
Article

Not peer-reviewed version

Quaternion-Spin and Some

Consequences

Bryan Sanctuary 

*

Posted Date: 18 December 2023

doi: 10.20944/preprints202312.1277.v1

Keywords: EPR paradox; non-locality; entanglement; Bell&rsquo;s Inequalities; Bell&rsquo;s theorem;

quantum mechanics; EPR; spin theory; Dirac equation; CHSH; singlet state; locality; sea of electrons; parity

violation; neutrinos; singlet state

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2719726


Article

Quaternion-Spin and Some Consequences

Bryan Sanctuary

Retired Professor, McGill University, Canada; bryan.sanctuary@mcgill.ca

Abstract: Changing the symmetry of spin from SU(2) to the quaternion group, Q8, has many

ramifications. In this paper we first summarize the properties of Q-spin and then discuss some of

those resulting changes. Dec 15, 2023

Keywords: EPR paradox; non-locality; entanglement; Bell’s Inequalities; Bell’s theorem; quantum

mechanics; EPR; spin theory; Dirac equation; CHSH; singlet state; locality; sea of electrons; parity

violation; neutrinos; singlet state

Introduction

Spin is regarded as a point particle of intrinsic angular momentum. First discovered in a

Stern-Gerlach (SG) experiment [1], spin is characterized as a vector operator, S, with one component,

Sn = S · n̂, being an eigenoperator on its states. Rather than S, we use the Pauli spin vector, σ from

S = h̄
2 σ so

σn |n̂,±⟩ = ± |n̂,±⟩ (1)

These states of even parity and with unit vectors n̂ form the Bloch sphere. Based upon experimental

data, spin is fully characterized by the state vectors |n̂,±⟩ and the algebra of its three Pauli spin

components, along with the identity, form the SU(2) group. From Eq.(1) spin is always polarized with

a value of either +1 or −1. Here we challenge that result.

Whereas position-momentum, energy-time are complementary pairs defined in spaces that are

the Fourier transforms of each other, no complementary property to spin angular momentum, σ, is

known. Spin is universally considered to be the two state Dirac spin with vector polarization, σ, and

nothing more. We define the complementary attribute of spin by introducing a bivector, iσ so a spin is

expressed as,

∑ = σ + h (2)

where the helicity operator is defined as a second rank totally anti-symmetric Cartesian tensor,

h
g
≡ ε · iσ (3)

We generally refer to Σ as quaternion or Q-spin. The two contributions, being complementary,

cannot simultaneously manifest but the first term describes polarization and the second term describes

the hyper-helicity, h. The latter arises in the isotropy of free-flight and the former arises in a polarizing

anisotropic environment.

The reason to introduce the hyper-helicity (or simply the helicity), is that there exists additional

evidence for spin from coincidence photon experiments [2–4] revealed by the apparent violation of

Bell’s Inequalities (BI) [5]. The conclusion of Bell’s Theorem, [5], is the violation is due to non-local

connectivity, entanglement, between the two spins in an EPR pair. Here we find the extra correlation is

due to quantum coherence, [6], which results from defining helicity using a bivector, iσ, giving the

complementary property to the spin vector polarization, σ.

There is no bivector in the Dirac equation so the helicity cannot be found from it. However, one is

easily introduced by changing the Dirac field from the gamma matrix representations in Minkowski

spacetime,
(

γ0, γ1, γ2, γ3
)

, by multiplying one gamma matrix by the imaginary number i, [7]. This

changes the spin symmetry from SU(2) to the Quaternion group, Q8. Then the spin spacetime field for
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one particle is (γ0
s , γ1

s , γ̃2
s , γ3

s ), where γ̃2
s = iγ2

s . This is the only change made in the theory of Q-spin,

but it is profound. Our description of Nature radically changes with many well established ideas

taking on entirely different interpretations.

The subscript s denotes spin spacetime, SS, to distinguish it from Minkowski spacetime.

Changing the spin symmetry from SU(2) to Q8, the quaternion group, changes the point particle

description to one where a spin has a 2D structure. Rather than a polarized vector, say N-S, Q-spin is

bent, like N-E.

Both Minkowski and SS have coordinate frames and these are related. The former has coordinates

(β, X, Y, Z), defining the Laboratory Fixed Frame, (LFF), and SS has coordinates (βs, e1, e2, e3), defining

a Body Fixed Frame (BFF) which orients a structured spin (2D) in Minkowski spacetime. We make the

assumption that the spinning 2D spin in free-flight is coplanar to the polarizing filter. This sets e2 = Y

as the axis of linear momentum which spins. The polarization components, (σ3, σ1) are a rotation away

from Minkowski spacetime.

This paper is based upon three which present the theory of Q-spin. The first introduces a Quantum

Field Theory treatment of the Dirac equation under the quaternion group, [7]. In the second‘paper the

helicity is defined and shows it conserves the correlation from an EPR pair before and after separation,

[8]. Finally in paper 3, [6] a simulation is presented which agrees with the experiment and explains the

apparent violation of BI.

Q-spin structure

From this change of symmetry, spin acquires a 2D structure. Rather than a point particle of

“intrinsic" angular momentum with two states of up and down, spin emerges as a two dimensional

spinning disc with “extrinsic" angular momentum with not two, but four states: two polarized states

similar to Eq.(1) [7], and two coherent helicity states of left and right, |±1⟩h, Figure 1.

The structure of Q-spin is geometrically identical to a photon having two orthogonal fermionic

axes analogous to the orthogonal electric and magnetic components of a photon. Each axis is a spin ½

with a magnetic moments of µ. In free-flight these two axes must couple to give a coherent or resonant

spin 1 with a magnetic moment of 2µ, Figure 2. A boson is produced. This resonance between the two

orthogonal axes stabilizes the 2D structure, and lowers its energy. The three spin axes shown are all

perpendicular to the axis of linear momentum which is spun by its helicity, see Figure 1. Note the two

spins precess oppositely and are in phase. The two axes are maintained as mirror images of each other,

and, being a spinning disc, it is impossible to know which is the real spin and which is its reflection.

A spin 1
2 in free-flight.

Figure 1. Two properties of Q-spin in free-flight: its polarization axes, σ3 and σ1, are perpendicular to

its helicity. These two fermionic axes couple to give a boson of spin 1. The helicity is in the direction

of propagation and averages out the polarizations. Q-spin is geometrically identical to a photon in

free-flight.
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Resonant Q-spin.

Figure 2. Each of the two polarization axes are spins of 1
2 . They are mirror states that couple to form

Q-spin of even parity and spin magnitude 1.

In an anisotropic polarizing field, the boson spin in free-flight decouples into its two axes [6].

One aligns with the filter axis while the second randomizes in the filtering process. That is, upon

measurement, spin is our usual measured spin ½ that Dirac obtained from his equation with its two

states, [9]. Q-spin is an anyon, [10] which allows both complementary fermionic and bosonic properties.

Only 2D structures admit anyons. Point particles and 3D structures do not.

All of this follows by the simple change of introducing the imaginary rendering γ̃2
s = iγ2

s making

γ̃2
s Hermitian.

Here a Dirac electron is denoted, e−F for a fermion of spin 1
2 which in the solution to the Dirac

equation, and is the usual two-state spin accepted today. The four state Q-spin electron is denoted e−B
for a boson which means the solution of the SS form of the Dirac equation, which is discussed below.

Decomposing the correlation

In reference [6] it is shown the violation of BI is due to the transition from a boson in free-flight to

a fermion when measured. A simulation confirms this and generates the EPR correlation in Figure 3

which plots the correlation between EPR pairs versus their filter angle difference, θab = (θa − θb). The

cosine similarity curve is decomposed into two parts. The triangle is simulated from the product state

polarization, whereas the French Mustache is purely coherence and is simulated by the decoupling of

the boson into its fermionic components. The CHSH form of BI, [11], is 2 for polarization and 1 for the

coherence, giving a total of 3. Although neither polarization nor coherence violate BI their sum does

because EPR coincidence experiments cannot yet distinguish between clicks that are from polarization

and coherence. All this we discussed below and the violation of the Tsirel’son bound, [12].

The Geometric Algebra foundation

The fundamental starting point of the theory is based upon the well know expression from

Geometric Algebra, [13] for the geometric product of two Pauli spin components,

σiσj = δij + εijkiσk (4)

The first term is symmetric and gives the polarization. The second term is antisymmetric and gives the

coherence. The two contributions are complementary since i cannot simultaneously be equal and not

equal to j. From this the polarization and the helicity are defined as complementary attributes of spin.

Outline

In this paper we enlarge upon the ideas presented so far after which some of the consequences are

presented. Some are speculative. Many question old and established beliefs. Here is the organization

of the paper:
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First we show that entanglement is due to coherence by dropping the off-diagonal terms of the

singlet state. Doing this leaves only the polarization (with a CHSH of 2). Including the helicity, the

contribution from coherence is calculated (with a CHSH of 1), leading to apparent violation of BI.

