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ABSTRACT   

Convolutional neural networks (CNNs), inspired by biological visual cortex systems, are a powerful category of artificial 

neural networks that can extract the hierarchical features of raw data to greatly reduce the network parametric 

complexity and enhance the predicting accuracy. They are of significant interest for machine learning tasks such as 

computer vision, speech recognition, playing board games and medical diagnosis [1-7]. Optical neural networks offer the 

promise of dramatically accelerating computing speed to overcome the inherent bandwidth bottleneck of electronics. 

Here, we demonstrate a universal optical vector convolutional accelerator operating beyond 10 Tera-OPS (TOPS - 

operations per second), generating convolutions of images of 250,000 pixels with 8-bit resolution for 10 kernels 
simultaneously — enough for facial image recognition. We then use the same hardware to sequentially form a deep 

optical CNN with ten output neurons, achieving successful recognition of full 10 digits with 900 pixel handwritten digit 

images with 88% accuracy. Our results are based on simultaneously interleaving temporal, wavelength and spatial 

dimensions enabled by an integrated microcomb source. This approach is scalable and trainable to much more complex 

networks for demanding applications such as unmanned vehicle and real-time video recognition.   

Keywords: Optical neural networks, neuromorphic processor, microcomb, convolutional accelerator 

1. INTRODUCTION  

Artificial neural networks (ANNs) are collections of nodes with weighted connections that, with proper feedback to 

adjust the network parameters, can “learn” and perform complex operations for face recognition, speech translation, 

playing board games and medical diagnosis [1-4]. While classic fully connected feedforward networks face challenges in 

processing extremely high-dimensional data, convolutional neural networks (CNNs), inspired by the (biological) 

behavior of the visual cortex system, can abstract the representations of input data in their raw form, and then predict 
their properties with both unprecedented accuracy and greatly reduced parametric complexity [5]. CNNs have been 

widely applied to computer vision, natural language processing and other areas [6, 7]. 

The capability of neural networks is dictated by the 

computing power of the underlying neuromorphic 

hardware. Optical neural networks (ONNs) [8-18] are 

promising candidates for next-generation 

neuromorphic computation, since they have the 

potential to overcome the bandwidth bottleneck of 

their electrical counterparts [6, 19-22] and achieve 

ultra-high computing speeds enabled by the >10 THz 

wide optical telecom band [8]. ONNs are attracting a 
great deal of attention with recent breakthroughs and 

reviews [13-18]. Operating in analog frameworks, 

they avoid the limitations imposed by the energy and 

time consumed during reading and storing data back 

and forth, known as the von Neumann bottleneck [19]. 

Significant progress has been made in highly parallel, 

high-speed and trainable ONNs [8-18, 23-27], 

including approaches that have the potential for full 

integration on a single photonic chip [8,12,14,15], in 

turn offering an ultra-high computational density. 

However, there remains opportunities for significant 

Figure 1 | Operation principle of the Tera-FLOPS photonic 

convolution accelerator. EOM: electro-optical Mach-Zehnder 
modulator. SMF: standard single mode fibre for 
telecommunications. PD: photodetector.  
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improvements in ONNs. Processing large-scale data, as needed for practical real-life computer vision tasks, remains 

challenging because they are primarily fully connected structures where their input scale is determined solely by 

hardware parallelism. This leads to tradeoffs between the network scale and footprint. Moreover, ONNs have not 

achieved the extreme computing speeds that analog photonics is capable of.  

Here, we demonstrate an optical convolution accelerator to process and compress large-scale data. Through interleaving 
wavelength, temporal, and spatial dimensions using an integrated Kerr frequency comb, or microcomb [28 – 87], we 

achieve a vector computing speed as high as 11.322 TOPS and use it to process 250,000 pixel images with 10 

convolution kernels at 3.8 TOPs. The convolution accelerator is fully and dynamically reconfigurable, and scalable, and 

can serve as both a convolutional accelerator front-end with multiple and simultaneous parallel kernels, as well as 

forming an optically deep CNN with fully connected neurons, with the same hardware. We demonstrate a CNN and 

successfully apply it to the recognition of full ten digit (0-9) handwritten images, achieving an accuracy of 88%. Our 

optical neural network represents a major step towards realizing monolithically integrated ONNs and is enabled by our 

use of an integrated microcomb chip. Moreover, our accelerator scheme is stand alone and universal — fully compatible 

with either electrical or optical interfaces. Hence, it can serve as a universal ultrahigh bandwidth data compressing front 

end for any neuromorphic hardware — either optical or electronic — making massive-data machine learning for real-

time, ultrahigh bandwidth data possible. 

2. PRINCIPLE OF OPERATION  

Figure 1 shows the operation principle of the photonic convolutional accelerator (CA), featuring high-speed electrical 

signal input and output data ports, while Figure 2 shows a detailed experimental configuration. The data vector input X is 

serially encoded with the intensity of temporal symbols in an electrical waveform at a symbol rate 1/τ (baud), where τ is 

the symbol period. The convolution kernel is likewise represented by a weight vector W of length R that is used to 

encode the optical power of the microcomb lines by spectral shaping with a Waveshaper. The temporal waveform X is 

then multi-cast onto the kernel wavelength channels via electro-optical modulation, generating the replicas weighted by 

