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Abstract: In this paper, we will give an approximate result to Riemann hypothesis.

Keywords: Riemann; zeta-function; Riemann hypothesis

1. Introduction
Riemann zeta-function ζ(s) is originally defined as

ζ(s) =
∞

∑
n=1

1
ns , for Re s > 1.

and it also can be expressed as the product form

ζ(s) = ∏
p

1
1 − 1/ps , for Re s > 1.

This formula is called Euler’s product formula, which indicates the relation between ζ(s) and prime
numbers. About ζ(s) there is a well-known Riemann hypothesis, states that all the non-trivial zeros
of ζ(s) are on the critical line Re s = 1/2. The researches on the conjecture are no doubt a most
time-consuming one in mathematics, refer to see the survey paper [3].

The so-called trivial zeros of ζ(s) are s = −2,−4, · · · , and nontrivial zeros of ζ(s) are known all
in the critical strip 0 ≤ Re s ≤ 1.

Denote by N(T) and N0(T) respectively as the numbers of zeros of ζ(σ + it) in the region
0 ≤ σ ≤ 1, 0 ≤ t ≤ T, and on the critical line σ = 1/2, 0 ≤ t ≤ T. Riemann hypothesis is that

N0(T) = N(T).

For N(T), it is known that

N(T) =
T

2π
log

T
2π

− T
2π

+ O(log T). (1.1)

And for N0(T), Hardy firstly shown that there are infinity many zeros on the critical line, and then he
and Littlewood [5] and Selberg [8] proved that

κ =
N0(T)
N(T)

> 0.

Levinson [6] proved

κ ≥ 1
3

.

and then this result has been improved successively. Conrey [2], Feng [4] proved respectively

κ ≥ 0.407, κ ≥ 0.412.

In this paper, we will prove that

Theorem 1.
N(T) = N0(T) + E . (1.2)
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where E ≪ T7/9 log2 T.

The main arguments in this paper are based the papers [1,6,7], but instead of using Riemann-Siegel
formula, it will be applied an auxiliary function ω(s, T1, T2) defined in Lemma 1, which will play a
role of mollifier and ferry, it firstly used in [7] but here with a small modification.

2. Some Lemmas
Lemma 1. Suppose that T ≤ T1 ≤ T2 ≤ 2T, λ = T14/9,s1 = λ + c + iu, (c > 0), s = v + it,define

ω(s, T1, T2) =
eλ

2πi

∫ T2

T1

Γ(s1 − s)λs−s1 ds1. (2.1)

Let σ = λ + c − v, there is
|ω(s, T1, T2)| ≤ O

(
e−(c−v)2/σ

)
(2.2)

Let ∆ = (20λ log T)1/2, if t ∈ [T1 + ∆, T2 − ∆], then

|ω(c + it, T1, T2)− 1| ≪ T−10. (2.3)

And if t ≤ T1 − ∆, or t ≥ T2 + ∆, then

|ω(c + it, T1, T2)| ≪ T−10. (2.4)

If |t − u| = o(σ2/3), then

arg(Γ(s1 − s)λs−s1) =
t − u

2σ
− (t − u)3

6σ2 + ϵ. (2.5)

Proof. By Stirling’s formula, it has

Re(log Γ(σ + (u − t)i)) =
(

σ − 1
2

)
log(σ2 + (u − t)2)

2
− σ +

1
2

log(2π)

− (u − t) arctan
(

u − t
σ

)
+ O(1/σ)

And

Re(log(Γ(σ + (u − t)i))) + Re(log(λ−(σ+(u−t)i))) + λ

= − (c − v)2

σ
− (u − t)2

4σ2 − (u − t)2

2σ
− 1

2
log σ +

1
2

log(2π) + O(1/σ)

Hence,

|ω(s, T1, T2)| ≤ e−(c−v)2/σ σ−1/2
√

2π

∫ T2

T1

exp(−(u − t)2/σ)du ≪ e−(c−v)2/σ.

Besides, it is familiar that

e−λ =
1

2πi

∫
(c)

Γ(s1 − s)λs−s1 ds.

