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Abstract: Accurate and reliable detection of coal mine gases is the key to ensuring the safe service of
coal mine production. However, the baseline of infrared absorption spectrum is easily disturbed by
the complex underground environment, while the variety of gas species and uneven distribution of
concentrations make it difficult to achieve precise and reliable online analysis using existing
quantitative methods. This paper aims at the poor reliability and accuracy of infrared spectroscopy
in the detection of coal mine gases. It utilizes the adaptive smoothness parameter penalized least
squares method to correct the drifted spectra. Subsequently, based on the infrared spectral
distribution characteristics of mine gases, they can be classified into gases with mutually distinct
absorption peaks and gases with overlapping absorption peaks. For gases with distinct absorption
peaks, three spectral lines including the absorption peak and its adjacent troughs are selected for
quantitative analysis. Spline fitting, polynomial fitting, and other curve fitting methods are used to
establish a functional relationship between characteristic parameters and gas concentration. For gases
with overlapping absorption peaks, a wavelength selection method based on the impact value of
variables and population analysis was applied to select variables from the spectral data. The selected
variables are then used as input features for building a model with a BP neural network. Finally, the
proposed method was validated using standard gases. The experimental results show that the
reference error for 10 coal mine gases is less than 3%0F.S., and the relative error is less than 10%. These
results demonstrate that the proposed infrared spectral quantitative analysis method can effectively
analyze mine gases and achieve good predictive performance.

Keywords: coal mine gases; baseline correction; variables selection; quantitative analysis

1. Introduction

Coal mine gas exhibits essentiality, disaster-inducing potential, and early-warning
characteristics. The accurate and reliable analysis of coal mine gas composition and concentration
enables timely early warning of potential safety hazards in coal mines. This provides precise and
prompt information regarding environmental explosion risks for rescue operations, fundamentally
preventing secondary and derivative disaster incidents. Such analysis holds significant theoretical
and practical importance in ensuring the safe production of coal mines[1-5]. Fourier Transform
Infrared (FTIR) spectroscopy offers rapid analysis, a wide range of detectable substances, and non-
destructive measurement capabilities, making it an essential tool for both qualitative and quantitative
analysis across various fields, including pharmaceuticals, chemical engineering, biotechnology, and
environmental protection[6-12]. At present, numerous experts, research institutions, and even
governments have devoted significant effort to its research, resulting in a series of important
achievements. Goldschmidt et al[13]. employed artificial neural networks to perform quantitative
analysis of N2O and CO gases, achieving a coefficient of determination of 0.99997 for N20
concentration prediction and 0.99987 for CO concentration prediction. We have also tried to analyze
coal mine gases [14]. Firstly, a Tikhonov regularization was applied to select the spectral variables,
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and then established models using both BP neural networks and multiple linear regression.
Furthermore, an information fusion approach was employed to predict the concentrations of five
gases: methane, ethane, propane, iso-butane, and n-butane. Shoukat et al. conducted quantitative
analysis of water vapor and carbon dioxide using the partial least squares (PLS) algorithm[15]. The
results confirmed that infrared spectroscopy can be effectively used for both qualitative and
quantitative analysis of various compounds. In order to tackle the problem of spectral overlap in
alkane gases, Zhongbing Li et al. developed a quantitative analysis technique based on adaptive
moving window partial least squares (AMW-PLS) modeling and applied it to alkane gas analysis[16].
However, based on preliminary underground trial operations, the current research and application
of infrared spectroscopy in the field of online coal mine gas analysis are still in the early stages of
development, facing several key difficulties and challenges. Firstly, the underground working
environment is characterized by complexity and time variability. In particular, after prolonged
operation, the spectrometer is susceptible to environmental influences, leading to spectral baseline
drift. Secondly, the wide variety of coal mine gases, uneven concentration distributions, and the
presence of cross-interference among gases result in poor accuracy of the analysis results. This study
selects methane, ethane, propane, iso-butane, n-butane, sulfur hexafluoride, and carbon monoxide as
representative gases characteristic of coal mines to overcome the aforementioned challenges. First,
spectral data of underground gases are obtained using an infrared spectrometer. Then, a calibration
of the drifted spectra is performed using an adaptive penalty parameter method. Based on the
infrared spectral distribution characteristics of mine gases, they can be classified into gases with
mutually distinct absorption peaks and gases with overlapping absorption peaks. For gases with
distinct absorption peaks, three spectral lines including the absorption peak and its adjacent troughs
are selected for quantitative analysis. Spline fitting, polynomial fitting, and other curve fitting
methods are used to establish a functional relationship between characteristic parameters and gas
concentration. For gases with severely overlapping absorption spectra, a flexible shrinkage variable
selection method based on a combination of frequency and regression coefficients was used. The
selected variables were then used as input features for constructing a BP neural network model. To
validate the proposed method, standard gas samples were used for verification.

