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Abstract: This study comparatively analysed the application of integrated machine learning 

methods in dynamic state estimation (DSE) of power systems, with a particular focus on the case of 

data loss. The research is grounded in the understanding that the intricacy of contemporary power 

grids is perpetually escalating, and the preservation of reliable state estimation in the face of 

practical limitations has emerged as an imperative challenge, particularly in the context of 

renewable energy and distributed generation. The presence of communication limitations, 

particularly during periods of congestion or instability, has been identified as a contributing factor 

to data loss, which in turn can lead to a reduction in the efficacy of conventional estimation methods 

and pose a threat to the smooth operation of the power system. The Gilbert-Elliott model was 

employed in the study to simulate data loss scenarios in real-world contexts, and the performance 

of nine machine learning algorithms in mitigating the impact of data loss was evaluated, including 

random forest, AdaBoost, Gradient boosting and XGBoost, among others. Furthermore, the 

robustness of the neural network architecture is enhanced by adding residual connections and self-

attention mechanisms. The simulation results on the Kundur two area four machine power system 

model demonstrate that the LSTM+FNN+RF method performs optimally, achieving the lowest 

average relative error and variance. The findings of this study underscore the efficacy of integrating 

the time modelling capability of LSTM with the robustness of integrated methods to enhance the 

stability and operational reliability of the power grid. This study has contributed to the development 

of elastic DSE technology that can adapt to the complexity challenges of modern power grids. 

Keywords: dynamic state estimation; machine learning; data loss; power systems; neural networks; 

ensemble methods 

 

1. Introduction 

Accurate dynamic state estimation (DSE) is essential for ensuring the stability and reliability of 

power systems. With the increasing complexity of modern microgrids, influenced by renewable 

energy sources and distributed generation, maintaining robust state estimation under real-world 

constraints such as data loss1 has become a pressing challenge . Communication constraints 2, 

particularly in periods of congestion or instability, can lead to data dropouts, degrading the 

performance of conventional estimation methods and posing risks to power system operations . 

Recent studies have explored methods to mitigate these issues, including the application of 

Markov models like the Gilbert-Elliott model to describe packet loss behavior3. Machine learning 

(ML) approaches, such as neural networks4 and ensemble learning5, have shown promise in 

enhancing the accuracy of state estimation despite data lose. However, the effectiveness of different 

ML models under such conditions is still a topic of ongoing research and debate. 

This study aims to provide a comparative analysis of nine machine learning methods for DSE in 

data loss scenarios: random forest regression, AdaBoost regression, gradient boosting regression, 
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ExtraTrees regression, CatBoost regression, K-nearest neighbor (KNN) regression, XGBoost 

regression, LightGBM regression, and linear regression (using gradient descent). In addition, we 

enhance the neural network architecture with residual connection and self-attention mechanism 

consisting of 3 LSTMs6 and 3 FNNs to further improve the robustness of the estimation. 

Our findings reveal the most effective algorithms for mitigating the impact of data loss on 

dynamic state estimation, offering insights into practical applications for power system stability. This 

work contributes to the ongoing effort to develop resilient estimation techniques that can adapt to 

the challenges of modern power grids. 

2. Materials and Methods 

2.1. System Model and Data Generation 

The study uses the Kundur’s two-area, four-machine power system model to simulate dynamic 

states of a power system under varying operational conditions7. This system model is widely 

recognized for evaluating stability and dynamic response in power system research. The simulations 

were performed using standard power system simulation software to generate datasets that include 

the following generator states:Rotor Angle (δ);Rotor Speed (ω);Transient Voltage (E’). 

The inputs include excitation voltage (Efd) and mechanical power (Pm). The corresponding 

measurements consist of active power (Pe), reactive power (Qe), terminal voltage (Vt), and terminal 

current (It). 

