

1 Article

2 The sales behavior analysis and precise marketing 3 recommendations of FMCG retails based on 4 geography methods

5 Wang Luyao ¹, Fan Hong ^{1,*} and Gong Tianren ¹

6 ¹ State Key Lab for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan
7 University, 129 Luoyu Road, Wuhan 430079, China; 2481221266@qq.com

8 * Correspondence: 2481221266@qq.com; Tel. : +86-159-7221-1475

9 **Abstract:** With the rapidly increasing of people's purchasing power, the fast moving consumer
10 goods (FMCG) industry is supposed to grow dramatically. In order to gain more market access and
11 profile, it is important for the FMCG manufacturers and retailers to find the preferences and
12 provincial characteristics of consumers, to develop more suitable goods distribution strategy. Based
13 on retails marketing data with geographic characteristics, this paper proposes a new combination
14 of geography methods to solve the problems in distribution of FMCG. Via multiple K-means
15 clustering and cross validation of KNN half off, the mesoscopic sales features are extracted through
16 the classification of retails, which can indirectly grasp the consumer behavior characteristics. Based
17 on space division and Moran' I spatial autocorrelation arithmetic, two strategies are developed to
18 satisfy consumer's needs and promote sales, including conservative and positive strategies.
19 According to our analysis, the total sales volume of the regions will increase by 5.1% and 10.3%.
20 This study can be applied to the provide purchase strategies for FMCG retails according to their
21 locations. The research can explore the consumption potential of different areas, thus improving the
22 profile of retails and the development of economy in more mesoscopic scale.

23 **Keywords:** FMCG; retail sales; geography methods; mesoscopic sales features; goods distribution
24 strategy; development of economy.

26 1. Introduction

27 Given the continuous development of the economy, and the popularization of the internet,
28 people's consumption behavior has undergone tremendous changes[1]. The regional characteristics
29 of consumers are becoming increasingly complex. The situation is typically prominent in the sales of
30 fast moving consumer goods (FMCG) industry, which is becoming an important part of purchase
31 choices of consumers [2]. To retailers and malls, the increasing demand of FMCG may means a higher
32 profile. However, the unreasonable distribution of FMCG often cause waste and loss in some places,
33 and shortage in another places, thereby indicating that retailers encounter difficulties in managing
34 their purchase and sales strategies[3-5]. In European supermarkets, the attrition rate of FMCG can
35 reach 15%-20%, which may block the development of a sustainable economy and lead to losses
36 amounting to billions of dollars[6,7]. To reduce the profit loss, some retailers will set a higher price
37 of FMCG, thereby leading to the decrease of consumers' purchase frequency[8]. The problem can also
38 result in significant problems for the manufacturer, which accept the order from retailers[9]. The
39 manufacturer cannot truly obtain the right consumer information to guide their production. The
40 relevant knowledge of consumers' preferences and demand will be helpful for the conduct of future
41 economic strategies of both the manufacturer and retailer [10].

42 For businesses, the adaptation to the changing consumer and grasp their preferences, based on
43 which they adjust their marketing strategies in a timely manner, will definitely improve their sales.
44 At present, traditional economic thought is unable to solve the increasingly complex marketing
45 problems. Retailers possess considerable sales data, but the traditional thought usually incur
46 weaknesses in the analysis of complex sales data, and encounter challenges in obtaining the

47 information of consumer patterns and consumer behaviors. Ignoring such data may lead to the loss
48 of market share for competitors and wrong marketing strategy for retailers[11].

49 To provide more reasonable businesses strategies, combining the marketing theory with new
50 technology (data mining, big data, and machine learning) is essential. The related research about
51 retail sales data combined with the characteristics of spatial areas is an important cross field of
52 geography and economy. By studying the spatial distribution and sales of retailers, the different
53 preferences of consumers in different areas can be efficiently revealed, thereby helping in the
54 development of suitable marketing strategies and more profit.

55 The present research on retailers mainly focus on their spatial distribution such as spatial
56 aggregation phenomenon. Many studies use different theories, such as central place theory[12],
57 kernel density estimation[13], and distance attenuation theory[14]. These theories are used to
58 estimate the commercial centers of retailers or malls, combined with external data such as media data
59 or POI data[15]. Given limited data sources, current studies mainly analyze of the quantity and
60 distribution of retailers[16,17], and attempt to observe their spatial characteristics. However, these
61 studies did not consider the sales of retailers, which are the most important attributes of retail. Thus,
62 the studies lack persuasion as guides for retailers. The study results can only describe the spatial
63 aggregation of shops, but cannot reveal the quantifiable relationship between locations and sales of
64 retailers, and cannot reveal the precise consumption level of areas. Research on the effectively
65 extraction of consumer characteristics of each area or block, and providing microscopic guidance for
66 retailers is relatively lacking.

67 A new combination of geography methods is proposed to solve the problem of the distribution
68 and sales strategies of FMCG in retailers, thereby providing mesoscopic guidance for the
69 development of a sustainable economy. In the process, the classification for retailers is conducted
70 based on their FMCG sales data, via the K-Means algorithm and silhouette coefficient, thereby
71 determining the sales characteristics of each class of retailer. The clustering results can reflect the
72 consumption characteristics of the consumer groups in each retailer class. Then, the KNN algorithm
73 is used to evaluate clustering accuracy. The positive correlation between sales and clustering
74 characteristics is verified via linearly dependent analysis. As the store's distribution ratio became
75 closer to the clustering center, the sales increased. Then, to improve the regional sales and to satisfy
76 consumer demand, the optimization distribution strategies are proposed by using Moran's spatial
77 correlation algorithm and space division method. In this experiment, we use FMCG sales data of 5614
78 retailers in Guiyang, the capital city of Guizhou Province in China, from 2015 to 2016. Then, we
79 classify the retailers into three classes via the K-means algorithm and silhouette coefficient. After the
80 verification of KNN and correction with sales, the clustering result is used for the optimizing strategy
81 of retailers. Two strategies are proposed, as follows: the conservative, which can improve sales by
82 5.1%; and the positive, which can improve sales by 8.4–10.3%.

