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Abstract: This study comparatively analysed the application of integrated machine learning
methods in dynamic state estimation (DSE) of power systems, with a particular focus on the case of
data loss. The research is grounded in the understanding that the intricacy of contemporary power
grids is perpetually escalating, and the preservation of reliable state estimation in the face of
practical limitations has emerged as an imperative challenge, particularly in the context of
renewable energy and distributed generation. The presence of communication limitations,
particularly during periods of congestion or instability, has been identified as a contributing factor
to data loss, which in turn can lead to a reduction in the efficacy of conventional estimation methods
and pose a threat to the smooth operation of the power system. The Gilbert-Elliott model was
employed in the study to simulate data loss scenarios in real-world contexts, and the performance
of nine machine learning algorithms in mitigating the impact of data loss was evaluated, including
random forest, AdaBoost, Gradient boosting and XGBoost, among others. Furthermore, the
robustness of the neural network architecture is enhanced by adding residual connections and self-
attention mechanisms. The simulation results on the Kundur two area four machine power system
model demonstrate that the LSTM+FNN+RF method performs optimally, achieving the lowest
average relative error and variance. The findings of this study underscore the efficacy of integrating
the time modelling capability of LSTM with the robustness of integrated methods to enhance the
stability and operational reliability of the power grid. This study has contributed to the development
of elastic DSE technology that can adapt to the complexity challenges of modern power grids.

Keywords: dynamic state estimation; machine learning; data loss; power systems; neural networks;
ensemble methods

1. Introduction

Accurate dynamic state estimation (DSE) is essential for ensuring the stability and reliability of
power systems. With the increasing complexity of modern microgrids, influenced by renewable
energy sources and distributed generation, maintaining robust state estimation under real-world
constraints such as data lossl has become a pressing challenge . Communication constraints 2,
particularly in periods of congestion or instability, can lead to data dropouts, degrading the
performance of conventional estimation methods and posing risks to power system operations .

Recent studies have explored methods to mitigate these issues, including the application of
Markov models like the Gilbert-Elliott model to describe packet loss behavior3. Machine learning
(ML) approaches, such as neural networks4 and ensemble learning5, have shown promise in
enhancing the accuracy of state estimation despite data lose. However, the effectiveness of different
ML models under such conditions is still a topic of ongoing research and debate.

This study aims to provide a comparative analysis of nine machine learning methods for DSE in
data loss scenarios: random forest regression, AdaBoost regression, gradient boosting regression,

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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ExtraTrees regression, CatBoost regression, K-nearest neighbor (KNN) regression, XGBoost
regression, LightGBM regression, and linear regression (using gradient descent). In addition, we
enhance the neural network architecture with residual connection and self-attention mechanism
consisting of 3 LSTMs6 and 3 FNNs to further improve the robustness of the estimation.

Our findings reveal the most effective algorithms for mitigating the impact of data loss on
dynamic state estimation, offering insights into practical applications for power system stability. This
work contributes to the ongoing effort to develop resilient estimation techniques that can adapt to
the challenges of modern power grids.

2. Materials and Methods
2.1. System Model and Data Generation

The study uses the Kundur's two-area, four-machine power system model to simulate dynamic
states of a power system under varying operational conditions7. This system model is widely
recognized for evaluating stability and dynamic response in power system research. The simulations
were performed using standard power system simulation software to generate datasets that include
the following generator states:Rotor Angle (8);Rotor Speed (w);Transient Voltage (E’).

The inputs include excitation voltage (Efd) and mechanical power (Pm). The corresponding
measurements consist of active power (Pe), reactive power (Qe), terminal voltage (Vt), and terminal
current (It).

2.2. Data Loss Simulation

To simulate real-world communication constraints, data dropouts were modeled using the
Gilbert-Elliott model. This model represents the communication channel as a two-state Markov chain
with: Good State (0): Successful data transmission.; Bad State (1): Data loss (packet loss).;The
transition probabilities between states were predefined based on historical data. The state transition
matrix is given by:

5 = Pr (yis1 =01y =0) Pr(Yk+1=1|Yk:0)]
Pr(yxs1 =01lyk=1) Pr(ygy=1ly=1)
_[t-p p ]
q 1-¢q

2.3. Machine Learning Methods

Nine machine learning algorithms were employed to estimate the dynamic states of the power
system under data loss conditions. These methods are: Random Forest Regression (RF)89;AdaBoost
Regression; Gradient Boosting Regression (GBR); ExtraTrees Regression;CatBoost Regression; K-
Nearest Neighbors (KNN) Regression; XGBoost Regression; LightGBM Regression; Linear
Regression (Gradient Descent).