W. Next the optical waveform is transmitted through a dispersive delay with a delay step between adjacent wavelength 

channels equal to the symbol duration of X, thus achieving time and wavelength interleaving. Finally, the delayed and 

weighted replicas are summed via high speed photodetection so that each time slot yields a convolution between X and 
W for a given convolution window, or receptive field. Thus, the convolution window effectively slides at the modulation 

speed matching the baud rate of X. Each output symbol is the result of R multiply-and-accumulate operations, with the 

computing speed given by 2R/τ OPS. Since the speed of this process scales with both the baud rate and number of 

wavelengths, it can be dramatically boosted into the TOP regime by using the massively parallel wavelength channels of 

a microcomb. Further, the input data X length is unlimited - the convolution accelerator can process arbitrarily large- 

scale data, limited only by the electronics. Likewise, the kernels number and length are arbitrary, limited only by the 

number of wavelengths. We achieve simultaneous convolution of multiple kernels by adding additional sub-bands of R 

wavelengths for each kernel. Following multicasting and dispersive delay, the sub-bands (kernels) are demultiplexed and 

detected separately with high speed photodetectors, generating a separate electronic waveform for each kernel.  

While the convolutional accelerator typically processes vectors, it can operate on matrices for image processing by 

flattening the matrix into a vector. The precise way that this is done determines both the sliding convolution window’s 
stride and the equivalent matrix computing speed. Our flattening method sets the receptive field (convolution slot) to 

slide with a horizontal stride of unity (ie., every matrix input element has a corresponding convolution output) and a 

vertical stride that scales with the size of the convolutional kernel. The larger vertical stride effectively resulted in sub-

sampling across the vertical direction of the raw input matrix, equivalent to a partial pooling function [88] in addition to 

the convolution. This resulted in an effective reduction (or overhead) in matrix computing speed that scales inversely 

with the size of the kernel, so that a 3x3 kernel results in a speed reduction overhead by 1/3. While this can be eliminated 

by a variety of means to produce convolutions with a symmetric stride and hence no speed overhead, this is actually not 

necessary for most applications. Finally, this approach is highly flexible and reconfigurable without any change in 

hardware - we use same system for the convolutional accelerator for image processing as well as to form an optical deep 

learning CNN which we use to perform a separate series of experiments. The convolutional accelerator hardware forms 

both the input processing stage as well as the fully connected neuron layer of the CNN (see below). The system can 

achieve matrix multiplication by simply sampling one time slot of the output waveform, since the vector dot product is 
equivalent to the special convolution case where the two input vectors X and W have the same length.  

Figure 3 shows a detailed example of the photonic convolution accelerator operating in two different modes. The 

left panel shows the system performing convolution operations, that are used for the large stand-alone convolution image 
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processing and the convolutional layer of the CNN. The right panel shows the system performing matrix operations 

which are used as the fully connected layer of the optical CNN. Considering that the experimentally demonstrated 

configurations are too complex to be presented clearly, in Figure 3 we show a simplified configuration of input data and 

weights to illustrate the operation principle of our system. The length of W and X shown in this figure are R = 4 and L = 

13 for the case of convolution operations, and R = L= 4 for the fully connected layer for matrix operations, respectively. 
The schematic of the TOPS photonic convolution accelerator is illustrated in the left panel of Figure 3. The input 

data vector (length L) and weight vector (length R) is first multiplexed in the time and wavelength domains, respectively. 

The input data vector is represented by the intensities of the temporal symbols in a stepwise electrical waveform X[n] (n 

denotes discrete temporal locations of the symbols, n ∈ [1, L+R−1]), where X[n] is the electrical input of the accelerator. 

The weight vector of the kernel is imprinted onto the optical power of the shaped comb lines as W[R−i+1], at the ith 

wavelength channel (i ∈ [1, R], where i increases with wavelength).The input electrical waveform X[n] is first broadcast 

onto the shaped comb lines via electro-optical modulation. Thus the weighted replica at the ith wavelength channel is 

W[R−i+1]· X[n]. Next, the optical signals across all wavelengths are progressively shifted in the time domain via an 

optical time-of-flight buffer, which provides a wavelength-sensitive (dispersive) delay with a delay step τ (the difference 

in delay between adjacent wavelengths) equal to the symbol duration (inverse of the Baud rate) of X[n]. Hence, the 
shifted replica becomes W[R−i+1]· X[n-i]. Finally, the replicas of all wavelengths are summed via photo-detection as 

1
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        (1) 

where each calculated symbol Y[n] within the range of [R+1, L+1] denotes the dot product between W and a certain 

region of X (this region is defined by the sliding receptive field as [n−R : n−1] or [n−R, n−R+1, n−R+2, …, n−1]). By 

simply reading different time slots of the output signal, a convolution is achieved between the weight vector and the 

input data, thus generating extracted feature maps (matrix convolution outputs) of the input image. While higher order 

dispersion in the dispersive delay can, in principle, degrade performance, in our experiments this was not a factor. 

