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Abstract: Accurate and reliable detection of coal mine gases is the key to ensuring the safe service of 

coal mine production. However, the baseline of infrared absorption spectrum is easily disturbed by 

the complex underground environment, while the variety of gas species and uneven distribution of 

concentrations make it difficult to achieve precise and reliable online analysis using existing 

quantitative methods. This paper aims at the poor reliability and accuracy of infrared spectroscopy 

in the detection of coal mine gases. It utilizes the adaptive smoothness parameter penalized least 

squares method to correct the drifted spectra. Subsequently, based on the infrared spectral 

distribution characteristics of mine gases, they can be classified into gases with mutually distinct 

absorption peaks and gases with overlapping absorption peaks. For gases with distinct absorption 

peaks, three spectral lines including the absorption peak and its adjacent troughs are selected for 

quantitative analysis. Spline fitting, polynomial fitting, and other curve fitting methods are used to 

establish a functional relationship between characteristic parameters and gas concentration. For gases 

with overlapping absorption peaks, a wavelength selection method based on the impact value of 

variables and population analysis was applied to select variables from the spectral data. The selected 

variables are then used as input features for building a model with a BP neural network. Finally, the 

proposed method was validated using standard gases. The experimental results show that the 

reference error for 10 coal mine gases is less than 3‰F.S., and the relative error is less than 10%. These 

results demonstrate that the proposed infrared spectral quantitative analysis method can effectively 

analyze mine gases and achieve good predictive performance. 

Keywords: coal mine gases; baseline correction; variables selection; quantitative analysis  

 

1. Introduction 

Coal mine gas exhibits essentiality, disaster-inducing potential, and early-warning 

characteristics. The accurate and reliable analysis of coal mine gas composition and concentration 

enables timely early warning of potential safety hazards in coal mines. This provides precise and 

prompt information regarding environmental explosion risks for rescue operations, fundamentally 

preventing secondary and derivative disaster incidents. Such analysis holds significant theoretical 

and practical importance in ensuring the safe production of coal mines[1–5]. Fourier Transform 

Infrared (FTIR) spectroscopy offers rapid analysis, a wide range of detectable substances, and non-

destructive measurement capabilities, making it an essential tool for both qualitative and quantitative 

analysis across various fields, including pharmaceuticals, chemical engineering, biotechnology, and 

environmental protection[6–12]. At present, numerous experts, research institutions, and even 

governments have devoted significant effort to its research, resulting in a series of important 

achievements. Goldschmidt et al[13]. employed artificial neural networks to perform quantitative 

analysis of N2O and CO gases, achieving a coefficient of determination of 0.99997 for N2O 

concentration prediction and 0.99987 for CO concentration prediction. We have also tried to analyze 

coal mine gases [14]. Firstly, a Tikhonov regularization was applied to select the spectral variables, 
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and then established models using both BP neural networks and multiple linear regression. 

Furthermore, an information fusion approach was employed to predict the concentrations of five 

gases: methane, ethane, propane, iso-butane, and n-butane. Shoukat et al. conducted quantitative 

analysis of water vapor and carbon dioxide using the partial least squares (PLS) algorithm[15]. The 

results confirmed that infrared spectroscopy can be effectively used for both qualitative and 

quantitative analysis of various compounds. In order to tackle the problem of spectral overlap in 

alkane gases, Zhongbing Li et al. developed a quantitative analysis technique based on adaptive 

moving window partial least squares (AMW-PLS) modeling and applied it to alkane gas analysis[16]. 

However, based on preliminary underground trial operations, the current research and application 

of infrared spectroscopy in the field of online coal mine gas analysis are still in the early stages of 

development, facing several key difficulties and challenges. Firstly, the underground working 

environment is characterized by complexity and time variability. In particular, after prolonged 

operation, the spectrometer is susceptible to environmental influences, leading to spectral baseline 

drift. Secondly, the wide variety of coal mine gases, uneven concentration distributions, and the 

presence of cross-interference among gases result in poor accuracy of the analysis results. This study 

selects methane, ethane, propane, iso-butane, n-butane, sulfur hexafluoride, and carbon monoxide as 

representative gases characteristic of coal mines to overcome the aforementioned challenges. First, 

spectral data of underground gases are obtained using an infrared spectrometer. Then, a calibration 

