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Abstract: In this paper, we will give an approximate result to Riemann hypothesis.
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1. Introduction

Riemann zeta-function {(s) is originally defined as

=1
= — for R 1.
Z(s) nZ:l e’ or Res >

and it also can be expressed as the product form

g(s):]_[; for Res > 1.

; 1-1/p%’

This formula is called Euler’s product formula, which indicates the relation between {(s) and prime
numbers. About {(s) there is a well-known Riemann hypothesis, states that all the non-trivial zeros
of {(s) are on the critical line Res = 1/2. The researches on the conjecture are no doubt a most
time-consuming one in mathematics, refer to see the survey paper [3].

The so-called trivial zeros of {(s) are s = —2, —4, - - -, and nontrivial zeros of {(s) are known all
in the critical strip 0 < Res < 1.

Denote by N(T) and Ny(T) respectively as the numbers of zeros of {(c + it) in the region
0<0<1,0<t<T, and on the critical line ¢ = 1/2,0 < t < T. Riemann hypothesis is that

No(T) = N(T).
For N(T), it is known that
T T T
= — - — logT). 1.1
N(T) 2nlog = 2n—f—O( ogT) (1.1)

And for Ny(T), Hardy firstly shown that there are infinity many zeros on the critical line, and then he
and Littlewood [5] and Selberg [8] proved that

Levinson [6] proved

K2

Q=

and then this result has been improved successively. Conrey [2], Feng [4] proved respectively
x > 0407, x> 0.412.
In this paper, we will prove that

Theorem 1.
N(T) = No(T) + &. (1.2)
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where & < T7/°1og? T.

The main arguments in this paper are based the papers [1,6,7], but instead of using Riemann-Siegel
formula, it will be applied an auxiliary function w(s, Ty, T;) defined in Lemma 1, which will play a
role of mollifier and ferry, it firstly used in [7] but here with a small modification.

2. Some Lemmas
Lemma 1. Supposethat T < Ty < Tp <2T, A = T4/9 s = A+ c+iu, (¢ > 0),s = v+ it,define

=< [Cr ASSd 2.1
w(s, Ty, 2)—ﬁ/T1 (s1—5) s1. (2.1)
Letoc = A+c—v, thereis

(s, T1, To)| < Oe= (=07 2.2)

Let A = (20Alog T)V/2, if t € [Ty + A, To — A, then
lw(c+it, Ty, Tp) —1| < T, (2.3)
Andift <Ty — A ort > Tr + A, then
lw(c+it, T, Th)| < 710, (2.4)

If |t — u| = o(0?/3), then
t—u (t—u)

_ S7S1y —
arg(T'(sy —s)A®%) 5 2 +e. (2.5)
Proof. By Stirling’s formula, it has
, 1\ log(o? + (u —t)?) 1
Re(logI'(o + (u —t)i)) =( o — > 5 -0+ Elog(27t)

—(u—t) arctan(uT_t> +0(1/0)

And
Re(log(T (0 + (1 — £)i))) + Re(log(A~ (T =01y) 4 A
(e —Uv)z B (u4;2t)2 B (uz—gt)2 B %loga—l— %log(Zn) L o(1/0)
Hence,
jw(s, Ty, Tp)| < e~ (70 "L\/;—: Tsz exp(—(u— 1)?/0)du < e~ (07,

Besides, it is familiar that

1

—A _ o 5—51

et = _Zm'/r(sl s)A°S1ds.
(©)

