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Abstract: 3D reconstruction from a single 2D input is a challenging problem that is trending in
literature. Until recently, it was an ill-posed optimization problem, but with the advent of learning-
based methods, the performance of 3D reconstruction has also significantly improved. Infinitely
many different 3D objects can be projected onto the same 2D plane, which makes the reconstructing
task very difficult. It is even more difficult for objects with complex deformations or no textures.
This paper serves as a review of recent literature on 3D reconstruction from a single view, with a
focus on deep learning methods from 2018 to 2021. Due to the lack of standard datasets or 3D shape
representation methods, it is hard to compare all reviewed methods directly. However, this paper
reviews different approaches for reconstructing 3d shapes as depth maps, surface normals, point
clouds, and meshes; along with various loss functions and metrics used to train and evaluate these
methods.

Keywords: deep learning; 3D reconstruction; convolutional neural networks; texture-less surfaces

1. Introduction

3D reconstruction is the task of inferring the geometric structure of a scene from a
set of 2D images. Given one or more 2D views of a scene, we want to know the 3D shape
and position in space of all the objects in the scene. This can be seen as mapping the 2D
points in the image space to 3D points in real-world space, where for each 2D point (x, )
in the image, we want to recover the corresponding 3D point (%,7,z) in world coordinates,
where 2 is the distance of the point from the camera.

There are two main ways to reconstruct a 3D scene: monocular reconstruction from
a single image, or multi-view reconstruction from multiple images taken from different
perspectives. The goal of both tasks is to infer the 3D geometry of the scene, but monocular
reconstruction can be more difficult because you only have one view of the scene. Multi-
view reconstruction is easier because you get more information about the hidden faces of
objects from different angles, making it easier to infer their shape and position.

The literature also distinguishes between the reconstruction of a whole scene as
opposed to the reconstruction of a single object. A scene is usually made up of a set of
objects, and scene reconstruction involves reconstructing not only the geometry of all the
objects in the scene but also their relative positions. Reconstruction of a whole scene is
generally harder than reconstruction of a single object because it involves dealing with
more complex shadows and occlusions. An image can be a projection of infinitely many
different shapes, which makes correctly reconstructing the 3D shape from a single image
very hard. Reconstruction of the non-visible faces of the object is challenging in particular
as the input image often provides no information about their shape. Bautista et al. [1]
showed that many existing monocular 3D reconstruction networks learn shape priors over
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training object categories to solve this problem. This makes it difficult for these networks
to generalize to unseen object categories or scenes. Tatarchenko et al. [2] demonstrated that
single-view 3D reconstruction networks do not reason about the 3D geometry of the object
from visual shape cues, but rather rely on object recognition to perform the reconstruction.

The reconstruction task is also made more difficult when there are no textures in the
scene. Without any distinctive features, it becomes harder to infer the 3D shape of an object
from a 2D image. This makes it difficult to create a complete and accurate 3D model of the
scene.

3D reconstruction from visual data is a long-standing computer vision problem with
real-world applications in fields like robotic surgery, autonomous vehicles, and virtual and
augmented reality. In recent years, deep learning has replaced the traditional computer
vision algorithms for the problem of 3D reconstruction with promising results. Deep
learning networks have been shown to be more robust to noise and variations in input
data than traditional methods. Additionally, they are able to learn complex features from
data without any human intervention. This makes them well suited for tasks like 3D
reconstruction where there is a lot of variability in input images.

In this paper, we review different deep learning-based methods proposed for the
task of 3D reconstruction from a single view. We only focus on methods reconstructing
individual objects. Our main contributions include:

o  Overview of the neural networks proposed for monocular 3D object reconstruction in
the last five years, including:

—  Bednarik ef al. [3] and Patch-Net [4] for reconstruction of depth and normal maps
using a real dataset of texture-less surfaces,

—  HDM-Net [5] and IsMo-GAN [6], which reconstruct 3D point clouds from a
synthetic dataset of textured surfaces, and

—  Pixel2Mesh [7], Salvi et al. [8] and Yuan ef al.[9] for reconstruction of mesh-based
models using a subset of the ShapeNet [10].

Summary of the major 3D datasets that are used by the discussed neural networks.
e  Description of common metrics used to evaluate the 3D reconstruction algorithms.
Comparison of the performance of these methods using different evaluation metrics.

The remainder of the paper is organized as follows. In Section 2, we present an
overview of related literature. Section 3 defines various methods of representing 3D data,
such as depth maps, normal maps, point clouds, 3D meshes, and voxels. In Section 4, we
introduce the major 3D datasets used by the networks reviewed in this paper. Then, we
discuss different deep learning methods proposed recently for 3D reconstruction in Section
5. Section 6 defines the evaluation metrics used by these networks and lists the results of
various experiments conducted by these methods on different datasets. We further discuss
the experiment results in Section 7 before concluding our findings and providing direction
for future work in Section 8.

2. Related Work

The problem of 3D reconstruction from visual data has been well-studied in computer
vision literature, but reconstructing 3D geometry from images remained an ill-posed
problem before 2015 when researchers started using convolutional neural networks for
this task. Figure 1 shows the trend of related publications since then. In this section, we
shed some light on existing surveys that have previously reviewed the 3D reconstruction
methods in the literature.

Zollhofer et al. [11] published a report in 2018 on the state-of-the-art in monocular 3D
reconstruction of faces. The authors mainly focus on optimization-based algorithms for
facial reconstruction, but also briefly mention the emerging trend of using learning-based
techniques for this task. They conclude that they "expect to see heavy use of techniques
based on deep learning in the future". In 2019, Yuniarti and Suciati [12] formally defined
3D reconstruction as a learning problem and showed an exponentially growing interest


https://doi.org/10.20944/preprints202208.0067.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2022 d0i:10.20944/preprints202208.0067.v1

30f22

Number of Publications

Figure 1. Interest in using deep learning based methods for 3D reconstruction is reflected in the
number of publications on ScienceDirect matching the keywords "3d reconstruction” AND "deep
learning", which are exponentially growing since 2015.

in 3D reconstruction among the deep learning community. This paper talks about the
different ways of representing shapes in 3D, such as parametric models, meshes, and point
clouds, lists the 3D datasets available at that time and summarizes various deep learning
methods for 3D reconstruction. Han et al. [13] published a more extensive review of single
and multi-view 3D reconstruction later that year. This work also distinguishes between the
reconstruction of scenes and reconstruction of objects in isolation, and reviews techniques
for both.

A large body of work in this area focuses solely on producing depth maps from
images, which represent a partial representation of 3D geometry. In this context, Laga [14]
extensively surveyed more than 100 key contributions using learning-based approaches
for recovering depth maps from RGB images. More reviews published in the following
years show the shift in trend from using plain CNNs to recurrent neural networks (RNNs),
residual networks and generative adversarial networks (GANSs) for 3D reconstruction
with encouraging results [15,16]. Fu et al. [17] also published a review of single-view
3D reconstruction methods, focusing only on objects in isolation. They cover networks
proposed between 2016 and 2019 in their review.