The extra correlation is from helicity and not from non-locality as Bell’s theorem asserts. This

paper is not about Bell’s theorem which is not violated here. There are no Local Hidden Variables

(LHV) and the only variable is θ which orients a spin on the Bloch sphere. These papers are about the

formulation of Q-spin

The Dirac equation is modified by using γ̃2
s which gives the Q-spin form of the Dirac equation.

Since every spin is differently oriented, each has its own spin spacetime. These break up into two

complementary spaces: a 2D spin spacetime for the polarization, and the 4D hypersphere, S3 with four

spatial dimensions. From this complementary space, helicity is described by a unit quaternion. We

discuss these changes with most of the equations’ derivations given in detail in the Appendix.

By using the quaternion group rather than SU(2), Dirac’s two spin, matter-antimatter hypothesis,

is replaced by one structured 2D spin in the 4D Dirac field. This change solves the negative energy

problem faced by Dirac.

After showing that helicity obviates the need for non-locality, there are a number of fundamental

differences from the point particle spin that Dirac found. Besides now displaying structure, rather than

a point, Nature becomes local and real. We discuss the implications of this with respect to to Bell’s

theorem. We give the mechanisms that are responsible for the violation of CHSH inequality as due to

the transition from a boson to a fermion, thereby showing there is no quantum weirdness.

The field of quantum information theory, which rests entirely of Bell’s theorem, must be reassessed.

Quantum teleportation and other quantum technologies fail. Qubits disappear in free-fight, with

implications for quantum computing. Without entanglement, suggestions that spacetime has a lattice

of entangled particles, [14], is replaced by an alternate construction.

We show that the local singlet state is an approximation giving a CHSH value of 2.828, whereas

we argue the true value is from the simulation with a CHSH of 3.

In particle physics and the Standard Model, we show that neutrinos are unnecessary since in

free-flight an electron is a boson, obviating the need for neutrinos. Additionally we suggest that the

1956 parity experiment of WU, [15], should be re-analyzed using Q-spin.

All this impacts upon the interpretation of QM as a theory of measurement, but not of Nature.

Motivation

Non-locality is firmly established in QM as evidenced from the 2022 Nobel Prize in Physics, [2–4].

However, there is no rational explanation, until now, for non-locality, leading to a large popular science

literature with highly speculative suggestions which people assert must follow. The reason for this

stems from the notion that, physically, instant-action-at-a-distance cannot be rationalized, and the

term “quantum weirdness", [16] is simply revelation with no basis. Issac Newton rejected this as an

“absurdity", [17] and Albert Einstein called it “spooky", [18]. Nonetheless, today it is an active research

topic and the basis for the enormous field of quantum information theory which rests entirely of

Bell’s Theorem, [5]. Quantum technologies of computing, [19], teleportation, [20,21] and cryptography,

[22] are well known applications, which rely on “quantum channels" which connect distant formally

entangled particles.

The view presented in this and companion papers, [6–8], is that the concept of non-locality is

untenable and makes no physical sense, despite the large body of scientific evidence which suggests

otherwise. Basically, the guiding principles are that if something does not make physical sense to us,

it is probably wrong. This also assumes that we are capable of following the logic of Nature and the

evidence we gather is not beyond the realm of our ability. It therefore follows that if the notion of

non-locality is untenable, then there must be an objective alternative. We assert that Q-spin fills that

requirement.
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full correlation.jpg

Figure 3. Plotting intensity versus the angle difference (θa − θb). The results of the simulation are given

by the points. The solid lines are from QM. The CHSH values are listed.

The full correlation is the sum of that from polarization, the triangle, and coherence, the mustache.

Note the hardly discernible residual quaternion correlation along the horizontal axis.

Coherence

EPR coincidence experiments, start, as usual, with an EPR pair entangled at the source and in a

singlet state,

|Ψ12⟩ =
1√
2
[|+⟩1|−⟩2 − |−⟩1|+⟩2] (5)

We prefer to work in state space which makes it easier to distinguish between the diagonal polarized

states, |±⟩ ⟨±|, and the off-diagonal coherent states, |±⟩ ⟨∓|. Moreover, the state operators here

describe the pure state of particles, rather than a statistical ensemble over similarly prepared EPR

pairs. Eventually we average over all the different spin orientations, θ, in the simulation. There is no

statistical interference between EPR pairs and every pair produces a coincidence event.

The correlation between an EPR pair is defined by the quantum trace over the operators, given

by[23],

⟨AB⟩ = Tr
[

ρA†B
]

(6)

Here the dagger denotes the adjoint operator. The spin operators for Alice and Bob are A and B while

the pure state operator is ρ.

The entangled singlet two particle state operator, ρ12, is found by taking the outer product of

Eq.(5), (see the appendix),

ρ12 = |Ψ12⟩ ⟨Ψ12|

=
1

4

(

I1 I2 − σ1 · σ2
)

=
1

2











0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0











(7)
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written in two forms. First is the tensor product between the two identity matrices, Ii and the scalar

product between the two Pauli spin vectors. Expressed as a 4× 4 matrix, the two diagonal elements

describe polarization, whereas the two off-diagonal elements describe coherence. (Note the four terms

correspond to )

The coherent terms are responsible for the entanglement and preclude the product state. If those

two coherent states are dropped, then the singlet state becomes a product state. We give the results

found in [6],(see appendix),

ρ12
drop off-diagonal terms−−−−−−−−−−−−−→ ρ1ρ2 =

1

4

(

I1 I2 − σ1
3 σ2

3

)

= ρ+1 ρ−2 + ρ−1 ρ+2 (8)

in terms of the tensor product of the two single particle state operators, [24]

ρ±i =
1

2

(

Ii ± σi
3

)

(9)

where σi
k = σi · ek.

Having the state operators for the singlet state and the product state, allows us to calculate the

EPR correlation using Eq.(6). The entangled singlet, Eq.(7) gives the total correlation that can be

obtained from a singlet state as, (all these are worked out in the Appendix) [8]

E (a, b) =
〈

σ1
a σ2

b

〉

= a ·
〈

σ1σ2
〉

· b

= a · Tr
12

[

ρ12σ1σ2
]

· b = −a ·U · b

= −a · b = − cos (θa − θb)

(10)

Here U is the totally symmetric second rank Cartesian tensor. This obtains the usual − cos(θa − θb)

term which is plotted in Figure 3 along with the simulated points. Notice the two curves differ with

more correlation from the simulation. In Eq.(10) the unit vectors of a and b express the direction that

the filters are set by Alice and Bob.

Likewise using Eq.(8) the product state gives,

E (a, b) = Tr
1

(

σ1
a ρ1

)

Tr
2

(

σ2
b ρ2

)

= −a · ZZ · b

= − cos θa cos θb

(11)

The basis component, e3 is chosen to be the usual LFF component Z, giving the two final cosine terms.

The correlation from the product is the triangle shown in Figure 3, and which is confirmed by the

simulation. This has a CHSH value of 2, not violating Bell’s theorem. Subtracting the correlation

between the full singlet and the product states separates out the mustache function which also does

not violate BI, although the sum does. We conclude the mustache function is a result of coherence and

is responsible for the observed violation of BI. That is, the violation is not due to non-locality.

Upon separation, locality means the off-diagonal terms are dropped while non-locality means

they are retained. Here we drop them so that after leaving the singlet, the state of an EPR pair is a

product state, Eq.(8).

From EPR coincidence experiments, the observed correlation is not consistent with a product

state, Eq.(11) but rather gives the full correlation displayed in Eq.(10). One of the many statements of

the EPR paradox [25], is the conclusion that entanglement must be maintained over spacetime. This is

justified by Bell’s Theorem, but, as mentioned above, how such non-local connectivity is maintained is

not understood, and defies rational explanation, [26]. [27,28].

We can use the same product state Eq.(8) and calculate the correlation from the helicity, Eq.(3) [8],

a ·
〈

h1
g
· h2

g

〉

· b = − sin θa sin θb (12)
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Clearly adding the symmetric polarization, Eq.(11) and the coherence, Eq.(12) gives the full correlation

observed, Eq.(10),

E (a, b) = a · ⟨σσ⟩ · b + a ·
〈

h
g
· h

g

〉

· b

= − cos θa cos θb − sin θa sin θb

= − cos (θa − θb)

(13)

This is an example of the Law of Conservation of Geometric Correlation, [8] which states that in

the separation process, no correlation is lost, but rather it is divided between the various symmetry

modes from the decomposition of such entangled states. Entanglement is not necessary to preserve

the correlation after separation.

In conclusion, if the quantum coherence terms are dropped when an EPR pair separates, the

resulting product state, Eq.(11), does not agree with the experimental results. Including the coherent

terms from helicity resolves this to give the full quantum correlation, Eq.(10). That is, the violation is a

result of coherence rather than non-local connectivity.

Complementarity and EPR coincidences

We have proposed that polarization and helicity are complementary properties. It is widely and

erroneously believed that orthogonal components of the Pauli spin vector, which do not commute, are

complementary attributes. Even though they lead to the Heisenberg uncertainty relationship, these

spin components are only incompatible since they are measured in the same apparatus which can be

rotated at will to detect any component.