Hence,
1-— (U(C +it, Ty, Tz) =Ry + Ry,

where

_ ¢ [T+ a0y
=20 )y, ,
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A T ,
Ry — "—/ "I+ (= Di)A- A E=D gy,
27T J—oo
Hence, if t € [T} + A, T; — A], then
IRy| <</ T(A + (1 — D)) A=A+ =01 gy
b
<A12 / exp(— (1 — £)2/2\)du
T
<717
and similarly
T
|Rz| < )Fl/z/ exp(—(u—t)2/2A)du < T710.
ift <Ty —A,ort>T,+ A, then
I
w(c+it, T, To)| < A‘1/2/ exp(— (1 — )2/20)du < T~1°.
T
If |t — u| = 0(c?/3), then
s t—u  (t—u)® (t—u)d
_ $S=51)) — _
Im(log(.(sl S) )) 20 + 302 202
(t—u)3  (t—u)
504 ot €
Ct—u (t—u)®  (t—u)®
T 20 602 T 2004 €
O
Lemma 2. Let {1(s),Ca(s) be C(s) or {'(s) and
Z1(s) =Y ann™°, for Res>1,
n
Ta(s) =Y byn™*, for Res > 1.
n
Let 0 <a < 1/2, Asameasin Lemma 1, let sy = A+ c+iu, ¢ > 0, define
et _
g0) = 5 [ Tt =A™ 01(5)25(s)ds 26)
(a)
Thenfor T <u <2T,1 < B < A+c, thereis
00 00 a E h S1 B 3
gwy=ey. Y % (E) e~ Mk L o(T710). 2.7)
h=1k=1

Proof. We move the integral path from (a) to (B), the residue at the pole s = 11is
R < (A +c—1+iu)A-We-l+iu) o 710

Hence,
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— s e 51+S h
g(u)—zz — Fsl—s - ds+O —10y
n—1i=1 k 2 k
> X gby, e / h
PR fr v (M) o
imimy P2 k
(B)
o0 00 1 A
_y Y e / F(w))\_“’(E) dw +O(T~'0)
i h 7Tl k
(A+c—B)
oA @by (BT 10
—e h;lkzzl 126 (k) e +0(T~)
O
Lemma 3. Let 6 = (201og T/A)l/z, A as before, 0 < ¢ < A/10, then
N =/ oM e My <« T8 712, (2.8)
+6
1-6
15 :/ oM e My « 710, 2.9
0
Proof. For (2.6), by the integration by parts
AAtc,—Av |® S
=-r | 4 Ate / R e
A 146 A Jite
—20%)\/5
< &R(Z2WA/5) | +0/10) I
A +6
That is,
9 6A
01 9]1 <exp(—20°A/5) < T8
and
< T8\ 1/2,
For (2.7),
Jo <eM1—0) e M0 < exp(—624/2) < T,
O
3. The Proof of Theorem 1
Proof. Let i(s) = /2T (s/2), then the functional equation of {(s) can be written as
h(s)g(s) = h(1=5)(1—s) 3.1
By Stirling’s formula, it has
1 s s 1
logh(s) = E(s—l)logﬁ—i—l-C(ﬂ-O(g) (3.2)
Let f(s) = logh(s), then
W(s) 1 s 1
/ _ _ - i -
fi(s) = ns) _210g2n+o<s) (3.3)
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and for larger ¢
! / _ _ i 1
fi(s)+f(1 s)_logzn—l-O(s) (3.4)
Taking logarithm of Equation (3.1), and then derivative, it follows
W($)Z(s)(f'(s) + f/(1=5)) = =h(s)¢'(s) = h(1 =) "(1—s) (3.5)

We note that the right side of (3.5) is a sum of two conjugative complex numbers as s = 1/2 4+ it, so the
zeros of the right side of (3.5) occur if and only if

arg(h(s)Z'(s)) = 7/2 mod 7 (3.6)
On the left side of (3.5), clearly, /i(s) is never zero, and by (3.4), so these zeros are just the zeros of
C(1/2+it).
Moreover, let x(s) = 1i(1 — s)/h(s), then {(s) = x(s){(1 —s), and
Z'(s) = =x(H{(f () +f(1=5)0(1—5)+7'(1-5)} (3.7)
By (3.6), the zeros of {(1/2 + it) are the ones
arg(h(1—s){(f'(s) + f'(1=5))0(1—s)+Z'(1—5)}) =m/2 mod 7
on o = 1/2, equivalently,
arg(h(s){(f'(s) + f'(1—5)){(s) +{'(s)}) =m/2 mod 7 (3.8)

ono =1/2. Write L(s) = f'(s) + f'(1 —s), and denote by

G(s) =L(s) +Z'(s)/ L(s) (39)
The investigation above means
No(T) = %Ag arg(hG(1/2 +it)) (3.10)
By(3.2), it can be known that
Af arg(h(1/2 +it)) = glog% - g +0(log T) (3.11)

So, the main task to determine Ny(T) is to evaluate Al arg(G(1/2 + it)).