2.2. Data Loss Simulation 

To simulate real-world communication constraints, data dropouts were modeled using the 

Gilbert-Elliott model. This model represents the communication channel as a two-state Markov chain 

with: Good State (0): Successful data transmission.; Bad State (1): Data loss (packet loss).;The 

transition probabilities between states were predefined based on historical data. The state transition 

matrix is given by: 

𝚺  = [
𝐏𝐫 (𝛄𝐤+𝟏 = 𝟎 ∣ 𝛄𝐤 = 𝟎) 𝐏𝐫 (𝛄𝐤+𝟏 = 𝟏 ∣ 𝛄𝐤 = 𝟎)

𝐏𝐫 (𝛄𝐤+𝟏 = 𝟎 ∣ 𝛄𝐤 = 𝟏) 𝐏𝐫 (𝛄𝐤+𝟏 = 𝟏 ∣ 𝛄𝐤 = 𝟏)
]

 = [
𝟏 − 𝐩 𝐩

𝐪 𝟏 − 𝐪
]

 

2.3. Machine Learning Methods 

Nine machine learning algorithms were employed to estimate the dynamic states of the power 

system under data loss conditions. These methods are: Random Forest Regression (RF)89;AdaBoost 

Regression; Gradient Boosting Regression (GBR); ExtraTrees Regression;CatBoost Regression; K-

Nearest Neighbors (KNN) Regression; XGBoost Regression; LightGBM Regression; Linear 

Regression (Gradient Descent). 

2.4. Neural Network Enhancements 

For improved performance, the neural network architecture was enhanced with residual 

connections and a self-attention mechanism10. The architecture includes: 

Two Long Short-Term Memory (LSTM) layers; Four Feedforward Neural Network (FNN)11 

layers; The neural network training process was divided into three stages: 

First Stage: Train LSTM1, FNN1, and FNN2 without considering data loss. 

Second Stage: Freeze the parameters of LSTM1, FNN1, and FNN2, then train LSTM2, FNN3, and 

FNN4 with the Gilbert-Elliott model integrated to simulate data loss. 

Third Stage: Freeze all previous parameters and train a Random Forest Regressor on the final 

hidden states of FNN4. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 January 2025 doi:10.20944/preprints202501.1110.v1

https://doi.org/10.20944/preprints202501.1110.v1


 3 of 14 

 

 

 

Figure 1. Improved neural network architecture. 

3. Results 

3.1. Comparative Analysis of Machine Learning Methods 

The following machine learning models were tested for their ability to estimate the dynamic 

states of the system under data loss12: Random Forest Regression8; AdaBoost Regression13; Gradient 

Boosting Regression14; Extra Trees Regression15; CatBoost Regression16; K-Nearest Neighbors 

(KNN) Regression17; XGBoost Regression18; LightGBM Regression19; Linear Regression (Gradient 

Descent)20.The performance metrics used for comparison were: Mean Relative Error 

(MRE)21;Variance of the error distribution22. The results of the comparative analysis are summarized 

in Table 1.Performance of Machine Learning Models for Dynamic State Estimation under Data Loss 

Table 1. Network Architectures and Hyperparameters for LSTM, FNN, and AdaBoost Regressor. 

Network Parameters Values 

LSTM 

Size of input layer 1 

Size of hidden layers 512 

Number of layers 4 

Length of sequence 50 

Learning rate 2e-5 

FNN 

Size of hidden layer 512 

Output layer 1 

Number of layers 3 

Learning rate 2e-5 

AdaBoost Regressor 

N_estimator 100 

Learning rate 0.1 

Random state 42 

3.2. Figures, Tables and Schemes 
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The Table 1 lists three different machine learning models along with their parameters and 

corresponding values. Here's an analysis of each model and its parameters: 

The input layer size is set to 1, indicating that only one feature is input at each time step. The 

hidden layer size is 512, meaning that each hidden layer contains 512 neurons. The number of layers 

is 4, suggesting that the LSTM network consists of 4 hidden layers. The sequence length is 50, which 

typically refers to the number of time steps in the input sequence. The learning rate, which is set to 

2e-5, is utilised to regulate the rate at which the model updates its weights during the training process. 

The output layer is characterised by a size of 1, signifying that the network produces a solitary 

output value. The network comprises a total of three layers, encompassing the input layer, a hidden 

layer, and the output layer. The learning rate is configured to 2e-5, aligning with the LSTM model, 

and it governs the rate at which weights are updated during the training process. 

N_estimator: The number of estimators is 100, referring to the number of weak learners used in 

the AdaBoost algorithm. Learning rate: The value of the learning rate is 0.1, the function of which is 

to regulate the contribution of each weak learner. Random state: The random state is 42, which is 

employed to ensure the reproducibility of results, especially in the process of data splitting and model 

training. 