83 In this paper, we propose a combination of geography method to solve the problems of
84 sustainability economy in micro-scale. The research results can provide effective guidance for the
85 sales of FMCG like food and wine. Furthermore, the results can better satisfy consumer demand in
86 different areas and reduce the loss of FMCGs, thereby promoting sustainable economic development.

87 2. Materials and Methods

88 2.1. Clustering Algorithms

89 Clustering algorithms are methods that can efficiently separate a data set, and aggregate data
90 into several classes based on their characteristics[18]. In data mining, some representative clustering
91 algorithms are found, such as density-based spatial clustering of applications with noise (DBSCAN),
92 Expectation-Maximization (EM), and K-means clustering algorithms[19]. Different clustering
93 algorithms have different advantages and weakness. DBSCAN is a method that considers the objects'
94 density in certain areas, which can indicate a good performance to data with significant noise.
95 However, if the clustered objects of data are unsure, such as the high-dimensional data, the quality
96 of clustering algorithms may be deeply influenced. K-means clustering algorithms, as a typical

97 distance clustering algorithm that takes the distance of objects as a basic clustering reference, has
 98 better performance with high-dimensional data[20]. In K-means algorithm, the number of clusters k
 99 should be set before the algorithm. The silhouette coefficient can be used for the evaluation of
 100 different k numbers[21]. In our research, we evaluate silhouette coefficient with k value ranges of 2–
 101 8, and the best k was chosen as our cluster number.

102 2. 2. *KNN for the clustering evaluation*

103 To evaluate the accuracy of clustering, we introduced KNN (k-Nearest Neighbor) classification
 104 algorithm to evaluate the accuracy of clustering results as classified by the clustering centers
 105 calculated by the K-Means algorithm[22]. As a representative algorithm of the data mining
 106 classification algorithm, KNN can determine the categories of sample data only on the basis of the
 107 nearest one or the classification of a few samples. We can extract 3/4 of stores as training data and 1/4
 108 of stores as test data. In the training process, we use the half off cross validation method to construct
 109 the classifier of the training process. Given that the distribution of shops are nearly centralized, and
 110 to the data set with cross or overlap domain, KNN usually presents better performance than do other
 111 methods[23]. We use KNN algorithm for reclassification based on the cluster centers provided by K-
 112 means and for comparing the classification results with the results of K-Means.

113 2. 3. *Spatial Autocorrection*

114 Spatial autocorrelation, as an important research method in spatial statistics analysis, is a
 115 phenomenon that is used to explore the impact degree between nearby locations. It can be used
 116 to estimate the similarity of attributes of different areas. Spatial autocorrelation is often described
 117 by global and indicators, such as *Moran's I*, *Geary's C*, and *Getis's G*[24–26]. To measure how sales
 118 are spatially autocorrelated among retailers in Guiyang, this paper uses *Moran's I* values to
 119 assess the similarity of sales characteristics between nearby retailers. Improvement strategy is
 120 carried out based on the autocorrection results. The value of *Moran's I* is between -1 and 1. If the
 121 value is close to -1, then the shops with high sales are surrounded by low ones. By contrast, when
 122 the value is close to 1, that means shops with high sales are surrounded by high ones. If the
 123 values are close to 0, then the sales of shops are random with no obvious characteristics. In
 124 spatial autocorrection, the spatial weight matrix " W_{ij} " can be used to describe the spatial
 125 relationship between different areas[27], thereby representing the spatial weights that are
 126 assigned to pairs of units i and j . A row-standardized spatial weight matrix " W " is used to
 127 describe the neighbor relationships in spatial autocorrelation analysis [54]. W_{ij} represents the
 128 spatial weights that are assigned to pairs of units i and j . The formulas of global *Moran's I* and
 129 local *Moran's I* are as follows[28]:
 130

$$I_{global} = \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^n w_{ij} (x_i - \bar{x})^2} \quad (1)$$

$$I_{local} = \frac{n(x_i - \bar{x}) \sum_j (x_j - \bar{x})}{\sum_j (x_j - \bar{x})^2} \quad (2)$$

131 In the formulas, n represents the total number of spatial units, and the values of each unit
132 are represented by X_i or X_j , and \bar{X} is the average value of all units. W_{ij} is the spatial weight
133 that represents the spatial relationship between units. To test the statistical significance of the
134 observed Moran's I, the Z value is calculated:

135

136
$$Z \left(\frac{I_i - E(I_i)}{\sqrt{VAR(I_i)}} \right) \quad (3)$$

137 $E(I_i)$ and $VAR(I_i)$ are their theoretical expectation and theoretical variance. If the local
138 Moran's I calculated above is greater than expected, then it can indicate that some places exist
139 with positive local spatial autocorrelation. If the local Moran's I value is less than the expectation,
140 then places exist with negative spatial autocorrelation. In the analysis of spatial autocorrelation,
141 the "hot region" usually occupies places with relatively high values and are close to each other.

