learning methods proposed recently for 3D reconstruction in Section
5. Section 6 defines the evaluation metrics used by these networks and lists the results of
various experiments conducted by these methods on different datasets. We further discuss
the experiment results in Section 7 before concluding our findings and providing direction
for future work in Section 8.

2. Related Work

The problem of 3D reconstruction from visual data has been well-studied in computer
vision literature, but reconstructing 3D geometry from images remained an ill-posed
problem before 2015 when researchers started using convolutional neural networks for
this task. Figure 1 shows the trend of related publications since then. In this section, we
shed some light on existing surveys that have previously reviewed the 3D reconstruction
methods in the literature.

Zollhöfer et al. [11] published a report in 2018 on the state-of-the-art in monocular 3D
reconstruction of faces. The authors mainly focus on optimization-based algorithms for
facial reconstruction, but also briefly mention the emerging trend of using learning-based
techniques for this task. They conclude that they "expect to see heavy use of techniques
based on deep learning in the future". In 2019, Yuniarti and Suciati [12] formally defined
3D reconstruction as a learning problem and showed an exponentially growing interest
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Figure 1. Interest in using deep learning based methods for 3D reconstruction is reflected in the
number of publications on ScienceDirect matching the keywords "3d reconstruction" AND "deep
learning", which are exponentially growing since 2015.

in 3D reconstruction among the deep learning community. This paper talks about the
different ways of representing shapes in 3D, such as parametric models, meshes, and point
clouds, lists the 3D datasets available at that time and summarizes various deep learning
methods for 3D reconstruction. Han et al. [13] published a more extensive review of single
and multi-view 3D reconstruction later that year. This work also distinguishes between the
reconstruction of scenes and reconstruction of objects in isolation, and reviews techniques
for both.

A large body of work in this area focuses solely on producing depth maps from
images, which represent a partial representation of 3D geometry. In this context, Laga [14]
extensively surveyed more than 100 key contributions using learning-based approaches
for recovering depth maps from RGB images. More reviews published in the following
years show the shift in trend from using plain CNNs to recurrent neural networks (RNNs),
residual networks and generative adversarial networks (GANs) for 3D reconstruction
with encouraging results [15,16]. Fu et al. [17] also published a review of single-view
3D reconstruction methods, focusing only on objects in isolation. They cover networks
proposed between 2016 and 2019 in their review.

3. Representing Shape in 3D

There are many different ways to represent the 3D shape of a scene. The depth and
normal maps can be used to represent the partial geometry of the scene which is limited to
the surfaces of the objects directly facing the camera. For a more complete representation,
point clouds, meshes, and voxels can be used. 3D reconstruction networks can be trained
to reconstruct 3D scenes from 2D images in different ways. In this section, we briefly
introduce different ways of representing 3D data.

3.1. Depth Map

For each pixel in an image, a depth map provides the distance from the camera of the
corresponding point in space. This gives a single-channel image of the same size as the
input image, with the corresponding depth value, z at each (x, y) position. The absolute
depth values are sometimes mapped to the range [0, 255] and, together with a normal
RGB image, the depth map is given as the fourth channel of the so-called RGB-D images
with points closer to the camera appearing darker and the points further away appearing
brighter.

As depth maps are created from a single viewpoint, they represent a very sparse 3D
geometry of the scene containing only points directly in the line of sight of the camera. They
say nothing about the occluded planes, nor do they say anything about the 3D orientation
of different faces of an object in the scene. For this reason, RGB-D images are sometimes
called 2.5D because they cannot represent a complete 3D topology on their own. They are
a partial surface model, with only the shape of the front face of the surface represented.
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3.2. Normal Map

A normal vector or a "normal" to a surface is a three-dimensional vector perpendicular
to the surface at a given point. Analogous to depth maps, normal maps provide normals
for each pixel in an image. This means that we can tell the 3D orientation of the surface at
any given point in space that is visible in this image.

When RGB-D datasets are combined with normal maps, we can extract both the
distance and orientation of every point in a scene from a single viewpoint. However, since
we are only seeing the scene from one perspective, information about the hidden surfaces
of the objects in the scene cannot be completely represented. Like depth maps, normal
maps also represent a partial surface model.

3.3. Point Cloud

A point cloud is a set of 3D points in space. Theoretically, they are able to exactly
represent a complete 3D scene by storing the position of every point in space. Depending
on how many and which points are present in the point cloud, it can be both a solid
and a surface model of the scene. However, due to limited computational memory, it is
often necessary to downsample them to reduce the size of the dataset. This can be done
by removing the points which are very close to each other or which are not needed to
understand the visible shape of the 3D surfaces.

Point clouds can be extremely useful for representing 3D shapes, but they can also be
difficult to work with. Sometimes it is necessary to convert them to a mesh in order to get a
more accurate representation of the object.

3.4. 3D Mesh

A mesh is a collection of 3D points (or vertices) that have been connected together
with edges to form the surfaces (or faces) of 3D objects. Vertices are connected in a way that
the faces are made up of many polygons adjacent to each other. Usually, these polygons
are triangles, and the meshes are called "triangulated meshes". Meshes can be used to
represent the surface models of a 3D scene as "wireframes".

3.5. Voxel

A voxel is a 3D equivalent of a pixel. Voxel-based models represent objects as a
collection of cubes (or voxels) stacked in space like a 3D grid. They represent a discretized,
solid model of the scene. Accuracy of the 3D model depends on the size of the voxels
making up the objects. The bigger the voxels, the more "pixelated" the surfaces of the
objects appear.

Like meshes, voxel grids can also be generated directly from point clouds where
several adjoining points are all approximated to a single voxel (or a cube) in space. This
process is called voxelization and is one way of downsampling the point clouds.

4. Datasets

In this section, we introduce the datasets used by the networks discussed later in
Section 5. These datasets contain RGB images of different objects and their 3D shape in one
of the representations introduced above. Table 1 provides a summary of these datasets.