3. Representing Shape in 3D

There are many different ways to represent the 3D shape of a scene. The depth and
normal maps can be used to represent the partial geometry of the scene which is limited to
the surfaces of the objects directly facing the camera. For a more complete representation,
point clouds, meshes, and voxels can be used. 3D reconstruction networks can be trained
to reconstruct 3D scenes from 2D images in different ways. In this section, we briefly
introduce different ways of representing 3D data.

3.1. Depth Map

For each pixel in an image, a depth map provides the distance from the camera of the
corresponding point in space. This gives a single-channel image of the same size as the
input image, with the corresponding depth value, z at each (x, y) position. The absolute
depth values are sometimes mapped to the range [0, 255] and, together with a normal
RGB image, the depth map is given as the fourth channel of the so-called RGB-D images
with points closer to the camera appearing darker and the points further away appearing
brighter.

As depth maps are created from a single viewpoint, they represent a very sparse 3D
geometry of the scene containing only points directly in the line of sight of the camera. They
say nothing about the occluded planes, nor do they say anything about the 3D orientation
of different faces of an object in the scene. For this reason, RGB-D images are sometimes
called 2.5D because they cannot represent a complete 3D topology on their own. They are
a partial surface model, with only the shape of the front face of the surface represented.
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3.2. Normal Map

A normal vector or a "normal" to a surface is a three-dimensional vector perpendicular
to the surface at a given point. Analogous to depth maps, normal maps provide normals
for each pixel in an image. This means that we can tell the 3D orientation of the surface at
any given point in space that is visible in this image.

When RGB-D datasets are combined with normal maps, we can extract both the
distance and orientation of every point in a scene from a single viewpoint. However, since
we are only seeing the scene from one perspective, information about the hidden surfaces
of the objects in the scene cannot be completely represented. Like depth maps, normal
maps also represent a partial surface model.

3.3. Point Cloud

A point cloud is a set of 3D points in space. Theoretically, they are able to exactly
represent a complete 3D scene by storing the position of every point in space. Depending
on how many and which points are present in the point cloud, it can be both a solid
and a surface model of the scene. However, due to limited computational memory, it is
often necessary to downsample them to reduce the size of the dataset. This can be done
by removing the points which are very close to each other or which are not needed to
understand the visible shape of the 3D surfaces.

Point clouds can be extremely useful for representing 3D shapes, but they can also be
difficult to work with. Sometimes it is necessary to convert them to a mesh in order to get a
more accurate representation of the object.

3.4. 3D Mesh

A mesh is a collection of 3D points (or vertices) that have been connected together
with edges to form the surfaces (or faces) of 3D objects. Vertices are connected in a way that
the faces are made up of many polygons adjacent to each other. Usually, these polygons
are triangles, and the meshes are called "triangulated meshes". Meshes can be used to
represent the surface models of a 3D scene as "wireframes".

3.5. Voxel

A voxel is a 3D equivalent of a pixel. Voxel-based models represent objects as a
collection of cubes (or voxels) stacked in space like a 3D grid. They represent a discretized,
solid model of the scene. Accuracy of the 3D model depends on the size of the voxels
making up the objects. The bigger the voxels, the more "pixelated" the surfaces of the
objects appear.

Like meshes, voxel grids can also be generated directly from point clouds where
several adjoining points are all approximated to a single voxel (or a cube) in space. This
process is called voxelization and is one way of downsampling the point clouds.

4. Datasets

In this section, we introduce the datasets used by the networks discussed later in
Section 5. These datasets contain RGB images of different objects and their 3D shape in one
of the representations introduced above. Table 1 provides a summary of these datasets.

4.1. Real Texture-less Surfaces Data

This RGB-D dataset of deformable texture-less surfaces from [3] consists of 26,445
RGB images, along with depth maps and normal maps for each image. These RGB images
and depth maps were collected using a Microsoft Kinect for Xbox One device. Normal
maps were computed by differentiating the depth maps. The dataset contains five different
types of objects: tshirt, hoody, sweater, a rectangular sheet of cloth, and a crumpled piece
of paper. The objects have no texture or colors on them. Figure 2a shows some samples
from this dataset.
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Table 1. Summary of the major 3D datasets in this paper. Most of the datasets contain textured
surfaces and are generated from synthetic 3D models. Real datasets captured directly with 3D sensors
are less common and smaller in size because of the difficulty associated with obtaining such that.

Dataset Type Surface Texture Groundtruth Size
Bednarik Real Deformable No Depth and 26,445
etal. Normal
Maps
Golyanik Synthetic Deformable Yes Point Clouds 4,648
etal.
ShapeNet Synthetic Mixed Yes 3D Mesh > 300M
[10]
R2N2 [18] Synthetic Rigid Yes 3D Meshes 50,000
and
Voxelized
Models

= By

Hlluminations o
>2

(b) The synthetic point cloud dataset of

(a) The texture-less surfaces dataset [3] con- Golyanik ef al. has a deforming thin plate
tains RGB images and corresponding normal rendered with 4 different textures under 5
and depth maps for 5 different real objects. different illuminations.

Figure 2. Examples of images in the datasets of Bednarik ef al. and Golyanik et al., which are used to
evaluate some of the networks in this paper. (Figures adapted from [3,5])

The tshirt, hoody and sweater were worn by a person who made random motions to
simulate realistic creases. The sheet of cloth was fixed to a bar on the wall and manually
deformed, and the piece of paper was crumpled by hand to create different depths. Different
combinations of four light sources were used to create lighting variations across different
recording sequences. This included three fixed lights in front of the objects on the right, left,
and center, and one moving dynamic light in the room. Table 2 summarizes the number of
samples of each kind of object.

Table 2. Summary of objects in the texture-less surfaces dataset [3]. Sequences of data samples were
captured using a Kinect device at 5 FPS with varying lighting conditions across sequences.

cloth  tshirt sweater hoody paper

sequences 18 12 4 1 3
samples 15,799 6,739 2,203 517 1,187

4.2. Synthetic 3D Point Cloud Data

Golyanik et al. generated a synthetic 3D dataset in point cloud representation. Using
Blender [19], they created a 3D scene with a thin plate undergoing various isometric non-
linear deformations. Four kinds of textures (endoscopy, graf fiti, clothes and carpet) were
mapped on to the deformed 3D model, which was then illuminated in various settings
using five different light sources. The scene was viewed from five separate cameras at
different angles. In this way, a total of 4648 states were generated. Each state is represented
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Figure 3. The texture-less surface reconstruction network [3] (left) consists of an encoder A that takes a masked image I}, as input
and outputs a latent representation A. This is followed by three parallel decoders ®p, ®p, and P that use A for reconstructing the
normal map, depth map, and a 3D mesh respectively. The indices of all maxpool operations in encoder are saved when downsampling
(right). These indices are later used for non-linear upsampling in corresponding decoder layers.

with 732 3D points sampled on a regular grid at rest and a consistent topology across states.
For each state, there is also a corresponding rendered 2D image viewing the object from
one of the cameras. Figure 2b shows some samples from this dataset.