of the drifted spectra is performed using an adaptive penalty parameter method. Based on the 

infrared spectral distribution characteristics of mine gases, they can be classified into gases with 

mutually distinct absorption peaks and gases with overlapping absorption peaks. For gases with 

distinct absorption peaks, three spectral lines including the absorption peak and its adjacent troughs 

are selected for quantitative analysis. Spline fitting, polynomial fitting, and other curve fitting 

methods are used to establish a functional relationship between characteristic parameters and gas 

concentration. For gases with severely overlapping absorption spectra, a flexible shrinkage variable 

selection method based on a combination of frequency and regression coefficients was used. The 

selected variables were then used as input features for constructing a BP neural network model. To 

validate the proposed method, standard gas samples were used for verification.  

2. Method 

For multi-component gas analysis, analytical models for each gas must be established using 

calibration samples prepared by analytical instruments. Initially, a Fourier Transform Infrared 

Spectrometer (FTIR) is employed to acquire data on coal mine gases, and then the initial data is 

corrected for spectral baseline shift. Subsequently, based on the distribution pattern of coal mine gas, 

the gas is categorized into distinct absorption peak intervals and spectral overlapping absorption 

peak intervals. For gases with distinct absorption peaks, three spectral lines including the absorption 

peak and its adjacent troughs are selected for quantitative analysis. For the overlapping absorption 

regions, characteristic variables were extracted. Subsequently, a quantitative analysis model was 

established for each target gas. Finally, standard gases with known concentrations were used to 

verify the accuracy of the quantitative analysis models. 

2.1. Baseline Drift Correction 

Spectral baseline drift occurs in gas analysis using Fourier Transform Infrared (FTIR) 

spectroscopy due to ambient environmental variations during spectral acquisition. For instance, 

baseline drift of varying magnitudes will occur when the light source temperature undergoes 

fluctuations. Similarly, angular deviation of the moving mirror during spectral scanning of the 

sample will induce baseline drift in the interferogram. If the baseline shifts and distorts, the 

absorbance values of the corresponding spectral lines will change to varying degrees. The absorbance 

value of a spectral line is a key factor in the quantitative analysis of mixed gases, which leads to 

inaccurate or even wrong quantitative analysis. Therefore, it is critical to correct the baseline drift and 

identify the distorted spectrum. In this paper, the adaptive smoothness parameter penalized least 
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squares method (asPLS) was used to carry out baseline correction for absorption spectra of coal mine 

gases[17]. The baseline correction process is illustrated in Figure 1. 
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Figure 1. The flowchart of baseline correction by proposed asPLS. 

2.2. Spectral Variables Selection Method 

The resolution of the spectrometer was set to 1 cm⁻¹, and the wave number scan range was 400–

4000 cm⁻¹, resulting in 3601 spectral lines per sample. Inevitably, these spectral variables include 

irrelevant or even interfering variables. When performing quantitative analysis of gases with distinct 

absorption peaks, satisfactory results can be achieved by selecting a single spectral line at the main 

absorption peak and applying linear or nonlinear fitting methods. However, when there is significant 

overlap in the absorption spectra between gases, randomly selecting a few variables not only 

increases cross-sensitivity to other components but may also reduce the prediction accuracy for the 

target component. Therefore, spectral variable feature selection is crucial for reducing model 

computation time, improving prediction accuracy, and minimizing cross-sensitivity to other 

components. In this study, based on the infrared spectral distribution characteristics of coal mine 

gases, the entire absorption spectrum was divided into regions of distinct absorption peaks and 

overlapping absorption peaks. For the overlapping absorption regions, variable selection was carried 

out using a wavelength selection method based on the Impact Value of Variables and Population 

Analysis (IVPA) [18]. Figure 2 shows the scheme of IVPA algorithm. 
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Figure 2. Flow chart of IVPA algorithm. After N sampling runs, IVPA obtains N subsets of variables and finally 

choose the subset with the lowest RMSECV value as the optimal one. 