Take L = log(T/2m), U < T.

Let D be the rectangle with the vertices 1/2+iT,3+iT,3+i(T + U), 1/2+i(T + U). First of
all, we might as well assume there are no zeros of G(s) on the boundary of D, then by the theory of
complex function, the change of arg G(s) around D is equal to 27t times N (D), the number of zeros
of G(s) in D.

On the right side of D

IG(3+it)—1| < Y n*+0(1/L) <1/3
n>2

so, arg G(s) change less than 7. Moreover, by a known result [9, §9.4], a extension of Jessen’s theorem,
we can know that on the lower bound and the upper bound arg G(s) = O(L). Hence

A} arg(G(1/2 +it)) = —2nNg(D) 4 O(log T) (3.12)
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Now the work is turned into to evaluate Ng(D).
Takea = 1/2 —1/L, and let Z be the rectangle with vertices a +iT, ¢ +iT,c+i(T+ U),a+i(T +
U), taking the integral [ log G(s)ds, by the Littlewood’s Lemma [9, §9.9], it has
9

T+U T+U c
/T 1og|G(u+it)ydt—/T 1ogyc(3+it)|dt+/ arg (o +i(T + U))do
a

C
_ / arg G(o +iT)do = 27 Y dist (3.13)
a

where }_ dist is the sum of the distances of the zeros of G(s) from the left. As in the situation of D and
take account on the order of G(s), we can know

Cc c
/ arg G(c + iT)do, / arg G(o +i(T + U))do < O(L) (3.14)

a a
In addition, by (3.9), it is easy to know

T+u T+u
/ log G(c + it)dt :/ log {(c + it)dt + O(1/L)
T T

and it is familiar that

—A(n)
nslogn

logl(s) =)

So
T+U
/ log |G(c + it)|dt < 1.
T

The rest is to calculate the first integral of (3.13).
By the concavity of logarithm, it has

T+U 1 pT+U
/T log|G(a—|—it)|dt:—/T log |G(a + it)[2dt

1 1 ,T+U
< ;Ulog < /T Ga+ it)|2dt) (3.15)
At first, we simplify G(s) as
/
Gols) = Z(s) + & f). (3.16)
Then
G(s) = Go(s) + E(s).
(L Dy Lo
E6) = (705~ 1 )76 < 56
And
T, T T
/T IG(a + it)2dt :/ |Gola +it)|2dt+2Re/T Gola + it E(a — it)dt
1 1
+/ E(a+ it)|?dt
By Cauchy inequality

T T T, 1/2
/ Gola +it)E(a — it)dt < </ |Go(a + it)|2dt/ E(a + it)|2dt>
Tl Tl Tl
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The third integral in the right side of (3.16) is much smaller than the first one, which will be actually
calculated later, hence

Ty T,
/ IG(a + it)2dt = (1 +e)/ |Gola + it) [2dt.
T1 Tl

Moreover, let
wi(s, Ty, o) = w/?(s, Ty, To).

By (2.5), we can know that on the upper bound and the lower bound of &, there is

arg(wi(s, Ty — A, Ta +A)) < O(T3/A?) (3.17)
and
c
/ arg(wy (v + Tji, Ty — A, Ty + A))do < O(cT?), (j = 1,2). (3.18)
a
It is assumed that ¢ < A/10.
Moreover, by Lemma 1,
T,
/ log w1 (c+it, Ty — A, To + A)|dt < T2 (3.19)
T

This means that the function wy (s, Ty — A, T, + A) may be viewed as a mollifier. Let
G(s) = Go(s)wi(s, T1 — A, Tr + A).
By (2.5),
& 2 T 2 2
[ 166)Pd = [ *1Go(s)Plar(s, Ty = &, Tz + ) Pt
1 1
T,
- /T 1Go(s) 2w (s, Ty — A, Ty + A)|dt
1
T.
< (1+0(T2%)) / " 1Go(s)[Pw(s, Ty — A, To + A)dt (3.20)
T