These parameters are of pivotal significance for the performance and training process of the 

models. For instance, the size and number of hidden layers affect the complexity and learning 

capacity of the model, while the learning rate influences the stability and convergence speed during 

training. The parameters for the AdaBoost Regressor are outlined in Table 1. 

The Table 2 illustrates three network models, accompanied by their associated parameters and 

corresponding values. The LSTM model is characterized by the following parameters: The input layer 

is sized 1, indicating that the dimension or the number of features of the input data is 1.The size of 

the hidden layers is 512, implying that each hidden layer contains 512 neurons. A larger hidden layer 

size may enable the model to learn more complex patterns, but it may also increase the computational 

cost and the risk of overfitting. The number of layers is 4. More layers allow the model to perform 

more in-depth feature extraction and learning, but it may also bring about problems such as 

overfitting, which requires appropriate regularization and other means to control. The length of the 

sequence is 50, which may be related to the sequential nature of the input data. In the context of time 

series data, for instance, 50 may denote the sequence length of 50 time steps input to the model on 

each occasion. The learning rate is set to 2e-5, a value which, while typically ensuring stability during 

training, can result in a reduced convergence speed. With regard to the FNN model: 

Table 2. Hyperparameter Settings for LSTM, FNN, and Gradient Boosting Regressor Models. 

Network Parameters Values 

LSTM 

Size of input layer 1 

Size of hidden layers 512 

Number of layers 4 

Length of sequence 50 

Learning rate 2e-5 

FNN 

Size of hidden layer 512 

Output layer 1 

Number of layers 3 

Learning rate 2e-5 

Gradient Boosting Regressor 

N_estimator 100 

Learning rate 0.1 

Random state 42 

Max depth 3 

The size of the hidden layer is 512, which has a similar impact on the model's learning ability as 

the hidden layer size of the LSTM. The output layer is 1, indicating that the output of this model is a 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 January 2025 doi:10.20944/preprints202501.1110.v1

https://doi.org/10.20944/preprints202501.1110.v1


 5 of 14 

 

 

single value, which may be suitable for regression and other tasks. The number of layers is 3, a 

relatively shallow network structure, which may have different trade-offs in learning ability and 

computational complexity. 

The learning rate is set to 2e-5, and it is anticipated that this will have a comparable effect on the 

characteristics of the training process to that observed in the LSTM model. The N_estimator is set to 

100, which may be indicative of the number of estimators in the model. For instance, in the context 

of ensemble learning, 100 base learners may be employed. 

In the context of the Gradient Boosting Regressor model, the learning rate is set at 0.1, which is 

notably higher than the rates employed in LSTM and FNN models. This may result in more rapid 

weight updates during the training phase. 

The Table 3 shows that the Input Layer Size is defined as follows: The input layer size is set to 1, 

indicating that the network processes a single feature at each time step, a common configuration for 

univariate time series data. 

Table 3. Hyperparameter Configurations for LSTM, FNN, and LGBM Regressor Models. 

Network Parameters Values 

LSTM 

Size of input layer 1 

Size of hidden layers 512 

Number of layers 4 

Length of sequence 2*int(1/dt) 

Learning rate 2e-5 

FNN 

Size of hidden layer 512 

Output layer 1 

Number of layers 4 

Learning rate 2e-5 

LGBM regressor 

Test size 0.2 

Random state 42 

Max depth -1 

Hidden Layer Size: The hidden layer size is set to 512, suggesting a substantial capacity for the 

network to capture complex patterns within the data through a significant number of neurons. 

Number of Layers: With four layers specified, the LSTM network is configured to have multiple 

hidden layers, which can enhance its ability to learn and represent temporal dependencies in the data. 

Learning Rate: The learning rate is set to 2e-5, a conservative value that ensures the model's weights 

are updated gradually during training, potentially leading to more stable convergence and 

preventing overshooting. Finally, the sequence length is set to 50, which is a standard value that 

allows the network to effectively utilise a moderate range of past data points when making 

predictions. The sequence length is set to 50, which defines the number of time steps that the LSTM 

considers when making predictions, allowing it to leverage information from a moderate window of 

past data points. 

This format provides a clear and concise description of each hyperparameter, explaining its role 

and the implications of its value in the context of the LSTM network's performance. 