The spectral data obtained by scanning is represented by matrix Xnp, where n is the number 

of samples and p is the number of spectral lines. ynm is the analyte concentration information 

corresponding to n samples. The infrared quantitative analysis model established by PLS can be 

expressed as follows: 

y Xβ e  （1） 

In the aforementioned formula, β denotes the regression coefficient vector defined as β = [β₁, β₂, 

..., βₚ]ᵀ, where y represents the concentration vector of the i-th component during analysis (with i ≤ 

m), and e corresponds to the random error vector. Multiply one of the variables by a coefficient ɑ1 

smaller than 1 to obtain a new variable V1, then multiply by a coefficient ɑ2 larger than 1 to obtain a 

variable V2, and establish PLS models for the obtained new variables respectively to obtain 

corresponding cross-validation root mean square errors
i

UE and
i

DE The process loops p times so that 

the influence value of each sample variable can be calculated from equation (2): 

i i i
IV UE DE  (2) 

2.3. Model Analysis 

Based on the infrared spectral absorption characteristics of coal mine gases, the entire spectrum 

is categorized into gases with distinct absorption peaks and gases exhibiting spectral overlap. For the 

target gas with a distinct absorption peak, three spectral lines at the distinct absorption peak and 

trough are selected for quantitative analysis, and the function between characteristic quantity and 

concentration is obtained by spline fitting and polynomial curve fitting methods. Numerous 

advanced approaches have been developed for analyzing severely overlapped absorption spectra, 
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including Partial Least Squares (PLS) [19], Self-Modeling Curve Resolution (SMCR) [20], Support 

Vector Machines (SVM) [21], and Neural Networks (NN) [22]. In this paper, the NN with two layers 

of nodes is adopted as the analysis model for analyzing each component. The wavelength variables 

selected in Section 2.2 serve as inputs to the Backpropagation (BP) neural network, with the output 

layer generating concentration predictions for target coal mine gases. 

3. Experiment 

The instrument utilized to analyze coal mine gases is the Spectrum Two FTIR model 

manufactured by Spectrum Corporation. wherein the infrared light source is a carbon-silicon rod. 

And the complete radiation power was measured with a standard deuterated trinitrate triglycine 

(DTGS) detector. The spectrometer was configured with the following parameters: scanning range of 

400-400 cm⁻¹, wave number resolution of 1 cm⁻¹, and absorbance scanning type. To minimize random 

noise interference, the number of scans per sample was set at 8. Due to its favorable linearity, the 

selected apodization function is the Norton-Beer medium function. 

The experimental protocol is as follows: 

Step1, before spectral scanning, the infrared spectrometer is preheated for 30 minutes, waiting 

for the temperature of the light source to stabilize. 

Step2, introduce nitrogen with a concentration of 99.999% into the gas cell for about 3 minutes. 

At this time, click the scan background button to scan the background (nitrogen) spectrum. When the 

background spectrum changes little after two scans, stop scanning the background spectrum and 

store the background spectrum data into the database. 

Step3, inject the standard gas to be detected into the gas cell, and keep the gas flow rate at 1.5 

L/min by adjusting the knob of the pressure-reducing valve. After waiting 1 minute, click the Scan 

Sample button in the analysis software. After waiting for 20 seconds, the analysis software completes 

a measurement and displays the result on the main interface. 

Step4, record the analysis results of each measurement, repeat 10 sets of scanning for standard 

gas, and calculate the repeatability of the analyzer with the analysis results of 10 sets of data. The test 

results are shown in Table 5-5 and Table 5-6. The significant bit of the analysis result data is reserved 

to the 0.1 ppm level. The experimental procedure is shown in Figure 3. 
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Figure 3. Flow chart of coal mine gas analysis by FTIR spectroscopy absorption. 

4. Results and Analysis 

4.1. Spectral Baseline Drift Correction 

The absorbance of the five gases methane (CH₄), ethane (C₂H₆), propane (C₃H₈), iso-butane (i-

C₄H₁₀), and n-butane (n-C₄H₁₀) is shown in Figure 4. It can be seen from Figure 4 that the absorption 

peak of the five gases is the highest near 3000 wavenumbers, which is the main absorption peak of 

alkane gases, and in the range of 1200-1700 cm⁻¹, it is the secondary absorption peak of alkane gases. 
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It can be seen that the spectra overlap between the five gases is serious, whether in the main 

absorption peak or in the secondary absorption peak. 

 

Figure 4. Five kinds gases absorption spectra of concentration 0.05%. 