In addition, the convolution accelerator can also perform matrix multiplication operations, as illustrated in the right 

panel of Figure 3. The matrix multiplication operations can be treated as a special case of convolution operations when 

the two input vectors (the pooled and flattened feature maps, and the flattened synaptic weights for the fully connected 

layer) are the same length (R=L). Figure 3 shows an example with R=L=4. Here, we assume the input data vector XFC[n] 

and the weight vector WFC[R−i+1] both have a length R (i ∈ [1, R], n ∈ [1, R]). Thus, according to Eq. 1, the output 

waveform after photodetection is  

1
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By sampling at the time slot denoted by n=R+1, the matrix multiplication result of the two input vectors is therefore 

1 1
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3. EXPERIMENT  

3.1 Optical soliton crystal micro-combs 

Optical frequency combs, composed of discrete and equally spaced frequency lines, are extremely powerful for optical 

frequency metrology [28]. Micro-combs offer the full power of optical frequency combs, but in an integrated form with 

much smaller footprint [28-34]. They have enabled many breakthroughs in high-resolution optical frequency synthesis 

[32], ultrahigh-capacity communications [33, 34], complex quantum state generation [35 - 43], advanced microwave 

signal processing [67 - 87], and more. Figure 4 shows a schematic of our optical microcomb chip as well as typical 

spectra and pumping curves. We use a class of microcomb called soliton crystals that have a crystal-like profile in the 

angular domain of tightly packed self-localized pulses within micro-ring resonators [34, 47, 48]. They form naturally in 

micro-cavities with appropriate mode crossings, without complex dynamic pumping or stabilization schemes (described 

by the Lugiato-Lefever equation [28, 46]). They are characterized by distinctive optical spectra (Fig. 4f) which arise 
from spectral interference between the tightly packaged solitons circulating along the ring cavity. Soliton crystals exhibit 

deterministic generation arising from interference between the mode crossing-induced background wave and the high 

intra-cavity power (Fig. 4c). In turn this enables simple and reliable initiation via adiabatic pump wavelength sweeping 

[34] that can be achieved with manual detuning (the intracavity power during pump sweeping is shown in Fig. 4d). The 

key to the ability to adiabatically sweep the pump is that the intra-cavity power is over 30x higher than single-soliton 
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Figure 2 | Image processing, consisting of the experimental setup (right panel), the optical and electronic control and signal flow 
(middle panel), and the corresponding processing flow of the raw input image (left panel). PC: polarization controller. MRR: 
micro-ring resonator. EOM: electro-optical Mach-Zehnder modulator. SMF: standard single mode fibre. 

 

states (DKS), and very close to that of spatiotemporal chaotic states [28, 34]. Thus, the soliton crystal has much less 

thermal detuning or instability arising from the ‘soliton step’ that makes resonant pumping of DKS states more 

challenging. It is this combination of ease of generation and conversion efficiency that makes soliton crystals highly 

attractive. The coherent soliton crystal microcomb (Figure 4) was generated by optical parametric oscillation in a single 

integrated MRR (Fig. 4a, 4b) fabricated CMOS-compatible Hydex [22, 23, 34], featuring a Q > 1.5 million, radius 592 
μm, and a low FSR of ~ 48.9 GHz. The pump laser (Yenista Tunics – 100S-HP) was boosted by an optical amplifier 

(Pritel PMFA-37) to initiate the parametric oscillation. The soliton crystal microcomb yielded over 90 channels over the 

C-band (1540-1570 nm), offering adiabatically generated low-noise frequency comb lines with a small footprint of < 1 

mm2 and low power consumption (>100 mW using the technique in [34]).  
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Figure 4 | a. Soliton crystal microcomb, generated by pumping an on-chip high-Q nonlinear micro-ring resonator with a CW laser. 
b. Image of the MRR and a SEM image of the MRR cross section. c. Measured dispersion of the MRR showing the mode crossing 

at ~1552 nm. d. Measured soliton crystal step of the intra-cavity power, and e. optical spectrum of the microcomb when sweeping 
the pump wavelength. f. Optical spectrum of the generated coherent microcomb at different pump detunings at fixed power. 

 

 

Figure 3 | TOPS photonic convolution accelerator operating in two modes. Left: convolution operation mode with R = 4 and 
L = 13; Right: matrix operation mode with R = L = 4. Electro-optical modulator (EOM), optical buffer that has progressive 
wavelength-sensitive delay, and an optical-to-electrical conversion module (O/E).  
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3.2 Matrix Convolution Accelerator 

Figure 2 shows the experimental setup for the full matrix convolutional accelerator that we use to process a classic 

500×500 face image. The system performs 10 simultaneous convolutions with ten 3×3 kernels to achieve distinctive 

image processing functions. The weight matrices for all kernels were flattened into a composite kernel vector W 

containing all 90 weights (10 kernels with 3x3=9 weights each), which were then encoded onto the optical power of 90 
microcomb lines by an optical spectral shaper (Waveshaper), each kernel occupying its own frequency band of 9 

wavelengths. The wavelength channels were supplied by a coherent soliton crystal microcomb (Figure 4) via optical 

parametric oscillation in a single micro-ring resonator (MRR) (Fig. 4b), radius 592 μm, FSR spacing ~ 48.9 GHz with an 

optical bandwidth of ~ 36 nm for 90 wavelengths in the C-band (1540-1570 nm) [34].  

Figure 5 shows the experimental results of the image processing. Figure 5a depicts the kernel weights and the shaped 

microcomb’s optical spectrum while the input electrical waveform of the image (grey lines are theoretical and blue 

experimental waveforms) are in Figure 5b. Figure 5c displays the convolved results of the 4th kernel that performs a top 

Sobel image processing function (grey lines are theory and red experimental). Finally, Figure 5d shows the weight 

matrices of the kernels and corresponding recovered images.  

The raw 500×500 input face image was flattened electronically into a vector X and encoded as the intensities of 250,000 

temporal symbols with a resolution of 8 bits/symbol (limited by the electronic arbitrary waveform generator (AWG)), to 

form the electrical input waveform via a high-speed electrical digital-to-analog converter, at a data rate of 62.9 Giga 
Baud (time-slot τ =15.9 ps) (Fig. 5b). The waveform duration was 3.975µs for each image corresponding to a processing 

rate for all ten kernels of over 1/3.975µs, equivalent to 0.25 million of these ultra-large-scale images per second.  