2.4. Neural Network Enhancements

For improved performance, the neural network architecture was enhanced with residual
connections and a self-attention mechanism10. The architecture includes:

Two Long Short-Term Memory (LSTM) layers; Four Feedforward Neural Network (FNN)11
layers; The neural network training process was divided into three stages:

First Stage: Train LSTM1, FNN1, and FNN2 without considering data loss.

Second Stage: Freeze the parameters of LSTM1, FNN1, and FNN2, then train LSTM2, FNN3, and
FNN4 with the Gilbert-Elliott model integrated to simulate data loss.

Third Stage: Freeze all previous parameters and train a Random Forest Regressor on the final
hidden states of FNN4.
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Figure 1. Improved neural network architecture.

3. Results
3.1. Comparative Analysis of Machine Learning Methods

The following machine learning models were tested for their ability to estimate the dynamic
states of the system under data loss12: Random Forest Regression8; AdaBoost Regression13; Gradient
Boosting Regression14; Extra Trees Regressionl5; CatBoost Regressionl6; K-Nearest Neighbors
(KNN) Regression17; XGBoost Regression18; Light GBM Regression19; Linear Regression (Gradient
Descent)20.The performance metrics used for comparison were: Mean Relative Error
(MRE)21;Variance of the error distribution22. The results of the comparative analysis are summarized
in Table 1.Performance of Machine Learning Models for Dynamic State Estimation under Data Loss

Table 1. Network Architectures and Hyperparameters for LSTM, FNN, and AdaBoost Regressor.

Network Parameters Values
Size of input layer 1
Size of hidden layers 512
LSTM Number of layers 4
Length of sequence 50
Learning rate 2e-5
Size of hidden layer 512
Output layer 1
FNN Number of layers 3
Learning rate 2e-5
N_estimator 100
AdaBoost Regressor Learning rate 0.1
Random state 42

3.2. Figures, Tables and Schemes


https://doi.org/10.20944/preprints202501.1110.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 January 2025 d0i:10.20944/preprints202501.1110.v1

4 of 14

The Table 1 lists three different machine learning models along with their parameters and
corresponding values. Here's an analysis of each model and its parameters:

The input layer size is set to 1, indicating that only one feature is input at each time step. The
hidden layer size is 512, meaning that each hidden layer contains 512 neurons. The number of layers
is 4, suggesting that the LSTM network consists of 4 hidden layers. The sequence length is 50, which
typically refers to the number of time steps in the input sequence. The learning rate, which is set to
2e-5, is utilised to regulate the rate at which the model updates its weights during the training process.

The output layer is characterised by a size of 1, signifying that the network produces a solitary
output value. The network comprises a total of three layers, encompassing the input layer, a hidden
layer, and the output layer. The learning rate is configured to 2e-5, aligning with the LSTM model,
and it governs the rate at which weights are updated during the training process.

N_estimator: The number of estimators is 100, referring to the number of weak learners used in
the AdaBoost algorithm. Learning rate: The value of the learning rate is 0.1, the function of which is
to regulate the contribution of each weak learner. Random state: The random state is 42, which is
employed to ensure the reproducibility of results, especially in the process of data splitting and model
training.

These parameters are of pivotal significance for the performance and training process of the
models. For instance, the size and number of hidden layers affect the complexity and learning
capacity of the model, while the learning rate influences the stability and convergence speed during
training. The parameters for the AdaBoost Regressor are outlined in Table 1.

The Table 2 illustrates three network models, accompanied by their associated parameters and
corresponding values. The LSTM model is characterized by the following parameters: The input layer
is sized 1, indicating that the dimension or the number of features of the input data is 1.The size of
the hidden layers is 512, implying that each hidden layer contains 512 neurons. A larger hidden layer
size may enable the model to learn more complex patterns, but it may also increase the computational
cost and the risk of overfitting. The number of layers is 4. More layers allow the model to perform
more in-depth feature extraction and learning, but it may also bring about problems such as
overfitting, which requires appropriate regularization and other means to control. The length of the
sequence is 50, which may be related to the sequential nature of the input data. In the context of time
series data, for instance, 50 may denote the sequence length of 50 time steps input to the model on
each occasion. The learning rate is set to 2e-5, a value which, while typically ensuring stability during
training, can result in a reduced convergence speed. With regard to the FNN model:

Table 2. Hyperparameter Settings for LSTM, FNN, and Gradient Boosting Regressor Models.