Hence,
1 − ω(c + it, T1, T2) = R1 + R2,

where

R1 =
eλ

2π

∫ ∞

T2

Γ(λ + (u − t)i)λ−(λ+(u−t)i)du,
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R2 =
eλ

2π

∫ T1

−∞
Γ(λ + (u − t)i)λ−(λ+(u−t)i)du,

Hence, if t ∈ [T1 + ∆, T2 − ∆], then

|R1| ≪
∫ ∞

T2

∣∣∣eλΓ(λ + (u − t)i)λ−(λ+(u−t)i)
∣∣∣du

≪ λ−1/2
∫ ∞

T2

exp(−(u − t)2/2λ)du

≪ T−10.

and similarly

|R2| ≪ λ−1/2
∫ T1

−∞
exp(−(u − t)2/2λ)du ≪ T−10.

if t ≤ T1 − ∆, or t ≥ T2 + ∆, then

|ω(c + it, T1, T2)| ≪ λ−1/2
∫ T2

T1

exp(−(u − t)2/2λ)du ≪ T−10.

If |t − u| = o(σ2/3), then

Im(log( (s1 − s)˘s−s1)) =
t − u

2σ
+

(t − u)3

3σ2 − (t − u)3

2σ2

− (t − u)5

5σ4 +
(t − u)5

4σ4 + ϵ

=
t − u

2σ
− (t − u)3

6σ2 +
(t − u)5

20σ4 + ϵ.

Lemma 2. Let ζ1(s), ζ2(s) be ζ(s) or ζ ′(s) and

ζ1(s) = ∑
n

ann−s, f or Re s > 1,

ζ2(s) = ∑
n

bnn−s, f or Re s > 1.

Let 0 < a < 1/2, λ same as in Lemma 1, let s1 = λ + c + iu, c ≥ 0, define

g(u) =
eλ

2πi

∫
(a)

Γ(s1 − s)λ−s1+sζ1(s)ζ2(s)ds (2.6)

Then for T ≤ u ≤ 2T, 1 < β < λ + c, there is

g(u) = eλ
∞

∑
h=1

∞

∑
k=1

akbh

h2β

(
h
k

)s1

e−λh/k + O(T−10). (2.7)

Proof. We move the integral path from (a) to (β), the residue at the pole s = 1 is

R ≪ eλΓ(λ + c − 1 + iu)λ−(λ+c−1+iu) ≪ T−10

Hence,
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g(u) =
∞

∑
h=1

∞

∑
k=1

akbh

kβhβ

eλ

2πi

∫
(β)

Γ(s1 − s)λ−s1+s
(

h
k

)it
ds + O(T−10)

=
∞

∑
h=1

∞

∑
k=1

akbh

h2β

eλ

2πi

∫
(β)

Γ(s1 − s)λ−s1+s
(

h
k

)s
ds + O(T−10)

=
∞

∑
h=1

∞

∑
k=1

akbh

h2β

eλ

2πi

∫
(λ+c−β)

Γ(w)λ−w
(

h
k

)s1−w
dw + O(T−10)

= eλ
∞

∑
h=1

∞

∑
k=1

akbh

h2β

(
h
k

)s1

e−λh/k + O(T−10).

Lemma 3. Let θ = (20 log T/λ)1/2, λ as before, 0 ≤ c ≤ ∆/10, then

J1 =
∫ ∞

1+θ
eλvλ+ce−λvdv ≪ T−8λ−1/2, (2.8)

J2 =
∫ 1−θ

0
eλvλ+ce−λvdv ≪ T−10. (2.9)

Proof. For (2.6), by the integration by parts

J1 =− eλvλ+ce−λv

λ

∣∣∣∣∞
1+θ

+
λ + c

λ

∫ ∞

1+θ
eλvλ+c−1e−λvdv

≤
exp

(
−2θ2λ/5

)
λ

+ (1 + θ/10)
J1

1 + θ

That is,
9

10
θλ

1 + θ
J1 ≤ exp(−2θ2λ/5) ≤ T−8

and
J1 ≤ T−8λ−1/2.

For (2.7),
J2 ≤ eλ(1 − θ)λe−λ(1−θ) ≤ exp(−θ2λ/2) ≤ T−10.