The input waveform X was then multi-cast onto the 90 shaped comb lines via electro-optical modulation, yielding 

replicas weighted by the kernel vector W. Following this, the waveform was transmitted through ~2.2 km of standard 

single mode fibre having a dispersion of ~17ps/nm/km. The fibre length was carefully chosen to induce a relative 

temporal shift in the weighted replicas with a progressive delay step of 15.9 ps between adjacent wavelengths, exactly 

matching the duration of each input data symbol τ, resulting in time and wavelength interleaving for all ten kernels. 

The 90 wavelengths were then de-multiplexed into 10 sub-bands of 9 wavelengths, each sub-band corresponding to a 

kernel, and separately detected by 10 high speed photodetectors. The detection process effectively summed the aligned 

symbols of the replicas (the electrical output waveform of one of the kernels (kernel 4) is shown in Fig. 5c). The 10 

electrical waveforms were converted into digital signals via ADCs and resampled so that each time slot of each of the 
waveforms corresponded to the dot product between one of the convolutional kernel matrices and the input image within 

a sliding window (i.e., receptive field). This effectively achieved convolutions between the 10 kernels and the raw input 

image. The resulting waveforms thus yielded the 10 feature maps (convolutional matrix outputs) containing the extracted 

hierarchical features of the input image (Figure 5d). 

The convolutional vector accelerator made full use of time, wavelength, and spatial multiplexing, where the convolution 

window effectively slides across the input vector X at a speed equal to the modulation baud-rate — 62.9 Giga Symbols/s. 

Each output symbol is the result of 9 (the length of each kernel) multiply-and-accumulate operations, thus the core vector 

computing speed (i.e., throughput) of each kernel is 2×9×62.9 = 1.13 TOPS. For ten kernels computed in parallel the 

overall computing speed of the vector CA is therefore 1.13×10 =11.3 TOPS, or 11.321×8=90.568 Tb/s (reduced slightly 

by the optical signal to noise ratio (OSNR)). This speed is over 500 x the fastest ONNs reported to date.  

For the image processing matrix application demonstrated here, the convolution window had a vertical sliding stride of 3 

(resulting from the 3×3 kernels), and so the effective matrix computing speed was 11.3/3=3.8 TOPs. Homogeneous 
strides operating at the full vector speed can be readily achieved by duplicating the system with parallel weight-and-

delay paths (see below), although we found that this was unnecessary. While the length of the input data processed here 

was 250,000 pixels, the convolution accelerator can process data with an arbitrarily large scale, the only practical 

limitation being the capability of the external electronics. 

To achieve the designed kernel weights, the generated microcomb was shaped in power using liquid crystal on silicon 

based spectral shapers (Finisar WaveShaper 4000S). We used two WaveShapers in the experiments - the first was used 

to flatten the microcomb spectrum while the precise comb power shaping required to imprint the kernel weights was 

performed by the second, located just before the photo-detection. A feedback loop was employed to improve the 

accuracy of comb shaping, where the error signal was generated by first measuring the impulse response of the system 

with a Gaussian pulse input and comparing it with the ideal channel weights. Figure 6 shows the experimental and 
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Figure 5 | Experimental results of the image processing. a. The kernel weights and the shaped microcomb’s optical 
spectrum. b. The input electrical waveform of the image (grey lines are theory and blue experimental). c. The convolved 
results of the 4th kernel that performs top Sobel image processing. d. The weight matrices of the kernels and 
corresponding recovered images. 

 

theoretical large scale facial image processing results achieved by the matrix convolutional accelerator with ten 

convolutional kernels. 
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The electrical input data was temporally encoded by an arbitrary waveform generator (Keysight M8195A) and then 

 

Figure 6. Experimental and simulated large scale facial image processing results achieved by the convolutional 
accelerator with ten convolutional kernels.  
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multicast onto the wavelength channels via a 40 GHz intensity modulator (iXblue). For the 500×500 image processing, h 

 

Figure 7.  Flattening method applied to the input data and kernel matrices. Also see the video presentation. 

 

 

Figure 8. Deep (multiple) level CNN structure. The feature maps are the convolutional matrix outputs while the fully 
connected layers embody the neural network component.  
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Figure 9. The architecture of the optical CNN, including a convolutional layer, a pooling layer, and a fully connected layer.  

 

 
Figure 10. Experimental schematic of the optical CNN. Left side is the input front end convolutional accelerator while the right 
side is the fully connected layer, both of which form the deep learning optical CNN. The microcomb source supplies the 
wavelengths for both the tera-OPS photonic convolution accelerator as well as the fully connected layer systems. The electronic 
digital signal processing (DSP) module used for sampling and pooling etc. is external to this structure. 
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The electrical input data was temporally encoded by an arbitrary waveform generator (Keysight M8195A) and then 

multicast onto the wavelength channels via a 40 GHz intensity modulator (iXblue). For the 500×500 image processing, 

we used sample points at a rate of 62.9 Giga samples/s to form the input symbols. We then employed a 2.2 km length of 

dispersive fibre that provided a progressive delay of 15.9 ps/channel, precisely matched to the input baud rate.  