In the next is mainly to calculate the last integral.
By Lemma 1, it has

/TTZ w(a+it, Ty — A, Ty + A)|Gola + it) |dt
1

= 27—[/ /TﬁA ['(sq — 11+it))/\_(sl—(a+it))du|co(a+l-t)|2dt

= 27r /T2+A /T2 T(s1 — (a+it))A~ 1= @HD) |G (a + it) |Pdtdu

< — /T2+A/ — (a+it)A~ =@ |Gy (a + it) | Pdtdu + o(1)

= I+ Io+ Iy + Ip +o(1).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where

A Th+A foo .
=g [ [T G A i) Pt

/\ Th+A ]
Iy = an / — (a+it) A~ (g i) (o — it)didu
T +A '
Ly = 2711; T 2 / (a+it)) A~ =Dz (g —it) ! (a + it)dtdu
1—
T+A
2= 27TL2 / 2 / (a+it)) A== @HD 77 (g i) Pdtdu.

In the following specify T1 = T, T, = T + U. We first calculate I;;, by Lemma 2

[ Tr+A . A L
n=e Y 2 50" exp(=Ap)du, o= ja/jr.
n-a 5P

= o+ hig+ hio + Lz

where
T2+A
111’0 / eXp Ap)du
]1 =ja ]2
e/\ To+A
L1 = 2 2_/5/ Pt exp(—Ap)du
p>1+0 jp 7T
e/\ Tz-l—A s
hip= ), 3 Jr oy O exp(—Ap)du
p<1-6 o
e/\ Tr+A
hiz= ), 25 Pl exp(—Ap)du.
1-6<p<1+6 J5
1#h2
Clearly
1110 = (U+2A Z 2B = c11(U+2A)
2 12
By Lemma 3,

p-1 A jz Ate ..
hin <), -5 ), e <—> exp(—Aj2/j1)
2 ]2 ja/ 12146 N

/(146)
< Z /]2 <]2> exp(—Aja/x)dx

2 ]2

< E / oM 2 exp(—Av)do

J2 ]2
A PAphte-2
<<ZE o exp(—Av)dv
j2 2
9_1 —8y-1/2 -
<Y T AV <Ts
2 ]2
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-1

0 ..
Inp <Y —5 <]2> exp(—Aj2/j1)
2 Jo ja/jn<1-6 n

o\ Atc
o 2 _
12 3 p
<<%]2ﬁ 2/ (1-6) <x> exp(—Aj2/x)dx

A PAphte2
<<Z exp(—Av)dv
) ]2

<<2 TG )M 2exp(—A(1—9)).
J2 ]2

~10 _
<) 2ﬁT <71’