The Table 4 presents three network models (LSTM, FNN, KNN) along with their relevant 

parameters and corresponding values. 

Table 4. Hyperparameter Configurations for LSTM, FNN, and KNN. 

Network Parameters Values 

LSTM 

Size of input layer 1 

Size of hidden layers 512 

Number of layers 4 

Length of sequence 49 
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Learning rate 2e-5 

FNN 

Size of hidden layer 512 

Output layer 1 

Number of layers 5 

Learning rate 2e-5 

KNN 

N estimators [100, 200] 

Learning rate [0.01, 0.1] 

Max depth  [3, 4, 5] 

The table summarizes key hyperparameters for LSTM, FNN, and KNN models, highlighting 

LSTM's deep architecture with 4 layers and a hidden size of 512 for complex temporal data 

processing, FNN's single output for regression tasks with a similar hidden size, and KNN's flexible 

boosting stages and learning rates suited for diverse regression challenges, with a focus on balancing 

model complexity and performance.  

The Table 5 details the configurations of three machine learning models. The LSTM, designed 

for temporal data, has an input layer for a single feature, 512-neuron hidden layers across 4 layers, 

and a sequence length of 50, with a 2e-5 learning rate for stable training. The FNN, with a comparable 

512-neuron hidden layer, features a [4,4,3] layered structure for complex data representation and 

shares the LSTM's learning rate. The K-Neighbors Regressor is configured with 5 neighbors to 

balance local data consideration with generalization. These settings are tailored for optimal learning 

and prediction accuracy across the models. 

Table 5. Hyperparameter Configurations for LSTM, FNN, and K Neighbors Regressor Models. 

Network Parameters Values 

LSTM 

Size of input layer 1 

Size of hidden layers 512 

Number of layers 4 

Length of sequence 50 

Learning rate 2e-5 

FNN 

Size of hidden layer 512 

Output layer 1 

Number of layers  [4, 4, 3] 

Learning rate 2e-5 

K Neighbors Regressor N neighbors 5 

As illustrated in Table 6, three network models (LSTM, FNN, Cat Boost Regressor) are presented, 

accompanied by their respective parameters and values. 

Table 6. Hyperparameter Configurations for LSTM, FNN, and Cat Boost Regressor Models. 

Network Parameters Values 

LSTM 

Size of input layer 1 

Size of hidden layers 512 

Number of layers 4 

Length of sequence 50 

Learning rate 2e-5 

FNN 

Size of hidden layer 512 

Output layer 1 

Number of layers  [3, 3,4] 

Learning rate 2e-5 

Cat Boost Regressor 
Iterations 1000 

Learning rate 0.1 
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Depth 6 

Verbose 100 

For the LSTM model, the input layer size is set to 1, denoting the dimension or feature count of 

the input data.The size of the hidden layer is 512, which, although larger sizes may facilitate the 

learning of complex patterns, can increase costs and the risk of overfitting.The layers are as follows: 

4, for in-depth feature extraction and learning, may cause overfitting.he sequence length of 50 is 

related to the input data's sequential nature.The learning rate of 2e-5 is a crucial parameter, as it 

ensures stability during training while moderating convergence. 

For the Feedforward Neural Network (FNN):Hidden layer size: 512, similar impact on learning 

ability.The output layer: 1, which is suitable for regression.The layers are as follows: [3, 3, 4], with 

trade-offs in learning and complexity.The learning rate of 2e-5 has a discernible impact on the training 

process.The iterations are as follows: 1000, with the possibility of overfitting or prolonged training 

with higher values. 

For the Cat Boost Regressor:Learning rate: 0.1, a larger value may facilitate more rapid weight 

updates but can also result in oscillations.The depth parameter, set at 6, has been observed to facilitate 

the learning of complex relationships; however, it has also been noted to increase the risk of 

overfitting.Finally, the verbosity parameter, set at 100, is related to the degree of information 

provided by the model. 

It is imperative to note that these settings have a profound impact on the performance of the 

model, its operational speed, and its capacity for generalisation. It is recommended that these settings 

be adjusted and optimized based on the specific characteristics of the data and the intended tasks, 

with the objective of achieving the best possible outcome. In this regard, it is essential to take into 

account factors such as the complexity of the data, the available computing resources, and the 

associated time costs. 