Pauli stated [29] “Intuitively, observables are complementary if the experimental arrangements

allowing their unambiguous definitions are mutually exclusive."

Moreover, the definition of complementarity for angular momentum is,

J = −ih̄
∂

∂θ
→ [J, θ]− = −ih̄ (14)

The commutation relations of the sigma components do not obey the above but rather,
[

σi, σj

]

= 2iσk.

Also both spin components are angular momentum, whereas one component of complementary

attributes must be a function of the angle, and not its derivative.

More evidence will be given below when the Dirac equation is summarized, but first we discuss

the effect of complementarity. The treatment here is for pure states of single particles. As such, they

can be represented as extreme points in a convex set with the mixed states being interior points, [30].

Interior points are mixtures of pure, extreme points.

However, incompatible complementary attributes are represented in inverse, dual, or

complementary spaces which belong to different, exclusive, convex sets. This further rules out Pauli

spin components which belong to the same convex set. Therefore, we assert coincidence experiments

contain contributions from purely polarization and purely coherent events, but, because they exist

in complementary spaces, each belongs to a different convex set. The origin of this is the geometric

product, Eq.(4).

Despite having quoted Pauli that different apparatus are need to detect complementary attributes,

we suggest that coincidence experiments are not sensitive to the different origin of polarization and

coherence clicks. Therefore from these experiments, events are from two different complementary

sources to which the experiment is blind.

We use the usual definition of EPR correlation between equal coincidence events ((++), (−−)),
Neq, and unequal events((+−), (−+)), Nnq given by,

E (a, b) =
Neq − Nnq

Ntot
(15)
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and coincidence EPR experiments result in the minus cosine similarity, [2–4].

Usually when outputs are distributed between the two types of events, they are weighted by

probabilities, pp and pc. We expect, however, events to arise from either polarization or from coherence,

which cannot be mixed. With no mixed states, the probabilities are replaced by Boolean operators that

ensure complementarity: that is, a click is either from pol (polarization), or from coh (coherence),

[

pp, pc

]

→
[

δp, δc

]

(16)

with δp = 1, δc = 0 or δp = 0, δc = 1, with the sum of the contributions being the total number of

events, Ntot.

Suppose that it is possible to filter the system such that the experiments can distinguish between

the two, then we can write the total correlation as collecting the different events in two different bins,

E (a, b) =
δpN

p
eq + δcNc

eq − δpN
p
nq − δcNc

nq

Ntot

=
N

p
eq − N

p
nq

Ntot
δp +

Nc
eq − Nc

nq

Ntot
δc

= Ep (a, b) δp + Ec (a, b) δc

(17)

The correlation from each is evaluated to obtain the full correlation as shown in Figure 3 being

the sum of the two contributions. Note the value of a correlation is independent of the total number of

clicks, so for the simulation calculation we did the following: first in Eq.(17) assume δp = 1 and δc = 0

and the polarization algorithm was used to give the triangle in Figure 3. Then we set δp = 0 and δc = 1

and calculated the mustache curve using the coherence algorithm. After this, the total correlation is

their sum, Figure 3.

A filter, in principle, might be constructed by polarizing the beam at the source. Additionally, a

filter might vary the strengths of the applied field to inhibit or promote decoupling

Dirac equation under Q8

Spin emerges from the Dirac equation and here we summarize its changes when the symmetry is

changed from SU(2) to Q8. Equation (2) defines Q-spin, which modifies the usual vector on a Bloch

sphere, to a spinning vector on the Bloch sphere. We have not yet reviewed the origin of this nor its

structure shown in Figure 1, which we summarize here, [7].

The new equation in SS replaces γ2 → γ̃2
s which gives a non-Hermitian equation by virtue of γ̃2

s ,

(

iγ0
s ∂0 − iγ1

s ∂1 ± iγ̃2
s ∂2 − iγ3

s ∂3 −m
)

ψ± = 0 (18)

and we suppress the subscript s on the derivatives. The anti-commutation of the γ
µ
s matrices ensures

that energy is conserved and the Klein-Gordon equation is recovered. Note that the symmetry change

also changes the signature of the Dirac field to,

η̃
µν
s =











+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 +1











(19)

The order of the components in SS is (0, 3, 1, 2) and the term γ̃2
s is not a spatial component, but

rather time-like and a frequency. This dimension is the origin of quantum coherence that leads to the

formulation of helicity.

In free-flight the spin is in an isotropic environment, rendering the two axes (1, 3)

indistinguishable. Therefore, permutation with the parity operator, P13 does not change the (1, 3)
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dependence in Eq.(18), but the bivector, iσ2 = σ3σ1 is anti-symmetric to 13 permutation. Therefore the

above equations admits two solutions in left and right handed coordinate frames, which are mirror

states, see Figure 4, [31],

P13ψ± = ψ∓ (20)

These reflective states are displayed in Figure 2 as oppositely in-phase precession of the two axes.

Mirror states of spin 1
2 .

Figure 4. The mirror states of a Q-spin with ψ+ on the left and ψ− on the right. Note that adding these

states is independent of e2 and subtracting them is independent of e1 and e3. Since we are blind to the

imaginary axis, it is impossible to know which is the real object, or its reflection.

Figure4 shows the mirror images of ψ±. Note that summing the two states cancels the bivector

and subtracting them cancels the (1,3) polarizations, leading to states that are odd and even with

respect to parity,

P13Ψ± = ±Ψ±

Ψ± =
1√
2

(

ψ+ ± ψ−
) (21)

This separates the Dirac equation into two distinct and separate spaces which are the complementary

spaces of Q-spin: the first is a 2D Dirac equation in the (1,3) plane, and the second is the Weyl equation

for a massless spinor,

(

iγ′0s ∂0 − iγ1
s ∂1 − iγ3

s ∂3 −m
)

Ψ+ = 0 (22)

γ̃2
s ∂2Ψ− = 0 (23)

Spin spacetime separates into two distinct spaces: polarization spacetime, (0, 3, 1), Eq.(22); and

coherent space (not spacetime) (2), Eq.(23). The Hermitian part, Eq.(22), is the same as the usual Dirac

equation, but in two dimensions rather than three.

The bivector component, (2), describes a massless Weyl spinor in coherent space, Eq.(23). Within

coherent space, (2), time does not exist beyond the constant frequency of its spinning. Time and

rest mass remain in polarization space. Similar to the two complementary inverse spaces of position

and momentum, here the two spin spaces carry the two complementary properties, polarization and

coherence.

We discuss these solution more fully below.
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Spin spacetime

The two solutions exist in complementary spaces shown in Figure 5 which relates Minkowski

spacetime with coordinates (β, X, Y, Z), to the even parity, polarization component of Q-spin with

coordinates (βs, e1, e3). From Minkowski spacetime, spin is a spinning disc. From here on, we call the

components (0,1,3), spin spacetime, SS, while the component (2), is the coherent space of quaternions

from the Weyl equation. The polarization components, (σ3, σ1) are a rotation away from Minkowski

spacetime, where θ is the vector that orients a spin on the Bloch sphere,

e1 = − sin θZ + cos θX

e3 = + cos θZ + sin θX
(24)

The filter direction is also expressed in the LFF by,

a = cos θaZ + sin θaX (25)

showing the spinning disc and the polarizer are coplanar. Call the disc the 2D spin.

The solution to the Weyl equation, Eq.(23), is a unit quaternion, [7,13], which exists in the S3

hypersphere with four spatial dimensions. These are beyond our spacetime and its role is to spin the e2

axis and consequently the disc. Only the stereographic projection of spin polarization is projected into

Minkowski spacetime. The quaternion is not observable but it is, nonetheless, an element of reality of

spin in the different physical space of quaternions. Spin spacetime has a 2D space of polarization, and

an inverse space, of quaternions, the S3 hypersphere, depicted in Figure 5.

Minkowski and spin spacetime.

Figure 5. A spin is oriented in spin spacetime by basis (βs, e1, e3) which spins about the axis e2 so that

in Minkowski spacetime, with components (X, Y, Z), only a smeared out image of the precessing spin

is projected.

The 2D spin equation

The solution to the 2D Dirac equation is the same as the 3D Dirac equation and we can immediately

write down,
(

E−m −p · σ
+p · σ − (E + m)

)(

u+

v+

)

= 0 (26)
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where the even parity state is written as Ψ+ =

(

u+

v+

)

. Define a momentum vector p = p3e3 + p1e1

which after transforming to the LFF using Eqs.(24) we find that, [7],

p = pZZ + pXX = p3e3 + p1e1 (27)

leading to the same Klein-Gordon equation in both Minkowski and SS,

(

∂2
0 − ∂2

Z − ∂2
X −m2

)

ψ = 0
(

∂2
s0 − ∂2

3 − ∂2
1 −m2

)

ψ′ = 0
(28)

The energies from the eigenvalues are,

E = ±
√

m2 + p2
3 + p2

1. (29)

which is the usual results but with the momentum from the two axes. We interpret these two energies

as the opposite precessions of the (e1, e3) axes as depicted in Figure 2.