4.3. ShapeNet

ShapeNet [10] is a large-scale dataset containing richly-annotated 3D CAD models
organized according to the WordNet [20] hierarchy. It contains over 300M models, 220M
of which are classified into 3,135 WordNet symsets [21]. ShapeNet is made up of many
smaller subsets. A major subset is called ShapeNetCore that contains manually verified
single clean 3D models. It has two versions, vl and v2, covering 55 and 57 categories
respectively. Processed meshes and annotations of these models can be downloaded online
from the ShapeNet website [22].

4.4. R2N2 Dataset

Choy et al. [18] took a subset of the ShapeNetCore v1 dataset containing 50,000 models
and 13 categories including plane, bench, cabinet, car, chair, monitor, lamp, speaker, firearm,
sofa, table, phone, and watercraft. For each object, R2N2 dataset also makes available its
own 24 renderings of the models from different viewpoints in a 137 x 137 resolution, and
the 3D models themselves as meshes, point clouds and voxels.

5. Networks

This section introduces some of the recent methods proposed for reconstructing 3D
surfaces from a single 2D image. These are summarized in Table 1.

5.1. Bednarik et al.

Bednarik ef al. [3] introduced a general framework for reconstructing the 3D shape of
texture-less surfaces with an encoder-decoder architecture. Using a single RGB image, they
reconstruct the normal maps, depth maps, and triangulated meshes for the objects in the
images. Figure 3 shows an overview of their architecture. This network has an encoder
connected to three separate decoders, one each for reconstructing the normal map, depth
map, and the triangulated mesh. The encoder takes an RGB image of size 224 x 224 x 3
and creates a latent representation of size 7 x 7 x 256. This encoding is fed to the three
decoders.

The architecture of the encoder and the depth and normal decoders is based on SegNet
[23]. The encoder has the same layers as VGG-16 [24] except for the fully-convolutional
layers. However, in contrast to VGG-16, the output channels at the convolutional blocks
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are 32,64,128,256,264 respectively. As the normal maps and depth maps have same
spatial size as the input image, the normal and depth decoders are symmetric to the
encoder with both having the same architecture except the number of channels at the final
output layer; the normal decoder has 3 channels and depth decoder has 1 channel. Like
SegNet, pooling indices at the max pooling layers in the encoder are saved, and used in
the normal and depth decoders to perform non-linear upsampling. For the mesh decoder,
a smaller network with a single convolutional layer followed by average pooling and a
fully-connected layer is used.

The depth decoder is trained by minimizing the absolute difference between the
predicted and groundtruth depth values of the foreground, giving the loss function

— @p(A(I7,));|Bf

Y. B! ’
where D" is the groundtruth depth map and ®p is the depth decoder, which takes the
encoder output on the masked input image A(I};,) and returns the predicted depth map.
The absolute difference is only calculated for the foreground pixels, i.e. where the fore-
ground mask B” has the value 1, and the sum of absolute differences is averaged over all
the foreground pixels.

To train the normal decoder, the angular distance between the predicted and groundtruth

normal vectors and the length of the predicted normal vectors are both optimized using
the loss function

1 & y,|D?
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where L, is the angular distance calculated as the arccos of the cosine similarity between the
predicted and groundtruth normal vectors, £; is the term that prefers unit normal vectors,
and « is a hyperparameter that sets the relative influence of the two terms. Furthermore,
N" is the groundtruth normal map, and the N"” = &y (A(I},)) is the predicted normal map.
As with depth loss, the normal loss is only calculated for foreground pixels.

Finally, for the triangulated mesh prediction, the mesh decoder optimizes the Mean
Squared Error between predicted and groundtruth vertex coordinates. That is,

ﬁ—lNlV"chI”Z 5
c—ﬁngvgllvi— c(A(T)]| %)

As all three decoders take input from the same encoder with same latent representation,
they can be trained either jointly or separately. When trained jointly, [3] shows the accuracy
of the reconstruction improves because the encoder is able to learn more robust feature
extractors. The texture-less dataset described in Section 4.1 was used for training and
testing this network, and experiments showed poor reconstruction accuracy for 3D meshes
compared to normal and depth maps.

The network was trained using the Adam optimizer [25] with a fixed learning rate
of 1073, and ¥ = 10. The authors used Keras [26] with a Tensorflow [27] backend for
implementation and published the source code. At run-time, the network takes 0.016s to
predict both depth and normal maps together, and 0.01s when predicting either the depth
or normal map individually.
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Figure 4. Patch-Net uses Bednarik et al.’s network with only depth and normal decoders. The input
image is divided into overlapping patches, and predictions for each patch are obtained separately.
Patch predictions are stitched to form the complete depth and normal maps.

5.2. Patch-Net

Tsoli and Argyros proposed a patch-based variation for better texture-less reconstruc-
tion. They take the network from [3] and change the block sizes to match VGG-16 [24],
i.e. 64,128, 256, 512, 512. They also remove the mesh decoder, keeping only the normal
and depth decoders. They divide the input image into overlapping patches and get per
patch reconstructions for normal and depth maps. These patches are then stitched together
to get the final normal and depth maps at the input image resolution, and use bilateral
filtering to smooth out inconsistencies that were not resolved by stitching. They call this
network Patch-Net. Since the network expects a 224 x 224 spatial size of the input, each
patch can have that size with the full image being even larger. This allows Patch-Net to get
a higher resolution reconstruction than [3] with better accuracy and generalization. It uses
the loss functions of Eq. 2 and Eq. 1 on each patch to compute the normal and depth loss
respectively.

The network was trained using the Adam optimizer with a fixed learning rate of 1073,
The authors extended the source code from [3], and trained their network on a Nvidia Titan
V GPU with 12 GB memory. This code is not publicly available, and the authors do not
report inference-time performance.

5.3. HDM-Net

latent representation
(28 x 28 x 128)

(56 x 56 x 128) (61x61x64)

(112x 112x 64) (67 x 67 x 32)
(224 x 224 x 32) (73x73x3)

[ Conv+BN+ReLU [ DeConv +BN + ReLU [ Max Pooling
[ Conv +BN [EZ00 DeConv + BN N Max Unpooling
[ DeConv only
Figure 5. Overview of the HDM-Net [5] architecture. It has an encoder that takes an RGB image of
size 224 x 224 x 3 and encodes it into a latent representation of size 28 x 28 x 128. This is then used

by the decoder to reconstruct a 3D point cloud of the surface with 732 points.

