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Abstract: To address the issue of agricultural robot loss of control caused by GNSS signal degradation
or loss in complex agricultural environments such as farmland and orchards, this study proposes a
neural network-based SLAM/GNSS fusion localization algorithm. First, a tightly-coupled lidar
inertial odometry via smoothing and mapping algorithm is employed to obtain the robot's observed
pose in the SLAM coordinate system without prior maps. Subsequently, dual-antenna Real-Time
Kinematic measurements are utilized to acquire positioning and orientation data. These data are then
processed through Gauss-Kruger projection and coordinate transformation to derive the robot's
observed pose in the GNSS coordinate system. Then, coordinate system alignment preprocessing is
implemented to unify the coordinate system of multi-sensor observed poses, followed by outlier
filtering and drift correction to optimize the SLAM poses. Finally, a neural network-based dynamic
weight adjustment fusion localization algorithm is designed to integrate pose observations from two
distinct coordinate systems, thereby enhancing the robot’s localization accuracy and stability in weak
or GNSS-denied environments. Experimental results on the robotic platform demonstrate that,
compared to the SLAM algorithm without pose optimization, the proposed SLAM/GNSS fusion
localization algorithm reduced the whole process average position deviation by 37%. Compared to
the fixed-weight fusion localization algorithm, the proposed SLAM/GNSS fusion localization
algorithm achieved a 74% reduction in average position deviation during transitional segments with
GNSS signal degradation or recovery. These results validate the superior positioning accuracy and
stability of the proposed SLAM/GNSS fusion localization algorithm in weak or GNSS-denied
environments. Orchard experimental results demonstrate that, at an average speed of 0.55m/s, the
proposed SLAM/GNSS fusion localization algorithm achieves an overall average position deviation
of 0.12m, with average position deviation of 0.06m in high GNSS signal quality zones, 0.11m in
transitional sections under signal degradation or recovery, and 0.14m in fully GNSS-denied
environments. These results validate the proposed SLAM/GNSS fusion localization algorithm
maintains high localization accuracy and stability even under conditions of low and highly
fluctuating GNSS signal quality, meeting the operational requirements of most agricultural robots.

Keywords: agricultural robots; GNSS-degraded or denied environments; fusion localization; neural
networks

1. Introduction

In recent years, China has faced intensifying population ageing, with rural labor shortages
emerging as a critical constraint on rural revitalization. Agricultural automation and
intelligentization represent an irreversible trend for the future of farming [1-3]. With continuous
advancements in technology, agricultural robots have emerged as a viable solution to replace human
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labor in repetitive agricultural tasks. These robots not only significantly enhance operational
efficiency and quality but also inject new momentum into sustainable agricultural development.
Their immense potential and promising prospects have garnered significant attention within the
global agriculture technology sector [4-6]. Among the core technologies for agricultural robots,
positioning systems play a pivotal role, serving as the fundamental enabler for autonomous
navigation operations [7-9].