Helicity

The helicity follows from the solution to the Weyl equation, Eq.(23). This is given in [7] and not

repeated here.

Note that there is no linear time, β in the Weyl equation so there can be no boosts, only rotations.

This means the left and right solutions are identical, ψR = ψL, [32]. Since the quaternion spins the disc,

a boost in the 2D SS carries along the spinor in S3.

As a massless Weyl equation, its L and R precessions normally define chirality, a Lorentz invariant.

However, here a unit quaternion spins the 2D polarization disk which carries mass. This, then, defines

the helicity as the disc spins in free-flight which is not a Lorentz invariant. Susskind called such a

structure a “world sheet", [14], from string theory, to contrast a “world line" from gravitational theory.

From particle physics, the helicity is defined as the projection of the spin polarization along the

axis of linear momentum, p · σ. The helicity is R for a positive value and L for a negative value of the

projection, or vice versa. Here the solutions of the Weyl equation are a unit quaternions, [7]

ψ−(χ) = exp
(

±χ

2
iσ2

)

ψ− (0) (30)

where χ is the frequency of the helicity. The two signs,±, then define the helicity of Q-spin in free-flight.

The complementary attribute to spin angular momentum is a quaternion, whose sole purpose is to spin

the Y axis. Figs.(5) and 1. There is correlation between the helicities of Alice and Bob. The decoupling

of the boson in the presence of a field is illustrated in, see Figure 6. Depending on its sign, the aligned

axis spins L or R, thereby determining the sign of the spin precession which can be measured as up or

down by p · σ.
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The polarization of Q-spin.

Figure 6. The center part shows the fermionic axes coupled to give the boson in free-flight. In a

polarizing field, one of the two axes aligns with the field and the other axis precesses perpendicular to

the aligned axis. The direction of the spinning, and the sign of the spin, is determined by the helicity

being transferred to the polarized axis.

We do not go into the symmetry reduction of the Q-spin field determined by the gamma matrices,

γ
µ
s . We note, however, that the pseudo-scalar defines a helicity matrix,

Hg = γ1
s γ̃2

s γ3
s =

(

0 I

−I 0

)

(31)

showing that the L and R handed components of the quaternion Dirac field generates the two spatial

gamma matrices, i = 1, 2,

γi
s = σi ⊗ Hg (32)

and the helicity axis, γ̂2
s = σ̂2 × Hg. The γ5 matrix usually projects the R and L handed chiral states

from a Dirac field. Here we define γ̃5
s = γ0

s Hg showing the odd and even parity states, Eq.(21), are

projected from the mirror Q-spin states of Eq.(18),

Ψ± = ±1

2

(

I ± γ0Hg

)

(

ψ+

ψ−

)

(33)

In free-flight, the two spin axes on the same particle have equal but opposite energy, opposite magnetic

moments, and constructively interfere to form the resonance boson of Q-spin.

This description, quite different from Dirac’s matter-antimatter interpretation, nonetheless, rests

upon the same mathematical basis as the Dirac field.

The Problem with the Dirac field

When Dirac wrote down his equation, he was expecting the two state spin that is observed. His

gamma matrices, however, were four dimensional, containing two SU(2) spins with two states, and

each being the mirror image twin of the other.

The SU(2) description of Dirac spin shows it is a point particle with three spatial components,

(σX , σY, σZ) of σ, with its antimatter twin the opposite, (−σX ,−σY,−σZ), being the reflection, or mirror

image, of its partner. In contrast, under Q8, a Q-spin is one particle with four states, and represented

by
(

γ0
s , γ1

s ,±γ̃2
s , γ3

s

)

, displaying both L and R helicities via the ±1.

The perplexing point for Dirac was the twin spin also had opposite, or negative, energies from

its partner which went to minus infinity. Dirac resolved this by proposing a fermionic definition of a

negative energy continuum, and added electrons according to the Pauli principle until he had filled

the continuum. Holes of antimatter positrons are formed as electrons jumped to positive energy.

Dirac, seeing his second particle with opposite charge, believed this was a way antimatter can

form. Eventually this interpretation took hold, but it has worrying details, such as issues with the

negative energy of the antimatter twin, lepton decay in the standard model, [33], and parity violation,

the tau-theta puzzle, [34].
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Here we do not dispute the existence of antimatter, but question the Dirac interpretation of its

production. The four dimensional field describes one, not two, particles. Since the two spins precess

oppositely and in phase, Figure 2, the two energies must be equal and opposite. This interpretation

resolves the negative energy problem Dirac encountered. Later we discuss the parity violation of beta

decay.

From Figure 2, the two coupled axes that give the spin 1 boson, are mirror states. Normally two

spins can form four states, the singlet and the triplet. In the triplet, the symmetric in-phase precession

of the two spins can be in two directions by simultaneously reversing the precession of each, Figure 2.

This generates the two magnetic components of m = ±1. However, consistent with a photon, Q-spin

has no m = 0 component nor a singlet state because the mirror symmetry between the two axes cannot

then be maintained.

We also note that the wave-particle duality of spin is dependent upon its environment. The

polarization (particle), σ, and the coherence (wave), iσ are manifest as complementary attributes such

that the polarization exists only in an anisotropic environment as a fermion, whereas the coherence

exists only in an isotropic environment as a boson,

e−F (anisotropy)↔ e−B (isotropy) (34)

By finding a 2D planar structure of an electron, it is no longer a point particle, whereas all the

elementary particles in the Standard Model are point particles. We can only surmise that in the

brief epoch after the Big Bang, electrons and positrons were formed in a two step process, with at

first positrons having a charge of + 1
2 e− and electrons with − 1

2 e−. Call these pre-spins for now, and

indeed are point particle vector quantities. Shortly thereafter, collisions resulted in either: 2D Q-spins

(collisions between particles with the same charge), which are stabilized by the resonance of its boson

spin, whereas collisions between particles with opposite charge are annihilated.

If such a two-step process occurred, then it can also reverse in collisions, which would resemble a

matter-antimatter pair production, [35] but does not provide proof of Dirac’s interpretation.

Bell’s Theorem

The notion of non-locality rests upon the violation of BI, [5] which have nothing to do with

quantum mechanics but provide a useful quantitative classical definition of the “Invisible Boundary”

[36] between the microscopic and macroscopic. For the CHSH [11] form of Bell’s inequalities, the

invisible boundary is 2. Here we accept Bell’s inequalities, but reject Bell’s Theorem which states in his

own words [37],

“If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees

with quantum mechanics it will not be local."

We first point out that in the presentation here, there are no hidden variables and consequently

there can be no loopholes. The only variable is the angle θ which orients a spin on the Bloch sphere

(with an azimuthal component of zero).

Second Q-spin theory does not violate Bell’s theorem when viewed as two complementary sources

of events. Each attribute obeys BI with a CHSH of two for polarization and one for coherence, from

the simulation.

We do not question the mathematical rigor of the derivation of Bell’s theorem, [37]. Rather we

assert that the theorem is only applicable to classical system, giving a CHSH bound of 2, which is

never violated. Quantum systems display complementarity which Bell ignored. Simply stated, Bell’s

theorem considered only polarized states and not coherence. His theorem’s proof shows that using

classical systems, the only way to violate his classical bound was to invoke non-local connectivity. This,

he proves cannot be due to Local Hidden Variables. The work here proves his conclusion wrong.

Despite the wide acceptance of Bell’s theorem, there exist a number of critics that raise cogent

doubts of the applicability of Bell’s Theorem , see [38]–[49].
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Non-locality vs. local realism

The immediate consequence of the inapplicability of Bell’s Theorem is that non-local connectivity

is not viable. Out of the myriad descriptions we feel that Wikipedia sums up non-locality the best, [50]:

“The paradox is that a measurement made on either of the particles apparently collapses the

state of the entire entangled system—and does so instantaneously, before any information about the

measurement result could have been communicated to the other particle ... and hence assured the

“proper" outcome of the measurement of the other part of the entangled pair."

Scholarpedia states [51], “Bell’s theorem asserts that if certain predictions of QM are correct then

our world is non-local. “Non-local" here means that there exist interactions between events that are too

far apart in space and too close together in time for the events to be connected even by signals moving

at the speed of light."

Without Bell’s Theorem, these definitions cannot be supported.

The violation of BI now takes on entirely different meaning. Spin polarization and helicity both

simultaneously exist as elements of reality; coincidence experiments are sensitive to both polarization

and helicity Eq.(13); the experimental violation of Bell’s inequalities confirms local realism.

The diametrically opposite conclusion is reached in Bell-type experiments of which an enormous

literature exists, see e.g. “The Big Bell test" [52]. The paper’s conclusion is incorrect claiming local

realism is challenged. Rather their data shows just the opposite: evidence for local realism by the

existence of elements of reality that account for the apparent violation.

Quantum teleportation

Quantum teleportation, [21], depends solely upon long range correlation between EPR pairs

which cannot be justified in the absence of Bell’s Theorem. The opening paragraph in that paper

confirms this, “The existence of long range correlations between Einstein-Podolsky-Rosen (EPR) pairs

of particles raises the question of their use for information transfer."