The spectral baselines of the five gases displayed in the figure above have shifted to different 

extents. Following prior research findings [16], spectral data underwent baseline correction utilizing 

a penalized least squares approach, resulting in the presentation of the baseline-corrected spectra in 

Figure 5. 

 

Figure 5. Absorbance spectra of five gases after baseline correction at 500ppm. 

4.2. Results of Characteristic Variables Extraction 

In order to evaluate the performance of the proposed algorithm, the variables selected for the 

IVPA method are shown in Figure 6. 
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Figure 6. The selected variables by IVPA. 

As can be seen from the figure, IVPA selects fewer variables, and the selected variables cover 

the main region of the absorption peak of iso-butane. Using the spectra of five alkane gases with a 

concentration of 0.05% as input variables, a model was established to predict the concentrations of 

the five gases according to the variables selected by the IVPA method.  The prediction results are 

shown in Table 1. The table indicates that IVPA shows the highest cross-sensitivity to n-butane, which 

is attributed to the similar molecular structures of n-butane and iso-butane, resulting in similar 

absorption spectral shapes. On the contrary, since the minimum absorbance of methane is less than 

300 cm⁻¹, the cross-sensitivity to methane is relatively low. The variables selected by the IVPA method 

are mainly within the range of less than 300 cm⁻¹. It is worth noting that IVPA has the most accurate 

prediction for iso-butane, with a maximum cross-sensitivity of 1.02% and a minimum cross-

sensitivity of 0.11% for the other four gases. These results indicate that this method can effectively 

extract and analyze variables with significant spectral overlap. 

Table 1. The prediction results of alkane gases with concentration of 500ppm by IVPA methods. 

evaluation index gas composition 

Predicted concentration  methane ethane propane n-butane iso-butane 

Predicted 

concentration(ppm) 
-0.54 3.08 -1.84 -5.09 497.43 

cross sensitivity(%) 0.11 0.62 0.37 1.02 − 

4.3. Quantitative Analysis Model of Gases with Distinct Absorption Peaks 

For gases with distinct absorption peaks, such as carbon monoxide, carbon dioxide, sulfur 

hexafluoride, ethylene, acetylene, and propylene, the distinct absorption peaks and troughs are 

selected for quantitative analysis. The absorbance spectra of the six gases are shown in Figure 7. In 

the figure, the concentration of sulfur hexafluoride is 0.05%, the concentration of carbon monoxide is 

0.7%, the concentration of carbon dioxide is 0.5%, and the concentration of the other three gases is 

0.3%. 
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Figure 7. Infrared spectra of six gases. 

It can be seen from Figure 7 that distinct absorption peaks can be found for all six gases. It can 

also be seen that when SF₆ approaches 1000 cm⁻¹, the absorbance value is the largest. At the same 

concentration, the absorption coefficient of SF₆ is one order of magnitude larger than that of the other 

five gases. Therefore, among the six gases, the detection limit of SF₆ is the lowest. However, the 

absorption spectrum of SF₆ overlaps with C2H4 and C3H6 near 1000 cm⁻⁶. Fortunately, SF₆ can find 

a relatively strong absorption peak at 614 cm⁻¹. Therefore, the absorbance value at 614 cm⁻¹ is selected 

as the characteristic variable of SF₆. Taking SF₆ as an example, six quantitative methods for gases with 

distinct absorption peaks are introduced. Three spectral lines at the trough of the distinct absorption 

peak of SF₆ at 614 were selected as shown in Figure 8. 

 

Figure 8. Schematic diagram of SF6 infrared spectrum variable selection. 

As can be seen from Figure 7, the selected three spectral lines are exactly equally spaced, so the 

characteristic variable expression of SF6 is obtained as follows: 

6SF 614 618 614 610( ) ( )f A A A A= − + −
  (3) 
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In the formula, among them, A represents the absorbance. The subscript of A is wavenumber. 

For example, A614 represents the absorbance value when the wavenumber is 614 cm⁻¹. It can be seen 

from Equation (3) that the selected characteristic variables will not be affected by drift phenomena 

such as baseline horizontal translation and linear tilting, further improving the stability of the system. 