2. Method

For multi-component gas analysis, analytical models for each gas must be established using
calibration samples prepared by analytical instruments. Initially, a Fourier Transform Infrared
Spectrometer (FTIR) is employed to acquire data on coal mine gases, and then the initial data is
corrected for spectral baseline shift. Subsequently, based on the distribution pattern of coal mine gas,
the gas is categorized into distinct absorption peak intervals and spectral overlapping absorption
peak intervals. For gases with distinct absorption peaks, three spectral lines including the absorption
peak and its adjacent troughs are selected for quantitative analysis. For the overlapping absorption
regions, characteristic variables were extracted. Subsequently, a quantitative analysis model was
established for each target gas. Finally, standard gases with known concentrations were used to
verify the accuracy of the quantitative analysis models.

2.1. Baseline Drift Correction

Spectral baseline drift occurs in gas analysis using Fourier Transform Infrared (FTIR)
spectroscopy due to ambient environmental variations during spectral acquisition. For instance,
baseline drift of varying magnitudes will occur when the light source temperature undergoes
fluctuations. Similarly, angular deviation of the moving mirror during spectral scanning of the
sample will induce baseline drift in the interferogram. If the baseline shifts and distorts, the
absorbance values of the corresponding spectral lines will change to varying degrees. The absorbance
value of a spectral line is a key factor in the quantitative analysis of mixed gases, which leads to
inaccurate or even wrong quantitative analysis. Therefore, it is critical to correct the baseline drift and
identify the distorted spectrum. In this paper, the adaptive smoothness parameter penalized least
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squares method (asPLS) was used to carry out baseline correction for absorption spectra of coal mine
gases[17]. The baseline correction process is illustrated in Figure 1.
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Figure 1. The flowchart of baseline correction by proposed asPLS.

2.2. Spectral Variables Selection Method

The resolution of the spectrometer was set to 1 cm™?, and the wave number scan range was 400-
4000 cm™, resulting in 3601 spectral lines per sample. Inevitably, these spectral variables include
irrelevant or even interfering variables. When performing quantitative analysis of gases with distinct
absorption peaks, satisfactory results can be achieved by selecting a single spectral line at the main
absorption peak and applying linear or nonlinear fitting methods. However, when there is significant
overlap in the absorption spectra between gases, randomly selecting a few variables not only
increases cross-sensitivity to other components but may also reduce the prediction accuracy for the
target component. Therefore, spectral variable feature selection is crucial for reducing model
computation time, improving prediction accuracy, and minimizing cross-sensitivity to other
components. In this study, based on the infrared spectral distribution characteristics of coal mine
gases, the entire absorption spectrum was divided into regions of distinct absorption peaks and
overlapping absorption peaks. For the overlapping absorption regions, variable selection was carried
out using a wavelength selection method based on the Impact Value of Variables and Population
Analysis (IVPA) [18]. Figure 2 shows the scheme of IVPA algorithm.
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While i< N sampling runs

Generate random combination of variables
through binary matrix based on P, P1=a1x
P,P2=02x P, use P1 and P2 to build PLS models

v

Calculate the IV, for every variables, then
wi=IV; /sum(IV; ), compute the ritio of
variables to be kept using ri=ae™

v

Pick a subset of variables form the retained p*x
ry variables using adaptively reweighted sample
method, denoted by Veei new

v
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Vsel,olcFVseLnew

After N iterations, IVPA obtains N subsets of
variables and corresponding N RMSECV |«

values

Finally, choose the subsets with the lowest
RMSECYV as optimal subset of variables

End

Figure 2. Flow chart of IVPA algorithm. After N sampling runs, IVPA obtains N subsets of variables and finally
choose the subset with the lowest RMSECV value as the optimal one.