Teleportation claims that non-locality is mediated by “Einstein, Podolsky, Rosen Channels", but

nowhere are these “channels" formulated and there is no evidence they exist. Our work shows they do

not exist. In particular the step from their Eq.(4) to Eq.(5), which is critical to quantum teleportation,

cannot be justified. This requires swapping entanglement over spacetime separations. When Alice’s

spin is far from Bob’s entangled pair, 23, then the following process is applied which is physically

unfeasible:

|φ1⟩
∣

∣

∣Ψ
(−)
23

〉

← × →
∣

∣

∣Ψ
(−)
12

〉

|ϕ3⟩ (35)

Therefore their Eq.(5) is impossible and the notion of quantum teleportation collapses. Recall

Longuet-Higgins [53] made the distinction between mathematical operations and feasible operations,

like ammonia, NH3, and methyl fluoride, FCH3, both have inversion symmetry, but only for ammonia

is it feasible. The concept of quantum teleportation is unfeasible, along with emerging technologies

[20,22] that use it.

Quantum computing

We do not suggest that quantum computing is unfeasible, but it too partly rests upon Bell’s

theorem and entirely rests on the persistence and stability of qubits. We suggest this needs to be

re-examined since the polarized states of up and down that make a qubit, cannot persist in free-flight

when the fermions change to bosons. Rather, the spacing between the gates must be carefully controlled

to allow, in principle, the phase of the helicity to determine the polarized state when entering the next

gate.

Entanglement decomposition

Entanglement, as Schrödinger famously said [54] was the difference from classical systems.

Without Bell’s theorem, persistence of entanglement between separated pairs is not possible. Therefore
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we accept entanglement as a vital property of QM but reject that it persists after separation, [8], to

non-local situations. Whereas QM gives Tsirel’son’s bound, [12], of 2
√

2 = 2.828, the simulation gives

a maximum violation with a CHSH of 3. The reason for this is that the singlet state, Eq.[5] is an

approximation. We show this later in this paper.

The theory presented here agrees with the usual quantum result of − cos(θa − θb) without

non-local “EPR channels", (see the appendix). The violation is due to correlation between the helicities.

The simulated value of CHSH = 3 is due to the modeling of Q-spin giving a CHSH value 1 per axis.

Here we suggest the simulation gives a more accurate accounting for the correlation than from QM.

Essentially the Q-spin treatment here supports the notion that polarization carries two axes while the

coherence initially carries only one, being the coupled boson of spin 1, see Figure 6. The left and right

parts of this figure show the two possible polarization axes after the boson has decoupled. The center

part shows the coupled boson. These axes are attracted to the filter via two mechanisms. For polarized

states, only the sign of the aligning vector determines the correlation and this is easily modeled by

finding if the polarization vector is positive or negative. This generates the triangle correlation in

Figure 3 with a CHSH value of 2.

Coherent states, in contrast, initially precess in a filter about the intact boson axis, see Figure 6. It

must, however, eventually decompose into the fermionic axes the closer the boson gets to the filter.

Since each axis carries opposite spin, it is important to know which axis aligns. To this end, first we

determine which axis lies closer to the applied filter direction. We assume this closer axis is favoured

to align. The click of ±1 is found again by determining if that closer axis is positive, plus click, or

negative, minus click. This process generates the mustache function in Figure 3, which is closely fit by

the following function which is plotted in Figure 7

Eq =

{

− 1
4 sin (2θab) 0 ≤ θab ≤ π

+ 1
4 sin (2θab) π < θab ≤ 2π

(36)

Comparison of the Mustache function with sin(2θ)

Figure 7. The Eq function given in Eq.(36) compared to the simulation. Also shown is the correlation

from QM showing less correlation than the simulation.
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Decoupling of Q-spin.

Figure 8. The three circles express the filter plane with the filter axis in the vertical Z direction. The

two orthogonal axes and their bisector have the same labels as Figure 6. The left panel shows that the

boson spin is oriented along along the filter axis, while the other two show it rotated by 45 and 90

degrees from the filter. In some cases the boson persists and in others the fermion (see the text). The

right panel summarized that boson spins are favoured along the polar or filter axis, making 45 degree

wedges, while Fermi spins are favoured along the equatorial axes. One quarter of the time bosons are

encountered and three quarters are fermions.

We propose that the true correlation between the two spins is more accurately determined by this

classical simulation than from QM.

The alignment and polarization of these axes is determined by their relative orientation with

respect to the filter direction. Additionally the strength of the applied field relative to the spin-spin

coupling between the two axes is also relevant. In Figure 8, the left panel shows the aligned coherent

spin. At this orientation, and say up to 22.5 degrees on either side of the filter, the boson precesses

and nutates intact with magnetic moment of 2µ, twice that of the two fermionic axes with a magnetic

moment of µ each. Notice in Eq.(36) that the filter angle between Alice and Bob is 2θab which is

consistent with a magnetic moment of 2µ and a spinning boson.

If the boson is offset from the filter to one direction by 45 degrees, second panel, then one of the

fermionic axes aligns leading to the precession of the fermion with a magnetic moment of µ. The third

panel shows the boson perpendicular to the field. In this case there is a competition between the two

axes. One axis aligns with the positive direction of the filter, or the second axis is pulled to the negative

direction along the filter. The panel on the right of Figure 8 shows that in a strong field, one quarter of

the time Q-spin acts as a boson, and three quarters it acts as a fermion. We conclude that in a strong

polarizing field, in some cases the boson is encountered intact and in others it decouples to the fermion.
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Strong correlation between Alice and Bob.

Figure 9. Displaying the maximum correlation from coherence. Alice sets her filter to a3 and the boson

spin of 1 aligns. Bob has two settings that will give the maximum violation by applying his filter either

along d or along −c at 45 degrees from a3. Alternately, Alice can set her filter angle to a1 and Bob

has two filter settings, d and c that lead to the maximum correlation. Note that a spin of magnitude 1

makes an angle of 45 degrees with filter directions.

Interpreting the maximum CHSH correlation

In the last section we showed how different orientations of Q-spins in a polarizing field favour

fermions over bosons, or vice versa. In EPR coincidence experiments, we seek the correlation between

two Q-spins for Alice and Bob at different settings.

Figure 10 top left shows the BFF of Q-spin whence each quadrant is bisected by a boson spin.

At separation Alice and Bob share the same BFF so before filtering, both spins of the EPR pair are

anti-parallel bosons. When Alice and Bob set their polarizers to be parallel, the anti-correlation is

−1 whereas if the polarizers are anti-parallel, the correlation is +1. Turning the applied filters to 90

degrees apart, gives no correlation. These four points are seen in Figure 3 at θab = 0, π
2 , π, 3π

2 , 2π.
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Polarization versus Coherence

Figure 10. Top Left: Alice’s spin in the (1,1) quadrant) and Bob’s spin (in the (-1,-1) quadrant) are

oriented anti-parallel in the BFF. All vectors are unit. The superposition of the two axes of spin 1
2 , e3

and e1 creates the Q-spin of magnitude 1.

Top Right: The heavy black lines indicate the filter settings at Alice and Bob that give the maximum

violation of the CHSH inequality. The field wedge of π
4 on either side of the Q-spin means that both

Alice and Bob are simultaneously probing the resonant Q-spin. Bottom: repeat of Figure 6.

If we choose the filter setting of Alice and Bob to both lie at 45 degrees in the LFF, then both Alice

and Bob simultaneously encounter their boson together in the same way as if the filters were applied

along the Z axis. That is, since the two bosons are anti-parallel along any direction, the situation

becomes identical to the anti-correlation of −1, already discussed for the Z direction.

If, however, the two filters are separated by increasing θab to π
4 , by moving Alice’s filter to 22.5

degrees from the bisector, to a3, and Bob’s down by 22.5 degrees to d, then both still remain coupled

bosons, Figure 10. Alice’s boson then aligns along a3 and Bob’s aligns along d, Figure 10. Both bosons

are forced to align with their applied field along these two directions, a3 for Alice and d for Bob.

The BFF precesses with the helicity left or right in the LFF, so with fixed polarizer settings of π
4 , it

can be shown that one quarter of the time, both bosons lie within that π
4 wedge without decoupling,

which can be deduced by placing two panels, one for Bob and one for Alice, on top of each other in

Figure 8. It is shown in the Appendix and [6] that for coherence correlation, both Alice and Bob spins

must be bosons. This is the origin of 1
4 factor in Eq.11. Three quarters of the time, the correlation is due

to fermion polarization and one quarter of the time, the correlation is due to the boson coherence.

A similar situation occurs in the other quadrants of the BFF, as seen from the second, lower, π
4

wedge in the same figure. Alice’s boson then precesses about a1 and Bob’s around c. This is shown in

Figure 9. Note that the angle a spin makes with its polarized direction differs from fermion to boson,

given by cos χ = m√
S(S+1)

. A spin 1
2 precesses at the magic angle of 54.74 degrees while a spin 1 makes

an angle of 45 degrees. In Figure 9 the 45 degree precession of the bosons is depicted, and this shows

considerable correlation as the axes coincide as they precess. The 45 degrees precession angle supports

the assumption that the bosons have not decoupled, and remain intact within the wedge.
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Note also from Figure 10, that similar wedges occur so that −c is also strongly correlated to a3,

and d is strongly coupled to a1, and so forth around the 2D plane.