This is because the distances between the three selected spectral lines are equal. When the baseline 

moves or tilts, the first term and the second term in Equation (3) have opposite signs and equal 

amplitudes, which can cancel each other out. If the distances between the three selected spectral lines 

are not equal, the selected spectral lines are 610, 614, and 616 cm⁻¹, respectively. The following 

expression can be constructed: 

6SF 614 610 614 616( ) 2 ( )f A A A A= − +  −  (4) 

To verify the performance of the eigenvariables selected for SF6, the spectra of 11 target gases 

with a concentration of 0.05% were substituted into Eq. (4) to obtain the vectors for each concentration: 

[-0.00024, -0.00009, -0.00001, -0.00017, -0.00004, 0.00033, -0.00022, -0.00025, 0.00004, -0.00016, 0.0676]. 

The corresponding gases are methane, ethane, propane, n-butane, iso-butane, carbon monoxide, 

carbon dioxide, ethylene, acetylene, propylene, and sulfur hexafluoride, respectively. It can be seen 

that the characteristic variable of SF6 has the highest sensitivity to carbon monoxide, which is 0.49%. 

The maximum cross-sensitivity of SF6 to the other 10 gases is less than 0.5%, which indicates that the 

cross-sensitivity of the selected characteristic quantity to other gases is low, so this characteristic 

quantity can be selected to analyze SF6. Meanwhile, the spectra of ten single-component SF6 with 

volume percentage concentrations of 0.0005%, 0.001%, 0.002%, 0.005%, 0.01%, 0.02%, 0.05%, 0.1%, 0.2% 

and 0.5% were substituted into formula (4), and the corresponding eigenvalue vectors were obtained 

as 0.00085, 0.0017, 0.0034, 0.0082, 0.0160, 0.0307, 0.0676, 0.1127, 0.1811, and 0.2246. At this point, curve-

fitting methods such as spline fitting, polynomial fitting, etc. can be used to obtain the function 

between the characteristic quantity and concentration. 

Figure 9 shows the results of fitting characteristic quantity and concentration by three methods. 

It can be seen that the fourth-order polynomial and cubic spline function can be very good curve 

fitting, but the results obtained by quadratic polynomial fitting are worse than those of the fourth-

order polynomial and cubic spline function. Therefore, a polynomial of degree 4 was chosen for 

quantitative analysis of SF6, and its polynomial function expression of degree 4 is as follows: 

6 6 6 6 6

4 3 2

sf sf sf sf sf80.75 24.38 5.168 0.4881 0.0003962c f f f f= − + + +
  

（5） 

 

Figure 9. Fitting diagram of SF6 characteristic quantities. 

The spectrum of the unknown gas is used to extract the characteristic quantity using equation 

(3), and then the SF6 concentration can be obtained by substituting the characteristic quantity into 
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equation (5). In addition, in the actual analysis, the corresponding concentration information can be 

obtained according to the characteristic quantity of each gas, and then the obtained characteristic 

quantity is subtracted from the product of cross sensitivity and gas concentration (i.e., the 

compensation method), and then the compensated characteristic quantity is substituted into Eqn(5), 

which can obtain a more accurate analysis result. The repeatability test results for gases with distinct 

absorption peaks are shown in Table 2. 

Table 2. Repeatability test results of analyzer (()×10-6). 

Numb

er of 

measur

ements 

Carbon dioxide Carbon monoxide Ethylene Acetylene Sulphur hexafluoride 

20000 101.5 500 5 10.1 

1 21450.6 89.2 499.7 4.1 9.8 

2 21465.0 90.0 500.0 4.2 9.5 

3 21641.8 91.9 496.1 3.8 10.0 

4 21533.9 94.4 500.3 3.9 9.5 

5 21368.6 93.8 502.1 4.0 9.8 

6 21456.7 89.1 500.2 3.9 9.7 

7 21517.7 93.4 501.6 4.0 9.6 

8 21504.3 92.8 502.3 4.2 9.9 

9 21472.6 91.7 499.9 3.8 9.7 

10 21389.1 92.5 501.4 4.1 9.6 

Avera

ge 

value 

21480.0 91.9 500.4 4.0 9.7 

Standa

rd 

deviati

on 

77.07 1.89 1.78 0.14 0.17 

RSD

（%） 
0.36 2.05 0.35 3.54 1.71 

Error 

of 

indicat

ion 

+7.4% -0.01‰F.S. +0.72%  -0.33‰F.S. -0.13‰F.S. 

RSD: relative standard deviation. 