4.1. Real Texture-less Surfaces Data

This RGB-D dataset of deformable texture-less surfaces from [3] consists of 26,445
RGB images, along with depth maps and normal maps for each image. These RGB images
and depth maps were collected using a Microsoft Kinect for Xbox One device. Normal
maps were computed by differentiating the depth maps. The dataset contains five different
types of objects: tshirt, hoody, sweater, a rectangular sheet of cloth, and a crumpled piece
of paper. The objects have no texture or colors on them. Figure 2a shows some samples
from this dataset.
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Table 1. Summary of the major 3D datasets in this paper. Most of the datasets contain textured
surfaces and are generated from synthetic 3D models. Real datasets captured directly with 3D sensors
are less common and smaller in size because of the difficulty associated with obtaining such that.

Dataset Type Surface Texture Groundtruth Size

Bednarik
et al.

Real Deformable No Depth and
Normal
Maps

26, 445

Golyanik
et al.

Synthetic Deformable Yes Point Clouds 4, 648

ShapeNet
[10]

Synthetic Mixed Yes 3D Mesh > 300M

R2N2 [18] Synthetic Rigid Yes 3D Meshes
and
Voxelized
Models

50,000

(a) The texture-less surfaces dataset [3] con-
tains RGB images and corresponding normal
and depth maps for 5 different real objects.

(b) The synthetic point cloud dataset of
Golyanik et al. has a deforming thin plate
rendered with 4 different textures under 5
different illuminations.

Figure 2. Examples of images in the datasets of Bednarik et al. and Golyanik et al., which are used to
evaluate some of the networks in this paper. (Figures adapted from [3,5])

The tshirt, hoody and sweater were worn by a person who made random motions to
simulate realistic creases. The sheet of cloth was fixed to a bar on the wall and manually
deformed, and the piece of paper was crumpled by hand to create different depths. Different
combinations of four light sources were used to create lighting variations across different
recording sequences. This included three fixed lights in front of the objects on the right, left,
and center, and one moving dynamic light in the room. Table 2 summarizes the number of
samples of each kind of object.

Table 2. Summary of objects in the texture-less surfaces dataset [3]. Sequences of data samples were
captured using a Kinect device at 5 FPS with varying lighting conditions across sequences.

cloth tshirt sweater hoody paper

sequences 18 12 4 1 3
samples 15,799 6,739 2,203 517 1,187

4.2. Synthetic 3D Point Cloud Data

Golyanik et al. generated a synthetic 3D dataset in point cloud representation. Using
Blender [19], they created a 3D scene with a thin plate undergoing various isometric non-
linear deformations. Four kinds of textures (endoscopy, gra f f iti, clothes and carpet) were
mapped on to the deformed 3D model, which was then illuminated in various settings
using five different light sources. The scene was viewed from five separate cameras at
different angles. In this way, a total of 4648 states were generated. Each state is represented
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Figure 3. The texture-less surface reconstruction network [3] (left) consists of an encoder Λ that takes a masked image In
m as input

and outputs a latent representation Λ. This is followed by three parallel decoders ΦN , ΦD, and ΦC that use Λ for reconstructing the
normal map, depth map, and a 3D mesh respectively. The indices of all maxpool operations in encoder are saved when downsampling
(right). These indices are later used for non-linear upsampling in corresponding decoder layers.

with 732 3D points sampled on a regular grid at rest and a consistent topology across states.
For each state, there is also a corresponding rendered 2D image viewing the object from
one of the cameras. Figure 2b shows some samples from this dataset.

4.3. ShapeNet

ShapeNet [10] is a large-scale dataset containing richly-annotated 3D CAD models
organized according to the WordNet [20] hierarchy. It contains over 300M models, 220M
of which are classified into 3,135 WordNet symsets [21]. ShapeNet is made up of many
smaller subsets. A major subset is called ShapeNetCore that contains manually verified
single clean 3D models. It has two versions, v1 and v2, covering 55 and 57 categories
respectively. Processed meshes and annotations of these models can be downloaded online
from the ShapeNet website [22].

4.4. R2N2 Dataset

Choy et al. [18] took a subset of the ShapeNetCore v1 dataset containing 50,000 models
and 13 categories including plane, bench, cabinet, car, chair, monitor, lamp, speaker, f irearm,
so f a, table, phone, and watercra f t. For each object, R2N2 dataset also makes available its
own 24 renderings of the models from different viewpoints in a 137× 137 resolution, and
the 3D models themselves as meshes, point clouds and voxels.

5. Networks

This section introduces some of the recent methods proposed for reconstructing 3D
surfaces from a single 2D image. These are summarized in Table 1.

5.1. Bednarik et al.
Bednarik et al. [3] introduced a general framework for reconstructing the 3D shape of1

texture-less surfaces with an encoder-decoder architecture. Using a single RGB image, they2

reconstruct the normal maps, depth maps, and triangulated meshes for the objects in the3

images. Figure 3 shows an overview of their architecture. This network has an encoder4

connected to three separate decoders, one each for reconstructing the normal map, depth5

map, and the triangulated mesh. The encoder takes an RGB image of size 224× 224× 36

and creates a latent representation of size 7× 7× 256. This encoding is fed to the three7

decoders.8

The architecture of the encoder and the depth and normal decoders is based on SegNet9

[23]. The encoder has the same layers as VGG-16 [24] except for the fully-convolutional10

layers. However, in contrast to VGG-16, the output channels at the convolutional blocks11
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are 32, 64, 128, 256, 264 respectively. As the normal maps and depth maps have same12

spatial size as the input image, the normal and depth decoders are symmetric to the13

encoder with both having the same architecture except the number of channels at the final14

output layer; the normal decoder has 3 channels and depth decoder has 1 channel. Like15

SegNet, pooling indices at the max pooling layers in the encoder are saved, and used in16

the normal and depth decoders to perform non-linear upsampling. For the mesh decoder,17

a smaller network with a single convolutional layer followed by average pooling and a18

fully-connected layer is used.19

The depth decoder is trained by minimizing the absolute difference between the20

predicted and groundtruth depth values of the foreground, giving the loss function21

LD =
1
N

N

∑
n=1

∑i
∣∣Dn

i −ΦD(Λ(In
m))i

∣∣Bn
i

∑i Bn
i

, (1)

where Dn is the groundtruth depth map and ΦD is the depth decoder, which takes the22

encoder output on the masked input image Λ(In
m) and returns the predicted depth map.23