142 **3. Cluster Analysis of Retails**

143 *3.1. Data Source*

144 The main data set used in this paper is the monthly sales data of FMCG between 2015 and
145 2016 of the 5614 FMCG retail shops in Guiyang City, China. These shops comprise markets and
146 small shops. The FMCG in these shops include fresh foods like meat and vegetable, and frozen
147 foods, wine, hygiene products and so on. We choose three types of FMCG as our research object.
148 Other data include road net and map data of Guiyang City to provide spatial references and
149 base map.

150 *3.2 Market Segmentation by Cluster Analysis*

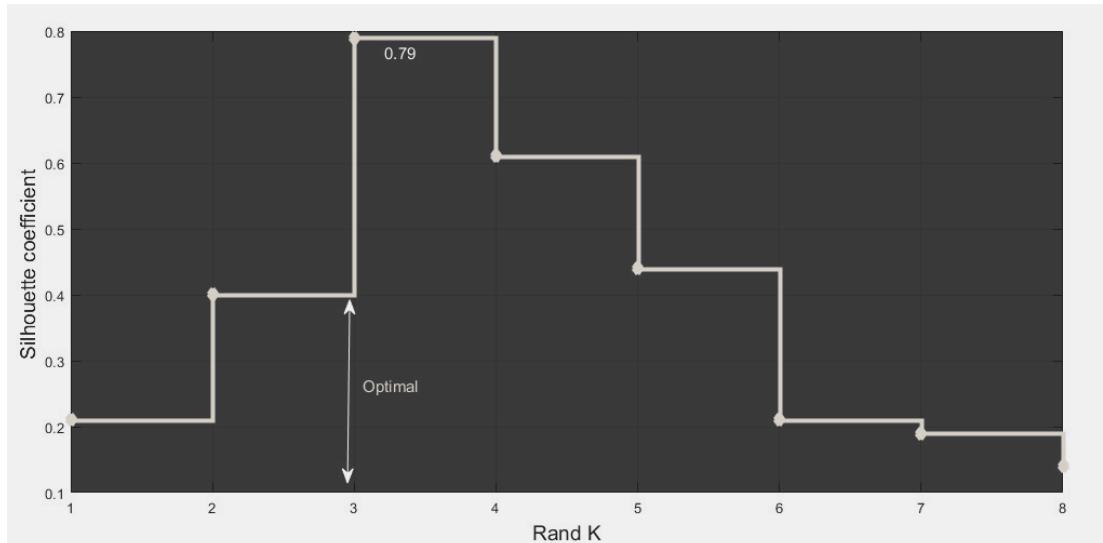
151 In the study of market segmentation, cluster analysis is usually a basal way to obtain the
152 sales characteristics of different shops. The aim of data clustering is to form spatial data or
153 multidimensional attribution data into several collections of clusters, and make the gap between
154 different clusters as large as possible. By contrast, the differences in inner clusters are as small
155 as possible[29]. The commonly used clustering algorithms include DBSCAN clustering
156 algorithm and K-means clustering algorithm. Given that the categories of retail shops are usually
157 more, and for high dimensional data clustering, the K-Means algorithm will have better accuracy
158 compared to DBSCAN algorithm. Therefore, in this paper, we use K-means clustering algorithm
159 as the clustering method.

160 As a clustering algorithm based on distance, the K-means algorithm is one of the most
161 classic clustering algorithms; the algorithm uses the space between the object distance to
162 evaluate the aggregation degree between objects. This distance can also be other features that
163 can characterize the differences between object values[30]. The algorithm requires an
164 appropriate clustering number, and will start with an initial cluster centers. Thus, the distance
165 of all sample to the inner centers are obtained and merged into the nearest cluster center. Then,
166 the initial clusters are formed. The new cluster centers are calculated from initial clusters $V(v1,$
167 $v2, v3..)$, which are the core of initial clusters and are usually different from initial cluster centers.
168 Through the new cluster centers, the sample data can form new clusters and cluster centers
169 again. Given the constantly updating iterative clustering, until no new changes occur or are less
170 than the threshold, we obtain the final clustering centers and the classification results[31].

171 In this paper, we select three products that are represented by α , β and δ as the clustering
 172 objects that contain three dimensions. The sales of 5614 retail shops are apparently different.
 173 Only by classifying the shops by their sales of FMCG into several classes can we develop a
 174 pointed marketing program for every type of retail shops. To confirm the optimal number of
 175 clusters, the silhouette coefficient is introduced. It is a type of evaluation method that is used to
 176 estimate the consequences of clustering by a quantitative value that ranges between -1 and 1.
 177 The method was proposed by Peter J. Rousseeuw in 1986[32]. It can be used to represent the
 178 similarity between the internal clusters and separation degree between different clusters. For an
 179 N-point data set, the calculation method of contour coefficient is as follows:

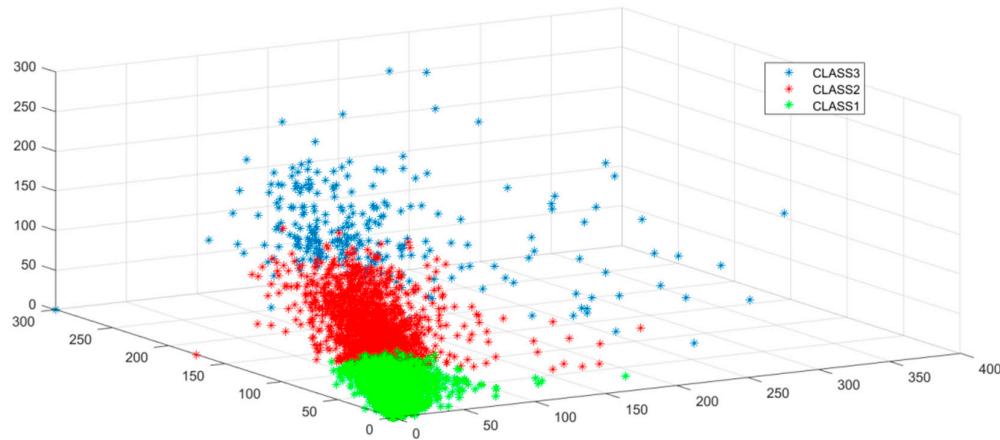
$$P = \frac{\sum_{i=1}^N \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}}{N} \quad (4)$$

180 where, $a(i)$ represents the average distance of vector i to other points in its cluster, whereas
 181 $b(i)$ represents the average distance of vector i to points of other clusters. By setting the cluster
 182 number as 2-8, the K-means cluster arithmetic was conducted with each number. The results
 183 from Fig. 1 indicate that the silhouette coefficient showed a decreasing trend. Thus, an effective
 184 choice of clustering number is 2 or 3. Considering that the discrepancy between 2 or 3 is wispy,
 185 we choose 3 as the clustering number to better distinguish retail shops.



186

Figure1. The silhouette coefficient of each K value.



187

188

Figure2. K-Means Clustering results

189 After selecting the appropriate number of categories, the K-means clustering was conducted,
 190 and results are shown in Figure 2. The horizontal intersections of any two products represent the
 191 dimensional clustering results of the two.

192 Green dots in the figure represent shops of that sell the three types of goods, sales of which are
 193 high. The red dots represent the shops whose sales are general, and the black points represent shops
 194 with fewer sales. We calculate the clustering center of each type of shop and calculate the logarithm
 195 of clustering centers to weaken the gap between different magnitudes and make the diverge points
 196 more compact. To avoid the influence of some shops' sales abnormalities and to obtain the general
 197 characteristics of shops, we use random sampling method for multiple clustering. We randomly
 198 selected 80% of stores for clustering. Thus, we obtain a group of different cluster centers. By
 199 discussing the distributions of these cluster centers, we obtain the statistical characteristics of the
 200 following Table 1 :

201

Table 1 cluster centers of 3 shops

202

203

204

205

206

Class	Sales(α)	Sales(β)	Sales(δ)	Color
Class 1	148.65	114.36	148.83	Green
Class 2	62.79	34.71	78.86	Red
Class 3	17.61	12.58	20.60	Black

207

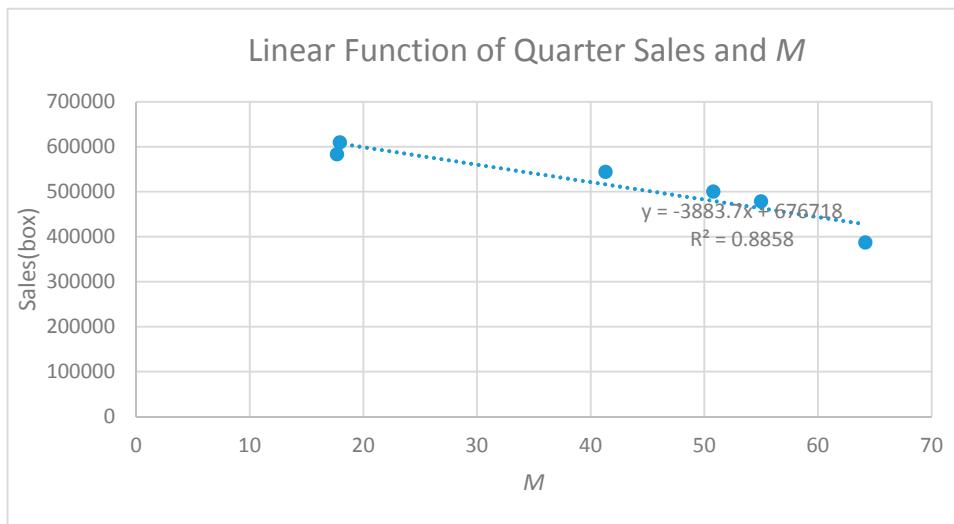
208 The indicates that the shops were divided into three classes and that each class contains a
 209 clustering center of the goods of α , β , and δ . Class 1 represents the shops with high sales, in which the
 210 ratio of three products is (148.65, 114.36, 148.83). This kind of shops may be a supermarket or a big
 211 mall. The ratio may reflect the typical characteristics of this kind of shops. The table shows that the
 212 sales of α is nearly the same as δ . The sales of β is 66% of α and δ . Class 2 represents the shops with
 213 middle sales. The ratio of three products is (62.79, 34.71, 78.76). In this kind of shops, product δ is
 214 obviously more than α . The sales of β is about a half of α . Class 3 comprises small shops, and their
 215 sales are typically less than the other classes of shops.