The Hybrid Deformation Model Network (HDM-Net) [5] is another approach for recon-
structing deformable surfaces from a single-view. Like [3] and Patch-Net, HDM-Net uses
an encoder-decoder architecture (Figure 5), but with only one decoder instead. However,
the encoder and decoder are not symmetric to each other in this network. They also have
a smaller depth, with only 9 convolution layers in the encoder instead of 13 convolution
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layers in the VGG-16 based architectures. The upsampling in the decoder is performed
using transposed convolutions, as in [28], except at the first decoder layer where a non-
linear max-unpooling operation similar to [3,4,23] is used. HDM-Net directly learns the
3D shape and give a dense reconstruction of the surface of size 73 x 73 x 3 as a point
cloud. It is trained on the synthetic point cloud data (Section 4.2) of a thin non-rigid plate
undergoing various non-linear deformations, with a known shape at rest. Three different
domain specific loss functions are used to jointly optimize the output of the network, with
the goal of learning texture-dependent surface deformations, shading and contours for
effective handling of occlusions.

The first loss function is a common 3D regression loss that computes the 3D error
by penalizing the difference between the predicted 3D geometry S, and groundtruth 3D
geometry S;,, that is,

1 N
Lap = 5 L 1ISH = Sul% (6)
n=1

where ||-|| 7 is the Frobenius norm. For each state 1, the squared Frobenius norm of the
difference between predicted and groundtruth geometries is calculated, and then averaged
for all N states.

An isometry prior is used to constraint the regression space using an isometric loss
that penalizes the roughness in the predicted surface by ensuring that neighboring vertices
are located close to each other. The loss function is expressed in terms of the predicted
geometry S, and its smooth version S,

1Y
Liso. = N Z ”Sn - Sn”]—' 7)
n=1
with
Sn_Z?'CO'ZeXp<_ = )*Sn (8)

where * is a convolution operator and ¢ is the variance of Gaussian, and x and y stand for
the point coordinates.

The third loss function optimizes the contour shapes by computing a reprojection
loss. The predicted and groundtruth 3D geometries are first projected onto a 2D plane and
before computing their difference as

N
Leont. = % Z | T(7(Sn)) — T("(S;))H% ©)
n=1

where 77 is a differentiable 3D to 2D projection function and 7 is a function that thresholds
all positive values to 1 using a combination of tanh and ReLU. This gives contours as 0-1
transitions. The total loss is computed by adding all three losses with equal weights.

HDM-Net was trained for 95 epochs on a GEFORCE GTX 1080Ti GPU with 11 GB
of global memory. The training relied on the PyTorch framework [29] and took 2 days
to complete. At inference time, the network can reconstruct frames with a frequency of
200Hz, or 0.005s per frame. The source code was not published.

5.4. IsMo-GAN

An improved version of HDM-Net is the Isometry-Aware Monocular Generative
Adversarial Network (IsMo-GAN) [6] that introduces two key modifications to achieve 10-
30% reduction in reconstruction error in different cases, including reconstruction of texture-
less surfaces. First, IsMo-GAN has an integrated Object Detection Network (OD-Net) that
generates a confidence map separating background from the foreground. Secondly, IsMo-
GAN is trained in an adversarial setting, which is different from the training of the simple
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Figure 6. Overview of IsMo-GAN [6]. The generator network accepts a masked RGB image, seg-
mented by the object detection network (OD-Net) and returns a 3D point cloud. The output and
groundtruth are fed to the discriminator which serves as a surface regularizer.

auto-encoder based networks discussed in previous sections. The OD-Net is a simplified
version of U-Net [28] with fewer layers than the original. It takes a 224 x 224 x 3 RGB
image and outputs a grayscale confidence map indicating the position of the foreground
in the image. The confidence map is binarized [30] and the target image is extracted
using Suzuki ef al.’s algorithm [31]. The masked-out input image is then passed to the
Reconstruction Network (Rec-Net), which has skip connections like HDM-Net and has a
similar architecture but with fewer layers. Like HDM-Net, the Rec-Net outputs a 73 X 73 x 3
size point cloud. OD-Net and Rec-Net together make up the generator of IsMo-GAN. The
discriminator network consists of four convolution layers followed by a fully-connected
layer and a sigmoid function. IsMo-GAN uses the LeakyReLU activation everywhere,
instead of ReLU which was used in all other networks discussed previously. Figure 6
shows an overview of IsMo-GAN network.

IsMo-GAN penalizes the output of the Rec-Net with the 3D loss (Eq. 6) and isometric
loss (Eq. 7) from HDM-Net, where the predicted geometry is equal to the generator output
on the input image, i.e., S, = G(I). In addition to this, for adversarial training, IsMo-GAN
uses cross entropy (BCE) [32], defined as

1 M N
£6 =3y L L 1og(D(G(,))) (10)
for the generator G, and
1 M N
Lp=—7r5 Y, ) [log(D(S},)) +log (1 - D(G(T;)))] (11)
m=1n=1

for the discriminator D, where M is the number of states, and N is the number images for
each state. The adversarial loss is then defined as the sum of the generator and discriminator
losses

Ladv = LG + £D/ (12)

and it represents the overall objective of the training which encourages IsMo-GAN to gener-
ate more realistic surfaces. It is a key component that lets sMo-GAN outperform HDM-Net
[5] by 10-15% quantitatively as well as qualitatively on real images. The adversarial loss
makes up for the undesired affects of the 3D loss and the isometry prior by acting as a
novel regularizer for the surface deformations. This network is trained and evaluated on
the same dataset as HDM-Net, as well as on the 3D mesh data of the cloth object from the
subset of the Bednarik et al.’s real texture-less surfaces dataset.

The OD-Net and Rec-Net were both trained separately for 30 and 130 epochs respec-
tively, using the Adam optimizer with a fixed learning rate of 10~2 and a batch size of 8.
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IsMo-GAN was implemented using PyTorch, but the source code was not made public. It
takes 0.004s to run an inference, which is a 20% improvement over HDM-Net.

5.5. Pixel2Mesh

input image

28x28x512) (14x14x512)

(56 x 56 x 256)
(224 x 224 x 3) (112x 112 x 128)

4 x 224 x 64)

perceptual feature pooling perceptual feature pooling

[ Graph Unpooling "1 Mesh Deformation

Figure 7. The Pixel2Mesh [7] network consists of two parallel networks that take an RGB image
and a coarse ellipsoid 3D mesh, and learn to regress the 3D shape of the object in the image. The
key contribution is the graph-based convolutions and unpooling operators in the bottom-half of the
network.