Considering that the convolutional accelerator fundamentally operates on vectors, for applications to image processing, 
the input data is in the form of matrices and so it needs to be flattened into vectors. (see Figure 7 and also additional 

video presentation [link]). We follow a common approach where the raw input matrix is first sliced horizontally into 

multiple sub-matrices, each with a height equal to that of the convolutional kernel. The sub-matrices were then flattened 

into vectors and connected head-to-tail to form the desired vector (Fig. 7). This flattening method equivalently makes the 

receptive field slide with a horizontal stride of 1 and a vertical stride equal to the height of the convolutional kernel. We 

note that a small stride (such as a horizontal stride of 1) ensures that all features of the raw data are extracted, while a 

large stride (3 or 5) reduces the overlap between the sliding convolution windows and effectively subsamples the 

convolved feature maps, thus partially serving as a pooling function. A stride of 4 was used for the AlexNet [88].  

We note that although the homogeneous strides are generally used more often in digitally implemented CNNs, 

inhomogeneous convolution strides (unequal horizontal and vertical strides) such as those used here are often used and in 

most cases, including our experiments, do not limit the performance. Our performance was verified by the high 

recognition success rate of the CNN for full 10 digit prediction. Further, if desired homogeneous convolutions can be 
achieved by duplicating the weight-and-delay paths (each including a modulator, a spool of dispersive fibre, a de-

multiplexer and multiple photo-detectors) of the accelerator.  

3.2 Deep Learning Optical Convolutional Neural Network  

The convolutional accelerator architecture presented here is fully and dynamically reconfigurable and scalable with the 

same hardware system. We were thus able to use the accelerator to sequentially form both a frontend convolution 

processor as well as a fully connected layer, together yielding an optical deep CNN. We applied the CNN to the 

recognition of full 10 (0-9) handwritten digit images. Figure 8 shows the overall architecture of the deep (multiple) level 

CNN structure. The feature maps are the convolutional matrix outputs while the fully connected layers embody the 

neural network component. Figure 9 shows the architecture of the optical CNN, including a convolutional layer, a 

pooling layer, and a fully connected layer. Figure 10 shows the detailed experimental schematic of the optical CNN. The 

left side is the input front end convolutional accelerator while the right is the fully connected layer - both the deep 
learning optical CNN. The microcomb supplies the wavelengths for both the convolution accelerator as well as the fully 

connected layer. The electronic digital signal processing (DSP) module used for sampling and pooling is external. 

The convolutional layer (Fig. 10, left) performs the heaviest computing duty of the entire network, generally taking 55% 

to 90% of the total computing power. The digit images – 30×30 matrices of grey-scale values with 8-bit resolution – 

were flattened into vectors and multiplexed in the time-domain at 11.9 Giga Baud (time-slot τ =84 ps). Three 5×5 kernels 

were used, requiring 75 microcomb lines, resulting in a vertical stride of 5. The dispersive delay was achieved with ~13 

km of SMF to match the data baud-rate. The wavelengths were de-multiplexed into the three kernels which were 

detected by high speed photodetectors and then sampled and nonlinearly scaled with digital electronics to recover the 

extracted hierarchical feature maps of the input images. The feature maps were then pooled electronically and flattened 

into a vector (Eq. 2,3) XFC (72×1= 6×4×3) per image that formed the input data to the fully connected layer.  

The fully connected layer had 10 neurons, each corresponding to one of the 10 categories of handwritten digits from 0 to 

9, with the synaptic weights represented by a 72×10 weight matrix WFC
(l)

 (ie., ten 72×1 column vectors) for the lth neuron 

(l ∈ [1, 10]) –  with the number of comb lines (72) matching the length of the flattened feature map vector XFC. The 

shaped optical spectrum at the lth port had an optical power distribution proportional to the weight vector WFC
(l), thus 

serving as the equivalent optical input of the lth neuron. After being multicast onto the 72 wavelengths and progressively 

delayed, the optical signal was weighted and demultiplexed with a single Waveshaper into 10 spatial output ports — 

each corresponding to a neuron. Since this part of the network involved linear processing, the kernel wavelength 

weighting could be implemented either before the EO modulation or at a later stage just before photodetection. The 

advantage of the latter is that both the demultiplexing and weighting can then be achieved with a single Waveshaper. 

Finally, the different node/neuron outputs were obtained by sampling the 73rd symbol of the convolved results. The final 

output of the optical CNN was represented by the intensities of the output neurons (Figure 11), where the highest 

intensity for each tested image corresponded to the predicted category. The peripheral systems, including signal 
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sampling, nonlinear function and pooling, were implemented electronically with digital signal processing hardware, 

although some of these functions (e.g., pooling) can be performed in the optical domain with the VCA. Supervised 

network training was performed offline electronically (see below). 

We experimentally tested 50 x 8-bit resolution images each 30 × 30 of the handwritten digit dataset with the deep optical 

CNN. The confusion matrix (Figure 12) shows an accuracy of 88% for the generated predictions, in contrast to 90% for 
the numerical results calculated on an electrical digital computer. The computing speed of the CA component of the deep 

optical CNN was 2×75×11.9 =1.785 TOPS, or 14.3 Tb/s. To process image matrices with 5×5 kernels, the convolutional 

layer had a matrix flattening overhead of 5, yielding an image computing speed of 1.785/5= 357 Giga OPS. The 

computing speed of the fully connected layer was 119.8 Giga-OPS (see below). The waveform duration was 

30×30×84ps=75.6ns for each image, and so the convolutional layer processed images at the rate of 1/75.6ns = 13.2 

million handwritten digit images per second.  