3. The Proof of Theorem 1
Proof. Let h(s) = π−s/2Γ(s/2), then the functional equation of ζ(s) can be written as

h(s)ζ(s) = h(1 − s)ζ(1 − s) (3.1)

By Stirling’s formula, it has

log h(s) =
1
2
(s − 1) log

s
2π

− s
2
+ C0 + O

(
1
s

)
(3.2)

Let f (s) = log h(s), then

f ′(s) =
h′(s)
h(s)

=
1
2

log
s

2π
+ O

(
1
s

)
(3.3)
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and for larger t

f ′(s) + f ′(1 − s) = log
t

2π
+ O

(
1
s

)
(3.4)

Taking logarithm of Equation (3.1), and then derivative, it follows

h(s)ζ(s)( f ′(s) + f ′(1 − s)) = −h(s)ζ ′(s)− h(1 − s)ζ ′(1 − s) (3.5)

We note that the right side of (3.5) is a sum of two conjugative complex numbers as s = 1/2 + it, so the
zeros of the right side of (3.5) occur if and only if

arg(h(s)ζ ′(s)) ≡ π/2 mod π (3.6)

On the left side of (3.5), clearly, h(s) is never zero, and by (3.4), so these zeros are just the zeros of
ζ(1/2 + it).

Moreover, let χ(s) = h(1 − s)/h(s), then ζ(s) = χ(s)ζ(1 − s), and

ζ ′(s) = −χ(s){( f ′(s) + f ′(1 − s))ζ(1 − s) + ζ ′(1 − s)} (3.7)

By (3.6), the zeros of ζ(1/2 + it) are the ones

arg(h(1 − s){( f ′(s) + f ′(1 − s))ζ(1 − s) + ζ ′(1 − s)}) ≡ π/2 mod π

on σ = 1/2, equivalently,

arg(h(s){( f ′(s) + f ′(1 − s))ζ(s) + ζ ′(s)}) ≡ π/2 mod π (3.8)

on σ = 1/2. Write L(s) = f ′(s) + f ′(1 − s), and denote by

G(s) = ζ(s) + ζ ′(s)/L(s) (3.9)

The investigation above means

N0(T) =
1
π

∆T
0 arg(hG(1/2 + it)) (3.10)

By(3.2), it can be known that

∆T
0 arg(h(1/2 + it)) =

T
2

log
T

2π
− T

2
+ O(log T) (3.11)

So, the main task to determine N0(T) is to evaluate ∆T
0 arg(G(1/2 + it)).

Take L = log(T/2π), U ≤ T.
Let D be the rectangle with the vertices 1/2 + iT, 3 + iT, 3 + i(T + U), 1/2 + i(T + U). First of

all, we might as well assume there are no zeros of G(s) on the boundary of D, then by the theory of
complex function, the change of arg G(s) around D is equal to 2π times NG(D), the number of zeros
of G(s) in D.

On the right side of D

|G(3 + it)− 1| ≤ ∑
n≥2

n3 + O(1/L) ≤ 1/3

so, arg G(s) change less than π. Moreover, by a known result [9, §9.4], a extension of Jessen’s theorem,
we can know that on the lower bound and the upper bound arg G(s) = O(L). Hence

∆T
0 arg(G(1/2 + it)) = −2πNG(D) + O(log T) (3.12)
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Now the work is turned into to evaluate NG(D).
Take a = 1/2− 1/L, and let D be the rectangle with vertices a + iT, c + iT, c + i(T +U), a + i(T +

U), taking the integral
∫
D

log G(s)ds, by the Littlewood’s Lemma [9, §9.9], it has

∫ T+U

T
log |G(a + it)|dt −

∫ T+U

T
log |G(3 + it)|dt +

∫ c

a
arg G(σ + i(T + U))dσ

−
∫ c

a
arg G(σ + iT)dσ = 2π ∑ dist (3.13)

where ∑ dist is the sum of the distances of the zeros of G(s) from the left. As in the situation of D and
take account on the order of G(s), we can know∫ c

a
arg G(σ + iT)dσ,

∫ c

a
arg G(σ + i(T + U))dσ ≪ O(L) (3.14)

In addition, by (3.9), it is easy to know

∫ T+U

T
log G(c + it)dt =

∫ T+U

T
log ζ(c + it)dt + O(1/L)

and it is familiar that

log ζ(s) = ∑
n

−Λ(n)
ns log n

So ∫ T+U

T
log |G(c + it)|dt ≪ 1.