The maximum correlation from coherence for the S=CHSH inequality is determined by the filter

setting that differ by π
4 , as shown in Figure 10, and giving,

S = a1 · (d + c) + a3 · (d− c)

=
1√
2
(d + c) · (d + c) +

1√
2
(d− c) · (d− c) = 2

√
2

(37)

We do not treat the dynamics of the 2D spin approaching the filter, but if the magnetic moment

for each spin axis is µ, then the resonance spin of 1 has a Larmor precession proportional to 2µ before it

decouples. The Larmor frequency of the resonance spin is twice that of the aligned or polarized spin 1
2 .

The Structured Singlet.

Figure 11. A possible structure of the singlet with two electrons. While the electric charges repel, the

magnetic moments attract. If one spin is in a LH frame, the other is in a RH frame. The helicities are

opposite.

The singlet state

Above we stated that the singlet state is an approximation. Here we summarize the treatment

in [6]. A singlet state is usually expressed by opposing polarized states which are anti-symmetrized,

↑↓ − ↓↑, see Eq.(5). Here a spin has structure and we suggest a singlet state of an electron is more

realistically expressed as shown in Figure 11 where the two magnetic axes are attracted which is

balanced by the repulsion of the charges. The helicity now spins the axis as shown.

First the singlet state can be separated into the sum of eight product states if non-Hermitian states

are used [56],

ρΨ−12
=

1

8 ∑
n1,n2,

n3=±1

(

I1 + n3σ1
3 + n1σ1

1 + n2iσ1
2

)

⊗
(

I2 − n3σ2
3 − n1σ2

1 − n2iσ2
2

)† (38)

Each time an EPR pair separates, it does so randomly into only one of the eight non-hermitian terms.

Each term represents a polarization direction and its helicity. That is why the states are non-Hermitian.

There are two product states in Eq.(38) for each BFF quadrant that can emerge, see Figure 10. One

term describe left helicity and the other right helicity for each quadrant.

We suggest that after initial separation, each spin settles into a trajectory with the disc of

polarization spinning along the axis of linear momentum, see Figure 1, governed by the Intermediate

Axis theorem, [57].

Inserting the Pauli spin matrices and summing the eight terms reproduces the entangled singlet

matrix shown in Eq.(7). In the sum, the outer coherent states cancel, and those, we suggest, are

responsible for the difference between QM and the classical simulation.

To show this, each quadrant has two terms that are Hermitian conjugates of each other, describing

L and R helicity. Upon separation, either the left or right handed helicity occurs. For the first quadrant,

n1, n3 = 1, adding the left ρ1ρ2†
and right ρ1†

ρ2, (n2 = ±1), Eq.(8), matrices leads to a Hermitian
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matrix from the two terms. That is, for each quadrant, at separation, the EPR pair is one of the eight

products, for example for the first quadrant,

ρ1ρ2† =

(

1 1

0 0

)(

0 0

−1 1

)

=











0 0 0 0

0 0 0 0

−1 −1 1 1

0 0 0 0











(39)

This shows Alice and Bob’s states with opposite polarization (diagonal elements), and opposite helicity,

(off-diagonal elements) in the two by two matrices. Adding the Hermitian conjugate gives a Hermitian

matrix for the state in the first quadrant,

ρ
(

1stquadrant, L and R
)

= ρ1ρ†
2 + ρ†

1ρ2

=











0 0 0 0

0 0 0 0

−1 −1 1 1

0 0 0 0











+











0 0 −1 0

0 0 −1 0

0 0 1 0

0 0 1 0











=











0 0 −1 0

0 0 −1 0

−1 −1 2 1

0 0 1 0











(40)

Permutations of nis gives similar matrices for the other three quadrants. Finally summing over

the quadrants gives the entangled singlet, Eq.(7). Notice the outer coherent terms cancel between

quadrants, which is responsible for the difference in correlation between quantum, CHSH= 2
√

2 and

the simulation, CHSH= 3.

We conclude that use of the singlet state in QM, Eq.(5) is an approximation which misses these

canceled terms. That is entanglement is a property of QM, but not of Nature. Entanglement simplifies

calculation but missing correlation is the price.

Black holes and wormholes

Suggestions by Maldacena and Susskind [14] are expressed by the relationship ER=EPR where

ER stands for Einstein-Rosen Bridges, (wormholes), [58], while the EPR [59], refers to QM and

entanglement as a way to quantize spacetime [60]. Wormholes are solutions to the Einstein Field

Equations [61] and are purely geometric distortions of spacetime, mathematically connecting different

spacetime spaces. Maldacena and Susskind suggest that the wormholes are equivalent to, or created

by, a pair of entangled black holes, with Alice at one and Bob at the other performing gedanken

experiments with credible outcomes. Although non-local entanglement is not possible, [6], Q-spin

presents an alternative that replaces non-locality. We point to [8,13],

σσ = U + ε · iσ (41)

as perhaps the smallest quantum entity which could be the building blocks of spacetime, with the

LHS indicating the smallest component of quantum spin in free-flight, and the RHS indicating the

connection to geometry,

σσ = EPR=ER=U + ε · iσ (42)

The following construction is speculative: consider Minkowski spacetime as composed of a diffuse

gas, a lattice, of particles in free-flight with spin σ(2) ≡ σσ. Each particle has a mass of at least a rest

mass, and energy of at least a zero point. These particles attract each other according an inverse power

law like Newton’s Law of gravity, but because space is so diffuse and the masses so small, there is little

attraction between the particles. We are assuming that throughout the vastness of space, these particles

form the microscopic fabric of spacetime. As mass increases, these particles pull closer and eventually

they merge and coalesce into denser particles, increasing both mass and energy. For N coalesced points

the structure is now σ(2)N , with Black Holes in the limit that N → ∞. Examination of n-tuples of spin
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operators, [62], suggests the first step is to find the irreducible components under the Lorentz Group,

and consider the quantization of the resulting structures. We have found a microscopic fermionic spin

of 1
2 magnitude with a microscopic 4th dimensional hyperspace which carries a quantum of energy.

Quantum gravity is a macroscopic force with a far reach. It is suggested to be mediated by a boson

with spin of magnitude 2. Whereas we have found that reality must extend to the forth dimensional

quaternion projective space, the S3 hypersphere, one can only suggest that gravity is more complicated

and likely extends to the next credible projective space of octonions in the S7 hypersphere, or beyond.

We do not know the nature of matter and energy in the dark regions of these vast hyperspaces beyond

our visualization. All we can know are their stereographic projections into our dimension, and from

these observations we must try to visualize what lies beyond our senses.

Wu’s parity violation.

Figure 12. The asymmetry of the gamma ray production between the polar and equatorial detectors in

the Wu Parity Experiment

Standard Model

The success of the Standard Model, SU(3)⊗SU(2)⊗U(1), is marred by problems with the Weak

Force, with Lepton number [55] and parity violations, [63]. Our work suggests replacing SU(2) with

the quaternion group, Q8. In this section we explore some consequences of this change on beta decay

and parity violation.

Beta decay

Beta decay is fundamentally expressed as a neutron in a nucleus decaying into a proton by

emitting a beta particle, a Fermi electron and an anti-neutrino,

1
0n→1

1 p + e−1
F +0

0 ν̄e (43)

The reason that Pauli, [29] and Fermi, [64] hypothesized neutrinos was because energy and angular

momentum are not conserved by Fermi electrons. The neutrino was therefore hypothesized to be a

fermion, without mass nor charge. This immediately revealed that neutrinos have no mirror image

and therefore violated parity.

Quaternion spin in free-flight, however, is a boson which obviates the neutrino being a fermion

(call it naked),
1
0n→1

1 p + e−1
B +0

0 ν̄naked (44)

Although this restores parity to naked neutrinos, we are left with a particle which is the spinning of

nothing. We assert this puts into doubt the existence of neutrinos. Rather we suggest that neutrinos are

mistaken for the complementary property of spin, it’s helicity. Helicity of Q-spin in free-flight carries
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different quanta of energy from one interaction to another. This can lead to the observed distribution

of beta decay energies which neutrinos were postulated to solve.

A naked neutrino is just the helicity of Q-spin which resides on the boson electron and is not a

separate particle.

Initially, neutrinos were postulated to be massless, but later a tiny mass was assigned. Neutrino

mass is needed to transform neutrinos to different flavours. If helicity replaces neutrinos, then they

can have no mass. We can perhaps account for the proposed tiny given mass to neutrinos by the

mass defect between fermion and boson electrons in Eqs.(43 and 44). The boson electron is likely

energetically more stable than fermion electrons because the 2D structure is stabilized by its resonance

boson,

E
(

−1
0 eF

)

− E
(

−1
0 eB

)

> 0 (45)

Despite the enormous effort put into detecting neutrinos, the results are equivocal at best, [65,66].