The spectral data obtained by scanning is represented by matrix Xnxp, where n is the number
of samples and p is the number of spectral lines. ynxm is the analyte concentration information
corresponding to n samples. The infrared quantitative analysis model established by PLS can be
expressed as follows:

y=Xp+e (D

In the aforementioned formula, B denotes the regression coefficient vector defined as = [(31, 2,
.. Bp]", where y represents the concentration vector of the i-th component during analysis (with i <
m), and e corresponds to the random error vector. Multiply one of the variables by a coefficient al
smaller than 1 to obtain a new variable V1, then multiply by a coefficient a2 larger than 1 to obtain a
variable V2, and establish PLS models for the obtained new variables respectively to obtain
corresponding cross-validation root mean square errorsUE, and DE, The process loops p times so that

the influence value of each sample variable can be calculated from equation (2):

IV, = UE, - DE, 2)

2.3. Model Analysis

Based on the infrared spectral absorption characteristics of coal mine gases, the entire spectrum
is categorized into gases with distinct absorption peaks and gases exhibiting spectral overlap. For the
target gas with a distinct absorption peak, three spectral lines at the distinct absorption peak and
trough are selected for quantitative analysis, and the function between characteristic quantity and
concentration is obtained by spline fitting and polynomial curve fitting methods. Numerous
advanced approaches have been developed for analyzing severely overlapped absorption spectra,
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including Partial Least Squares (PLS) [19], Self-Modeling Curve Resolution (SMCR) [20], Support
Vector Machines (SVM) [21], and Neural Networks (NN) [22]. In this paper, the NN with two layers
of nodes is adopted as the analysis model for analyzing each component. The wavelength variables
selected in Section 2.2 serve as inputs to the Backpropagation (BP) neural network, with the output
layer generating concentration predictions for target coal mine gases.

3. Experiment

The instrument utilized to analyze coal mine gases is the Spectrum Two FTIR model
manufactured by Spectrum Corporation. wherein the infrared light source is a carbon-silicon rod.
And the complete radiation power was measured with a standard deuterated trinitrate triglycine
(DTGS) detector. The spectrometer was configured with the following parameters: scanning range of
400-400 cm™, wave number resolution of 1 cm™, and absorbance scanning type. To minimize random
noise interference, the number of scans per sample was set at 8. Due to its favorable linearity, the
selected apodization function is the Norton-Beer medium function.

The experimental protocol is as follows:

Stepl, before spectral scanning, the infrared spectrometer is preheated for 30 minutes, waiting
for the temperature of the light source to stabilize.

Step2, introduce nitrogen with a concentration of 99.999% into the gas cell for about 3 minutes.
At this time, click the scan background button to scan the background (nitrogen) spectrum. When the
background spectrum changes little after two scans, stop scanning the background spectrum and
store the background spectrum data into the database.

Step3, inject the standard gas to be detected into the gas cell, and keep the gas flow rate at 1.5
L/min by adjusting the knob of the pressure-reducing valve. After waiting 1 minute, click the Scan
Sample button in the analysis software. After waiting for 20 seconds, the analysis software completes
a measurement and displays the result on the main interface.

Step4, record the analysis results of each measurement, repeat 10 sets of scanning for standard
gas, and calculate the repeatability of the analyzer with the analysis results of 10 sets of data. The test
results are shown in Table 5-5 and Table 5-6. The significant bit of the analysis result data is reserved
to the 0.1 ppm level. The experimental procedure is shown in Figure 3.
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Figure 3. Flow chart of coal mine gas analysis by FTIR spectroscopy absorption.

4. Results and Analysis
4.1. Spectral Baseline Drift Correction

The absorbance of the five gases methane (CH,), ethane (C;Hs), propane (Cs3Hs), iso-butane (i-
C4Hip), and n-butane (n-C4Hjo) is shown in Figure 4. It can be seen from Figure 4 that the absorption
peak of the five gases is the highest near 3000 wavenumbers, which is the main absorption peak of
alkane gases, and in the range of 1200-1700 cm™, it is the secondary absorption peak of alkane gases.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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It can be seen that the spectra overlap between the five gases is serious, whether in the main
absorption peak or in the secondary absorption peak.
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Figure 4. Five kinds gases absorption spectra of concentration 0.05%.