The rest is to calculate the first integral of (3.13).
By the concavity of logarithm, it has

∫ T+U

T
log |G(a + it)|dt =

1
2

∫ T+U

T
log |G(a + it)|2dt

≤ 1
2

U log
(

1
U

∫ T+U

T
|G(a + it)|2dt

)
(3.15)

At first, we simplify G(s) as

G0(s) = ζ(s) +
ζ ′(s)

L
. (3.16)

Then
G(s) = G0(s) + E(s).

E(s) =
(

1
L(s) −

1
L

)
ζ ′(s) ≪ 1

L3 ζ ′(s).

And

∫ T2

T1

|G(a + it)|2dt =
∫ T2

T1

|G0(a + it)|2dt + 2Re
∫ T2

T1

G0(a + it)E(a − it)dt

+
∫ T2

T1

|E(a + it)|2dt

By Cauchy inequality

∫ T2

T1

G0(a + it)E(a − it)dt ≤
(∫ T2

T1

|G0(a + it)|2dt
∫ T2

T1

|E(a + it)|2dt
)1/2
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The third integral in the right side of (3.16) is much smaller than the first one, which will be actually
calculated later, hence ∫ T2

T1

|G(a + it)|2dt = (1 + ϵ)
∫ T2

T1

|G0(a + it)|2dt.

Moreover, let
ω1(s, T1, T2) = ω1/2(s, T1, T2).

By (2.5), we can know that on the upper bound and the lower bound of D , there is

arg(ω1(s, T1 − ∆, T2 + ∆)) ≤ O(T3/λ2) (3.17)

and ∫ c

a
arg(ω1(v + Tji, T1 − ∆, T2 + ∆))dv ≤ O(cT−1/9), (j = 1, 2). (3.18)

It is assumed that c ≤ ∆/10.
Moreover, by Lemma 1,

∫ T2

T1

log |ω1(c + it, T1 − ∆, T2 + ∆)|dt ≪ T−9. (3.19)

This means that the function ω1(s, T1 − ∆, T2 + ∆) may be viewed as a mollifier. Let

G(s) = G0(s)ω1(s, T1 − ∆, T2 + ∆).

By (2.5),

∫ T2

T1

|G(s)|2d =
∫ T2

T1

|G0(s)|2|ω1(s, T1 − ∆, T2 + ∆)|2dt

=
∫ T2

T1

|G0(s)|2|ω(s, T1 − ∆, T2 + ∆)|dt

≤ (1 + O(T−2/9))
∫ T2

T1

|G0(s)|2ω(s, T1 − ∆, T2 + ∆)dt (3.20)

In the next is mainly to calculate the last integral.
By Lemma 1, it has

∫ T2

T1

ω(a + it, T1 − ∆, T2 + ∆)|G0(a + it)|2dt

=
eλ

2π

∫ T2

T1

∫ T2+∆

T1−∆
Γ(s1 − (a + it))λ−(s1−(a+it))du|G0(a + it)|2dt

=
eλ

2π

∫ T2+∆

T1−∆

∫ T2

T1

Γ(s1 − (a + it))λ−(s1−(a+it))|G0(a + it)|2dtdu

≤ eλ

2π

∫ T2+∆

T1−∆

∫ ∞

−∞
Γ(s1 − (a + it))λ−(s1−(a+it))|G0(a + it)|2dtdu + o(1)

= I11 + I12 + I21 + I22 + o(1).
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where

I11 =
eλ

2π

∫ T2+∆

T1−∆

∫ ∞

−∞
Γ(s1 − (a + it))λ−(s1−(a+it))|ζ(a + it)|2dtdu

I12 =
eλ

2πL

∫ T2+∆

T1−∆

∫ ∞

−∞
Γ(s1 − (a + it))λ−(s1−(a+it))ζ(a + it)ζ ′(a − it)dtdu

I21 =
eλ

2πL

∫ T2+∆

T1−∆

∫ ∞

−∞
Γ(s1 − (a + it))λ−(s1−(a+it))ζ(a − it)ζ ′(a + it)dtdu

I22 =
eλ

2πL2

∫ T2+∆

T1−∆

∫ ∞

−∞
Γ(s1 − (a + it))λ−(s1−(a+it))|ζ ′(a + it)|2dtdu.

In the following specify T1 = T, T2 = T + U. We first calculate I11, by Lemma 2

I11 = eλ
∫ T2+∆

T1−∆
∑
j1,j2

1

j2β
2

ρs1 exp(−λρ)du, ρ = j2/j1.