Pixel2Mesh [7] is a deep learning network that reconstructs 3D shape as a triangulated
mesh from a single RGB image. It was proposed in 2018 and is one of the earliest methods
for monocular 3D reconstruction. Its primary idea is to use graph-based convolutions [33]
to regress the mesh vertices. The network is made up of two parts; a VGG-16 based feature
extractor and a graph-based convolution network (GCN). The feature extractor network
takes a 224 x 224 image to reconstruct. And the GCN takes an ellipsoid mesh with 156
vertices and 462 edges. The feature extractor network then feeds the extracted perceptual
features at different stages to the GCN in a cascaded manner, which refines the initial mesh
in a coarse-to-fine manner by adding details at each stage. The GCN finally outputs a
mesh with 2466 vertices (Figure 7). Each mesh deformation block in the GCN is made of 14
layers of graph based convolutions with ResNet [34] like skip connections. Their job is to
optimize the position of existing vertices to get a mesh matching the object shape. This is
followed by a graph unpooling layer that interpolates the mesh to increase the number of
vertices.

Pixel2Mesh combines four different loss functions to optimize its weights. These in-
clude the Chamfer loss [35] to constraint the location of mesh vertices, a normal consistency
loss, a Laplacian regularization to maintain the neighborhood relationships when deform-
ing the mesh, and an edge length loss to prevent outliers. The total loss then calculated as a
weighted sum of the individual losses. The network is trained and evaluated on the R2N2
subset [18] of the ShapeNet dataset [10], which consists of synthetically rendered images
and 3D mesh groundtruth. The network is also qualitatively evaluated on the Stanford
Online Products dataset [36], which contains real-world images of objects without any 3D
labels.

Pixel2Mesh was implemented using Tensorflow and the official source code is avail-
able on GitHub. It used the Adam optimizer with a weight decay of 1~ and a batch size of
1 to train for 50 epochs, with the initial learning rate of 37°. The training took 72 hours on
Nvidia Titan X GPU with 12 GB memory, and the trained network can reconstruct a mesh
containing 2466 vertices in 15.58ms.

5.6. Salvi et al.

A new category of networks is adding self-attention modules [37,38] to 3D recon-
struction networks. Salvi et al. proposed one such network, which improves Occupancy
Networks (ONets) [39] by adding self-attention to them. ONets consist of three parts:
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Figure 8. The "attentioned" ResNet-18 [34] network with four self-attention blocks [37] added to it.
This encoder network is used by [8] to extract image features, which are fed to a decoder with five
Conditional Batch Normalization blocks followed by an occupancy function.

a feature extractor, a decoder, and a continuous decision boundary function, called the
occupancy function o : R — {0,1}, that classifies each point from the space as whether
or not it belongs to the surface. This provides a general 3D representation that allows
extracting meshes at any resolution. ONets are an extension of the autoencoders discussed
in previous sections, where the encoders functioned as feature extractors, followed by a
decoder to reconstruct the 3D shape.

In the networks discussed previously as well as ONets introduced in [39], the feature
extractors are based on CNNs. Standard CNNs work with local receptive fields and need
very deep architectures to successfully model global dependencies. This is because the
features they learn are relatively shallow and do not capture the long-range correlations
in natural images. To address this limitation, self-attention modules were introduced that
calculate the response at a given position as a weighted sum of the features at all positions.
This allows them to efficiently model global dependencies with much smaller networks
than traditional CNNs. Salvi ef al. show that adding self-attention modules at different
locations in the feature extractor can improve the performance of an Occupancy Network.
When used earlier in the network, self-attention allows the network to focus more on
finer details. And when used later in the network, it allows the network to extract better
structural features. Figure 8 depicts one such feature extractor proposed by [8], showing a
ResNet-18 [34] network with four self-attention modules.

They train their network on the synthetic R2N2 dataset [18] (see Section 4.4) using
an ensemble approach, where the ensemble is made up of one specialized ONet for each
object type. This is supported by their experiments which show that self-attention based
ONets have better results if trained for each category separately. The network was also
qualitatively evaluated on a subset of the Stanford Online Products dataset [36], which
contains real images, and showed more consistent and better reconstruction of meshes
when compared to existing approaches. Self-attention in decoders was not used due to
computational limitations.

Adam optimizer with a learning rate of 103 and weight decay of 1> was used for
training the network for 200K steps. All other hyperparameters were kept the same as in
[39]. The source code for this network is not available.

5.7. VANet

Another network that uses the attention mechanism is the View Attention Guided
Network (VANet) [9]. It uses channel-wise view attention and a dual pathway network for
better reconstruction of occluded parts of the objects, and defines a unified approach for
both single and multi-view reconstruction. As shown in Figure 9, the proposed architecture
consists of a main pathway and an auxiliary pathway. The main path uses the first view of
a scene to reconstruct a 3D mesh. If any more views are available, they are then fed to the
auxiliary path, which aligns them with the main view and uses the additional information
from these new views to refine the reconstructed mesh. The main view features after the


https://doi.org/10.20944/preprints202208.0067.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2022 d0i:10.20944/preprints202208.0067.v1

13 of 22

self-weighed

main view main features main features

feature
extractor

X

generated
3D mesh

global average

f pooling
"""""""" ' VGG-like backbone _____ E—
Prediction
Module

: , Shared weights J
: 1 [convi-convs] ! ;
i < ] ' : :
§ : D max

feature ; . \\\ \\\
ﬁ weighed
auxiliary features

extractor

auxiliary features
auxiliary views

Figure 9. Overview of VANet [9], a unified approach for both single and multi-view reconstruction
with a two branch architecture.

encoder are pooled along the spatial dimensions using global average pooling to get a
channel descriptor of shape 1 x 1 x C. This is then sent to a system of fully-connected layers
followed by a sigmoid function to generate a channel-wise attention map «y,,;,.- These
attention weights are then used to re-calibrate the computed feature maps. If auxiliary
views are available, they are used to enhance the less-visible parts in the original view.
A max pooling operation is used to select permutation invariant auxiliary view features,
which are multiplied with 1 — &4, and finally added to the main view features. These are
then sent to a vertex prediction module to generate the reconstructed 3D mesh. The vertex
prediction module is based on the mesh deformation module of Pixel2Mesh [7].

VANet is trained using the same four loss functions as Pixel2Mesh, and evaluated
on the R2ZN2 subset [18] of the ShapeNet dataset [10]. Using the Adam optimizer with an
initial learning rate of 2x10~> and a batch size of 1, the network was trained for 20 epochs.
It was implemented in Tensorflow but the source code was not published.

5.8. 3D-VRVT

Decoder Network

| output voxels

328
“m j [ Fully-Connected [ JReshape [ ] Sigmoid
P “ m ‘ j i “ [ 3D Deconvolution + BN +GELU [______] 3D Convolution
ANE 000 e e

input image

feature vector

Transformer Encoder IE‘

(1x768)
Patch + Position__
Embedding
* Extra learnable
embedding

Lmear Pro;echon of Flaﬂened Patches

(224 x 224 x 3)

Figure 10. 3D-VRVT takes one image as input and uses a Vision Transformer encoder to extract a
feature vector. This is then fed to a decoder that outputs the voxel representation of the object.