The absolute difference is only calculated for the foreground pixels, i.e. where the fore-24

ground mask Bn has the value 1, and the sum of absolute differences is averaged over all25

the foreground pixels.26

To train the normal decoder, the angular distance between the predicted and groundtruth27

normal vectors and the length of the predicted normal vectors are both optimized using28

the loss function29

LN =
1
N

N

∑
n=1

∑i
(
κLa

(
Nn

i , N̄n
i
)
+ Ll

(
N̄n

i
))

Bn
i

∑i Bn
i

(2)

with

La(Nn
i , N̄n

i ) = arccos
(

Nn
i N̄n

i
‖Nn

i ‖‖N̄n
i ‖+ ε

)
1
π

, (3)

Ll(N̄
n
i ) = (‖N̄n

i ‖ − 1)2 (4)

whereLa is the angular distance calculated as the arccos of the cosine similarity between the30

predicted and groundtruth normal vectors, Ll is the term that prefers unit normal vectors,31

and κ is a hyperparameter that sets the relative influence of the two terms. Furthermore,32

Nn is the groundtruth normal map, and the N̄n = ΦN(Λ(In
m)) is the predicted normal map.33

As with depth loss, the normal loss is only calculated for foreground pixels.34

Finally, for the triangulated mesh prediction, the mesh decoder optimizes the Mean35

Squared Error between predicted and groundtruth vertex coordinates. That is,36

LC =
1
N

N

∑
n=1

1
V

V

∑
i=1
‖vn

i −ΦC(Λ(In
m))‖2 (5)

As all three decoders take input from the same encoder with same latent representation,37

they can be trained either jointly or separately. When trained jointly, [3] shows the accuracy38

of the reconstruction improves because the encoder is able to learn more robust feature39

extractors. The texture-less dataset described in Section 4.1 was used for training and40

testing this network, and experiments showed poor reconstruction accuracy for 3D meshes41

compared to normal and depth maps.42

The network was trained using the Adam optimizer [25] with a fixed learning rate43

of 10−3, and κ = 10. The authors used Keras [26] with a Tensorflow [27] backend for44

implementation and published the source code. At run-time, the network takes 0.016s to45

predict both depth and normal maps together, and 0.01s when predicting either the depth46

or normal map individually.47

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2022                   doi:10.20944/preprints202208.0067.v1

https://doi.org/10.20944/preprints202208.0067.v1


8 of 22

Figure 4. Patch-Net uses Bednarik et al.’s network with only depth and normal decoders. The input
image is divided into overlapping patches, and predictions for each patch are obtained separately.
Patch predictions are stitched to form the complete depth and normal maps.

5.2. Patch-Net48

Tsoli and Argyros proposed a patch-based variation for better texture-less reconstruc-49

tion. They take the network from [3] and change the block sizes to match VGG-16 [24],50

i.e. 64, 128, 256, 512, 512. They also remove the mesh decoder, keeping only the normal51

and depth decoders. They divide the input image into overlapping patches and get per52

patch reconstructions for normal and depth maps. These patches are then stitched together53

to get the final normal and depth maps at the input image resolution, and use bilateral54

filtering to smooth out inconsistencies that were not resolved by stitching. They call this55

network Patch-Net. Since the network expects a 224× 224 spatial size of the input, each56

patch can have that size with the full image being even larger. This allows Patch-Net to get57

a higher resolution reconstruction than [3] with better accuracy and generalization. It uses58

the loss functions of Eq. 2 and Eq. 1 on each patch to compute the normal and depth loss59

respectively.60

The network was trained using the Adam optimizer with a fixed learning rate of 10−3.61

The authors extended the source code from [3], and trained their network on a Nvidia Titan62

V GPU with 12 GB memory. This code is not publicly available, and the authors do not63

report inference-time performance.64

5.3. HDM-Net65

Figure 5. Overview of the HDM-Net [5] architecture. It has an encoder that takes an RGB image of
size 224× 224× 3 and encodes it into a latent representation of size 28× 28× 128. This is then used
by the decoder to reconstruct a 3D point cloud of the surface with 732 points.

The Hybrid Deformation Model Network (HDM-Net) [5] is another approach for recon-66

structing deformable surfaces from a single-view. Like [3] and Patch-Net, HDM-Net uses67

an encoder-decoder architecture (Figure 5), but with only one decoder instead. However,68

the encoder and decoder are not symmetric to each other in this network. They also have69

a smaller depth, with only 9 convolution layers in the encoder instead of 13 convolution70
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layers in the VGG-16 based architectures. The upsampling in the decoder is performed71

using transposed convolutions, as in [28], except at the first decoder layer where a non-72

linear max-unpooling operation similar to [3,4,23] is used. HDM-Net directly learns the73

3D shape and give a dense reconstruction of the surface of size 73× 73× 3 as a point74

cloud. It is trained on the synthetic point cloud data (Section 4.2) of a thin non-rigid plate75

undergoing various non-linear deformations, with a known shape at rest. Three different76

domain specific loss functions are used to jointly optimize the output of the network, with77

the goal of learning texture-dependent surface deformations, shading and contours for78

effective handling of occlusions.79

The first loss function is a common 3D regression loss that computes the 3D error80

by penalizing the difference between the predicted 3D geometry Sn and groundtruth 3D81

geometry S′n, that is,82

L3D =
1
N

N

∑
n=1
‖S′n − Sn‖2

F (6)

where ‖·‖F is the Frobenius norm. For each state n, the squared Frobenius norm of the83

difference between predicted and groundtruth geometries is calculated, and then averaged84

for all N states.85

An isometry prior is used to constraint the regression space using an isometric loss86

that penalizes the roughness in the predicted surface by ensuring that neighboring vertices87

are located close to each other. The loss function is expressed in terms of the predicted88

geometry Sn and its smooth version S̄n89

Liso. =
1
N

N

∑
n=1
‖S̄n − Sn‖F (7)

with90

S̄n =
1

2πσ2 exp
(
− x2 + y2

σ2

)
∗ Sn (8)

where ∗ is a convolution operator and σ2 is the variance of Gaussian, and x and y stand for91

the point coordinates.92

The third loss function optimizes the contour shapes by computing a reprojection93

loss. The predicted and groundtruth 3D geometries are first projected onto a 2D plane and94

before computing their difference as95

Lcont. =
1
N

N

∑
n=1
‖τ(π(Sn))− τ(π(S′n))‖2

F (9)

where π is a differentiable 3D to 2D projection function and τ is a function that thresholds96

all positive values to 1 using a combination of tanh and ReLU. This gives contours as 0-197

transitions. The total loss is computed by adding all three losses with equal weights.98