We note that handwritten digit recognition, although widely employed as a benchmark test in digital hardware, is still 

(for full 10 digit (0 - 9) recognition) beyond the capability of existing analog reconfigurable ONNs. Digit recognition 

requires a large number of physical parallel paths for fully-connected networks (e.g., a hidden layer with 10 neurons 

requires 9000 physical paths), which poses a huge challenge for current nanofabrication techniques. Our CNN represents 

the first reconfigurable and integrable ONN capable not only of performing high level complex tasks such as full 

handwritten digit recognition, but at TOP speeds.  

For the convolutional layer of the CNN, we used 5 sample points at 59.421642 Giga Samples/s to form each single 

symbol of the input waveform, which also matched with the progressive time delay (84 ps) of the 13km dispersive fibre. 

The generated electronic waveforms for 50 images are shown as Fig. 16 and 17, which served as the electrical input 

signal for the convolutional and fully connected layers, respectively.  

For the convolutional accelerator in both the CA and CNN experiments - the 500×500 image processing experiment and 

the convolutional layer of the CNN - the second Waveshaper simultaneously shaped and de-multiplexed the wavelength 

channels into separate spatial ports according to the configuration of the convolutional kernels. As for the fully 

connected layer, the second Waveshaper simultaneously performed the shaping and power splitting (instead of de-

multiplexing) for the ten output neurons. The de-multiplexed or power-split spatial ports were sequentially detected and 

measured. However, these two functions could readily be achieved in parallel with a commercially available 20-port 

optical spectral shaper (WaveShaper 16000S, Finisar) and multiple photodetectors.  
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Figure 11. Convolutional layer. Architecture and experimental results. Left panel: experimental setup. Right panel: 
experimental results of one convolutional kernel, showing shaped microcomb optical spectrum and corresponding kernel weights 
(blue lines are positive, red negative synaptic weights), the input electrical waveform for the digit “3” (middle: grey lines theory, 
yellow experiment), convolved results and feature maps.  

 

The negative channel weights were achieved using two methods. For the 500×500 image processing experiment and the 
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The negative channel weights were achieved using two methods. For the 500×500 image processing experiment and the 

convolutional layer of the CNN, the wavelength channels of each kernel were separated into two spatial outputs by the 

WaveShaper according to the signs of the kernel weights, and then detected by a balanced photodetector (Finisar 

XPDV2020). Conversely, for the fully connected layer the weights were encoded in the symbols of the input electrical 

waveform during the electrical digital processing stage. Both of these methods to impart negative weights were 
successful. Finally, the electrical output waveform was sampled and digitized by a high-speed oscilloscope (Keysight 

DSOZ504A, 80 Giga Symbols/s) to extract the final convolved output. For the CNN, the extracted outputs of the 

convolution accelerator were further processed digitally, including rescaling to exclude the loss of the photonic link via a 

reference bit, and then mapped onto a certain range using a nonlinear tanh function. The pooling layer’s functions were 

also implemented digitally, following the algorithm introduced in the network model. The residual discrepancy between 

experiment and calculations, for both the recognition and convolving functions, was due to the deterioration of the input 

waveform caused by performance limitations of the electrical arbitrary waveform generator. Addressing this would lead 

to greater accuracy and closer agreement with numerical calculations.  

Network training and digital processing 

For the deep learning (multiple level) optical CNN, we employed datasets from the MNIST (Modified National Institute 

of Standards and Technology) handwritten digit database [89]. The dataset contained 60000 images as the training set 

and 10000 images as the test set. The structure of the CNN in this work (Figure 8) was determined empirically using 
trial-and-error, which is a standard approach for neural networks. In our case this was greatly aided by the fact that the 

network structure (number of synapses and neurons) can be reconfigured dynamically without any change in hardware. 

The 28×28 input data was first padded with zeros into a 30×30 image and then sliced into a 5×180 matrix and convolved 

with the 5×5 kernels. This slicing operation equivalently made the receptive field slide horizontally with a stride = 1 

across the rows and a vertical stride = 5 across the columns of the 30×30 input data (corresponding to the 900 input 

nodes). Then the 6×26×3 feature map was pooled (using average pooling) to a smaller dimension of 6×4×3. Finally, the 

matrix was further flattened into a 72×1 vector that served as input nodes for the fully connected layer, which in turn 

generated the predictions using the 10 output neurons. The nonlinear function we used after the convolutional layer, the 

pooling function and the fully connected layer was the tanh function. Although other nonlinear functions such as ReLU 

are widely used, we used this tanh function since it can be realized with a saturating electrical amplifier. 

The training necessary to acquire pre-trained weights and biases was performed offline with a digital computer. The 
Back Propagation algorithm [90] was employed to adjust the weights. To validate the hyper-parameters of the CNN, we 

performed a 10-fold cross validation using the 60000 samples of the training dataset, where the training set was 

separated into 10 subsets and each was then used to test the trained network (6000 samples) with the rest of the 9 subsets 

(54000 samples). The result is shown in Figure 13. The test sets were assessed by both the optical CNN (50 images) and 

an electronic computer (10000 images, Figure 12) for comparison.  

Figure 6 shows the experimental and simulated large scale facial image processing results achieved by the convolutional 

accelerator with ten convolutional kernels. It shows the experimental results of large 500×500 face image processing, 

including the recorded waveforms and the recovered images. Figs. 16-21 show the full experimental results of the CNN. 