216 3.3 Relationship between sales and cluster centers

217 The cluster centers calculated above indicate characteristics of different types of shops,
 218 which can indirectly reflect the demand of people. The cluster centers can truly reflect people's
 219 different needs of fresh food. Thus, how can we use this principle to satisfy people's needs and
 220 promote the profile of shops at the same time? To find the relationship between shop sales and
 221 the ratio of fresh food, we introduce the MLE (maximum likelihood estimation) method to
 222 estimate the optimal fitting function between shop sales and a variable called M . The variable is
 223 the variance of quarterly cluster centers and the standard deviation we have calculated above.
 224 The computational formula of M is as follows:

$$M(i) = \frac{\sum_{n=1}^{n=3} \sqrt{(x_n(i) - X_n)^2 + (y_1(i) - Y_n)^2 + (z_1(i) - Z_n)^2}}{3} \quad (5)$$

225 We calculate the cluster centers of every quarter and calculate $M(i)$ of each month. We use
 226 maximum likelihood estimation method to find the relationship between $M(i)$ and sales. The
 227 results are shown in Figure 3, as follows:

228 Figure3 Relationship between quarter sales and M

229 To evaluate the fitting degree of the equation, we introduce the goodness of fit concept,
 230 which is based on the similarity between predicted values and the actual value. The fitting
 231 statistics used in this paper is R^2 . The greater the R^2 , the closer their relationship is. The
 232 formula is as follows:

$$R^2 = \frac{\sum (y^* - \bar{y})^2}{\sum (y - \bar{y})^2} \quad (6)$$

233 where y^* represents the real value, and \bar{y} represents the average value. When R^2 ranges
 234 between 0–1, the closer to 1, the higher the degree it fitted. The closer to 0, the lower the degree
 235 it fitted. Table 2 shows the fitting results.

236
 237

238

Table2. The fitting results of different Time Scale

239

240

Time Scale	Fitting function	Goodness of Fit (R^2)
Monthly	$y = -918.32x + 629416$	0.5072
Quarterly	$y = -3883.7x + 676718$	0.8858

241

Results clearly indicate that high correlation occurs between shop sales and their monthly M value. Thus, if the shops want to improve their theoretical sales, they must adjust their current ratio to move closer to the standard products ratio.

244

The clustering center essentially reveals the population and acceptance for the retail brand. For each class of shop, if we take measures to move close to the cluster centers ratio, this approach will satisfy people's needs and fit the market demand. Such a situation can provide a guide for the improvement of sales and avoid busts the same time.

248

4. Spatial Optimization Strategies and Discussion

249

The realistic ratio should be maintained near the cluster centers. Thus, implementation of the principle is the main problem for retail shops.

251

The next part will focus on the implementation of different areas and different types of shops. In our K-Means clustering algorithm, the Guiyang City stores are divided into three categories. They have different clustering centers. Thus, the best choice is to formulate a strategy that aims at every class of shop.

255

For each store, their current distribution and ratio of products are different from the standard clustering center X (X_1 , X_2 , and X_3). The difference may be small for some shops but may be large for other shops. We blindly adjust the distribution strategy of every shop and dramatically shrink the gap between current ratio and standard clustering center. This approach will definitely cause the bust of products, thereby causing the risk of profit loss of shops. Thus, the precise marketing strategy will be based on spatial autocorrelation algorithm.

261

We take first class shops as experiment objects. The analysis of other two classed of shops is similar. A total of 453 shops are grouped in the first class. They are distributed around several areas of Guiyang. For every shop, a variance M exists. The variance can describe the gap between its current ratio and standard ratio. We chose shops whose M values are both small and indicate space aggregation. Then, we can decrease the gap between these shops to a larger degree and decrease the gaps of shops whose M values are high in small degrees.

267

Spatial correlation is an important research method in spatial statistical analysis; it is used to explore the degree of influence between regions. In spatial autocorrelation analysis, the "hot region" usually occupies places with relatively high values and are close to each other. However, in our dataset, the M value of shops with high sales is relatively small. Thus, to satisfy the discipline of autocorrection, we use a variance reciprocal to represent the gap between current products ratio and standard ratio. Furthermore, given that the order of magnitudes is nearly

273 low, the variance reciprocal was multiplied by 100. We use M^* to represent the variance
 274 reciprocal, the formula is as follows:

$$M^* = \frac{1}{M} \times 100 \quad (7)$$

275 We use spatial autocorrelation analysis based on the M^* of first-class shops. The result is
 276 then used to determine the adjustment strategy of retail shops. We use two methods for analysis.
 277 First, we directly conduct spatial autocorrelation analysis for shop points. Second, we conduct
 278 spatial autocorrelation analysis based on the spatial segmentation method.

279 Given that the marketing characteristics of retail shops are often relatively regional, we can
 280 make adjustments following the regional characteristics of shops. Several space division means
 281 are available, including spatial weighted Voronoi diagrams, which can set sales as an attribute
 282 (weights) in spatial segmentation, and Delaunay triangulation. These two means can consider
 283 the differences between shops, but they also separate the contact among shops.

284 Compared to the previous two means, the grid diagrams have several advantages[33,34], as
 285 follows: they are simple and easy to overlay. However, the most important aspect is that the grid
 286 means can divide the shops into several layers based on their classes. Therefore, we selected grid
 287 means as the space division method.