HDM-Net was trained for 95 epochs on a GEFORCE GTX 1080Ti GPU with 11 GB99

of global memory. The training relied on the PyTorch framework [29] and took 2 days100

to complete. At inference time, the network can reconstruct frames with a frequency of101

200Hz, or 0.005s per frame. The source code was not published.102

5.4. IsMo-GAN103

An improved version of HDM-Net is the Isometry-Aware Monocular Generative104

Adversarial Network (IsMo-GAN) [6] that introduces two key modifications to achieve 10-105

30% reduction in reconstruction error in different cases, including reconstruction of texture-106

less surfaces. First, IsMo-GAN has an integrated Object Detection Network (OD-Net) that107

generates a confidence map separating background from the foreground. Secondly, IsMo-108

GAN is trained in an adversarial setting, which is different from the training of the simple109
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Figure 6. Overview of IsMo-GAN [6]. The generator network accepts a masked RGB image, seg-
mented by the object detection network (OD-Net) and returns a 3D point cloud. The output and
groundtruth are fed to the discriminator which serves as a surface regularizer.

auto-encoder based networks discussed in previous sections. The OD-Net is a simplified110

version of U-Net [28] with fewer layers than the original. It takes a 224× 224× 3 RGB111

image and outputs a grayscale confidence map indicating the position of the foreground112

in the image. The confidence map is binarized [30] and the target image is extracted113

using Suzuki et al.’s algorithm [31]. The masked-out input image is then passed to the114

Reconstruction Network (Rec-Net), which has skip connections like HDM-Net and has a115

similar architecture but with fewer layers. Like HDM-Net, the Rec-Net outputs a 73× 73× 3116

size point cloud. OD-Net and Rec-Net together make up the generator of IsMo-GAN. The117

discriminator network consists of four convolution layers followed by a fully-connected118

layer and a sigmoid function. IsMo-GAN uses the LeakyReLU activation everywhere,119

instead of ReLU which was used in all other networks discussed previously. Figure 6120

shows an overview of IsMo-GAN network.121

IsMo-GAN penalizes the output of the Rec-Net with the 3D loss (Eq. 6) and isometric122

loss (Eq. 7) from HDM-Net, where the predicted geometry is equal to the generator output123

on the input image, i.e., Sn = G(I). In addition to this, for adversarial training, IsMo-GAN124

uses cross entropy (BCE) [32], defined as125

LG = − 1
MN

M

∑
m=1

N

∑
n=1

log (D(G(In
m))) (10)

for the generator G, and126

LD = − 1
MN

M

∑
m=1

N

∑
n=1

[
log (D(S′m)) + log (1−D(G(In

m)))
]

(11)

for the discriminator D, where M is the number of states, and N is the number images for127

each state. The adversarial loss is then defined as the sum of the generator and discriminator128

losses129

Ladv = LG + LD, (12)

and it represents the overall objective of the training which encourages IsMo-GAN to gener-130

ate more realistic surfaces. It is a key component that lets IsMo-GAN outperform HDM-Net131

[5] by 10-15% quantitatively as well as qualitatively on real images. The adversarial loss132

makes up for the undesired affects of the 3D loss and the isometry prior by acting as a133

novel regularizer for the surface deformations. This network is trained and evaluated on134

the same dataset as HDM-Net, as well as on the 3D mesh data of the cloth object from the135

subset of the Bednarik et al.’s real texture-less surfaces dataset.136

The OD-Net and Rec-Net were both trained separately for 30 and 130 epochs respec-137

tively, using the Adam optimizer with a fixed learning rate of 10−3 and a batch size of 8.138
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IsMo-GAN was implemented using PyTorch, but the source code was not made public. It139

takes 0.004s to run an inference, which is a 20% improvement over HDM-Net.140

5.5. Pixel2Mesh141

Figure 7. The Pixel2Mesh [7] network consists of two parallel networks that take an RGB image
and a coarse ellipsoid 3D mesh, and learn to regress the 3D shape of the object in the image. The
key contribution is the graph-based convolutions and unpooling operators in the bottom-half of the
network.

Pixel2Mesh [7] is a deep learning network that reconstructs 3D shape as a triangulated142

mesh from a single RGB image. It was proposed in 2018 and is one of the earliest methods143

for monocular 3D reconstruction. Its primary idea is to use graph-based convolutions [33]144

to regress the mesh vertices. The network is made up of two parts; a VGG-16 based feature145

extractor and a graph-based convolution network (GCN). The feature extractor network146

takes a 224× 224 image to reconstruct. And the GCN takes an ellipsoid mesh with 156147

vertices and 462 edges. The feature extractor network then feeds the extracted perceptual148

features at different stages to the GCN in a cascaded manner, which refines the initial mesh149

in a coarse-to-fine manner by adding details at each stage. The GCN finally outputs a150

mesh with 2466 vertices (Figure 7). Each mesh deformation block in the GCN is made of 14151

layers of graph based convolutions with ResNet [34] like skip connections. Their job is to152

optimize the position of existing vertices to get a mesh matching the object shape. This is153

followed by a graph unpooling layer that interpolates the mesh to increase the number of154

vertices.155

Pixel2Mesh combines four different loss functions to optimize its weights. These in-156

clude the Chamfer loss [35] to constraint the location of mesh vertices, a normal consistency157

loss, a Laplacian regularization to maintain the neighborhood relationships when deform-158

ing the mesh, and an edge length loss to prevent outliers. The total loss then calculated as a159

weighted sum of the individual losses. The network is trained and evaluated on the R2N2160

subset [18] of the ShapeNet dataset [10], which consists of synthetically rendered images161

and 3D mesh groundtruth. The network is also qualitatively evaluated on the Stanford162

Online Products dataset [36], which contains real-world images of objects without any 3D163

labels.164

Pixel2Mesh was implemented using Tensorflow and the official source code is avail-165

able on GitHub. It used the Adam optimizer with a weight decay of 1−5 and a batch size of166

1 to train for 50 epochs, with the initial learning rate of 3−5. The training took 72 hours on167