Network Parameters Values

Size of input layer 1

Size of hidden layers 512
LSTM Number of layers 4
Length of sequence 50

Learning rate 2e-5

Size of hidden layer 512
Output layer 1
FNN Number of layers 3

Learning rate 2e-5

N_estimator 100

Gradient Boosting Regressor Learning rate 01
Random state 42
Max depth 3

The size of the hidden layer is 512, which has a similar impact on the model's learning ability as
the hidden layer size of the LSTM. The output layer is 1, indicating that the output of this model is a
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single value, which may be suitable for regression and other tasks. The number of layers is 3, a
relatively shallow network structure, which may have different trade-offs in learning ability and
computational complexity.

The learning rate is set to 2e-5, and it is anticipated that this will have a comparable effect on the
characteristics of the training process to that observed in the LSTM model. The N_estimator is set to
100, which may be indicative of the number of estimators in the model. For instance, in the context
of ensemble learning, 100 base learners may be employed.

In the context of the Gradient Boosting Regressor model, the learning rate is set at 0.1, which is
notably higher than the rates employed in LSTM and FNN models. This may result in more rapid
weight updates during the training phase.

The Table 3 shows that the Input Layer Size is defined as follows: The input layer size is set to 1,
indicating that the network processes a single feature at each time step, a common configuration for
univariate time series data.

Table 3. Hyperparameter Configurations for LSTM, FNN, and LGBM Regressor Models.

Network Parameters Values
Size of input layer 1
Size of hidden layers 512
LSTM Number of layers 4
Length of sequence 2*int(1/dt)
Learning rate 2e-5
Size of hidden layer 512
Output layer 1
FNN Number of layers 4
Learning rate 2e-5
Test size 0.2
LGBM regressor Random state 42
Max depth -1

Hidden Layer Size: The hidden layer size is set to 512, suggesting a substantial capacity for the
network to capture complex patterns within the data through a significant number of neurons.
Number of Layers: With four layers specified, the LSTM network is configured to have multiple
hidden layers, which can enhance its ability to learn and represent temporal dependencies in the data.
Learning Rate: The learning rate is set to 2e-5, a conservative value that ensures the model's weights
are updated gradually during training, potentially leading to more stable convergence and
preventing overshooting. Finally, the sequence length is set to 50, which is a standard value that
allows the network to effectively utilise a moderate range of past data points when making
predictions. The sequence length is set to 50, which defines the number of time steps that the LSTM
considers when making predictions, allowing it to leverage information from a moderate window of
past data points.

This format provides a clear and concise description of each hyperparameter, explaining its role
and the implications of its value in the context of the LSTM network's performance.

The Table 4 presents three network models (LSTM, FNN, KNN) along with their relevant
parameters and corresponding values.

Table 4. Hyperparameter Configurations for LSTM, FNN, and KNN.

Network Parameters Values
Size of input layer 1
LSTM Size of hidden layers 512
Number of layers 4

Length of sequence 49
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Learning rate 2e-5
Size of hidden layer 512
Output layer 1
FNN Number of layers 5
Learning rate 2e-5
N estimators [100, 200]
KNN Learning rate [0.01, 0.1]
Max depth [3, 4, 5]

The table summarizes key hyperparameters for LSTM, FNN, and KNN models, highlighting
LSTM's deep architecture with 4 layers and a hidden size of 512 for complex temporal data
processing, FNN's single output for regression tasks with a similar hidden size, and KNN's flexible
boosting stages and learning rates suited for diverse regression challenges, with a focus on balancing
model complexity and performance.

The Table 5 details the configurations of three machine learning models. The LSTM, designed
for temporal data, has an input layer for a single feature, 512-neuron hidden layers across 4 layers,
and a sequence length of 50, with a 2e-5 learning rate for stable training. The FNN, with a comparable
512-neuron hidden layer, features a [4,4,3] layered structure for complex data representation and
shares the LSTM's learning rate. The K-Neighbors Regressor is configured with 5 neighbors to
balance local data consideration with generalization. These settings are tailored for optimal learning
and prediction accuracy across the models.