288 For class 1 shops, sales are relatively high, and their trade areas are broader. Thus, we can
 289 give them a larger grid. For class 3 shops with a relatively low radiation area, we will set a
 290 smaller grid. By choosing different grid scales and calculating the R^2 , we finally chose grid
 291 sizes of 300×300m, 150×150m, 70×70m meters as the respective scales of classes. The basic unit of
 292 the three shop classes is as follows:

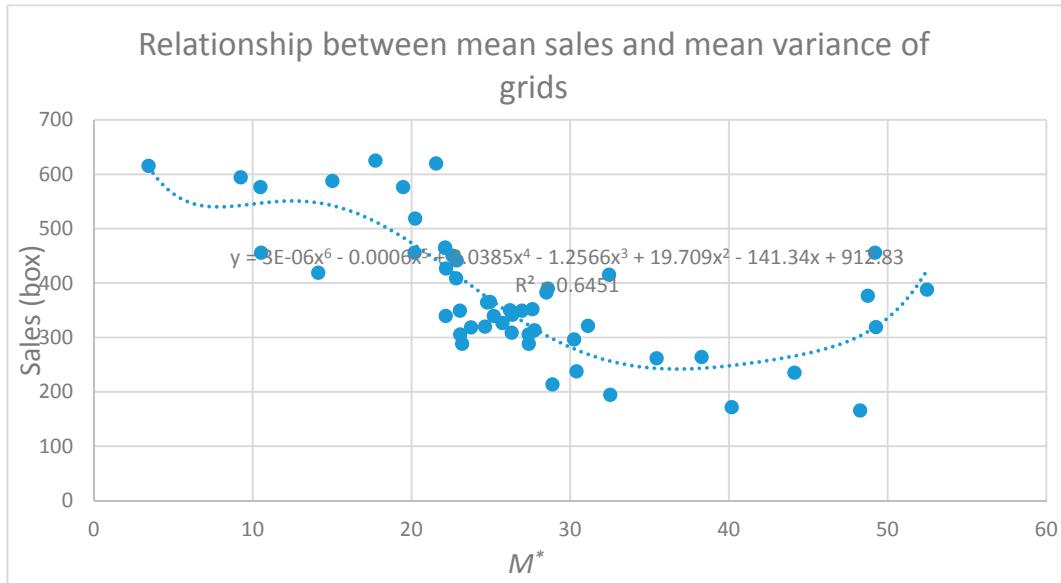
293 The calculation method of each layer is similar. Thus, the first class of grid was chosen to
 294 calculate as an example. We set i to represent the grid number of level 1. Then, for grid i , we
 295 calculated the mean variance of M^* and mean sales P of shops located in grid i . The grid with
 296 shops is shown in Fig. 4.

297
 298
 299
 300
 301
 302

(a) (b) (c)

303 Figure4 (a)300×300m grids;(b)150×150m grids;(c)70×70m grids.

304 We obtain a scatter diagram of M^* and mean sales, based on which we can establish the
 305 functional relationship between them by using maximum likelihood estimation. The results are
 306 shown in Fig. 5. Table 3 shows the effects of whether or not spatial division method is adopted.
 307



308

Figure5 Relationship between mean sales and mean variance of grids

309

Table 3 Goodness of fit of two methods

Elementary Unit	Single retail	Grid
correlation function	$y = -6.7318x + 560.48$	$y = 3E-06x^6 - 0.0006x^5 + 0.0385x^4 - 1.2566x^3 + 19.709x^2 - 141.34x + 912.83$
R^2	0.287	0.645

310

The table indicates that using the grid as a geographical unit is better than merely using single shop points. The sales model can provide support for planning the ratio of shops that belong to the same grid. The model can also predict the sales in each grid based on their variance.

311

Our goal is to improve the areas' total sales and adjust the sales strategy of shops whose current sales situation is not preferable, thereby improving their profile and satisfying consumers' demand at the same time. Our research provides an efficient method to do so. We take spatial autocorrection based on the M^* of first-class grid, Fig.6 shows the analysis results of shops that belong class 1. Table 4 shows the results of all classes.