= I11,0 + I11,1 + I11,2 + I11,3.

where

I11,0 = ∑
j1=j2

eλ

j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du,

I11,1 = ∑
ρ≥1+θ

eλ

j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du

I11,2 = ∑
ρ≤1−θ

eλ

j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du

I11,3 = ∑
1−θ≤ρ≤1+θ

j1 ̸=j2

eλ

j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du.

Clearly

I11,0 = (U + 2∆)∑
j2

1

j2β
2

= c11(U + 2∆).

By Lemma 3,

I11,1 ≪ ∑
j2

θ−1

j2β
2

∑
j2/j1≥1+θ

eλ

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ ∑
j2

θ−1

j2β
2

∫ j2/(1+θ)

1
eλ

(
j2
x

)λ+c
exp(−λj2/x)dx

≪ ∑
j2

θ−1

j2β
2

∫ j2

1+θ
eλvλ+c−2 exp(−λv)dv

≪ ∑
j2

θ−1

j2β
2

∫ ∞

1+θ
eλvλ+c−2 exp(−λv)dv

≪ ∑
j2

θ−1

j2β
2

T−8λ−1/2 ≪ T−8.
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I11,2 ≪ ∑
j2

θ−1

j2β
2

∑
j2/j1≤1−θ

eλ

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ ∑
j2

θ−1

j2β
2

∫ ∞

j2/(1−θ)
eλ

(
j2
x

)λ+c
exp(−λj2/x)dx

≪ ∑
j2

θ−1

j2β
2

∫ 1−θ

0
eλvλ+c−2 exp(−λv)dv

≪ ∑
j2

θ−1

j2β
2

eλ(1 − θ)λ+c−2 exp(−λ(1 − θ)).

≪ ∑
j2

θ−1

j2β
2

T−10 ≪ T−9

And

I11,3 ≪ (U + 2∆)∑
j2

1

j2β
2

∑
1−θ≤ρ≤1+θ

j1 ̸=j2

eλ

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ (U + 2∆) ∑
j2≥1/θ

1

j2β
2

(
j2

1 − θ
− j2

1 + θ

)
T1/5

≪ (U + 2∆) ∑
j2≥1/θ

2θ

j2β−1
2 (1 − θ2)

T1/5

≪ (U + 2∆)θ2β−1T1/5 ≪ T−10, (β ≥ 10 log T).

For I12, by Lemma 2

I12 =
1
L

eλ
∫ T2+∆

T1−∆
∑
j1,j2

− log j2
j2β
2

ρs1 exp(−λρ)du

= I12,0 + I12,1 + I12,2 + I12,3.

where

I12,0 =
1
L ∑

j1=j2

−eλ log j2
j2c
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du,

I12,1 =
1
L ∑

ρ≥1+θ

−eλ log j2
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du

I12,2 =
1
L ∑

ρ≤1−θ

−eλ log j2
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du

I12,3 =
1
L ∑

1−θ≤ρ≤1+θ
j1 ̸=j2

−eλ log j2
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du.

Clearly,

I12,0 = (U + 2∆)
1
L ∑

j2

− log j2
j2β
2

= c12(U + 2∆).
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By Lemma 3

I12,1 ≪ 1
L ∑

j2

θ−1 log j2
j2β
2

∑
j2/j1≥1+θ

eλ

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

∫ j2/(1+θ)

1
eλ

(
j2
x

)λ+c
exp(−λj2/x)dx

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

∫ j2

1+θ
eλvλ+c−2 exp(−λv)dv

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

∫ ∞

1+θ
eλvλ+c−2 exp(−λv)dv

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

T−8λ−1/2 ≪ T−8.

and

I12,2 ≪ ∑
j2

θ−1 log j2
j2β
2

∑
j2/j1≤1−θ

eλ

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

∫ ∞

j2/(1−θ)
eλ

(
j2
x

)λ+c
exp(−λj2/x)dx

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

∫ 1−θ

0
eλvλ+c−2 exp(−λv)dv

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

eλ(1 − θ)λ+c−2 exp(−λ(1 − θ))

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

T−10 ≪ T−9.

and

I12,3 ≪ 1
L
(U + 2∆)∑

j2

1

j2β
2

∑
1−θ≤ρ≤1+θ

j1 ̸=j2

eλ log j2

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L
(U + 2∆) ∑

j2≥1/θ

log j2
j2β
2

(
j2

1 − θ
− j2

1 + θ

)
T1/5

≪ 1
L
(U + 2∆) ∑

j2≥1/θ

2θ log j2
j2β−1
2 (1 − θ2)

T1/5

≪ (U + 2∆)θ2β−1T1/5 ≪ T−10.