Table 5. Hyperparameter Configurations for LSTM, FNN, and K Neighbors Regressor Models.

Network Parameters Values
Size of input layer 1
Size of hidden layers 512
LSTM Number of layers 4
Length of sequence 50
Learning rate 2e-5
Size of hidden layer 512
Output layer 1
FNN Number of layers [4, 4, 3]
Learning rate 2e-5
K Neighbors Regressor N neighbors 5

Asillustrated in Table 6, three network models (LSTM, FNN, Cat Boost Regressor) are presented,
accompanied by their respective parameters and values.

Table 6. Hyperparameter Configurations for LSTM, FNN, and Cat Boost Regressor Models.

Network Parameters Values
Size of input layer 1
Size of hidden layers 512
LSTM Number of layers 4
Length of sequence 50
Learning rate 2e-5
Size of hidden layer 512
Output layer 1
FNN Number of layers [3, 3,4]
Learning rate 2e-5
Cat Boost Regressor Itere'ltlons 1000
Learning rate 0.1



https://doi.org/10.20944/preprints202501.1110.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 January 2025 d0i:10.20944/preprints202501.1110.v1

7 of 14

Depth 6
Verbose 100

For the LSTM model, the input layer size is set to 1, denoting the dimension or feature count of
the input data.The size of the hidden layer is 512, which, although larger sizes may facilitate the
learning of complex patterns, can increase costs and the risk of overfitting.The layers are as follows:
4, for in-depth feature extraction and learning, may cause overfitting.he sequence length of 50 is
related to the input data's sequential nature.The learning rate of 2e-5 is a crucial parameter, as it
ensures stability during training while moderating convergence.

For the Feedforward Neural Network (FNN):Hidden layer size: 512, similar impact on learning
ability.The output layer: 1, which is suitable for regression.The layers are as follows: [3, 3, 4], with
trade-offs in learning and complexity.The learning rate of 2e-5 has a discernible impact on the training
process.The iterations are as follows: 1000, with the possibility of overfitting or prolonged training
with higher values.

For the Cat Boost Regressor:Learning rate: 0.1, a larger value may facilitate more rapid weight
updates but can also result in oscillations.The depth parameter, set at 6, has been observed to facilitate
the learning of complex relationships; however, it has also been noted to increase the risk of
overfitting.Finally, the verbosity parameter, set at 100, is related to the degree of information
provided by the model.

It is imperative to note that these settings have a profound impact on the performance of the
model, its operational speed, and its capacity for generalisation. It is recommended that these settings
be adjusted and optimized based on the specific characteristics of the data and the intended tasks,
with the objective of achieving the best possible outcome. In this regard, it is essential to take into
account factors such as the complexity of the data, the available computing resources, and the
associated time costs.

The Table 7 provides a concise overview of the hyperparameter settings for three machine
learning models: LSTM, FNN, and Gradient Boosting Decision Tree. The LSTM model is configured
with an input layer size of 1, 512 neurons in the hidden layers, 4 layers deep, a sequence length of 50,
and a learning rate of 2e-5, making it suitable for capturing temporal dependencies in data. The FNN,
with a single output and 512 neurons in its hidden layer, is set with 3 layers and the same learning
rate of 2e-5 as the LSTM, indicating a design for complex pattern recognition with a focus on
regression tasks. The Gradient Boosting Decision Tree is parameterized with 100 estimators, a
learning rate of 0.1, a maximum depth of 3, and a random state of 42, which suggests a robust setup
for handling various types of data and avoiding overfitting through controlled randomness. These
configurations highlight a balance between model complexity and generalization capabilities.

Table 7. Hyperparameter Configurations for LSTM, FNN, and Gradient Boosting Decision Tree.