312

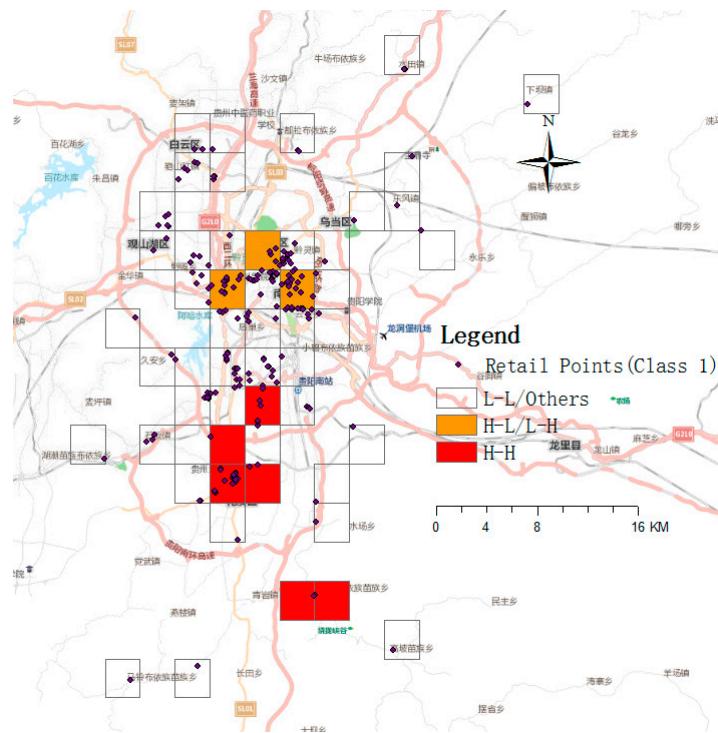
313

314

315

316

317



318

Figure 6. Spatial autocorrection results of first class

319

Table4 Results of 3 classes of retails

Autocorrection Results	Shop number	M^*
Red	75	8.1
Orange	141	5.6
Lucency	237	2.9

320 The red regions are areas in which M^* values are obviously “high-high” aggregating. The
 321 ratio of shops in these regions is generally close to the clustering center, thereby indicating that
 322 the preference of consumers in these places is obvious. Thus, we can typically adjust the shops
 323 located in these areas but whose ratio is far away from the standard ratio, and drastically make
 324 their ratio closer to the clustering center. This approach will effectively improve their sales.
 325 When shops are in orange areas, the M^* values are “high-low” or “low-high” aggregation, and
 326 their ratio is secondary closer to clustering centers. These shops can be adjusted slightly, and the
 327 focus can be on improving the shops whose M^* values are below the average level in their grid.
 328 When shops are in the transparent grid, their M^* values are “low-low” aggregating or other
 329 situations. Thus, their statuses can be retained, or fine adjustments can be applied.

330 In this paper, we take out to specific adjustment strategies. The first is a conservative
 331 strategy. In this strategy, the shops in red areas with M^* values below 8.1 will be adjusted to 8.1.
 332 The theoretical sales, including sales with every product, will be calculated based on M^* . The
 333 shops in orange areas with M^* values below 5.6 will be adjusted between 5.0–5.6. Their
 334 theoretical sales are calculated. Furthermore, the statuses of shops in other areas are preserved.
 335 The second strategy is an aggressive one that will improve the M^* value by some percentage.
 336 The M^* values of shops in red areas will be improved by 15.3%, those of shops in orange areas

337 will be improved by 5.1%, and those of the other shops will be improved 3.2%. Then, the ratio
 338 of products will be calculated. The best percentage can be confirmed by the marketing
 339 performance. Table 5 indicates the effect of different strategies to the marketing sales.

340 Table5 Influence of different strategies

341	342	343	344	345	346	347	348	349
	Class	Actual sales		Sales under conservative strategy		Sales under positive strategy		
	Class 1	604		628		655		
	Class 2	415		438		457		
	Class 3	308		325		364		
	Increase Rate			5.1%		15.3%		

350 Thus, even if the conservative strategy is adopted, the total sales volume of the region will
 351 increase by 5.1%. As long as the optimal matching rate is increased using the conservative
 352 strategy, M^* will increase, and the total sales volume of the region will further improve.

353 5. Conclusions

354 The traditional marketing strategy of the enterprise is often the controlling marketing
 355 strategy, which often functions from top to bottom and from inside to outside. This strategy is
 356 often characterized by difficulties in adapting to consumer needs; the strategy cannot address
 357 personalized consumer trends. Marketing strategies with traditional experience are often
 358 characterized by a certain lag, and difficulties arise in delineating the implementation strategy
 359 for each area. The research in this paper combines the popular marketing model with GIS spatial
 360 analysis theory and proposes solutions to the release of products. The research can also provide
 361 advice for some new shops, improve their profile, and avoid the risk of bust.

362 The characteristics of brand sales in the mesoscopic area are presented as the geographical
 363 unit, as are reasoning consumer group characteristics and the best products distribution ratio.
 364 The research also demonstrates the positive correlation between the ratio and the total sales
 365 volume, thereby providing the basis for the implementation of regional sales and precision
 366 distribution strategy. Following the combination of spatial correlation with marketing theory,
 367 this paper effectively implements the program, thereby providing conservative and aggressive
 368 strategies based on space optimization. Thus, we provide a high feasibility strategy of goods
 369 distribution and goods purchase for FMCG stores and enterprises.

370 **Acknowledgments:** This research is supported by the National Natural Science Foundation of China (Grant
 371 41471323).

372 **Author Contributions:** Wang Luyao and Fan Hong conceived and designed the main idea and experiments;
 373 Wang Luyao performed the experiments; Wang Luyao wrote the paper. The author wishes to thank for Gong
 374 Tianren for supervision and mentoring support. Thanks also to Wang Yankun, Zeng Jia, Wang Haixiang, Guo
 375 Yichao for helping to collect the data for the cognition experiments..

376 **Conflicts of Interest:** The authors declare no conflict of interest.

377 6. References

1. McNeill, L.S. The influence of culture on retail sales promotion use in chinese supermarkets. *Australasian Marketing Journal (AMJ)* 2006, 14, 34-46.

377 2. Pan, S.L.; Ballot, E. Open tracing container repositioning simulation optimization: A case study of fmcg
378 supply chain. *Stud Comput Intell* **2015**, *594*, 281-291.

379 3. Adrian, M.; Eliza, M.A.; Alexandru, C.; Costel, N. Design of a customer-centric balanced scorecard -
380 support for a research on crm strategies of romanian companies from fmcg sector. *Rec Adv Electr Eng*
381 **2010**, 137-+.

382 4. Aitha, P.K.; Lagishetti, S.; Kumar, S.; Singh, A.; Nanda, A.K.; Shetty, S.; Vallala, S.; Pandey, R. Modeling
383 production economies of scale in supply chain network design dss for a large fmcg firm. *Ser Oper Supp*
384 *Ch Man* **2010**, *4*, 21-25.

385 5. Ali, S.S.; Dubey, R. Redefining retailer's satisfaction index: A case of fmcg market in india. *Procd Soc*
386 *Behv* **2014**, *133*, 279-290.

387 6. Andriulo, S.; Elia, V.; Gnoni, M.G. Mobile self-checkout systems in the fmcg retail sector: A comparison
388 analysis. *Int J Rf Technol-Res* **2015**, *6*, 207-224.