Vaswani ef al. [37] initially proposed the Transformer architecture for natural lan-
guage processing (NLP) tasks. These methods used the self-attention mechanism to let the
network understand longer sequences of text to compute a representation for the whole
sequence. Salvi ef al. [8] used the self-attention mechanism from Transformers in their
"attentioned" ResNet encoder to extract better features for 3D reconstruction. However,
their input is not sequential (Section 5.6). Dosovitskiy et al. [40] proposed a novel archi-
tecture called Vision Transformers that breaks down images into patches and treats those
patches as part of a sequence. Using a linear projection, vector embeddings for each patch
are obtained. This sequence of patch embeddings is then fed to a Transformer network.
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Inspired by this, Li and Kuang [41] proposed a Vision Transformer-based network (Figure
10) for reconstructing voxels from a single image. They call this network 3D-VRVT.

3D-VRVT uses a Vision Transformer as an encoder, that takes a 224x224 RGB image as
input and produces a feature vector of size 768 which is fed to a decoder network. The de-
coder network has a fully-connected layer that upscales the feature vector to 2048 and then
reshapes it into a 3D tensor of shape 256x23. This is followed by four 3D deconvolutions
with a kernel size of 4, stride 2, and padding 1 that iteratively refine the 3D grid until it
has the resolution 32x323. Each deconvolution operation is also followed by a 3D batch
normalization and a GELU activation function. Then, a final deconvolution with kernel
size 1 is applied to get a grid of 1x323. This is passed through a sigmoid activation function
before getting the final voxel output.

The network was trained on the ShapeNet dataset. It used an SGD optimizer and a
warm-up cosine annealing learning rate with a momentum of 0.9. The learning rate ranged
between 27> and 273. The training relied on a PyTorch implementation and continued for
600 epochs on Nvidia Titan V GPU, including 10 warm-up epochs. At test time, it takes
8.82ms to reconstruct an object with this network.

6. Comparison

We described different 3D reconstruction methods in this paper, which were trained
by their authors on various datasets and evaluated on different error metrics. In this section,
we first formally define the various error metrics used for evaluation of 3D reconstruction
methods. We then describe comparable experiments on similar datasets by different
networks, and report and compare performance of those methods.

6.1. Metrics

1. Depth Error (€p): The depth error metric is used to compute the accuracy of depth
map predictions. Let Ok and @ be the point clouds associated with the predicted
and groundtruth depth maps respectively, with the camera matrix K. To remove the
inherent global scale ambiguity [42] in the prediction, Ok is aligned to groundtruth
depth map D’ to get an aligned point cloud O as

Ok = Q(6k, D) (13)

where () is the Procrustes transformation [43]. Then, the depth error £p is calculated
as

ey — 13- Lk - OB
N n=1 Zi an

Note that the foreground mask B in the equation ensures that the error is only
calculated for foreground pixels. Smaller depth errors are preferred.

2. Mean Angular Error (Eprap: The mean angular error £y 4 metric is used to calculate
the accuracy of normal maps, by computing the average difference between the
predicted and groundtruth normal vectors. The angular errors for all samples are
calculated using Eq. 3, and then averaged for all samples. Smaller angular errors
indicate better predictions.

3. Volumetric IoU (E10y): The Intersection over Union (IoU) metric for meshes is calcu-
lated as the volume of the intersection of groundtruth and predicted meshes, divided
by the volume of their union. Larger values are better.

4. Chamfer Distance (£cp): Chamfer distance is a measure of similarity between two
point clouds. It takes the distance of each point into account by finding, for each point
in a point cloud, the nearest point in the other cloud, and summing their squared
distances.

(14)

1 1
fep— 5 Y minflx—yl2+ minl|x — [ (15)
o] L min o L, M
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where ||-||2 is the square of Euclidean distance. A smaller CD score indicates a better
value.

5. Chamfer-L1 (£cp,): The Chamfer distance (CD) has a high computational cost for
meshes because of a large number of points, so an approximation called Chamfer-L1
is defined. It uses L1-norm instead of the Euclidean distance [8]. Smaller values are
preferred.

6.  Normal Consistency (Enc): The normal consistency score is defined as the average
absolute dot product of normals in one mesh and normals at the corresponding
nearest neighbors in the other mesh. It is computed similarly to Chamfer-L1 but the
L1-norm is replaced with the dot product of the normal vectors on one mesh with
their projection on the other mesh [8]. Normal consistency shows how similar the
shapes of two volumes are, and is useful in cases such as where two meshes might
overlap significantly, giving a high IoU, but have a different surface shape. Higher
normal consistency is preferred.

7. Earth Mover’s Distance (Egpp):

The Earth Mover’s Distance computes the cost of transforming one one pile of dirt,
or one probability distribution, into another. It was introduced in [44] as a metric for
image retrieval. In case of 3D reconstruction, it computes the cost of transforming the
set of predicted vertices into the groundtruth vertices. The lower the cost, the better
the prediction.

8.  F-score (Ep):

The F-score evaluates the distance between object surfaces [2,45]. It is defined as
the harmonic mean between precision and recall. Precision measures reconstruction
accuracy by counting the percentage of predicted points that lie within a certain
distance from the ground truth. Recall measures completeness by counting the
percentage of points on the ground truth that lie within a certain distance from the
prediction. The distance threshold T can be varied to control the strictness of the
F-score. In the results reported in this paper, T = 10~%.

6.2. Experiments

The RGB-D dataset consisting of normal and depth maps of real data [3] was used
by Bednarik ef al. and Patch-Net in their experiments. This dataset contains five different
texture-less surfaces. Experiments were conducted where the network was trained with
samples from one surface and then evaluated on samples from another surface. For
example, in the experiment "cloth-hoody", the network was trained on the cloth object and
evaluated on the hoody object. The depth and angular errors for these experiments are
summarized in Table 3. Patch-Net outperforms [3] in almost all experiments on both the
metrics.

Table 3. The texture-less surfaces dataset [3] is used to compare the performance of different depth
and normal map reconstruction methods. 128 x 128 size patches were used in the Patch-Net.