Nvidia Titan X GPU with 12 GB memory, and the trained network can reconstruct a mesh168

containing 2466 vertices in 15.58ms.169

5.6. Salvi et al.170

A new category of networks is adding self-attention modules [37,38] to 3D recon-171

struction networks. Salvi et al. proposed one such network, which improves Occupancy172

Networks (ONets) [39] by adding self-attention to them. ONets consist of three parts:173
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Figure 8. The "attentioned" ResNet-18 [34] network with four self-attention blocks [37] added to it.
This encoder network is used by [8] to extract image features, which are fed to a decoder with five
Conditional Batch Normalization blocks followed by an occupancy function.

a feature extractor, a decoder, and a continuous decision boundary function, called the174

occupancy function o : R → {0, 1}, that classifies each point from the space as whether175

or not it belongs to the surface. This provides a general 3D representation that allows176

extracting meshes at any resolution. ONets are an extension of the autoencoders discussed177

in previous sections, where the encoders functioned as feature extractors, followed by a178

decoder to reconstruct the 3D shape.179

In the networks discussed previously as well as ONets introduced in [39], the feature180

extractors are based on CNNs. Standard CNNs work with local receptive fields and need181

very deep architectures to successfully model global dependencies. This is because the182

features they learn are relatively shallow and do not capture the long-range correlations183

in natural images. To address this limitation, self-attention modules were introduced that184

calculate the response at a given position as a weighted sum of the features at all positions.185

This allows them to efficiently model global dependencies with much smaller networks186

than traditional CNNs. Salvi et al. show that adding self-attention modules at different187

locations in the feature extractor can improve the performance of an Occupancy Network.188

When used earlier in the network, self-attention allows the network to focus more on189

finer details. And when used later in the network, it allows the network to extract better190

structural features. Figure 8 depicts one such feature extractor proposed by [8], showing a191

ResNet-18 [34] network with four self-attention modules.192

They train their network on the synthetic R2N2 dataset [18] (see Section 4.4) using193

an ensemble approach, where the ensemble is made up of one specialized ONet for each194

object type. This is supported by their experiments which show that self-attention based195

ONets have better results if trained for each category separately. The network was also196

qualitatively evaluated on a subset of the Stanford Online Products dataset [36], which197

contains real images, and showed more consistent and better reconstruction of meshes198

when compared to existing approaches. Self-attention in decoders was not used due to199

computational limitations.200

Adam optimizer with a learning rate of 10−3 and weight decay of 1−5 was used for201

training the network for 200K steps. All other hyperparameters were kept the same as in202

[39]. The source code for this network is not available.203

5.7. VANet204

Another network that uses the attention mechanism is the View Attention Guided205

Network (VANet) [9]. It uses channel-wise view attention and a dual pathway network for206

better reconstruction of occluded parts of the objects, and defines a unified approach for207

both single and multi-view reconstruction. As shown in Figure 9, the proposed architecture208

consists of a main pathway and an auxiliary pathway. The main path uses the first view of209

a scene to reconstruct a 3D mesh. If any more views are available, they are then fed to the210

auxiliary path, which aligns them with the main view and uses the additional information211

from these new views to refine the reconstructed mesh. The main view features after the212
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Figure 9. Overview of VANet [9], a unified approach for both single and multi-view reconstruction
with a two branch architecture.

encoder are pooled along the spatial dimensions using global average pooling to get a213

channel descriptor of shape 1× 1×C. This is then sent to a system of fully-connected layers214

followed by a sigmoid function to generate a channel-wise attention map αmain. These215

attention weights are then used to re-calibrate the computed feature maps. If auxiliary216

views are available, they are used to enhance the less-visible parts in the original view.217

A max pooling operation is used to select permutation invariant auxiliary view features,218

which are multiplied with 1− αmain and finally added to the main view features. These are219

then sent to a vertex prediction module to generate the reconstructed 3D mesh. The vertex220

prediction module is based on the mesh deformation module of Pixel2Mesh [7].221

VANet is trained using the same four loss functions as Pixel2Mesh, and evaluated222

on the R2N2 subset [18] of the ShapeNet dataset [10]. Using the Adam optimizer with an223

initial learning rate of 2x10−5 and a batch size of 1, the network was trained for 20 epochs.224

It was implemented in Tensorflow but the source code was not published.225

5.8. 3D-VRVT226

Figure 10. 3D-VRVT takes one image as input and uses a Vision Transformer encoder to extract a
feature vector. This is then fed to a decoder that outputs the voxel representation of the object.

Vaswani et al. [37] initially proposed the Transformer architecture for natural lan-227

guage processing (NLP) tasks. These methods used the self-attention mechanism to let the228

network understand longer sequences of text to compute a representation for the whole229

sequence. Salvi et al. [8] used the self-attention mechanism from Transformers in their230

"attentioned" ResNet encoder to extract better features for 3D reconstruction. However,231

their input is not sequential (Section 5.6). Dosovitskiy et al. [40] proposed a novel archi-232

tecture called Vision Transformers that breaks down images into patches and treats those233

patches as part of a sequence. Using a linear projection, vector embeddings for each patch234

are obtained. This sequence of patch embeddings is then fed to a Transformer network.235
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Inspired by this, Li and Kuang [41] proposed a Vision Transformer-based network (Figure236

10) for reconstructing voxels from a single image. They call this network 3D-VRVT.237

3D-VRVT uses a Vision Transformer as an encoder, that takes a 224x224 RGB image as238

input and produces a feature vector of size 768 which is fed to a decoder network. The de-239

coder network has a fully-connected layer that upscales the feature vector to 2048 and then240

reshapes it into a 3D tensor of shape 256x23. This is followed by four 3D deconvolutions241

with a kernel size of 4, stride 2, and padding 1 that iteratively refine the 3D grid until it242

has the resolution 32x323. Each deconvolution operation is also followed by a 3D batch243

normalization and a GELU activation function. Then, a final deconvolution with kernel244

size 1 is applied to get a grid of 1x323. This is passed through a sigmoid activation function245

before getting the final voxel output.246

The network was trained on the ShapeNet dataset. It used an SGD optimizer and a247

warm-up cosine annealing learning rate with a momentum of 0.9. The learning rate ranged248

between 2−5 and 2−3. The training relied on a PyTorch implementation and continued for249

600 epochs on Nvidia Titan V GPU, including 10 warm-up epochs. At test time, it takes250