One experiment detected only 500 events over 15 years that were interpreted as neutrinos. This from

an estimated flux of about 50× 1018 neutrinos per square centimeter passing the detector in that time

period. Moreover, none of these events are the direct detection of neutrinos, but rather the proposed

consequence of a neutrino collision with other particles.

Parity violation

Motivated by Yang and Lee, [34], the Wu experiment, conducted in 1956 by physicist Chien-Shiung

Wu [15], tested the conservation of parity in weak nuclear interactions. Prior to this experiment, it was

thought that the laws of physics were symmetric under parity. However, Wu’s experiment with the

decay of cobalt-60 nuclei showed that weak interactions violate parity conservation.

First we modify the cobalt decay using boson electrons,

60
27Co→60

28 Ni + e−1
B + 2γ (46)

The goal of the experiment was to show that the beta decay is isotropic, which would be reflected

in the (parity conserving) emission of the two gamma rays. Anisotropy in the gamma ray emission

would be evidence for parity violation. The experiment, [15], polarized the cobalt atoms in a strong

magnetic field which was immersed in a cryostat at 3 mK. Wu reported one experimental difficulty

was placing the detectors inside the cryostat. This means that the beta electrons were measured in the

presence of the magnetic field.

Figure 8 shows that the orientation of spins in a polarizing field determines if the boson spin is

coupled or decoupled. Along the polar axis, the bosons remain coupled while along the equatorial

axes, they uncouple into fermion spins. This difference was not considered by Wu.

Upon beta decay in the equatorial directions, boson electrons emerge into a strong polarizing

field. These immediately decouple the boson so only fermion electrons impinge onto the detector. In

contrast, in the polar directions the boson electrons remain intact and do not decouple.

There are a number of differences between boson and fermion electrons. First, in a field, the

Larmor precession of the bosons is twice that of the fermion electrons. Second their energy is different,

Eq.(45). Finally, the frequencies of the two gamma rays from nickel might differ depending on whether

the boson or fermion emerge in Eq.(46).

Wu assumed that only fermion electrons emerged, and designed her detectors for them. Some

polar events might then be missed. If so, this suggests her experiments favoured equatorial events

over polar events. Indeed Fig(12) shows this to be true, which supports our hypothesis.

From EPR coincidence experiments, at 45 degrees the contribution to the correlation from the

bosons is about 40% that of polarized spins, see Figure 3. In the Wu experiment, Figure 12 at 3 mK the

asymmetry due to the polar counts would be addressed also with about 40% more polar events, yet

this might just be a coincidence.
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Nonetheless, we believe these differences are enough to justify a re-analysis of the Wu experiment

to determine if, indeed, parity is violated by the weak force.

Interpretations of quantum mechanics

The existence of helicity sheds light on the Einstein-Bohr debates [25]. Position and momentum

do not commute and therefore incompatible observables. Bohr claimed, contrary to Einstein, that only

the measured property exists in his philosophy of complementarity [67]. A similar situation exists for

spin. The coherence and polarization do not commute and are incompatible elements of reality. They

influence each other. The spinor spins the polarization; the indistinguishably of the two polarization

axes creates the parity for the helicity to know which way to spin. This structure is easily visualized,

and evolves as one might intuitively expect.

Such an ontological description of spin is contrary to the Copenhagen interpretation, seen as

particles manifesting differently in different spaces. Likewise, without Bell’s theorem, EPR are

validated.

There are many other interpretations of QM, [68]. All focus on a specific aspect of the measurement

problem. Only two are microscopic: the ensemble, [69] and de Broglie-Bohm, [70] interpretations.

The latter is a Hidden Variable (HV) approach of Bohmian mechanics but in order to be successful

its “quantum potential" must be non-local. The Ensemble approach, [69] is closest to the details of an

experiment. It assumes the wavefunction is an ensemble of similarly prepared systems, consistent with

the statistical mechanical view. Measurement is ensemble averaging. We have used von Neumann’s,

[23], treatment of projective measure on a state operator by self-adjoint operators which are the

observables, [8]. We have used the same approach to evaluate anti-Hermitian operators that are not

observables yet are elements of reality. We suggest that all the other interpretations will evaporate

with a QM that includes the higher dimensional spaces, and treats measurement according to some

projection [23], onto our spacetime. Realizing now that Nature exists beyond our ability to measure,

we must accept that information is lost upon measurement, [71], like determining which slit a particle

passes. The epistemological question is to find methods to account for properties of Nature we cannot

observe. This is not easy as spin taught us taking almost 100 years to find helicity is the complementary

attribute to spin polarization. It is to Bell’s credit, [5] that he encapsulated a classical boundary that

the quantum coherence exceeded, that gives the cryptic evidence for helicity. Quantum mechanics

gives an incomplete description of the Nature. Its success is in its ability to encapsulate quantitatively

what we can measure, giving vivid insight. With Bell’s Theorem gone nothing stands in the way of the

conclusion of EPR [59]: QM is incomplete. Rather it is a theory of measurement and restricted to our

spacetime.

Conclusions

Quaternions, [72], one of the many legacies of Hamilton, [73] are more than mathematical

constructs that are defined in the hypersphere, S3 with four spatial dimensions. Quaternions are

elements of reality possessed by spin, complementary to its vector polarizations. Reality extends

beyond our three spatial dimensions. The origin 1 of the unit quaternions coincides with origin of the

Bloch sphere’s and extends it by adding helicity to each Bloch vector, and these spin either L or R with

a constant frequency. Spin is not purely a vector quantity but includes the 4-dimensional hypersphere

S3 of unit quaternions, and only the 2x2 vector part of a spin, S, is projected into our spacetime.

This paper concludes QM is a theory of measurement, but not of Nature which is ontological and

deterministic.
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Appendix

Coherence equations

Equations (5) is the usual singlet definition. Going from Eq.(6) to Eq.(7) is simply taking the outer

product of the singlet which is entangled, Eq.(7). The singlet ket is expressed,

|Ψ12⟩ =
1√
2

[(

1

0

)

⊗
(

0

1

)

−
(

0

1

)

⊗
(

1

0

)]

=
1√
2





















0

0

1

0











−











0

1

0

0





















=
1√
2











0

1

−1

0











(47)

leading to the entangled state operator,

ρ12 = |Ψ12⟩ ⟨Ψ12|

=
1

2











0

1

−1

0











(

0 1 −1 0
)

=
1

2











0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0











=
1

4

(

I1 I1 − σ1
Xσ2

X − σ1
Yσ2

Y − σ1
Zσ2

Z

)

=
1

4

(

I1 I2 − σ1 · σ1
)

(48)

The entanglement can be removed by dropping the off-diagonal terms in the matrix, as shown in

Eq.(8),

ρ12 = |Ψ12⟩ ⟨Ψ12|

=
1

2











0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0











drop entanglement−−−−−−−−−−→ 1

2











0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0











=
1

4

(

I1 I1 − σ1
Zσ2

Z

)

= ρ+1 ρ−2 + ρ−1 ρ+2

(49)

giving a product state in terms of the single pure spin state operator for a single spin, [24].

ρ±i =
1

2

(

Ii ± σi
Z

)

(50)

Calculate the correlations

Equations (10) to (13) are derived. The full correlation from the singlet state is given is Eq.(51)
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Correlation from the entangled state

From the entangled singlet, Eq.(48)

E (a, b) = a ·
〈

σ1σ2
〉

· b

= a · Tr
[

ρ12σ1σ2
]

· b

=
1

4
a · Tr

12

[(

I1 I2 − σ1 · σ2
)

σ1σ2
]

· b

= −a · 1

4

[

Tr
1

(

σ1σ1
)

· Tr
2

(

σ2σ2
)

]

· b

= −a ·U ·U · b
= −a ·U · b
= −a · b
= − cos (θa − θb)

(51)

Using

U =
1

2
Tr (σσ)

=
1

2

(

Tr

(

1 0

0 1

)

XX + Tr

(

1 0

0 1

)

YY + Tr

(

1 0

0 1

)

ZZ

)

= (XX + YY + ZZ)

=







1 0 0

0 1 0

0 0 1







(52)

and
(

U
)

ij
= δij

Correlation from the product state

From the product state for polarization, with no entanglement, Eq.(11)

E (a, b)prod = a ·
〈

σ1σ2
〉

· b

=
1

4
a · Tr

12

[(

I1 I1 − σ1
Zσ2

Z

)

σ1σ2
]

· b

= −a · 1

4

[

Tr
1

(

σ1
Zσ1

)

Tr
2

(

σ2
Zσ2

)

]

· b

= −a · 1

2

[

Z · Tr
1

(

σ1σ1
)

Tr
2

(

σ2σ2
)

· Z
]

· b

= −a ·
[

Z ·UU · Z
]

· b = −a · ZZ · b

= − cos θa cos θb

(53)
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Calculate the correlation from the product state for helicity, with no entanglement,

E(a, b)coh = a ·
〈

h1
g
· h2

g

〉

· b

= a · Tr
12

(

h1
g

†
ρ1 · h2

g
ρ2

)

· b

=

(

a · ” · Tr
1

(

σ1ρ1

)

)

·
(

b · ” · Tr
2

(

σ2ρ2

)

)

= −
(

a · ”·1
2

Tr
1

(

σ1σ1
)

· e3

)

·
(

b · ” · 1

2
Tr
2

(

σ2σ2
)

· e3

)

= −
(

a · ” · e3

)

·
(

b · ” · e3
)

= − (a× e3) ·
(

b× e3
)

= − sin θam̂ · m̂ sin θb

= − sin θa sin θb

(54)

The shows that the full correlation from the entangled state is preserved between the polarization and

coherent contributions with a product state,

E (a, b) = E (a, b)prod + E (a, b)coh

= − cos θa cos θb − sin θa sin θb = − cos (θa − θb)
(55)

which is an example of the Conservation of Geometric Correlation, [8].