The spectral baselines of the five gases displayed in the figure above have shifted to different
extents. Following prior research findings [16], spectral data underwent baseline correction utilizing
a penalized least squares approach, resulting in the presentation of the baseline-corrected spectra in

Figure 5.
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Figure 5. Absorbance spectra of five gases after baseline correction at 500ppm.

4.2. Results of Characteristic Variables Extraction

In order to evaluate the performance of the proposed algorithm, the variables selected for the
IVPA method are shown in Figure 6.
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Figure 6. The selected variables by IVPA.

As can be seen from the figure, IVPA selects fewer variables, and the selected variables cover
the main region of the absorption peak of iso-butane. Using the spectra of five alkane gases with a
concentration of 0.05% as input variables, a model was established to predict the concentrations of
the five gases according to the variables selected by the IVPA method. The prediction results are
shown in Table 1. The table indicates that IVPA shows the highest cross-sensitivity to n-butane, which
is attributed to the similar molecular structures of n-butane and iso-butane, resulting in similar
absorption spectral shapes. On the contrary, since the minimum absorbance of methane is less than
300 cm™, the cross-sensitivity to methane is relatively low. The variables selected by the IVPA method
are mainly within the range of less than 300 cm™. It is worth noting that IVPA has the most accurate
prediction for iso-butane, with a maximum cross-sensitivity of 1.02% and a minimum cross-
sensitivity of 0.11% for the other four gases. These results indicate that this method can effectively
extract and analyze variables with significant spectral overlap.

Table 1. The prediction results of alkane gases with concentration of 500ppm by IVPA methods.

evaluation index gas composition
Predicted concentration methane ethane propane n-butane iso-butane
Predicted -0.54 3.08 -1.84 -5.09 497.43

concentration(ppm)
cross sensitivity(%) 0.11 0.62 0.37 1.02 -

4.3. Quantitative Analysis Model of Gases with Distinct Absorption Peaks

For gases with distinct absorption peaks, such as carbon monoxide, carbon dioxide, sulfur
hexafluoride, ethylene, acetylene, and propylene, the distinct absorption peaks and troughs are
selected for quantitative analysis. The absorbance spectra of the six gases are shown in Figure 7. In
the figure, the concentration of sulfur hexafluoride is 0.05%, the concentration of carbon monoxide is
0.7%, the concentration of carbon dioxide is 0.5%, and the concentration of the other three gases is
0.3%.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 7. Infrared spectra of six gases.

It can be seen from Figure 7 that distinct absorption peaks can be found for all six gases. It can
also be seen that when SF¢ approaches 1000 cm™, the absorbance value is the largest. At the same
concentration, the absorption coefficient of SFs is one order of magnitude larger than that of the other
five gases. Therefore, among the six gases, the detection limit of SFe is the lowest. However, the
absorption spectrum of SFs overlaps with C2H4 and C3H6 near 1000 cm. Fortunately, SF¢ can find
arelatively strong absorption peak at 614 cm™. Therefore, the absorbance value at 614 cm™ is selected
as the characteristic variable of SFs. Taking SF¢ as an example, six quantitative methods for gases with
distinct absorption peaks are introduced. Three spectral lines at the trough of the distinct absorption
peak of SF¢ at 614 were selected as shown in Figure 8.
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o Y 0.022545 —C,H,
2 0021 —GH, |
Jg X 618 3t
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-1
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Figure 8. Schematic diagram of SF6 infrared spectrum variable selection.

As can be seen from Figure 7, the selected three spectral lines are exactly equally spaced, so the
characteristic variable expression of SF6 is obtained as follows:

fSFG = (Aa — Auig) + (Asia — Aswo) 3)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In the formula, among them, A represents the absorbance. The subscript of A is wavenumber.
For example, A614 represents the absorbance value when the wavenumber is 614 cm™. It can be seen
from Equation (3) that the selected characteristic variables will not be affected by drift phenomena
such as baseline horizontal translation and linear tilting, further improving the stability of the system.
This is because the distances between the three selected spectral lines are equal. When the baseline
moves or tilts, the first term and the second term in Equation (3) have opposite signs and equal
amplitudes, which can cancel each other out. If the distances between the three selected spectral lines
are not equal, the selected spectral lines are 610, 614, and 616 cm™, respectively. The following
expression can be constructed:

fSF6 =(Asra = Po10) + 2% (Asra — Pos) 4

To verify the performance of the eigenvariables selected for SF6, the spectra of 11 target gases
with a concentration of 0.05% were substituted into Eq. (4) to obtain the vectors for each concentration:
[-0.00024, -0.00009, -0.00001, -0.00017, -0.00004, 0.00033, -0.00022, -0.00025, 0.00004, -0.00016, 0.0676].
The corresponding gases are methane, ethane, propane, n-butane, iso-butane, carbon monoxide,
carbon dioxide, ethylene, acetylene, propylene, and sulfur hexafluoride, respectively. It can be seen
that the characteristic variable of SF6 has the highest sensitivity to carbon monoxide, which is 0.49%.
The maximum cross-sensitivity of SF6 to the other 10 gases is less than 0.5%, which indicates that the
cross-sensitivity of the selected characteristic quantity to other gases is low, so this characteristic
quantity can be selected to analyze SF6. Meanwhile, the spectra of ten single-component SF6 with
volume percentage concentrations of 0.0005%, 0.001%, 0.002%, 0.005%, 0.01%, 0.02%, 0.05%, 0.1%, 0.2%
and 0.5% were substituted into formula (4), and the corresponding eigenvalue vectors were obtained
as 0.00085, 0.0017, 0.0034, 0.0082, 0.0160, 0.0307, 0.0676, 0.1127, 0.1811, and 0.2246. At this point, curve-
fitting methods such as spline fitting, polynomial fitting, etc. can be used to obtain the function
between the characteristic quantity and concentration.

Figure 9 shows the results of fitting characteristic quantity and concentration by three methods.
It can be seen that the fourth-order polynomial and cubic spline function can be very good curve
fitting, but the results obtained by quadratic polynomial fitting are worse than those of the fourth-
order polynomial and cubic spline function. Therefore, a polynomial of degree 4 was chosen for
quantitative analysis of SF6, and its polynomial function expression of degree 4 is as follows:

cy, =80.75f * —24.38f °+5.168f, * +0.4881f, +0.0003962 (5

0357  |aauas Quadratic polynomial ]
Quartic polynomial
0.3r = =Third spline
c + Actual concentration
© 025
E Q‘
E 02 [ oY
8 ‘.“
G015+
8]
0.1r
0.05 |
0 L 1 1 1

0.05 0.1 0.15 0.2 0.25
characteristic value

Figure 9. Fitting diagram of SF6 characteristic quantities.

The spectrum of the unknown gas is used to extract the characteristic quantity using equation
(3), and then the SF6 concentration can be obtained by substituting the characteristic quantity into
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equation (5). In addition, in the actual analysis, the corresponding concentration information can be
obtained according to the characteristic quantity of each gas, and then the obtained characteristic
quantity is subtracted from the product of cross sensitivity and gas concentration (i.e., the
compensation method), and then the compensated characteristic quantity is substituted into Eqn(5),
which can obtain a more accurate analysis result. The repeatability test results for gases with distinct
absorption peaks are shown in Table 2.

Table 2. Repeatability test results of analyzer (¢(-)x10-6).