8.82ms to reconstruct an object with this network.251

6. Comparison252

We described different 3D reconstruction methods in this paper, which were trained253

by their authors on various datasets and evaluated on different error metrics. In this section,254

we first formally define the various error metrics used for evaluation of 3D reconstruction255

methods. We then describe comparable experiments on similar datasets by different256

networks, and report and compare performance of those methods.257

6.1. Metrics258

1. Depth Error (ED): The depth error metric is used to compute the accuracy of depth259

map predictions. Let ΘK and Θ′K be the point clouds associated with the predicted260

and groundtruth depth maps respectively, with the camera matrix K. To remove the261

inherent global scale ambiguity [42] in the prediction, ΘK is aligned to groundtruth262

depth map D′ to get an aligned point cloud Θ̄K as263

Θ̄K = Ω(ΘK, D′) (13)

where Ω is the Procrustes transformation [43]. Then, the depth error ED is calculated264

as265

ED =
1
N

N

∑
n=1

∑i‖Θ′K − Θ̄K‖Bn
i

∑i Bn
i

. (14)

Note that the foreground mask B in the equation ensures that the error is only266

calculated for foreground pixels. Smaller depth errors are preferred.267

2. Mean Angular Error (EMAE: The mean angular error EMAE metric is used to calculate268

the accuracy of normal maps, by computing the average difference between the269

predicted and groundtruth normal vectors. The angular errors for all samples are270

calculated using Eq. 3, and then averaged for all samples. Smaller angular errors271

indicate better predictions.272

3. Volumetric IoU (EIOU): The Intersection over Union (IoU) metric for meshes is calcu-273

lated as the volume of the intersection of groundtruth and predicted meshes, divided274

by the volume of their union. Larger values are better.275

4. Chamfer Distance (ECD): Chamfer distance is a measure of similarity between two276

point clouds. It takes the distance of each point into account by finding, for each point277

in a point cloud, the nearest point in the other cloud, and summing their squared278

distances.279

ECD =
1
|Θ| ∑

x∈Θ
min
y∈Θ′
‖x− y‖2 +

1
|Θ′| ∑

x∈Θ′
min
y∈Θ
‖x− y‖2 (15)
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where ‖·‖2 is the square of Euclidean distance. A smaller CD score indicates a better280

value.281

5. Chamfer-L1 (ECD1): The Chamfer distance (CD) has a high computational cost for282

meshes because of a large number of points, so an approximation called Chamfer-L1283

is defined. It uses L1-norm instead of the Euclidean distance [8]. Smaller values are284

preferred.285

6. Normal Consistency (ENC): The normal consistency score is defined as the average286

absolute dot product of normals in one mesh and normals at the corresponding287

nearest neighbors in the other mesh. It is computed similarly to Chamfer-L1 but the288

L1-norm is replaced with the dot product of the normal vectors on one mesh with289

their projection on the other mesh [8]. Normal consistency shows how similar the290

shapes of two volumes are, and is useful in cases such as where two meshes might291

overlap significantly, giving a high IoU, but have a different surface shape. Higher292

normal consistency is preferred.293

7. Earth Mover’s Distance (EEMD):294

The Earth Mover’s Distance computes the cost of transforming one one pile of dirt,295

or one probability distribution, into another. It was introduced in [44] as a metric for296

image retrieval. In case of 3D reconstruction, it computes the cost of transforming the297

set of predicted vertices into the groundtruth vertices. The lower the cost, the better298

the prediction.299

8. F-score (EF):300

The F-score evaluates the distance between object surfaces [2,45]. It is defined as301

the harmonic mean between precision and recall. Precision measures reconstruction302

accuracy by counting the percentage of predicted points that lie within a certain303

distance from the ground truth. Recall measures completeness by counting the304

percentage of points on the ground truth that lie within a certain distance from the305

prediction. The distance threshold τ can be varied to control the strictness of the306

F-score. In the results reported in this paper, τ = 10−4.307

6.2. Experiments308

The RGB-D dataset consisting of normal and depth maps of real data [3] was used309

by Bednarik et al. and Patch-Net in their experiments. This dataset contains five different310

texture-less surfaces. Experiments were conducted where the network was trained with311

samples from one surface and then evaluated on samples from another surface. For312

example, in the experiment "cloth-hoody", the network was trained on the cloth object and313

evaluated on the hoody object. The depth and angular errors for these experiments are314

summarized in Table 3. Patch-Net outperforms [3] in almost all experiments on both the315

metrics.316

Table 3. The texture-less surfaces dataset [3] is used to compare the performance of different depth
and normal map reconstruction methods. 128× 128 size patches were used in the Patch-Net.

Metric ED (mm) ↓ EMAE (degrees) ↓
Method Bednarik et al. Patch-Net [4] Bednarik et al. Patch-Net [4]

cloth-cloth 17.53± 5.50 12.80± 4.45 17.37± 12.51 14.72± 3.39
tshirt-tshirt 17.18± 18.58 13.70± 3.83 18.07± 12.71 18.63± 4.43
cloth-tshirt 26.26± 7.72 22.74± 7.20 25.74± 15.81 24.29± 3.80

cloth-sweater 38.93± 10.36 30.10± 10.00 31.52± 19.07 27.94± 4.79
cloth-hoody 43.22± 24.81 31.09± 8.73 32.54± 21.15 29.73± 2.52
cloth-paper 24.16± 7.15 14.53± 4.48 35.53± 22.16 24.52± 5.96

The HDM-Net and IsMo-GAN networks were evaluated on the synthetically gener-317

ated point cloud dataset consisting of a thin, deforming plate with various textures and318

under different illuminations [5]. The 3D error E3D and its standard deviation over a set of319
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frames Eσ are reported in Table 4. Results are reported for each of the four textures in the320

network, under a constant illumination.321

Table 4. Comparison of different point cloud reconstruction methods using the synthetic thin plate
dataset [5] under one illumination.