Complementary equations

Here are three sets of complementary variables,

p and r = −ih̄
∂

∂r
[ p, r] = −ih̄

H and t = +ih̄
∂

∂t
[H, t] = +ih̄

J and θ = −ih̄
∂

∂θ
[J, θ] = −ih̄

(56)

Until now the complementary property to angular momentum has not been discovered. It is the

helicity. The commutator of angular momentum

[

Ji, Jj

]

= ih̄Jk (57)

differs from above. Moreover, the conjugate pairs in Eq.(56) are represented in different, inverse,

spaces. The angular momentum pairs in Eq.(57) are represented in the same vector space, and so are

not complementary pairs. Since they do not commute, Heisenberg Uncertainty holds for different J

components, but since are both represented in the same vector space, they are only incompatible pairs.

The rest of this section is straightforward.

Dirac Equation equations

The derivations of equation Eq.(18) to Eq.(29) can be found derived in [7]. Equation (36) is found

in [6].
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Q-spin correlation

In contrast to the state operator for polarized spin, Eq.(11), Q-spin has two orthogonal axes giving

a state operator as

ρA =
1

2

(

IA +
1√
2

(

σA
3 + σA

1

)

)

=
1

2

(

IA + σA · r
)

(58)

in the BFF. From this the expectation values are calculated for the spin axes, e3, e1 using both the

symmetric and anti-symmetric contribution, Eq.(59),

a · ⟨Σ1⟩ = a · ⟨σ1⟩+ a · ε · i ⟨σ1⟩ =
1√
2

a · (e1 + ie3Y)

a · ⟨Σ3⟩ = a · ⟨σ3⟩+ a · ε · i ⟨σ3⟩ =
1√
2

a · (e3 − ie1Y)

(59)

using a · ⟨σi⟩ = + 1√
2

a · ei, and the vector products,

ia · ε · ⟨σ1⟩ = +i
1√
2

a · e3Y

ia · ε · ⟨σ3⟩ = −i
1√
2

a · e1Y

(60)

The two equations (59) describe the two orthogonal axes contracted with the filter direction. These

are quaternions with the e1 axis spun by the e3 term, and the e3 axis spun oppositely by the e1 term, as

seen in Figure 6 bottom left and right.

In free-flight, the angular momentum of the two axes constructively interferes to produce a purely

resonance spin being a boson of magnitude 1,

Σ±31 = ± 1√
2
(Σ3 ± Σ1) (61)

formed from the sum of the two axes. Permutation of the signs, gives the bisectors of the quadrants

as shown in the BFF in Figure 6, In the presence of a field, the boson aligns with the filter direction,

Eq.(59), shown by e3 being rotated up by 45 degrees and e1 give being rotated up by 45 degrees so they

coincide with their bisector,

a ·
〈

σ+
31

〉

=
1√
2

a ·
(

e1 exp
(

−i
π

4
Y
)

+ e3

(

+i
π

4
Y
))

=
1√
2

a ·
(

1√
2
(e3 + e1) +

1√
2
(e3 − e1) iY

) (62)

Although the BFF makes it easier to visualize, the experiments are done in the LFF, so we use the

transformation given Eq.24 to get the LFF expression with the filter vector also written in the LFF. Use

of these leads to the following expressions which give the projections of the two axes into the LFF. The

details are,
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2a ·
〈

Σ+
31

〉

=
√

2 (a · ⟨Σ3⟩+ a · ⟨Σ1⟩) = a · ((e3 + e1) + i (e3 − e1)Y)

= a · ((cos θ − sin θ) Z + (cos θ + sin θ) X)

+ ia · ((cos θ + sin θ) Z− (cos θ − sin θ) X)Y

= (cos θaZ + sin θaX) · ((cos θ − sin θ) Z + (cos θ + sin θ) X)

+ i (cos θaZ + sin θaX) · ((cos θ + sin θ) Z− (cos θ − sin θ) X)Y

= (cos θa (cos θ − sin θ) + sin θa (cos θ + sin θ))

+ i (cos θa (cos θ + sin θ)− (cos θ − sin θ) sin θa)Y

= (cos θ − sin θ) (cos θa − i sin θaY)

+ (cos θ + sin θ) (sin θa + i cos θaY)

a ·
〈

Σ+
31

〉

=
1

2

(

(cos θ − sin θ) exp (−iθaY) + (cos θ + sin θ) exp
(

+i
(π

2
− θa

)

Y
))

(63)

This can also be cast into quaternions,

2a ·
〈

Σ+
31

〉

=
(

(cos θ − sin θ) exp (−iθaY) + (cos θ + sin θ) exp
(

i
(π

2
− θa

)

Y
))

=
[

(cos θ − sin θ) + (cos θ + sin θ) exp
(

i
(π

2

)

Y
)]

exp (−iθaY)

= [(cos θ − sin θ) + i (cos θ + sin θ)Y] exp (−iθaY)

= [cos θ + i sin θY− sin θ + i cos θY] exp (−iθaY)

=
[

exp (iθY)− exp
(

−i
(π

2
− θ
)

Y
)]

exp (−iθaY)

=
[

1− exp
(

−i
π

2
Y
)]

exp (iθY) exp (−iθaY)

=
√

2 [1 + iY] exp (iθY) exp (−iθaY)

a ·
〈

Σ+
31

〉

= exp
(

i
π

4
Y
)

exp (iθY) exp (−iθaY)

= exp
(

i
(π

4
− (θa − θ)

)

Y
)

(64)

These results are summarized below

a ·
〈

Σ+
31

〉

=
1√
2

exp
(

i
(π

4
− (θa − θ)

)

Y
)

=
1√
2

exp
(

i
(π

4
+ θ
)

Y
)

exp (−iθaY)

=
1

2

[

(cos θ − sin θ) exp (−iθaY) + (cos θ + sin θ) exp
(

i
(π

2
− θa

)

Y
)]

(65)

The second equality separates the quaternion into a product of a geometric quaternion, and a

field quaternion. From these, all correlation is obtains algebraically and for the simulation.

Correlation calculations

Upon separation, Alice and Bob’s spins are anti-correlated by requiring θ differs between Alice

and Bob by π, see Fig.(4) of [6]. The correlation in free-flight takes into account all orientations of the

two anti-parallel spins and, by virtue of the product state having two terms, Eq.(49), we include its
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Hermitian conjugate, see Eq.(8). This ensures that both right and left handed helicities are retained. As

expected, the anti-correlation is -1,

E (free-flight) =
〈

ΣA
31

〉

·
〈

ΣB
31

〉∗
+
〈

ΣA
31

〉∗
·
〈

ΣB
31

〉

=
1

2
exp

(

i
(π

2
+ θ
)

Y
)

exp
(

i
(π

2
− θ
)

Y
)

+ c.c. = −1
(66)

When approaching a polarization filter, the bosons at Alice Bob are polarized along the two fields

giving the correlation

E (a, b) = a ·
[〈

ΣA
31

〉 〈

ΣB
31

〉∗
+
〈

ΣA
31

〉∗ 〈
ΣB

31

〉]

· b

=
1

2
exp

(

i
(π

2
− (θa − θ)

)

Y
)

exp
(

i
(π

2
+ (θb − θ)

)

Y
)

+ c.c.

= − cos (θa − θb)

(67)

which is obtained from QM, − cos θab but without any non-local connections.

An important point is that both Alice and Bob must both simultaneously be bosons. Taking only

the scalar part of the quaternions in Eq.(67) gives

exp
(

i
(π

4
+ (θb − θ)

)

Y
)

no helicity−−−−−→ exp
(

+i
π

4
Y
)

cos (θb − θ) (68)

and only the product state survives in the correlation, even if one spin is coherent,

E (a, b) = −1

2
exp (i (θa − θ)Y) cos (θb − θ) + c.c.

= − cos (θa − θ) cos (θb − θ)
(69)

To get the full correlation, Eq.(67), Alice and Bob’s spins must both be Q-spins which means both

must lie within the π
4 wedge. The lower part of Fig. 10 depicts the situations described here. The L

and R spins are polarized Dirac spins. Both polarization axes are present, but one is averaged by the

spinning, Eq.(59). The center figure shows the Q-spin before decoupling.
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