Network Parameters Values
Size of input layer 1
Size of hidden layers 512
LSTM Number of layers 4
Length of sequence 50
Learning rate 2e-5
Size of hidden layer 512
Output layer 1
FNN Number of layers 3
Learning rate 2e-5
N estimators 100
Gradient Boosting Decision Learning rate 0.1
Tree Max depth 3

Random state 42
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The provided Table 8 outlines the optimized hyperparameters for three machine learning
models: LSTM, ENN, and Optimal Random Forest Regressor. The LSTM configuration is designed to
handle time-series data effectively, with an input layer dimension of 2, a substantial hidden layer size
of 256, a model depth of 4 layers, a sequence length of 5, and an aggressive learning rate of le-4 to
facilitate faster convergence. The FNN, with its 256-neuron hidden layer, single output neuron, and
a total of 3 layers, is configured with a conservative learning rate of 2e-5, likely to ensure stable
learning for its regression tasks. The Optimal Random Forest Regressor stands out with a high
number of 1316 estimators, a considerable depth of 312, and specific criteria for minimum leaf size (5)
and minimum split (2), suggesting a model that has been meticulously tuned for accuracy and
generalization. This ensemble model's parameters indicate a preference for a complex model
structure to capture intricate data relationships.

Table 8. Hyperparameter Configurations for LSTM, FNN, and Optimal Random Forest Regressor.

Network Parameters Values

Size of input layer 2

Size of hidden layers 256
LSTM Number of layers 4
Length of sequence 5

Learning rate le-4

Size of hidden layer 256
Output layer 1
FNN Number of layers 3

Learning rate 2e-5

N estimator 1316

. Depth 312
Optimal RF regressor Min leaf 5
Min split 2

The Table 9 presents three network models (LSTM, FNN, XG-Boost Regressor) along with their
relevant parameters and corresponding values.

Table 9. Hyperparameter Configurations for LSTM, FNN, and XG-Boost Regressor Models.

Network Parameters Values
Size of input layer 1
Size of hidden layers 512
LSTM Number of layers 4
Length of sequence 49
Learning rate 2e-5
Size of hidden layer 512
Output layer 1
FNN Number of layers 5
Learning rate 2e-5
N estimators [100, 200]
XG Boost Regressor Learning rate [0.01, 0.1]
Max depth [3, 4, 5]

For the LSTM model: The size of the input layer is 1, indicating that the dimension or the number

of features of the input data is 1.The size of the hidden layers is 512, meaning each hidden layer has
512 neurons. A larger hidden layer size may enable the model to learn more complex patterns, but it
may also increase the computational cost and the risk of overfitting. The number of layers is 4. More
layers allow the model to perform more in-depth feature extraction and learning, but it may also
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bring about issues such as overfitting, which requires appropriate regularization and other means to
control. The length of the sequence is 49, which may be related to the sequential nature of the input
data. For example, when dealing with time series data, 49 may represent the sequence length of 49
time steps input to the model each time. The learning rate is 2e-5. A smaller learning rate usually
makes the training process more stable, but it may lead to a slower convergence speed.

For the FNN model: The size of the hidden layer is 512, which has a similar impact on the model's
learning ability as the hidden layer size of the LSTM. The output layer is 1, indicating that the output
of this model is a single value, which may be suitable for regression and other tasks. The number of
layers is 5, a relatively deeper network structure, which has different trade-offs in learning ability
and computational complexity. The learning rate is 2e-5, and the characteristics of the training process
will be similarly affected N estimators is [100, 200], which may be related to the range of the number
of estimators in the model.

3.2. Comparison of the effectiveness of different machine learning algorithms

The Figures (a) and (b) illustrate the training process of linear regression model using gradient
descent. As the number of iterations increases, the loss function decreases significantly, indicating
that the model gradually learns and adapts to the data set. When the number of iterations reaches
3000, the model converges to the minimum loss value, which indicates that it successfully captures
the linear relationship in the data and is ready for the accurate prediction task.

The performance trajectory of AdaBoost algorithm is shown in figures (c) and (d). The ensemble
method aggregates weak learners into robust classifiers. With the increase of the number of weak
learners, the classification accuracy is significantly improved. At 3000 iterations, the accuracy of the
model is stable at a significant high level, which emphasizes the effectiveness of AdaBoost in
enhancing the collective prediction ability of multiple weak classifiers to improve the overall
performance.

Figures (E) and (f) show the performance of catboost in different training operations. The model
can deal with classification features well, and the prediction error decreases with the increase of
iteration times. After 3000 iterations, the model achieved satisfactory results, effectively managed the
classification input, and provided accurate prediction.