Figure 16 shows the shaped impulse response of the convolutional layer that has 3 kernels and 75 wavelengths, or 

weights, in total. Figure 17 shows the shaped impulse responses for the ten neurons, each with 72 synapses, at the fully 

connected layer. The fifty handwritten digits tested during our experiments are shown in Fig. 18 (a), with their 

corresponding encoded electrical waveform shown in Fig. 18 (b), which served as the electrical input of the 
convolutional layer. The electronic waveform generated from the extracted feature maps is shown in Fig. 19, that served 

as the input of the fully connected layer. Figure 20 shows the full experimental results of the CNN including the recorded 

waveforms and the recovered/sampled outputs. Figure 21 shows the experimental results of the ten output neurons in the 

fully connected layer. The left graphs show the output waveforms, while the right graphs show the corresponding 

sampled (red dot) and theoretically calculated (grey dot) intensities of the neurons. 

Since there are no common standards in the literature for classifying and quantifying the computing speed and 

processing power of ONNs, we explicitly outline the performance definitions that we use in characterizing our 

performance. We follow the approach that is widely used to evaluate electronic micro-processors. The computing power 

of the convolution accelerator—closely related to the operation bandwidth—is denoted as the throughput, which is the 

number of operations performed within a certain period. Considering that in our system the input data and weight vectors 

originate from different paths and are interleaved in different dimensions (time, wavelength, and space), we use the 

temporal sequence at the electrical output port to define the throughput in a more straightforward manner. 
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Figure 12 Experimental and theoretical results for image recognition. The upper figures show the sampled intensities of the ten 
output neurons at the fully connected layer, while the lower figures show the confusion matrices (see Supplementary Materials ) 
with the darker colours indicating a higher recognition score. 

 

At the electrical output port, the output waveform has L+R−1 symbols in total (L and R are the lengths of the input data 

vector and the kernel weight vector, respectively), among which L−R+1 symbols are the convolution results. Further, 

each output symbol is the calculated outcome of R multiply-and-accumulate operations or 2R OPS, with a symbol 

duration τ given by that of the input waveform symbols. Thus, considering that L is generally much larger than R in 

practical convolutional neural networks, the term (L−R+1)/(L+R−1) would not affect the vector computing speed, or 

throughput, which (in OPS) is given by 

   

2 1 2

1

R L R R

L R 

 
 

           (4) 

As such, the computing speed of the vector convolutional accelerator demonstrated here is 2×9×62.9×10 = 11.321 Tera-

OPS for ten parallel convolutional kernels). 

We note that when processing data in the form of vectors, such as audio speech, the effective computing speed of the 

accelerator would be the same as the vector computing speed 2R/ τ. Yet when processing data in the form of matrices, 

such as for images, we must account for the overhead on the effective computing speed brought about by the matrix-to-

vector flattening process. The overhead is directly related to the width of the convolutional kernels, for example, with 3-

by-3 kernels, the effective computing speed would be ~1/3 * 2R/τ, which still is in the TOP regime due to the high 

parallelism brought about by the time-wavelength interleaving technique.  

For the convolutional accelerator, the output waveform of each kernel (with a length of L−R+1=250,000−9+1=249,992) 

contains 166×498=82,668 useful symbols that are sampled out to form the feature map, while the rest of the symbols are 

discarded. As such, the effective matrix convolution speed for the experimentally performed task is slower than the 

vector computing speed of the convolution accelerator by the overhead factor of 3, and so the net speed then becomes 

11.321×82,668/249,991=11.321×33.07% = 3.7437 TOPS.  

For the deep CNN the convolutional accelerator front end layer has a vector computing speed of 2×25×11.9×3 = 1.785 

TOPS while the matrix convolution speed for 5x5 kernels is 1.785×6×26/(900−25+1) = 317.9 Giga-OPS. For the fully 

connected layer of the deep CNN, according to Eq. (4), the output waveform of each neuron would have a length of 

2R−1, while the useful (relevant output) symbol would be the one locating at R+1, which is also the result of 2R 

operations. As such, the computing speed of the fully connected layer would be 2R / (τ*(2R−1)) per neuron. With R =72 

during the experiment and ten neurons simultaneous operating, the effective computing speed of the matrix 

multiplication would be 2R / (τ*(2R−1)) × 10 = 2×72 / (84ps* (2×72−1)) = 119.83 Giga-OPS. 

In addition, the intensity resolution (bit-resolution for digital systems) for analog ONNs is mainly limited by the signal-

to-noise ratio (SNR). To achieve 8-bit resolution, the SNR of the system needs to be > 20∙log10(28) = 48 dB. This was 

achieved by our accelerator and so our speed in Tb/s is close to the speed in OPs x 8 – not reduced by our OSNR. 
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Figure 13 Results of full 10 digit (0-9) recognition by the deep level optical CNN. (a) The offline training curve and (b) 
generated predictions (confusion matrix) obtained by using an electronic computer to process the output of the CNN. The 
numbers represent the number of predicted labels versus the actual label (digit), hence the diagonal elements represent correct 
predictions.  

 

 

Figure 14. (a) Training curve and (b) the accuracy, of using the kth subset as the test set during the 10-fold cross 
validation for the full 10digit image recognition by the deep CNN.  
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Figure 15. Fully connected layers. Architecture and experimental results. The left panel depicts the experimental setup, 
similar to the convolutional layer. The right panel shows top: the experimental results for one output neuron, including the 

shaped comb spectrum; middle: the pooled feature maps of the digit “3” and the corresponding input electrical waveform 
(the grey lines are theory and red experimental; bottom: output waveform of the neuron and sampled intensities. 
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Fig. 16 Convolutional layer shaped impulse response. 
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Fig. 17. The shaped impulse response of the ten neurons at the fully connected layer. 
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Fig. 18. (a) Experimentally recognized 50 handwritten digit images (b) generated waveform that served as the input of the 
convolutional layer.  