Metric | Ep (mm) | Emak (degrees) |
Method ‘ Bednarik et al.  Patch-Net [4] ‘ Bednarik et al.  Patch-Net [4]
cloth-cloth 17.53 +5.50 12.80 +4.45 | 17.37+1251 14.72+3.39
tshirt-tshirt 1718+ 1858 13.70+3.83 | 18.07 +£12.71 18.63+4.43
cloth-tshirt 26.26 £7.72 22.74+7.20 | 25.74+15.81 24.29 +3.80
cloth-sweater | 38.93+10.36 30.10 +10.00 | 31.524+19.07 27.94+4.79
cloth-hoody | 43.22+24.81 31.09+8.73 | 3254+21.15 29.73+£2.52
cloth-paper 24.16 £7.15 14.53 +4.48 | 3553+22.16 24.52+ 596

The HDM-Net and IsMo-GAN networks were evaluated on the synthetically gener-
ated point cloud dataset consisting of a thin, deforming plate with various textures and
under different illuminations [5]. The 3D error £&p and its standard deviation over a set of


https://doi.org/10.20944/preprints202208.0067.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 August 2022 d0i:10.20944/preprints202208.0067.v1

17 of 22

frames &, are reported in Table 4. Results are reported for each of the four textures in the
network, under a constant illumination.

Table 4. Comparison of different point cloud reconstruction methods using the synthetic thin plate
dataset [5] under one illumination.

Metric ‘ &Ep (mm) | Er (mm) |
Method | HDM-Net [5] IsMo-GAN [6] | HDM-Net [5] IsMo-GAN [6]
endoscopy 48.50 33.60 13.50 14.80
graffiti 49.90 33.30 22.00 20.80
clothes 48.90 35.30 26.40 24.20
carpet 144.20 110.50 26.90 26.80
mean | 72.88 53.18 | 22.20 21.65

For a small subset of the cloth object in the texture-less dataset, groundtruth 3D meshes
are also provided. For this cloth data, 3D error is reported for [3], HDM-Net and IsMo-GAN.
In addition, [6] removed the textures from surfaces in the synthetic thin plate data to create
another texture-less data. They report the 3D error on this data for HDM-Net and IsMo-
GAN. We summarize these results for texture-less mesh and point cloud reconstruction in
Table 5.

Table 5. Comparison of mesh reconstruction from texture-less data. As can be seen, IsMo-GAN
outperforms [3] and HDM-Net on the real texture-less cloth data by 26.5% and 10.5% respectively,
and it outperforms HDM-Net on the synthetic texture-less thin plate data by 31.9%

Metric | &p (mm) |

Method | Bednarik et al. HDM-Net[5] IsMo-GAN [6]

cloth [3] 21.48 17.65 15.79
plate [5,6] - 99.40 67.70

For most other experiments, the Choy et al. subset of the ShapeNet dataset [10],
described in Section 4.4, is used. For each of the 13 objects in this dataset, various error
metrics are reported for the task of mesh reconstruction. Table 6 summarizes these results,
reporting the F-score, Earth Mover’s Distance, and the Chamfer Distance metrics. Salvi
et al. report the IoU, Chamfer-L1 and Normal Consistency metrics on the same dataset.
These results are summarized in Table 7.

7. Discussion

There are many different methods for 3D reconstruction from 2D images. In this
paper, we discussed several of them - including those that use depth maps, normal maps,
point clouds, surface meshes or volumetric data. Each of these approaches has its own
advantages and disadvantages, but no one method is perfect. This makes the task of 3D
reconstruction an ill-posed problem, which requires careful consideration when choosing
a method to use. In single-view 3D reconstruction, this becomes even more challenging
because the network has to reconstruct the shape of surfaces that may not even be visible
in the image at all.

We discussed two methods that reconstruct 3D shape of texture-less surfaces. In
general, the more distinctive textures an image contains, the easier it is to reconstruct
in 3D. With only a single RGB image - and that containing surfaces with no distinctive
textures - dense reconstruction in 3D can be very difficult. That is why Bednarik et al. and
Patch-Net only reconstruct the so-called 2.5D shape in form of normal and depth maps.
They both use a very similar network architecture, but [4] uses a patch-based strategy
instead of reconstructing the whole image together. By doing so, they are able to reduce the
depth error by 25.3% and the mean angular error of the surface normals by 13.0%. Later,
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Table 6. Comparison of (A) Pixel2Mesh [7] and (B) VANet [9] on the Choy ef al. subset of the
ShapeNet dataset [10]. VANet outperforms Pixel2Mesh in all metrics, with 10-40% improvement.

Metric | & (%) 1 Eemp 4 Ecp +
Method | A B | A B | A B

plane 7112 77.01 | 0.579 0.486 | 0.477 0.304
bench 5757 67.69 | 0.965 0.770 | 0.624 0.362
cabinet 60.39 63.30 | 2563 1.575 | 0.381 0.327
car 67.86 69.53 | 1.297 1.185 | 0.268 0.235
chair 5438 60.74 | 1.399 0.957 | 0.610 0.443
monitor | 51.39 60.35 | 1.536 1.269 | 0.755 0.459
lamp 48.15 56.26 | 1.314 1.086 | 1.295 0.879
speaker | 48.84 53.49 | 2951 2.283 | 0.739 0.562
firearm 7320 77.24 | 0.667 0.473 | 0.453 0.333
sofa 5190 56.83 | 1.642 1.376 | 0.490 0.400
table 66.30 70.78 | 1.480 1.173 | 0.498 0.334
phone 7024 72.27 | 0.724 0.573 | 0.421 0.298
watercraft | 55.12 62.12 | 0.814 0.718 | 0.670 0.450

mean | 59.73 65.20 | 1.380 1.071 | 0.591 0.414

Table 7. Comparison of (A) Pixel2Mesh [7], (C) Salvi et al. and 3D-VRVT [41] on the Choy ef al.
subset of the ShapeNet dataset [10]. With self-attention after ResNet layers, [8] improves IoU by 25%,
Normal Consistency by 8.9%, and reduces the average Chamfer-L1 distance approximately 11 times.
[41] further improves the IoU by 9% with a Vision Transformer architecture containing multi-headed
self-attention.

Metric | Eou T Ecp, 4 Enc T
Method | A C D | A C | A C

plane 0.420 0.645 0.608 | 0.187 0.011 | 0.759 0.868
bench 0.323 0.493 0.563 | 0.201 0.016 | 0.732 0.813
cabinet 0.664 0.737 0.794 | 0.196 0.016 | 0.834 0.876
car 0.552 0.761 0.855 | 0.180 0.014 | 0.756 0.855
chair 0.396 0.534 0.553 | 0.265 0.021 | 0.746 0.829
monitor 0.490 0.520 0.555 | 0.239 0.026 | 0.830 0.863
lamp 0.323 0.379 0.436 | 0.308 0.045 | 0.666 0.722
speaker 0.599 0.660 0.725 | 0.285 0.028 | 0.782 0.839
firearm 0.402 0.527 0.597 | 0.164 0.012 | 0.718 0.804
sofa 0.613 0.689 0.716 | 0.212 0.019 | 0.820 0.866
table 0.395 0.535 0.617 | 0.218 0.019 | 0.784 0.861
phone 0.661 0.754 0.805 | 0.149 0.012 | 0.907 0.937
watercraft | 0.397 0.568 0.604 | 0.212 0.018 | 0.699 0.801

mean ‘0.480 0.600 0.654 | 0.216 0.019 | 0.772 0.841

Shimada ef al. used a subset of the same texture-less surfaces data to directly reconstruct
3D meshes. They report results for HDM-Net and their own IsMo-GAN network, showing
17.8% and 26.5% improvement respectively over [3]’s original texture-less surfaces method
for meshes.