Gbdt simulation diagrams (g) and (H) illustrate the training dynamics of the gradient lifting
decision tree algorithm. Gbdt is an integrated technology that gradually establishes a decision tree to
improve prediction. The results show that the consistency of prediction error decreases with the
increase of the tree. After 3000 experiments, gbdt successfully identifies the complex patterns in the
data, which provides a solid foundation for reliable prediction results.

Figures (L) and (m) test the performance of KNN algorithm under different parameter
configurations. KNN algorithm depends on the closeness between samples for classification or
regression, and shows different prediction accuracy under different K values. Through 3000
iterations, the model can select the best K value according to the data distribution, so as to optimize
the prediction performance.

Figures (n) and (o) show the effectiveness of lightgbm in different training iterations. A notable
feature of lightgbm is its speed and memory efficiency. As the number of iterations increases to 20000,
the prediction error of lightgbm decreases significantly, and the accuracy and stability of the model
are improved.

The prediction performance of xgboost regression model in different training stages is described
in detail with (P) and (q) labeled graphs. Xgboost is a machine learning algorithm known for its
effectiveness in processing large-scale data. After 3000 iterations, the prediction error is significantly
reduced. This decline means the effective fitting of data, and emphasizes the robust prediction ability
of the algorithm.

Stochastic Forest simulation is to train stochastic EST algorithm on a large number of data sets.
The training results are shown in figures (R) and (s). Random forest algorithm is a comprehensive
method that uses multiple decision trees to aggregate their predictions by voting or averaging.
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Experiments show that the algorithm achieves high prediction accuracy through 20000 data sets and
50000 iterations. The results show that the model can make full use of data information, reduce the
over fitting ability, and produce reliable prediction results.

The external tree simulation diagram evaluates the
effectiveness of the external tree under different training
conditions through graph (T) and graph (o). Outer tree is a
method that combines randomness and feature
segmentation when constructing decision tree. After 3000

iterations, the data processing is effective and the e v e =
prediction accuracy is high. This observation emphasizes -
the robustness and prediction ability of the algorithm.
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4. Discussion

Previous studies have primarily relied on traditional estimation techniques such as the Extended
Kalman Filter (EKF) for DSE2324. While EKF-based methods perform well under ideal
communication conditions, they often fail to maintain accuracy during significant data loss 25. For
example, Zhao et al23. highlighted the limitations of EKF in scenarios with incomplete measurements
and high communication latency. In this study, the ML-based approach incorporating the Gilbert-
Elliott model for data loss simulation demonstrated greater robustness, offering a viable alternative
to EKF-based methods.

The use of residual connections and self-attention mechanisms in the neural network
architecture further enhanced the model's accuracy. These mechanisms, which have been
successfully applied in other domains such as natural language processing and computer vision 26,

improved the network’s ability to maintain stable learning and handle long-range dependencies in
the data.

5. Conclusions

This article draws parallels between the performance of nine integrated machine learning
methods for dynamic state estimation in power systems under data loss conditions. The methods
under scrutiny include Random Forest Regression, AdaBoost Regression, Gradient Boosting
Regression, Extra Trees Regression, CatBoost Regression, K-Nearest Neighbors Regression, XGBoost
Regression, LightGBM Regression, and Linear Regression (using gradient descent). The study's
background is rooted in the understanding that contemporary power grids have become intricate,
particularly with the integration of renewable energy sources and distributed generation. This
complexity renders accurate state estimation challenging in scenarios where communication
constraints and data loss occur.The study utilised Kundur's two zone four machine power system
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model to simulate the dynamic state of power systems under diverse operating conditions, thereby
generating pertinent datasets.The data loss simulation was executed using the Gilbert Elliott model,
and the efficacy of the algorithms in mitigating the repercussions of data loss was assessed.
Additionally, the study enhances the robustness of neural network architecture by incorporating
residual connections and self-attention mechanisms.The simulation results demonstrate that the
LSTM+FNN+RF method exhibits optimal performance, with an average relative error of 0.0854 and
a variance of 0.6306. This outcome indicates that integrating the time modelling capability of LSTM
with the robustness of integrated methods can enhance the stability and operational reliability of the
power grid, providing solutions to the increasingly complex challenges in modern power systems.

6. Patents
We haven't started accepting it yet.
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