For I21, by Lemma 2

I21 =
1
L

eλ
∫ T2+∆

T1−∆
∑
j1,j2

− log j1
j2β
2

ρs1 exp(−λρ)du

= I21,0 + I21,1 + I21,2 + I21,3,
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where

I21,0 =
1
L ∑

j1=j2

−eλ log j1
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du,

I21,1 =
1
L ∑

ρ≥1+θ

−eλ log j1
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du

I21,2 =
1
L ∑

ρ≤1−θ

−eλ log j1
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du

I21,3 =
1
L ∑

1−θ≤ρ≤1+θ
j1 ̸=j2

−eλ log j1
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du.

Clearly,

I21,0 = (U + 2∆)
1
L ∑

j2

− log j2
j2β
2

= c21(U + 2∆)

By Lemma 3

I21,1 ≪ 1
L ∑

j2

θ−1

j2β
2

∑
j2/j1≥1+θ

eλ log j1

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L ∑

j2

θ−1

j2β
2

∫ j2/(1+θ)

1
eλ log x

(
j2
x

)λ+a
exp(−λj2/x)dx

≪ 1
L ∑

j2

θ−1

j2β
2

∫ j2

1+θ
eλ log(j2/v)vλ+c−2 exp(−λv)dv

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

∫ ∞

1+θ
eλvλ+c−2 exp(−λv)dv

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

T−8λ−1/2 ≪ T−8.

and

I21,2 ≪ ∑
j2

θ−1

j2β
2

∑
j2/j1≤1−θ

eλ log j1

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L ∑

j2

θ−1

j2β
2

∫ ∞

j2/(1−θ)
eλ log x

(
j2
x

)λ+c
exp(−λj2/x)dx

≪ 1
L ∑

j2

θ−1

j2β
2

∫ 1−θ

0
eλ log(j2/v)vλ+c−2 exp(−λv)dv

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

eλ(1 − θ)λ+c−2 exp(−λ(1 − θ))

≪ 1
L ∑

j2

θ−1 log j2
j2β
2

T−10 ≪ T−9.
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and

I21,3 ≪ 1
L
(U + 2∆)∑

j2

1

j2β
2

∑
1−θ≤ρ≤1+θ

j1 ̸=j2

eλ log j1

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L
(U + 2∆) ∑

j2≥1/θ

log j2
j2β
2

(
j2

1 − θ
− j2

1 + θ

)
T1/5

≪ 1
L
(U + 2∆) ∑

j2≥1/θ

2θ log j2
j2β−1
2 (1 − θ2)

T1/5

≪ (U + 2∆)θ2β−1T1/5 ≪ T−10.

For I22, by Lemma 2

I22 =
1
L2 eλ

∫ T2+∆

T1−∆
∑
j1,j2

log j1 log j2
j2β
2

ρs1 exp(−λρ)du

= I22,0 + I22,1 + I22,2 + I22,3,

where

I22,0 =
1
L2 ∑

j1=j2

eλ log j1 log j2
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du,

I22,1 =
1
L2 ∑

ρ≥1+θ

eλ log j1 log j2
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du

I22,2 =
1
L2 ∑

ρ≤1−θ

eλ log j1 log j2
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du

I22,3 =
1
L2 ∑

1−θ≤ρ≤1+θ
j1 ̸=j2

eλ log j1 log j2
j2β
2

∫ T2+∆

T1−∆
ρs1 exp(−λρ)du.

Clearly,

I22,0 = (U + 2∆)
1
L2 ∑

j2

log2 j2
j2β
2

= c22(U + 2∆).