HDM-Net, like [3], is an encoder-decoder network and has a similar VGG-16 backbone
but fewer convolutional layers. The major difference in the encoder is the ResNet-like skip
connections. In [3], the decoder consisted of only one convolutional layer, followed by
pooling and a fully connected layer. HDM-Net uses a much larger decoder with transposed
convolutions for upsampling. Finally, while [3] for its mesh decoder used a simple mean
squared error loss function, HDM-Net combines that with two more loss functions that
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enforce isometry and contour constraints. The skip connections, a larger decoder, and
domain-specific loss functions help HDM-Net get a significantly improved reconstruction
compared to [3]. IsMo-GAN takes the isometry constraints from HDM-Net and uses an
adversarial training setting to improve the mesh reconstruction accuracy for texture-less
surfaces even further.

HDM-Net and IsMo-GAN also evaluate their methods on a synthetic dataset of a
deforming plate with a variety of textures. In addition to the adversarial training, IsMo-
GAN’s integrated Object Detection Network and the choice of LeakyReLU activation
instead of ReLU help it outperform HDM-Net when reconstructing a 3D point clouds by
10-30% in various experiments.

Next, we talked about two methods that reconstruct 3D meshes using Choy ef al.’s
rendered images of the ShapeNet dataset; Pixel2Mesh [7] and VANet. Both use a dual-
lane architecture with separate roles for each lane. Pixel2Mesh has one lane for feature
extraction, which feeds cascaded input to the other lane that performs the reconstruction.
On the other hand, VANet’s two lanes are both for feature extraction, and have shared
weights. VANet can be used for both single and multi-view reconstruction, and the first
lane extracts features from the main view while the second from all auxiliary views. The
feature vectors extracted from both lanes are concatenated and sent to another module
which has an architecture similar to Pixel2Mesh’s mesh reconstruction lane. This uses graph
based convolutions to generate a mesh from extracted features. By primarily improving
their feature extractor, which uses channel-wise attention, VANet was then able to use
the same reconstruction network as Pixel2Mesh to get up to 40% reduction of the average
Chamfer distance error (see Table 6).

Finally, we discussed Salvi ef al.’s attentioned Occupancy Network for reconstructing
the 3D shape as a continuous function. The motivation for this type of output is to have
a standard method for efficiently representing a 3D shape. In this network, an encoder
with ResNet-18 backbone is augmented with several self-attention blocks to improve
comprehension of global dependencies in the input images. This is then passed to a
decoder network and an occupancy function to get the final output, which can then be
used to obtain a mesh at any resolution. The mesh output is compared to Pixel2Mesh
using several metrics, and Salvi et al. get 11 times smaller average Chamfer-L1 distance
than Pixel2Mesh. No metrics directly comparing this method with VANet are reported,
but as this also uses the same ShapeNet dataset, and the reported Chamfer-L1 distane is a
variant of the standard Chamfer distance reported by VANet, it can be assumed that self-
attention in VANet’s encoder would improve reconstruction accuracy of that network, as
well. However, as [8] showed in some of their experiments, the benefit from self-attention
modules was highest when used at the early layers of the encoder as opposed to the later
layers.

8. Conclusions

This paper reviewed several methods for monocular 3D reconstruction and concluded
that it remains an ill-posed problem. This is primarily because of a lack of a standardized,
one-size-fits-all method of representing 3D shapes, as well as non-availability of standard
datasets that cover the whole range of objects to be reconstructed. For example, while
there are a lot of large-scale synthetic datasets, real-world 3D datasets are rare and smaller
on average. This is because of the inherent difficulty of capturing real 3D data. When it
comes to texture-less surfaces, there are even fewer datasets available, and those that are
available only contain RGB-D data. Standard datasets for deformable texture-less surfaces
with groundtruth point clouds or meshes provided are not available. This is why most
texture-less reconstruction methods only reconstruct depth maps or surface normals.

As discussed before, most networks in 3D reconstruction are made up of encoder-
decoder architectures, which in turn are based on semantic segmentation networks like
SegNet and UNet. Various enhancements in these networks have shown promise, including
the use of domain specific losses that enforce various shape constraints on the surfaces.
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An example of this is the isometry prior used by some networks. Other networks have
shown that using ResNet-like skip connections improves the representation power of the
network, giving better results. Attention-based methods have also shown good results,
with self-attention modules when compared with ResNet’s skip connections, improving
the performance of previous methods manifolds. However, self-attention is an expensive
process which cannot be practically used everywhere in the encoder-decoder networks.
Instead, their use is limited to the earlier layers of the encoder. Like self-attention, the use
of max pooling indices from the encoder layers in the decoder layers is also an expensive
process as it requires additional memory at each forward pass. Some networks have
successfully used interpolation and transposed convolutions for upsampling, eliminating
the need of pooling indices from the encoder. Using an adversarial training in a GAN-based
network also showed significantly better results. The GAN-based network also performed
significantly faster than all other methods reviewed in this paper, generating point clouds
at 250 Hz frequency, thus making it suitable for runtime 3D reconstruction. Tranformers
are also gaining traction for vision tasks, with one network using Vision Trnasformers for
single-view 3D reconstruction. This network shows promising results at reconstructing a
low-resoultion voxel grid, and improves the IoU on the ShapeNet dataset by 9% compared
to other state-of-the-art methods.

In the future, 3D reconstruction research can benefit from more datasets, especially for
texture-less surfaces and from real-world objects. For depth maps and surface normals, sim-
ple RGB-D cameras like Microsoft Kinect may be used, but it is generally very challenging
to collect real-world datasets of the same size as can be generated synthetically. Collecting
groundtruth point clouds or 3D meshes from real-world objects poses an even bigger
challenge because of more specialized equipment required. Synthetic datasets focusing on
texture-less surfaces in particular, and including both deforming and rigid surfaces, can
be generated using software like Blender. In addition to dataset creation, methods to deal
with the bottlenecks created by self-attention modules and pooling indices also need to
be studied. The full potential of Transformers in context of single-view 3D reconstruction
is also still unknown. Finally, the use of adversarial training and generator-discriminator
networks for 3D reconstruction needs to be further explored.
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2D Two-Dimensional

3D Three-Dimensional

CAD Computer-Aided Design

CNN Convolutional Neural Network
GAN Generative Adversarial Network
NLP Natural Language Processing
RGB Red-Green-Blue

RGB-D  Red-Green-Blue-Depth

RNN Recurrent Neural Network
VAE Variational Autoencoder

vVOC Visual Object Classes
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