The Table 7 provides a concise overview of the hyperparameter settings for three machine 

learning models: LSTM, FNN, and Gradient Boosting Decision Tree. The LSTM model is configured 

with an input layer size of 1, 512 neurons in the hidden layers, 4 layers deep, a sequence length of 50, 

and a learning rate of 2e-5, making it suitable for capturing temporal dependencies in data. The FNN, 

with a single output and 512 neurons in its hidden layer, is set with 3 layers and the same learning 

rate of 2e-5 as the LSTM, indicating a design for complex pattern recognition with a focus on 

regression tasks. The Gradient Boosting Decision Tree is parameterized with 100 estimators, a 

learning rate of 0.1, a maximum depth of 3, and a random state of 42, which suggests a robust setup 

for handling various types of data and avoiding overfitting through controlled randomness. These 

configurations highlight a balance between model complexity and generalization capabilities. 

Table 7. Hyperparameter Configurations for LSTM, FNN, and Gradient Boosting Decision Tree. 

Network Parameters Values 

LSTM 

Size of input layer 1 

Size of hidden layers 512 

Number of layers 4 

Length of sequence 50 

Learning rate 2e-5 

FNN 

Size of hidden layer 512 

Output layer 1 

Number of layers  3 

Learning rate 2e-5 

Gradient Boosting Decision 

Tree 

 N estimators 100 

Learning rate 0.1 

Max depth 3 

Random state 42 
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The provided Table 8 outlines the optimized hyperparameters for three machine learning 

models: LSTM, FNN, and Optimal Random Forest Regressor. The LSTM configuration is designed to 

handle time-series data effectively, with an input layer dimension of 2, a substantial hidden layer size 

of 256, a model depth of 4 layers, a sequence length of 5, and an aggressive learning rate of 1e-4 to 

facilitate faster convergence. The FNN, with its 256-neuron hidden layer, single output neuron, and 

a total of 3 layers, is configured with a conservative learning rate of 2e-5, likely to ensure stable 

learning for its regression tasks. The Optimal Random Forest Regressor stands out with a high 

number of 1316 estimators, a considerable depth of 312, and specific criteria for minimum leaf size (5) 

and minimum split (2), suggesting a model that has been meticulously tuned for accuracy and 

generalization. This ensemble model's parameters indicate a preference for a complex model 

structure to capture intricate data relationships. 

Table 8. Hyperparameter Configurations for LSTM, FNN, and Optimal Random Forest Regressor. 

Network Parameters Values 

LSTM 

Size of input layer 2 

Size of hidden layers 256 

Number of layers 4 

Length of sequence 5 

Learning rate 1e-4 

FNN 

Size of hidden layer 256 

Output layer 1 

Number of layers 3 

Learning rate 2e-5 

Optimal RF regressor 

N estimator 1316 

Depth 312 

Min leaf 5 

Min split 2 

The Table 9 presents three network models (LSTM, FNN, XG-Boost Regressor) along with their 

relevant parameters and corresponding values. 

Table 9. Hyperparameter Configurations for LSTM, FNN, and XG-Boost Regressor Models. 

Network Parameters Values 

LSTM 

Size of input layer 1 

Size of hidden layers 512 

Number of layers 4 

Length of sequence 49 

Learning rate 2e-5 

FNN 

Size of hidden layer 512 

Output layer 1 

Number of layers 5 

Learning rate 2e-5 

XG Boost Regressor 

N estimators [100, 200] 

Learning rate [0.01, 0.1] 

Max depth  [3, 4, 5] 

For the LSTM model: The size of the input layer is 1, indicating that the dimension or the number 

of features of the input data is 1.The size of the hidden layers is 512, meaning each hidden layer has 

512 neurons. A larger hidden layer size may enable the model to learn more complex patterns, but it 

may also increase the computational cost and the risk of overfitting. The number of layers is 4. More 

layers allow the model to perform more in-depth feature extraction and learning, but it may also 
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bring about issues such as overfitting, which requires appropriate regularization and other means to 

control. The length of the sequence is 49, which may be related to the sequential nature of the input 

data. For example, when dealing with time series data, 49 may represent the sequence length of 49 

time steps input to the model each time. The learning rate is 2e-5. A smaller learning rate usually 

makes the training process more stable, but it may lead to a slower convergence speed. 