In open-field environments, RTK (Real-Time Kinematic) enabled GNSS (Global Navigation
Satellite Systems) provide centimeter-level positioning accuracy, which has become the primary
technical dependency for current agricultural robot navigation systems [10-15]. However, in
occluded environments, GNSS signals suffer from degradation or even loss of fixed solutions, leading
to drastic declines in positioning accuracy that severely compromise the reliability of autonomous
navigation. Therefore, achieving continuous and precise robot localization in weak or GNSS-denied
environments has emerged as a key research focus in agricultural robotics [16-22]. Cao et al. [23]
proposed a neural network-based predictive MEMS-SINS error feedback correction method. This
approach trains the neural network during GPS (Global Positioning System) availability and utilizes
the trained model to predict MEMS-SINS errors during GPS outages. In four 50-second simulated
GPS-denied experiments, the method achieved an average position error of 3.8m. Shen et al. [24]
proposed a Radial Basis Function-based Multilayer Perceptron-assisted Cubature Kalman Filter to
compensate for position and velocity errors during GPS outages. In a 500-second GPS signal
interruption test, the algorithm's mean square error below 23.11m. Liu et al. [25] addressed the
challenge of cumulative errors in MEMS-INS during GPS signal loss by developing a neural network-
aided GPS/MEMS-INS integrated navigation system. Experimental simulations under GPS-denied
conditions demonstrated that this approach outperformed traditional frameworks using Standard
Kalman Filter and Unscented Kalman Filter, achieving approximately 65% improvement in velocity
and positional accuracy. Zhang et al. [26] proposed a BDS (BeiDou Navigation Satellite System)
outage endurance method for agricultural machinery navigation. By designing a Self-Calibrating
Variable-Structure Kalman Filter for BDS/INS data fusion, this approach maintains straight-line
tracking accuracy within limited durations. In robotic platform trials, during 20-second simulated
BDS outages, the method achieved an average lateral deviation of 0.31m on linear paths and an
average positioning discrepancy of 0.77m between INS (Inertial Navigation System) and BDS on
rectangular paths. However, cumulative errors inherent to the INS system limit its long-term
operational viability. Wei et al. [27] addressed the challenge of GNSS signal occlusion in orchard
environments by implementing a Kalman Filter-based fusion framework integrating GNSS and
LiDAR (Light Detection and Ranging) data. To mitigate motion-induced distortion in LiDAR scans,
an odometry-aided correction method was applied, enabling autonomous navigation for agricultural
robots. Experimental results demonstrated a mean lateral deviation of less than 11cm between actual
and planned trajectories. However, the validity of GNSS signal availability during trials remains
unverified, as the experiments did not isolate GNSS signals to quantify environmental signal
degradation levels. Hu et al. [28] proposed a laser-based localization method for agricultural robots,
which achieves robot positioning by fusing ToF (time-of-flight) measurements from laser scanning
with point cloud features acquired by a LiDAR receiver. Experimental results demonstrated that the
average maximum deviations during straight-line and curvilinear motion were 4.1cm and 6.2cm,
respectively. This method is primarily applicable to GNSS-denied indoor environments such as
hangars and greenhouses, requiring unobstructed visibility between the LiDAR and receiver.
However, its effectiveness is limited in outdoor scenarios due to potential occlusions. The
aforementioned research studies provide valuable insights into achieving continuous and precise
robot localization in weak or GNSS-denied environments. However, they still face limitations such
as relatively low localization accuracy and suboptimal stability.

To address the aforementioned issues, this study proposes a neural network-based SLAM/GNSS
fusion localization algorithm. The algorithm integrates the local accuracy of LiDAR-inertial odometry
with the global stability of GNSS. It achieves multi-sensor observed pose coordinate system
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unification through coordinate system alignment preprocessing, optimizes SLAM (Simultaneous
Localization and Mapping) poses via outlier filtering and drift correction, and dynamically adjusts
the weights of poses from distinct coordinate systems via a neural network according to the GDOP
(Geometric Dilution of Precision). These mechanisms collectively enhance the robot's localization
accuracy and stability in weak or GNSS-denied environments. A wheeled differential-drive robotic
platform was developed to preliminarily validate the algorithm's performance. Furthermore, field
experiments were conducted in actual orchard environments to investigate the algorithm's
effectiveness under orchard terrain conditions and tree-obstructed scenarios.

2. Materials and Methods
2.1. Algorithm Framework

The SLAM/GNSS fusion localization algorithm proposed in this study achieves continuous and
precise positioning for robots in weak or GNSS-denied environments by integrating LIO-SAM
(tightly-coupled lidar inertial odometry via smoothing and mapping) [29] and dual-antenna RTK
measured positioning and orientation data. This study adopts a loosely coupled approach, where the
SLAM and GNSS subsystems operate independently. A neural network-based dynamic weight
adjustment fusion localization algorithm was designed to perform data integration. The overall
framework is illustrated in Figure 1, with the corresponding nomenclature provided in Table 1. First,
the point cloud data from LiDAR and the acceleration and angular velocity from IMU (Inertial
Measurement Unit) are coupled into LIO-SAM to obtain the observed pose of the center point of the
drive wheel axis in the SLAM coordinate system. Subsequently, the real-time dynamically measured
positioning orientation data from the dual antennas are subjected to Gauss-Kruger projection and
coordinate transformation to obtain the observed pose of the center point of the drive wheel axis in
the GNSS coordinate system. Then, coordinate system alignment preprocessing is implemented to
unify the coordinate system of multi-sensor observed poses, followed by outlier filtering and drift
correction to optimize the SLAM poses. Finally, the observed poses from two distinct coordinate
systems and the GDOP are fed into the neural network model to dynamically adjust the optimization
weights of each observed pose, thereby outputting the fused pose.