j2 2
And
1 A ]2 A+c
Iz < (U+247) Z]Zﬁ - 9<Z<1 6e (]—1) exp(—Aja/j1)
2 2 Sp=l+
’ 17
1( 2 \71/5
< (U+24) ) T( - )T
2>1/6 ]2ﬁ 1+96
< (U+28) Y __® qs
2p—1
pETsefy0 (1 62)
< (UA420)0*P71T5 <« 7719, (B> 101log T).
For I15, by Lemma 2
T +A _
/ 2 1982 ot exp(— Ap)du
J g2 2
=lipo+ Iy + I+ o3
where
1 —eMlogj, [T2td
o=y —¢ 0812 / S exp(—Ap)d
12,0 Lh;‘z ].%C T-A Pt exp(—Ap)du
1 —etlogjp, [T2th
Ipi=+ ), —/ Pt exp(—Ap)du
L 5Tl j;ﬁ hi-A
1 —eMogjy [Teth
Loz =1 Y Tg}z/T_ p*texp(—Ap)du
p<1-6  Jp
1 —eMlogij, [Totd
Ipa=+ ). —‘zﬁg] /TiA Pl exp(—Ap)du.
1-0<p<140  Jp 1
A#h2
Clearly,
—1lo
Tin = (U—|—2A)L y §]2 = (U +2A).
2 )
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By Lemma 3
10 .\ Atc o
L1 < ZZ 25812 (]2) exp(Aia/ 1)
J2 J2 jo/j1>146 n
1 — 0 tlogij, [i/(1+6) .\ Atc 4
<Lt eA(%) exp(—Aja/x)dx
2 ]2
1«0 tlogja (2 )\ Aien
<<_ZT/ e v T exp(—Av)do
L 2 e
1 9_110gj2 o0 AAdc2
<<_ZT/ v T exp(—Av)do
L j2 ]Zﬁ 1+6
<<% # ~8)-1/2 o T-8.
J2 J2
and
6~ 1logj o
Iipp < ZTg]z <]2> exp(- /)
J2 J2 j2/j1<1— 9 n
-1 . o . Adc
<< 1 %/ 6/\ ('7_2> exp(_A]'z/x)dx
Lo 2 Jpia-e \x
1
<<% #/ e oM 2 exp(—Av)do
2o 0
1 1
< Z i]z )\(1 ))H-C—Z EXp(—)L(l _9))
2 ]2
-1 .
iy Closhrn o1,
Ja J2
and
1 72 Atc
Ips < + (U+2A)Z 2B 2 e log]2< ) exp(—Aja/j1)
L 2 ] 1-0<p<1+8 hil
n#i2
< T(U+28) ¥ < _ T
k pste o \1-6 1+6
<<%(U+2A) y ﬁﬂﬂ/s
p>1/0 75 (1—62)
< (U420)0P71TV5 « 7710,
For I;, by Lemma 2
T+A _
121 / 2 1 g]l psl eXp( )\p)du
]1]2 ]2

=Dhio+ D11+ Dbip+ Iz,
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where
1 —etlogijy [TotA
bio= 7 Y Tg]l/ p°t exp(—Ap)du
1=j2 Iz hi-a
1 —etlogjy [T2tA
by = i z—lgg]l/ P’ exp(—Ap)du
p>1+6  Jp hi=
1 —etlogj; [T2th
Inp =+ —/ Pt exp(—Ap)du
L gzie ]515 T—A
1 —etlogijy [TotA
big=+ —'2138]1 / Pt exp(—Ap)du.
1-0<p<146  Jp Thi-A
1#h
Clearly,
—1lo
I = (U+2A)L y 2ﬁg]2 = o (U +2A)
2D
By Lemma 3
16! i\ .
by < ZEE Y, elogh <]—2> exp(—Aj2/j1)
J2 ]2 ja/j1=1+86 n
]z/(1+9) i\
<7 Z 5 ogx<]2> exp(—Aj/x)dx
j2 ]2 *
— Z 25 Ji Mog(ja/v)o 2 exp(—Av)do
L% ]2
-1 0
_Z 10g]2/ MM 2 exp(—Av)do
J2 1+6
< = Z 108]2']" 8/\ 1/2<<T—
]2
and

-1

0 (M .
121'2<<ZF Y. e/\logh(;,—j) exp(—Aj2/j1)

2 ]2 jz/j1<1—9

A+c
e logx<]2> exp(—Ajp/x)dx

]2 ]2 j2/(1-9)
16! (10 ,
<)l p e log(jr/v) v 2 exp(—Av)do
o J2n 70
1 0~ long A Adc—2
< i TR (1-9) exp(—A(1-10))
2o I
1 .
< % ‘ ;‘;gjz T 0«17
2o I
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and
1 ]2 Atc
e fU+) Yo ¥ ogin(2) ew(-ansi)
72 Jo 1-0<p<1+6 n
h#h
1 10g12< j2 j2 ) 1/5
< =(U+28) ), — T
L =V ]5/5 1-6 14906
(LI+2A) y —zﬁz_gllog” TV/5
p=1/6 7y (1—62)
< (U +2A0)0*P71TV/5 « 7710,
For Iy, by Lemma 2
To+A
om0 B
Juj2
=Ino+ Ini+ 122,2 + Ings,
where
eMogilogiy [TotA
Ino = L2 Z #/ p°t exp(—Ap)du
j1=h 12 -
1 eMlogjilogjn (T2t
Ly =+ —/ p* exp(—Ap)du
L2 pZ;-i-e I hi-a
1 eMlogjilogjp [Tt
Ipp = —/ Pt exp(—Ap)du
EE, T F s
1 eMog i logjy [T2tA
b2z =13 %/ p*Lexp(—Ap)du
1-6<p<1+6 Ja i-A
h1#j2
Clearly,
1 log? j
lop = (U +28) 17 ) 2552 = en(U +20).
)2
By Lemma 3