For the FNN model: The size of the hidden layer is 512, which has a similar impact on the model's 

learning ability as the hidden layer size of the LSTM. The output layer is 1, indicating that the output 

of this model is a single value, which may be suitable for regression and other tasks. The number of 

layers is 5, a relatively deeper network structure, which has different trade-offs in learning ability 

and computational complexity. The learning rate is 2e-5, and the characteristics of the training process 

will be similarly affected N estimators is [100, 200], which may be related to the range of the number 

of estimators in the model. 

3.2. Comparison of the effectiveness of different machine learning algorithms 

The Figures (a) and (b) illustrate the training process of linear regression model using gradient 

descent. As the number of iterations increases, the loss function decreases significantly, indicating 

that the model gradually learns and adapts to the data set. When the number of iterations reaches 

3000, the model converges to the minimum loss value, which indicates that it successfully captures 

the linear relationship in the data and is ready for the accurate prediction task. 

The performance trajectory of AdaBoost algorithm is shown in figures (c) and (d). The ensemble 

method aggregates weak learners into robust classifiers. With the increase of the number of weak 

learners, the classification accuracy is significantly improved. At 3000 iterations, the accuracy of the 

model is stable at a significant high level, which emphasizes the effectiveness of AdaBoost in 

enhancing the collective prediction ability of multiple weak classifiers to improve the overall 

performance. 

Figures (E) and (f) show the performance of catboost in different training operations. The model 

can deal with classification features well, and the prediction error decreases with the increase of 

iteration times. After 3000 iterations, the model achieved satisfactory results, effectively managed the 

classification input, and provided accurate prediction. 

Gbdt simulation diagrams (g) and (H) illustrate the training dynamics of the gradient lifting 

decision tree algorithm. Gbdt is an integrated technology that gradually establishes a decision tree to 

improve prediction. The results show that the consistency of prediction error decreases with the 

increase of the tree. After 3000 experiments, gbdt successfully identifies the complex patterns in the 

data, which provides a solid foundation for reliable prediction results. 

Figures (L) and (m) test the performance of KNN algorithm under different parameter 

configurations. KNN algorithm depends on the closeness between samples for classification or 

regression, and shows different prediction accuracy under different K values. Through 3000 

iterations, the model can select the best K value according to the data distribution, so as to optimize 

the prediction performance. 

Figures (n) and (o) show the effectiveness of lightgbm in different training iterations. A notable 

feature of lightgbm is its speed and memory efficiency. As the number of iterations increases to 20000, 

the prediction error of lightgbm decreases significantly, and the accuracy and stability of the model 

are improved. 

The prediction performance of xgboost regression model in different training stages is described 

in detail with (P) and (q) labeled graphs. Xgboost is a machine learning algorithm known for its 

effectiveness in processing large-scale data. After 3000 iterations, the prediction error is significantly 

reduced. This decline means the effective fitting of data, and emphasizes the robust prediction ability 

of the algorithm. 

Stochastic Forest simulation is to train stochastic EST algorithm on a large number of data sets. 

The training results are shown in figures (R) and (s). Random forest algorithm is a comprehensive 

method that uses multiple decision trees to aggregate their predictions by voting or averaging. 
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Experiments show that the algorithm achieves high prediction accuracy through 20000 data sets and 

50000 iterations. The results show that the model can make full use of data information, reduce the 

over fitting ability, and produce reliable prediction results. 

The external tree simulation diagram evaluates the 

effectiveness of the external tree under different training 

conditions through graph (T) and graph (o). Outer tree is a 

method that combines randomness and feature 

segmentation when constructing decision tree. After 3000 

iterations, the data processing is effective and the 

prediction accuracy is high. This observation emphasizes 

the robustness and prediction ability of the algorithm.  