Numb  Carbon dioxide Carbon monoxide Ethylene Acetylene Sulphur hexafluoride
er of
measur 20000 101.5 500 5 10.1
ements
1 21450.6 89.2 499.7 4.1 9.8
2 21465.0 90.0 500.0 4.2 9.5
3 21641.8 91.9 496.1 3.8 10.0
4 21533.9 94.4 500.3 3.9 9.5
5 21368.6 93.8 502.1 4.0 9.8
6 21456.7 89.1 500.2 3.9 9.7
7 21517.7 934 501.6 4.0 9.6
8 21504.3 92.8 502.3 4.2 9.9
9 21472.6 91.7 499.9 3.8 9.7
10 21389.1 92.5 501.4 4.1 9.6
Avera
ge 21480.0 91.9 500.4 4.0 9.7
value
Standa
e 77.07 1.89 178 0.14 0.17
eviati
on
RSD
(%) 0.36 2.05 0.35 3.54 1.71
Error
of +7.4% -0.01%F.S. +0.72% -0.33%F.S. -0.13%FS.
indicat
ion
RSD: relative standard deviation.
4.3. Quantitative Analysis of Gases with Severe Spectral Overlap
For gases with severe spectral overlap, such as methane, ethane, propane, iso-butane, and n-
butane alkane gases, their spectral data were first feature-selected using the variable selection method
mentioned in Section 2.2, and then the selected variables were modeled and analyzed using four
methods, namely, PLS, BPNN, SVM, and LSSVM,, respectively, and a model with the best prediction
performance was selected from them. The results of the gas repeatability test for spectral overlap
are shown in Table 3.
Table 3. Repeatability test results of analyzer (¢(-)x10-6).
Number of Methane ethane propane n-butane isobutane
measurements 10000 1001.2 1000 100 100
1 9851.2 931.3 1041.5 87.6 90.8
2 9845.5 934.1 1048.7 91.1 94.9
3 9856.3 926.6 1055.2 89.3 96.1
4 9851.2 931.2 1054.4 88.6 93.0
5 9852.4 925.5 1064.6 94.2 92.6
6 9856.9 923.3 1045.1 90.5 95.1
7 9843.8 927.8 1047.3 87.4 96.3
8 9847.0 924.9 1052.5 91.8 95.5
9 9854.1 931.5 1043.8 89.7 91.9
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10 9855.7 932.6 1049.3 91.0 89.4

Average value 9851.4 929.9 1050.2 90.1 92.8

Standard deviation 4.63 3.37 6.74 2.06 2.21

RSD (%) 0.05 0.36 0.64 2.29 2.38
Error of indication -0.15%0F.S. -7.1% +5.0% -2.0%oF.S. -1.4%oF.S.

RSD: relative standard deviation.

As can be seen from Tables 2 and 3, when the gas concentration is low, the relative standard
deviation value obtained by the analyzer is relatively large; for example, when the content of
acetylene is 0.0005% in the standard gas, the calculated relative standard deviation reaches 3.54%.
This is because when the gas concentration is low, the average concentration of the gas obtained will
also be very low, and the relative standard deviation is the ratio of the standard deviation to the
average value, so the relative standard deviation will be larger when the concentration of the gas is
measured at a lower level. The relative standard deviation will be larger for lower gases. It can also
be seen that the standard deviation of the 10 gases is less than 10 ppm except for carbon dioxide. The
standard deviation for carbon dioxide is 77.07 ppm. This is because the standard gas has the highest
concentration of carbon dioxide at 20,000 ppm (2%). 77.07 ppm is a very small value in relation to
20,000 ppm, and the relative standard deviation of carbon dioxide is only 0.36%. Thus, these test
results indicate excellent repeatability performance of the analyzer. In addition, the errors in the
indicated values of the 10 characteristic gases were calculated, and it can be seen that the quoted
errors of the 10 characteristic gases are less than 3%o, while the relative errors are less than 10 percent.

5. Conclusion

When using Fourier Transform Infrared (FTIR) spectroscopy to quantitatively analyze alkane
gases, the large variety of analytes and severe spectral overlap limit the accuracy and computational
efficiency of the quantitative analysis results significantly. Based on the types of gases found in coal
mines and their infrared spectral distribution characteristics, this paper proposes a quantitative
analysis method for coal mine gases. The method was validated using standard gases, and the
experimental results show that it can effectively extract variables from severely overlapping spectra,
demonstrating practical application value.

5. Conclusion

In this study, the origins of the spectral baseline drift and distortion were analyzed and
simulated using MATLAB. The results show that when the light source temperature and moving
mirror tilt angle changed constantly, the spectral baseline drifted, whereas when they changed
randomly, the spectral baseline was distorted. The change in reflectance of the beam splitter caused
the baseline to shift upward or downward. The change in laser wavelength and the missing
interference signal also caused the baseline distortion. To address the problem of spectral baseline
drift, a baseline correction method based on BTM was also proposed. The results of experiments
performed on the methane spectrum confirm that the proposed method outperformed the improved
modified multi-polynomial fitting and IA methods. An identification and treatment approach based
on the shape and distribution of the baseline has been reported in our previous work to address the
problem of spectral baseline distortion [19].
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