Hog j .2 Ate .
In1 < — 2 Z—ﬁ Y, elogj exp(—Aj2/j1)
o I /=146 n
Atc

-1 ja/ (146) '
< —Z 10g]2 /12 e logx(]2> exp(—Aja/x)dx
1
< _2 log]Z /+ eMlog(ja/v) v 2 exp(—Av)do
-1 )
< 13 Z log 12 /+9 oM 2 exp(—Av)do

< _2 log ]2 ~8)-1/2 T8
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and

1 6 llogj (i \ M .
Iny < 13 ZTg]z Yy, elogh (7—2> exp(—Aj2/j1)
2 I2 2/ 1 <1-6 1

gillogjz © ]'2 A+c ’
<<ﬁ§2—ﬁ/jz/<l—e>e logx< ) xXp(~Aj2/x)dx
-1 1-6
< —Z“ﬂfo et log(ja/v)o* 2 exp(—Av)do
lo o
LzZ 008 V21 (1 )2 enp(-A(1-0))
-1
< _Z log j2 T-10 o 79,
and
log j> a2\ .y
Ins < — (U+2A)22— Y, e 108]1(]~—1> exp(—Aja/j1)

o Jo  1-6<p<1+6
h#hi

1 1082j2( 2 j2 ) 1/5
< =U+24) )y = - T
2 WL 2P \T-0 148

1 2010g? |
< ZU+28) ¥ g SRV
=176y (1—62)

< (U 42007175 « 7710,

Combining all the evaluations above, and recall (3.20), it follows

/TT+u |G(a+it)[?dt = co(U +2A) (1 + O(T~2/9)) + o(1).

where

o =c11 +c12+ 21+ 22

() _ . 2
iy 3 0 lomi/L)?

j=2 J
=1+0(T71%). (B>10logT)

Let U = T, by (3.15),

T+U
/T log |G(a +it)|dt < glog<1 + %) + glog(l +O(T %) +e
< A+O(T7?). (3.21)
By (3.13), (3.14), (3.18),(3.19) and (3.21), and recall thata = 1/2 — 1/L, it follows

A+O(T7?) + O(cT~V9) + O(L?)
1/2 —a

27tNg(D) < < T"71og? T.

ie.
AlrargG(1/2 +it) < O(T"/?10g? T).
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and
(N(2T) — N(T)) — (No(2T) — No(T)) < O(T"/*10g> T).

Thenlet Tbe T/2k,1 < k < logZ(T), and summing. This proves Theorem 1 in the case that there are
no zeros of G(s) on the boundary of D.

For the rest case, provided modifying the left side of D as the indented one with semicircles
around the zeros of G(s), and notice that, by (3.7), on the side o = 1/2, a zero of G(s) is also a zero of
' (s), and so a zero of {(s), with multiplicity one greater, with a similar argument as [6], (1.2) also can
be followed, the detail refer to [6], and Theorem 1 is proved. [

Besides, we know that on the critical line a zero of G(s) is also a zero of {’(s), and so a zero of
{(s), with multiplicity one greater. Hence

Y (m ~1) < Ne(D).

where sum is over the distinct zeros of {(s) on the left side of D, m is the multiplicity of a zero.
And so,
Y m < 2Ng(D) < O(T"/?1og” T). (3.22)

m>2

This means that the zeros of {(s) on the critical line are almost all simple.

Finally, we would like to mention that, with Lemma 1, it is possible to give further improvement
by to extend the left side of the rectangle Z to the left half plane, provided to modify the related
parameters appropriately.
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