 

 

Fig. 19. Generated (red) and simulated (grey) electrical waveform that served as the input for the 10th neuron in the fully 

connected layer. 
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Fig. 20. Experimental results of the convolutional layer, including the output waveforms of the convolved results and the 
corresponding recovered and theoretically calculated feature maps. 
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Fig. 21. Experimental results of the ten output neurons in the fully connected layer. The left graphs show the output 

waveforms, while the right graphs show the corresponding sampled (red dot) and theoretically calculated (grey dot) intensities 
of the neurons.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2021                   doi:10.20944/preprints202102.0549.v1

https://doi.org/10.20944/preprints202102.0549.v1


 

 
 

 

 

 

  

 

 

Performance comparison  

Here, we review recent progress of optical neuromorphic hardware (Table 1). This section is not comprehensive but 

focuses on the leading results that address the most crucial technical issues for optical computing hardware. The input 

data dimension directly determines the complexity of the processing task. In real-life scenarios, the input data dimension 

is generally very large, for example, a human face image would require over 60,000 pixels. Thus, to make optical 

computing hardware eventually useful, the input data dimension would need to be at least over 20,000. In this work we 

demonstrate processing of images containing 250,000 pixels, which is 224 x higher than previous reports. 

The computing speed is perhaps the most important parameter for computing hardware and is the main strength of 

optical approaches. Although there has not been a widely accepted definition of optical hardware computing speed, the 

key issue is the number of data sets that are processed within a certain time period - i.e., how many images can be 

processed per second. As such, although in some approaches [8, 11, 12], the latency is low due to the short physical path 

lengths, the computing speed remains very low due to the absence of high-speed data interfaces (i.e., input and output 
nodes are not updated at a high rate). Although other approaches [9, 27] offer high-speed data interfaces, their computing 

parallelism is not high and so their speed is similar to the input data rate. In our work, through the use of high-speed data 

interfaces (62.9 Giga Baud) and time-wavelength interleaving, we achieved a record computing speed of 11.321 Tera-

OPS, > 500 x higher than previous reports. 

Finally, the scalability and reconfigurability determines the versatility of the optical computing hardware. Approaches 

that cannot dynamically reconfigure the synapses [11] (marked as “Level 1” in the table) are barely trainable. 

Approaches at Level 2 [9, 12, 27] support online training, however, they can only process a specific task since the 

network structure is fixed once the device is fabricated. For approaches [27] at Level 3, different tasks can be processed 

although the function of each layer is fixed, which limits the hardware from implementing more complex operations 

other than matrix multiplication. Our work represents the first approach that operates at Level 4 with full dynamic 

reconfigurability in all respects. Here, the synaptic weights can be reconfigured by programming the WaveShaper. 

[27] 
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Further, the number of synapses per neuron can be reconfigured by reallocating the wavelength channels with the de-

multiplexer. The number of layers can be reconfigured by changing the number of stacked devices. Finally, the 

computing function can be switched between convolution and matrix multiplication by changing the sampling method. 

The degree of integration directly determines the potential computing density (processing capability per unit footprint). 

For approaches not well suited to integration [8, 11, 27], the potential computing density is low. While other approaches 
achieve limited integration of the weight and sum circuits [8, 12] - probably the most challenging issue — advanced 

integrated light sources have not been demonstrated. The performance of the light source directly determines the 

performance of the overall hardware in both input data scale [8] and number of synaptic connections per neuron [12]. 

The mm2 sized microcomb offers a large number of precisely-spaced wavelengths, which enhances the overall 

parallelism and computing density, representing a major step towards the full integration of optical computing hardware. 

4. DISCUSSION  
This approach can be readily scaled in performance in terms of input data size, as well as network size and speed. The 

data size is limited in practice only by the memory of the electrical digital-to-analog converters, and so in principle it is 

possible to process 4K-resolution (4096×2160) images. By integrating 100 photonic convolution accelerators layers (still 
much less than the 65536 processors integrated in the Google TPU [21]), the optical CNN would be capable of solving 

much more difficult image recognition tasks at a vector computing speed of 100 × 11.3=1.130 Peta-OPS. Further, the 

optical CNN presented here supports online training, since the optical spectral shaper used to establish the synapses can 

be dynamically reconfigured as fast as 500 ms or faster with integrated optical spectral shapers [91]. 

Although we had a non-trivial optical latency of 0.11 μs introduced by dispersive fibre spool, this did not affect the 

operational speed. Moreover, the latency of the delay function can be virtually eliminated (to < 200 ps) by using 

integrated highly dispersive devices such as photonic crystals or customized chirped Bragg gratings [92] or even tunable 

dispersion compensators [93-96]. Finally, current nanofabrication techniques can enable significantly higher levels of 

integration of the convolutional accelerator. The micro-comb source itself is based on a CMOS compatible platform that 

is intrinsically designed for large-scale integration. Other components such as the optical spectral shaper, modulator, 

dispersive media, de-multiplexer and photodetector have all been realized in integrated form [91, 92, 97]. 

5. CONCLUSION 
We demonstrate a universal optical vector convolutional accelerator operating beyond 10 TOPS, generating convolutions 

of images of 250,000 pixels with 8-bit resolution for 10 kernels simultaneously — enough for facial image recognition. 

We then use the same hardware to sequentially form a deep optical CNN with ten output neurons, achieving successful 

recognition of full 10 digits with 900 pixel handwritten digit images with 88% accuracy. Our approach is scalable and 

trainable to more complex networks for demanding applications to unmanned vehicles and real-time video recognition.   
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