By Lemma 3

I22,1 ≪ 1
L2 ∑

j2

θ−1 log j2
j2β
2

∑
j2/j1≥1+θ

eλ log j1

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L2 ∑

j2

θ−1 log j2
j2β
2

∫ j2/(1+θ)

1
eλ log x

(
j2
x

)λ+c
exp(−λj2/x)dx

≪ 1
L2 ∑

j2

θ−1 log j2
j2β
2

∫ j2

1+θ
eλ log(j2/v)vλ+c−2 exp(−λv)dv

≪ 1
L2 ∑

j2

θ−1 log2 j2
j2β
2

∫ ∞

1+θ
eλvλ+c−2 exp(−λv)dv

≪ 1
L2 ∑

j2

θ−1 log2 j2
j2β
2

T−8λ−1/2 ≪ T−8.
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and

I22,2 ≪ 1
L2 ∑

j2

θ−1 log j2
j2β
2

∑
j2/j1≤1−θ

eλ log j1

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L2 ∑

j2

θ−1 log j2
j2β
2

∫ ∞

j2/(1−θ)
eλ log x

(
j2
x

)λ+c
exp(−λj2/x)dx

≪ 1
L2 ∑

j2

θ−1 log j2
j2β
2

∫ 1−θ

0
eλ log(j2/v)vλ+c−2 exp(−λv)dv

≪ 1
L2 ∑

j2

θ−1 log2 j2
j2β
2

eλ(1 − θ)λ+c−2 exp(−λ(1 − θ))

≪ 1
L2 ∑

j2

θ−1 log2 j2
j2β
2

T−10 ≪ T−9.

and

I22,3 ≪ 1
L2 (U + 2∆)∑

j2

log j2
j2β
2

∑
1−θ≤ρ≤1+θ

j1 ̸=j2

eλ log j1

(
j2
j1

)λ+c
exp(−λj2/j1)

≪ 1
L2 (U + 2∆) ∑

j2≥1/θ

log2 j2
j2β
2

(
j2

1 − θ
− j2

1 + θ

)
T1/5

≪ 1
L2 (U + 2∆) ∑

j2≥1/θ

2θ log2 j2
j2β−1
2 (1 − θ2)

T1/5

≪ (U + 2∆)θ2β−1T1/5 ≪ T−10.

Combining all the evaluations above, and recall (3.20), it follows

∫ T+U

T
|G(a + it)|2dt = c0(U + 2∆)(1 + O(T−2/9)) + o(1).

where

c0 = c11 + c12 + c21 + c22

= 1 +
∞

∑
j=2

(1 − log j/L)2

j2β

= 1 + O(T−10). (β ≥ 10 log T)

Let U = T, by (3.15),

∫ T+U

T
log |G(a + it)|dt ≤ T

2
log

(
1 +

2∆
T

)
+

T
2

log(1 + O(T−2/9)) + ϵ

≤ ∆ + O(T7/9). (3.21)

By (3.13), (3.14), (3.18),(3.19) and (3.21), and recall that a = 1/2 − 1/L, it follows

2πNG(D) ≤ ∆ + O(T7/9) + O(cT−1/9) + O(L2)

1/2 − a
≪ T7/9 log2 T.

i.e.
∆T

2T arg G(1/2 + it) ≤ O(T7/9 log2 T).
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and
(N(2T)− N(T))− (N0(2T)− N0(T)) ≤ O(T7/9 log2 T).

Then let T be T/2k, 1 ≤ k ≤ log2(T), and summing. This proves Theorem 1 in the case that there are
no zeros of G(s) on the boundary of D.

For the rest case, provided modifying the left side of D as the indented one with semicircles
around the zeros of G(s), and notice that, by (3.7), on the side σ = 1/2, a zero of G(s) is also a zero of
ζ ′(s), and so a zero of ζ(s), with multiplicity one greater, with a similar argument as [6], (1.2) also can
be followed, the detail refer to [6], and Theorem 1 is proved.

Besides, we know that on the critical line a zero of G(s) is also a zero of ζ ′(s), and so a zero of
ζ(s), with multiplicity one greater. Hence

∑(m − 1) ≤ NG(D).

where sum is over the distinct zeros of ζ(s) on the left side of D, m is the multiplicity of a zero.
And so,

∑
m≥2

m ≤ 2NG(D) ≤ O(T7/9 log2 T). (3.22)

This means that the zeros of ζ(s) on the critical line are almost all simple.

Finally, we would like to mention that, with Lemma 1, it is possible to give further improvement
by to extend the left side of the rectangle D to the left half plane, provided to modify the related
parameters appropriately.
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