Metric E3D (mm) ↓ Eσ (mm) ↓
Method HDM-Net [5] IsMo-GAN [6] HDM-Net [5] IsMo-GAN [6]

endoscopy 48.50 33.60 13.50 14.80
graffiti 49.90 33.30 22.00 20.80
clothes 48.90 35.30 26.40 24.20
carpet 144.20 110.50 26.90 26.80

mean 72.88 53.18 22.20 21.65

For a small subset of the cloth object in the texture-less dataset, groundtruth 3D meshes322

are also provided. For this cloth data, 3D error is reported for [3], HDM-Net and IsMo-GAN.323

In addition, [6] removed the textures from surfaces in the synthetic thin plate data to create324

another texture-less data. They report the 3D error on this data for HDM-Net and IsMo-325

GAN. We summarize these results for texture-less mesh and point cloud reconstruction in326

Table 5.327

Table 5. Comparison of mesh reconstruction from texture-less data. As can be seen, IsMo-GAN
outperforms [3] and HDM-Net on the real texture-less cloth data by 26.5% and 10.5% respectively,
and it outperforms HDM-Net on the synthetic texture-less thin plate data by 31.9%

Metric E3D (mm) ↓
Method Bednarik et al. HDM-Net [5] IsMo-GAN [6]

cloth [3] 21.48 17.65 15.79
plate [5,6] - 99.40 67.70

For most other experiments, the Choy et al. subset of the ShapeNet dataset [10],328

described in Section 4.4, is used. For each of the 13 objects in this dataset, various error329

metrics are reported for the task of mesh reconstruction. Table 6 summarizes these results,330

reporting the F-score, Earth Mover’s Distance, and the Chamfer Distance metrics. Salvi331

et al. report the IoU, Chamfer-L1 and Normal Consistency metrics on the same dataset.332

These results are summarized in Table 7.333

7. Discussion334

There are many different methods for 3D reconstruction from 2D images. In this335

paper, we discussed several of them - including those that use depth maps, normal maps,336

point clouds, surface meshes or volumetric data. Each of these approaches has its own337

advantages and disadvantages, but no one method is perfect. This makes the task of 3D338

reconstruction an ill-posed problem, which requires careful consideration when choosing339

a method to use. In single-view 3D reconstruction, this becomes even more challenging340

because the network has to reconstruct the shape of surfaces that may not even be visible341

in the image at all.342

We discussed two methods that reconstruct 3D shape of texture-less surfaces. In343

general, the more distinctive textures an image contains, the easier it is to reconstruct344

in 3D. With only a single RGB image - and that containing surfaces with no distinctive345

textures - dense reconstruction in 3D can be very difficult. That is why Bednarik et al. and346

Patch-Net only reconstruct the so-called 2.5D shape in form of normal and depth maps.347

They both use a very similar network architecture, but [4] uses a patch-based strategy348

instead of reconstructing the whole image together. By doing so, they are able to reduce the349

depth error by 25.3% and the mean angular error of the surface normals by 13.0%. Later,350
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Table 6. Comparison of (A) Pixel2Mesh [7] and (B) VANet [9] on the Choy et al. subset of the
ShapeNet dataset [10]. VANet outperforms Pixel2Mesh in all metrics, with 10-40% improvement.

Metric EF (%) ↑ EEMD ↓ ECD ↓
Method A B A B A B

plane 71.12 77.01 0.579 0.486 0.477 0.304
bench 57.57 67.69 0.965 0.770 0.624 0.362

cabinet 60.39 63.30 2.563 1.575 0.381 0.327
car 67.86 69.53 1.297 1.185 0.268 0.235

chair 54.38 60.74 1.399 0.957 0.610 0.443
monitor 51.39 60.35 1.536 1.269 0.755 0.459

lamp 48.15 56.26 1.314 1.086 1.295 0.879
speaker 48.84 53.49 2.951 2.283 0.739 0.562
firearm 73.20 77.24 0.667 0.473 0.453 0.333

sofa 51.90 56.83 1.642 1.376 0.490 0.400
table 66.30 70.78 1.480 1.173 0.498 0.334

phone 70.24 72.27 0.724 0.573 0.421 0.298
watercraft 55.12 62.12 0.814 0.718 0.670 0.450

mean 59.73 65.20 1.380 1.071 0.591 0.414

Table 7. Comparison of (A) Pixel2Mesh [7], (C) Salvi et al. and 3D-VRVT [41] on the Choy et al.
subset of the ShapeNet dataset [10]. With self-attention after ResNet layers, [8] improves IoU by 25%,
Normal Consistency by 8.9%, and reduces the average Chamfer-L1 distance approximately 11 times.
[41] further improves the IoU by 9% with a Vision Transformer architecture containing multi-headed
self-attention.

Metric EIoU ↑ ECD1 ↓ ENC ↑
Method A C D A C A C

plane 0.420 0.645 0.608 0.187 0.011 0.759 0.868
bench 0.323 0.493 0.563 0.201 0.016 0.732 0.813

cabinet 0.664 0.737 0.794 0.196 0.016 0.834 0.876
car 0.552 0.761 0.855 0.180 0.014 0.756 0.855

chair 0.396 0.534 0.553 0.265 0.021 0.746 0.829
monitor 0.490 0.520 0.555 0.239 0.026 0.830 0.863

lamp 0.323 0.379 0.436 0.308 0.045 0.666 0.722
speaker 0.599 0.660 0.725 0.285 0.028 0.782 0.839
firearm 0.402 0.527 0.597 0.164 0.012 0.718 0.804

sofa 0.613 0.689 0.716 0.212 0.019 0.820 0.866
table 0.395 0.535 0.617 0.218 0.019 0.784 0.861

phone 0.661 0.754 0.805 0.149 0.012 0.907 0.937
watercraft 0.397 0.568 0.604 0.212 0.018 0.699 0.801

mean 0.480 0.600 0.654 0.216 0.019 0.772 0.841

Shimada et al. used a subset of the same texture-less surfaces data to directly reconstruct351

3D meshes. They report results for HDM-Net and their own IsMo-GAN network, showing352

17.8% and 26.5% improvement respectively over [3]’s original texture-less surfaces method353

for meshes.354

HDM-Net, like [3], is an encoder-decoder network and has a similar VGG-16 backbone355

but fewer convolutional layers. The major difference in the encoder is the ResNet-like skip356

connections. In [3], the decoder consisted of only one convolutional layer, followed by357

pooling and a fully connected layer. HDM-Net uses a much larger decoder with transposed358

convolutions for upsampling. Finally, while [3] for its mesh decoder used a simple mean359

squared error loss function, HDM-Net combines that with two more loss functions that360
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enforce isometry and contour constraints. The skip connections, a larger decoder, and361

domain-specific loss functions help HDM-Net get a significantly improved reconstruction362

compared to [3]. IsMo-GAN takes the isometry constraints from HDM-Net and uses an363

adversarial training setting to improve the mesh reconstruction accuracy for texture-less364

surfaces even further.365

HDM-Net and IsMo-GAN also evaluate their methods on a synthetic dataset of a366

deforming plate with a variety of textures. In addition to the adversarial training, IsMo-367