389 7. Anselmsson, J.; Bondesson, N. Brand value chain in practise; the relationship between mindset and
390 market performance metrics: A study of the swedish market for fmcg. *J Retail Consum Serv* **2015**, *25*, 58-
391 70.

392 8. Chen, M.; Wakai, R.T.; Van Veen, B.D. Variance-based spatial filtering in fmcg. *P Ann Int Ieee Embs* **2000**,
393 *22*, 956-957.

394 9. Ding, Q.; Dong, C.; Pan, Z. A hierarchical pricing decision process on a dual-channel problem with one
395 manufacturer and one retailer. *International Journal of Production Economics* **2016**, *175*, 197-212.

396 10. Kellner, F.; Otto, A.; Busch, A. Understanding the robustness of optimal fmcg distribution networks.
397 *Logistics Research* **2013**, *6*, 173-185.

398 11. Matobobo, C.; Osunmakinde, I.O. Analytical business model for sustainable distributed retail
399 enterprises in a competitive market. *Sustainability (Switzerland)* **2016**, *8*.

400 12. Oppewal, H.; Holyoake, B. Bundling and retail agglomeration effects on shopping behavior. *J Retail*
401 *Consum Serv* **2004**, *11*, 61-74.

402 13. Silverman, B. Density estimation for statistics and data analysis. *Chapman and Hall* **1986**, *37*, 1-22.

403 14. Huff, D.L. Defining and estimating a trading area. *Journal of Marketing* **1964**, *28*, 34-38.

404 15. Seock, Y.K. Influence of retail store environmental cues on consumer patronage behavior across
405 different retail store formats: An empirical analysis of us hispanic consumers. *J Retail Consum Serv* **2009**,
406 *16*, 329-339.

407 16. Paralikas, J.; Fysikopoulos, A.; Pandremenos, J.; Chryssolouris, G. Product modularity and assembly
408 systems: An automotive case study. *CIRP Annals - Manufacturing Technology* **2011**, *60*, 165-168.

409 17. Wang, S.-y.; Wang, L.; Liu, M.; Xu, Y. An effective estimation of distribution algorithm for solving the
410 distributed permutation flow-shop scheduling problem. *Int J Prod Econ* **2013**, *145*, 387-396.

411 18. Mak, K.F.; McGill, K.L.; Park, J.; McEuen, P.L. The valley hall effect in mos₂ transistors. *Science (New*
412 *York, N.Y.)* **2014**, *344*, 1489-1492.

413 19. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large
414 spatial databases with noise. *Proceedings of the 2nd International Conference on Knowledge Discovery and*
415 *Data Mining* **1996**, 226-231.

416 20. Hartigan, J.A.; Wong, M.A. A k-means clustering algorithm. *Applied Statistics* **1979**, *28*, 100-108.

417 21. Tibshirani, R.; Walther, G.; Hastie, T. Estimating the number of clusters in a data set via the gap statistic.
418 *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **2001**, *63*, 411-423.

419 22. Deng, Z.; Zhu, X.; Cheng, D.; Zong, M.; Zhang, S. Efficient knn classification algorithm for big data.
420 *Neurocomputing* **2016**, *195*, 143-148.

421 23. Altaher, A. Phishing websites classification using hybrid svm and knn approach. *Int J Adv Comput Sc*
422 **2017**, *8*, 90-95.

423 24. Anselin, L. From spacetstat to cybergis: Twenty years of spatial data analysis software. *International*
424 *Regional Science Review* **2012**, *35*, 131-157.

425 25. Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. *Geographical Analysis*
426 **1992**, *24*, 189-206.

427 26. Smirnov, O.; Anselin, L. Fast maximum likelihood estimation of very large spatial autoregressive
428 models: A characteristic polynomial approach. *Computational Statistics & Data Analysis* **2001**, *35*, 301-
429 319.

430 27. Anselin, L. Local indicators of spatial association—lisa. *Geographical Analysis* **1995**, *27*, 93-115.

431 28. Anselin, L.; Bera, A.K.; Florax, R.; Yoon, M.J. Simple diagnostic tests for spatial dependence. *Regional*
432 *Science and Urban Economics* **1996**, *26*, 77-104.

433 29. Jafri, A.R.; ul Islam, M.N.; Imran, M.; Rashid, M. Towards an optimized architecture for unified binary
434 huff curves. *J Circuit Syst Comp* **2017**, *26*.

435 30. Wangchamhan, T.; Chiewchanwattana, S.; Sunat, K. Efficient algorithms based on the k-means and
436 chaotic league championship algorithm for numeric, categorical, and mixed-type data clustering. *Expert*
437 *Syst Appl* **2017**, *90*, 146-167.

438 31. Hansen, P.; Ngai, E.; Cheung, B.K.; Mladenovic, N. Analysis of global k-means, an incremental heuristic
439 for minimum sum-of-squares clustering. *Journal of Classification* **2005**, *22*, 287-310.

440 32. Rousseeuw, P. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.
441 *Journal of Computational & Applied Mathematics* **1987**, *20*, 53-65.

442 33. Jiang, B. Head/tail breaks: A new classification scheme for data with a heavy-tailed distribution.
443 *Professional Geographer* **2013**, *65*, 482-494.

444 34. Wang, Y.; Jiang, W.; Liu, S.; Ye, X.; Wang, T. Evaluating trade areas using social media data with a
445 calibrated huff model. *ISPRS International Journal of Geo-Information* **2016**, *5*, 112.

446