F
Lidar - slam siam’ slam"
I_I_> LIO-SAM }DJ o] Coordinate system I)J o SLAM pose IDJ -
A, 0 ) ” alignment g optimization - used
IMU - Neural PJ
0 T network
Z I3 Gauss-Kruger projection pEss
Coordinate transformation L3 >
RTK GDOP >
Figure 1. Framework of the SLAM/GNSS fusion localization algorithm.
Table 1. Nomenclature corresponding to Figure 1.
Symbol Meaning
F, The point cloud data from LiDAR
4, The acceleration from IMU
o, The angular velocity from IMU
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Z, The positioning orientation data from the dual antennas
0 The initial RTK heading angle
B The observed pose in the GNSS coordinate system
P The observed pose in the SLAM coordinate system
P The SLAM pose after preprocessing of coordinate system alignment
P The optimized SLAM pose
Pl The fused pose
ijk The time-series markers of the LIDAR, IMU, and RTK

2.2. SLAM/GNSS Fusion Localization Algorithm
2.2.1. LiDAR-Inertial Odometry

The research employs the LIO-SAM algorithm for state estimation. This algorithm constructs a
factor graph optimization framework, as shown in Figure 2, incorporating four key factors: IMU
preintegration factor, LIDAR odometry factor, GPS factor, and loop closure factor. By applying
nonlinear optimization methods to optimize the factor graph, the system achieves globally consistent
robot poses, enabling high-precision state estimation and map construction.

Ky A £y 23 Fy F Fia
| ‘ | ‘ | | IMU Measurements ,:] LiDAR Frame O Robot State Node — @<+ Scan Matching
IMU preintegration gy LIDAR odometry /.\ /*\ Loop closure
factor factor GPS factor factor

Figure 2. Factor graph optimization framework of LIO-SAM.

The IMU pre-integration factor efficiently computes the relative motion increments between
consecutive LIDAR keyframes i and i+1 by pre-integrating IMU data. These increments include
positional increment AP, velocity increment AV, and rotational increment AR, ,, which are

i+l i,i+17
incorporated as constraints into the factor graph for optimization. The IMU pre-integration
formulation is expressed as follows:
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where g is the acceleration of gravity; As,,, is the time interval between two neighboring

i,i+1
keyframes; V, and V,,, are the velocities at the momentsiand i+l; P and P, are the positions at
the momentsiand i+1; R/ is the rotation matrix transpose at the moment i; and R, is the rotation

matrix at the moment i+1.

The LiDAR odometry factor first extracts features from preprocessed point cloud data using a
curvature-based method, categorizing them into edge features and planar features, while introducing
the concept of LIDAR keyframes. A sliding window approach is then employed to construct a point
cloud map containing a fixed number of recent LIDAR scans. Finally, the point-to-edge distance d,

and point-to-plane distance d, are utilized to formulate pose estimation equations.

(phs =P )* (i = p5)
de‘ - pl. =D
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wherek, u, vand w are feature indices in the corresponding set; p;, ., p/, and p/ arepoints
on edge features; and p/ ., p/,, p/, and p/ are points on planar features.

The GaussNewton method is used to solve for the optimal transformation by minimizing:

N

e _ipe PP
Py € FY Pink€ o

where T, is the pose at moment i+1; 'F?

. is the edge feature transformed to the world

coordinate system; and 'F?, is the planar feature transformed to the world coordinate system.

The relative pose transformation between two adjacent keyframes is computed:
AT, =TT, @)

where T, is the pose at moment i.

The GPS factor provides global positional constraints to the system by integrating GPS
measurement data. Upon receiving GPS observations, the data is transformed into a local Cartesian
coordinate system. When new nodes are added to the factor graph, the corresponding GPS factor is
associated with these nodes to establish spatial constraints.

The loop closure factor employs a simple yet effective Euclidean distance-based detection
method. The algorithm first searches historical keyframes to identify candidate loop closure frames
that are temporally distant but spatially proximate. Subsequently, scan-to-map optimization is
performed to estimate the relative pose transformation between the current keyframe and the
candidate frame. This transformation is then incorporated as a loop closure factor into the factor
graph for global trajectory optimization.