 
(a)MSE on the Training Set and Validation Set for Linear 

Regression with Gradient Descent (3000 Training Epochs 

and 10000 Models) 

 
(b)Logarithmic MSE on Training Set and Validation Set for 

Linear Regression with Gradient Descent (3000 Training 

Epochs and 10000 Models) 

 
(c)MSE on the Training Set and Validation Set for 

Adaboost Algorithm (20000 Training Epochs and 10000 

Models) 

 
(d)Logarithmic MSE on Training Set and Validation Set for 

Adaboost Algorithm (20000 Training Epochs and 10000 

Models) 

 
(e)MSE on the Training Set and Validation Set for Catboost 

Algorithm (3000 Training Epochs and 10000 Models) 

 
(f) Logarithmic MSE on Training Set and Validation Set for 

Catboost Algorithm (3000 Training Epochs and 10000 

Models) 
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(g) MSE on the Training Set and Validation Set for GBDT 

Algorithm (3000 Training Epochs and 10000 Models) 

 
(h) Logarithmic MSE on Training Set and Validation Set 

for GBDT Algorithm (3000 Training Epochs and 10000 

Models) 

 
(l)MSE on the Training Set and Validation Set for KNN 

Algorithm (3000 Training Epochs and 10000 Models) 

 
(m)Logarithmic MSE on Training Set and Validation Set 

for KNN Algorithm (3000 Training Epochs and 10000 

Models) 

 
(n)MSE on the Training Set and Validation Set for 

LightGBM Algorithm (20000 Training Epochs and 3000 

Models) 

 
(o)Logarithmic MSE on Training Set and Validation Set for 

LightGBM Algorithm (20000 Training Epochs and 10000 

Models) 

 
(p)MSE on the Training Set and Validation Set for XGBoost 

Algorithm (3000 Training Epochs and 10000 Models) 

 
(q)Logarithmic MSE on Training Set and Validation Set for 

XGBoost Algorithm (3000 Training Epochs and 10000 

Models) 
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(r)MSE on the Training Set and Validation Set for Random 

Forest Algorithm (500 Training Epochs and 10000 Models) 

 

 
(s)Logarithmic MSE on Training and Validation Sets for 

Random Forest Algorithm (500 Training Rounds, 10000 

Models) 

 

 
(t)MSE on the Training Set and Validation Set for 

ExtraTrees Algorithm (3000 Training Epochs and 10000 

Models)  

 
(o)Logarithmic MSE on Training Set and Validation Set for 

ExtraTrees Algorithm (3000 Training Epochs and 10000 

Models) 

4. Discussion 

Previous studies have primarily relied on traditional estimation techniques such as the Extended 

Kalman Filter (EKF) for DSE2324. While EKF-based methods perform well under ideal 

communication conditions, they often fail to maintain accuracy during significant data loss 25. For 

example, Zhao et al23. highlighted the limitations of EKF in scenarios with incomplete measurements 

and high communication latency. In this study, the ML-based approach incorporating the Gilbert-

Elliott model for data loss simulation demonstrated greater robustness, offering a viable alternative 

to EKF-based methods. 

The use of residual connections and self-attention mechanisms in the neural network 

architecture further enhanced the model's accuracy. These mechanisms, which have been 

successfully applied in other domains such as natural language processing and computer vision 26, 

improved the network’s ability to maintain stable learning and handle long-range dependencies in 

the data. 

5. Conclusions 

This article draws parallels between the performance of nine integrated machine learning 

methods for dynamic state estimation in power systems under data loss conditions. The methods 

under scrutiny include Random Forest Regression, AdaBoost Regression, Gradient Boosting 

Regression, Extra Trees Regression, CatBoost Regression, K-Nearest Neighbors Regression, XGBoost 

Regression, LightGBM Regression, and Linear Regression (using gradient descent). The study's 

background is rooted in the understanding that contemporary power grids have become intricate, 

particularly with the integration of renewable energy sources and distributed generation. This 

complexity renders accurate state estimation challenging in scenarios where communication 

constraints and data loss occur.The study utilised Kundur's two zone four machine power system 
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model to simulate the dynamic state of power systems under diverse operating conditions, thereby 

generating pertinent datasets.The data loss simulation was executed using the Gilbert Elliott model, 

and the efficacy of the algorithms in mitigating the repercussions of data loss was assessed. 

Additionally, the study enhances the robustness of neural network architecture by incorporating 

residual connections and self-attention mechanisms.The simulation results demonstrate that the 

LSTM+FNN+RF method exhibits optimal performance, with an average relative error of 0.0854 and 

a variance of 0.6306. This outcome indicates that integrating the time modelling capability of LSTM 

with the robustness of integrated methods can enhance the stability and operational reliability of the 

power grid, providing solutions to the increasingly complex challenges in modern power systems. 

6. Patents 

We haven't started accepting it yet. 
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