GAN’s integrated Object Detection Network and the choice of LeakyReLU activation368

instead of ReLU help it outperform HDM-Net when reconstructing a 3D point clouds by369

10-30% in various experiments.370

Next, we talked about two methods that reconstruct 3D meshes using Choy et al.’s371

rendered images of the ShapeNet dataset; Pixel2Mesh [7] and VANet. Both use a dual-372

lane architecture with separate roles for each lane. Pixel2Mesh has one lane for feature373

extraction, which feeds cascaded input to the other lane that performs the reconstruction.374

On the other hand, VANet’s two lanes are both for feature extraction, and have shared375

weights. VANet can be used for both single and multi-view reconstruction, and the first376

lane extracts features from the main view while the second from all auxiliary views. The377

feature vectors extracted from both lanes are concatenated and sent to another module378

which has an architecture similar to Pixel2Mesh’s mesh reconstruction lane. This uses graph379

based convolutions to generate a mesh from extracted features. By primarily improving380

their feature extractor, which uses channel-wise attention, VANet was then able to use381

the same reconstruction network as Pixel2Mesh to get up to 40% reduction of the average382

Chamfer distance error (see Table 6).383

Finally, we discussed Salvi et al.’s attentioned Occupancy Network for reconstructing384

the 3D shape as a continuous function. The motivation for this type of output is to have385

a standard method for efficiently representing a 3D shape. In this network, an encoder386

with ResNet-18 backbone is augmented with several self-attention blocks to improve387

comprehension of global dependencies in the input images. This is then passed to a388

decoder network and an occupancy function to get the final output, which can then be389

used to obtain a mesh at any resolution. The mesh output is compared to Pixel2Mesh390

using several metrics, and Salvi et al. get 11 times smaller average Chamfer-L1 distance391

than Pixel2Mesh. No metrics directly comparing this method with VANet are reported,392

but as this also uses the same ShapeNet dataset, and the reported Chamfer-L1 distane is a393

variant of the standard Chamfer distance reported by VANet, it can be assumed that self-394

attention in VANet’s encoder would improve reconstruction accuracy of that network, as395

well. However, as [8] showed in some of their experiments, the benefit from self-attention396

modules was highest when used at the early layers of the encoder as opposed to the later397

layers.398

8. Conclusions399

This paper reviewed several methods for monocular 3D reconstruction and concluded400

that it remains an ill-posed problem. This is primarily because of a lack of a standardized,401

one-size-fits-all method of representing 3D shapes, as well as non-availability of standard402

datasets that cover the whole range of objects to be reconstructed. For example, while403

there are a lot of large-scale synthetic datasets, real-world 3D datasets are rare and smaller404

on average. This is because of the inherent difficulty of capturing real 3D data. When it405

comes to texture-less surfaces, there are even fewer datasets available, and those that are406

available only contain RGB-D data. Standard datasets for deformable texture-less surfaces407

with groundtruth point clouds or meshes provided are not available. This is why most408

texture-less reconstruction methods only reconstruct depth maps or surface normals.409

As discussed before, most networks in 3D reconstruction are made up of encoder-410

decoder architectures, which in turn are based on semantic segmentation networks like411

SegNet and UNet. Various enhancements in these networks have shown promise, including412

the use of domain specific losses that enforce various shape constraints on the surfaces.413
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An example of this is the isometry prior used by some networks. Other networks have414

shown that using ResNet-like skip connections improves the representation power of the415

network, giving better results. Attention-based methods have also shown good results,416

with self-attention modules when compared with ResNet’s skip connections, improving417

the performance of previous methods manifolds. However, self-attention is an expensive418

process which cannot be practically used everywhere in the encoder-decoder networks.419

Instead, their use is limited to the earlier layers of the encoder. Like self-attention, the use420

of max pooling indices from the encoder layers in the decoder layers is also an expensive421

process as it requires additional memory at each forward pass. Some networks have422

successfully used interpolation and transposed convolutions for upsampling, eliminating423

the need of pooling indices from the encoder. Using an adversarial training in a GAN-based424

network also showed significantly better results. The GAN-based network also performed425

significantly faster than all other methods reviewed in this paper, generating point clouds426

at 250 Hz frequency, thus making it suitable for runtime 3D reconstruction. Tranformers427

are also gaining traction for vision tasks, with one network using Vision Trnasformers for428

single-view 3D reconstruction. This network shows promising results at reconstructing a429

low-resoultion voxel grid, and improves the IoU on the ShapeNet dataset by 9% compared430

to other state-of-the-art methods.431

In the future, 3D reconstruction research can benefit from more datasets, especially for432

texture-less surfaces and from real-world objects. For depth maps and surface normals, sim-433

ple RGB-D cameras like Microsoft Kinect may be used, but it is generally very challenging434

to collect real-world datasets of the same size as can be generated synthetically. Collecting435

groundtruth point clouds or 3D meshes from real-world objects poses an even bigger436

challenge because of more specialized equipment required. Synthetic datasets focusing on437

texture-less surfaces in particular, and including both deforming and rigid surfaces, can438

be generated using software like Blender. In addition to dataset creation, methods to deal439

with the bottlenecks created by self-attention modules and pooling indices also need to440

be studied. The full potential of Transformers in context of single-view 3D reconstruction441

is also still unknown. Finally, the use of adversarial training and generator-discriminator442

networks for 3D reconstruction needs to be further explored.443
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2D Two-Dimensional
3D Three-Dimensional
CAD Computer-Aided Design
CNN Convolutional Neural Network
GAN Generative Adversarial Network
NLP Natural Language Processing
RGB Red-Green-Blue
RGB-D Red-Green-Blue-Depth
RNN Recurrent Neural Network
VAE Variational Autoencoder
VOC Visual Object Classes
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