4.3. Quantitative Analysis of Gases with Severe Spectral Overlap 

For gases with severe spectral overlap, such as methane, ethane, propane, iso-butane, and n-

butane alkane gases, their spectral data were first feature-selected using the variable selection method 

mentioned in Section 2.2, and then the selected variables were modeled and analyzed using four 

methods, namely, PLS, BPNN, SVM, and LSSVM, respectively, and a model with the best prediction 

performance was selected from them.  The results of the gas repeatability test for spectral overlap 

are shown in Table 3. 

Table 3. Repeatability test results of analyzer (()×10-6). 

Number of 

measurements 

Methane  ethane   propane   n-butane  isobutane 

10000 1001.2 1000 100 100 

1 9851.2 931.3 1041.5 87.6 90.8 

2 9845.5 934.1 1048.7 91.1 94.9 

3 9856.3 926.6 1055.2 89.3 96.1 

4 9851.2 931.2 1054.4 88.6 93.0 

5 9852.4 925.5 1064.6 94.2 92.6 

6 9856.9 923.3 1045.1 90.5 95.1 

7 9843.8 927.8 1047.3 87.4 96.3 

8 9847.0 924.9 1052.5 91.8 95.5 

9 9854.1 931.5 1043.8 89.7 91.9 
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10 9855.7 932.6 1049.3 91.0 89.4 

Average value 9851.4 929.9 1050.2 90.1 92.8 

Standard deviation 4.63 3.37 6.74 2.06 2.21 

RSD（%） 0.05 0.36 0.64 2.29 2.38 

Error of indication -0.15‰F.S. -7.1%  +5.0% -2.0‰F.S. -1.4‰F.S. 

RSD: relative standard deviation. 

As can be seen from Tables 2 and 3, when the gas concentration is low, the relative standard 

deviation value obtained by the analyzer is relatively large; for example, when the content of 

acetylene is 0.0005% in the standard gas, the calculated relative standard deviation reaches 3.54%. 

This is because when the gas concentration is low, the average concentration of the gas obtained will 

also be very low, and the relative standard deviation is the ratio of the standard deviation to the 

average value, so the relative standard deviation will be larger when the concentration of the gas is 

measured at a lower level.  The relative standard deviation will be larger for lower gases. It can also 

be seen that the standard deviation of the 10 gases is less than 10 ppm except for carbon dioxide. The 

standard deviation for carbon dioxide is 77.07 ppm. This is because the standard gas has the highest 

concentration of carbon dioxide at 20,000 ppm (2%). 77.07 ppm is a very small value in relation to 

20,000 ppm, and the relative standard deviation of carbon dioxide is only 0.36%. Thus, these test 

results indicate excellent repeatability performance of the analyzer. In addition, the errors in the 

indicated values of the 10 characteristic gases were calculated, and it can be seen that the quoted 

errors of the 10 characteristic gases are less than 3‰, while the relative errors are less than 10 percent. 

5. Conclusion 

When using Fourier Transform Infrared (FTIR) spectroscopy to quantitatively analyze alkane 

gases, the large variety of analytes and severe spectral overlap limit the accuracy and computational 

efficiency of the quantitative analysis results significantly. Based on the types of gases found in coal 

mines and their infrared spectral distribution characteristics, this paper proposes a quantitative 

analysis method for coal mine gases. The method was validated using standard gases, and the 

experimental results show that it can effectively extract variables from severely overlapping spectra, 

demonstrating practical application value. 

5. Conclusion 

In this study, the origins of the spectral baseline drift and distortion were analyzed and 

simulated using MATLAB. The results show that when the light source temperature and moving 

mirror tilt angle changed constantly, the spectral baseline drifted, whereas when they changed 

randomly, the spectral baseline was distorted. The change in reflectance of the beam splitter caused 

the baseline to shift upward or downward. The change in laser wavelength and the missing 

interference signal also caused the baseline distortion. To address the problem of spectral baseline 

drift, a baseline correction method based on BTM was also proposed. The results of experiments 

performed on the methane spectrum confirm that the proposed method outperformed the improved 

modified multi-polynomial fitting and IA methods. An identification and treatment approach based 

on the shape and distribution of the baseline has been reported in our previous work to address the 

problem of spectral baseline distortion [19].  
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