2.2.2. Coordinate System Alignment

The SLAM coordinate system is defined with its origin at the initial position of the center point
of the drive wheel axis. Its positive X-axis aligns with the robot's forward direction, while the positive
Y-axis is oriented towards the robot's left side following the right-hand rule. The GNSS coordinate
system shares the same origin but adopts an ENU (East-North-Up) frame convention, with the
positive X-axis pointing to geodetic east and the positive Y-axis to geodetic north. The arbitrary initial
orientation of the robot typically results in a fixed angular deviation 0 about the Z-axis between the
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SLAM and GNSS coordinate systems, as shown in Figure 3. To enable fusion of observed poses from
these two distinct coordinate systems, coordinate system alignment is required.

Il GNSS coordinate system

Bl SLAM coordinate system

Z6(Up)
Y;(North)

X (East)

Figure 3. Coordinate system framework.

During the system initialization phase, the initial heading angle 0 is obtained through dual-
antenna RTK measurements. The SLAM coordinate system is then rotated about the Z-axis by -0 to
align with the GNSS coordinate system, resulting in an intermediate coordinate system MID that
serves as the base coordinate system for SLAM. By establishing the coordinate transformation
relationship from the SLAM coordinate system to the MID coordinate system, positional coordinates
in the SLAM coordinate system can be transformed into the MID coordinate system, thereby
achieving unification of the coordinate system for multi-sensor observed poses. The transformation
is formulated as follows:

X, X um cos(—0) —sin(-6) 0 |f x,,
ymid = R;ZZ)M .yslam = Sin (_0) Cos (_9) O yslam (5)
Zmid z slam 0 0 1 z slam

Where xslam’ yslum and zZ

slam

are the position coordinates under the SLAM coordinate system;

RM[D

Xur Vg and z ., are the position coordinates under the MID coordinate system; and R, is

mi

the rotation matrix from the SLAM coordinate system to the MID coordinate system.

2.2.3. SLAM Pose Optimization

During the implementation of the LIO-SAM algorithm for simultaneous localization and
mapping, sporadic localization outliers may emerge in the LiDAR-inertial odometry. These
localization outliers, characterized by abrupt pose jumps at specific timestamps, often result from
dynamic object interference, sensor noise, or feature matching errors. These localization outliers must
be filtered out to enhance the system's temporal continuity and operational stability. The pose outlier
detection proceeds by first computing the Euclidean displacement between the current and previous
poses in the SLAM coordinate frame. If this displacement exceeds a predefined threshold, the current
pose is identified as an outlier. The system then substitutes the outlier with a linearly extrapolated
pose derived from the previous pose data, as formalized below:

x, =x,_ +kIAt
V.=V, +k;’1At (6)
0,=0_ +k At

where x,, y, and 6, are the x, y coordinates and heading angle at the current moment; x,_,,
¥, and @_, are the X, y coordinates and heading angle at the previous moment; &', k"' and
k™' are the rate of change of x, y coordinates and heading angle at the previous moment; and Az is

the time interval between the current moment and the previous moment.
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GNSS data is not entered into the LIO-SAM framework because LIO-SAM does not fully utilize
GNSS information [30]. The radar inertial odometers may have accumulated errors due to drift
during long time operation of the system. When the quality of the GNSS signal is high, the drift of
the radar inertial odometer can be suppressed by using the coordinate data under the GNSS
coordinate system as a global position constraint, thus reducing the cumulative error and improving
the stability of the system. When RTK has a fixed solution and the GNSS signal quality is high,
calculate the difference between the pose in the GNSS coordinate system and the pose in the SLAM
coordinate system. When the difference exceeds the set distance threshold or angle threshold, correct
the position coordinates in the SLAM coordinate system. Since this is designed for wheeled robots
moving on a plane, we only consider distance deviations in the X and Y directions and heading angle
deviation. The correction formula is as follows:

X, =X+ Ax
ymix:y+Ay (7)
6, =0+A0

where x,, v, and @ are the x, y coordinates and heading angles after correction; x, y
and @ are thex, y coordinates and heading angles before correction; and Ax, Ay and A@ are the

X, y coordinates and heading angle differences.

2.2.4. Neural Network-Based Dynamic Weight Adjustment

LIO-SAM assigns fixed observation weights to both GNSS and LiDAR odometry [30]. However,
in practical scenarios, the signal quality of GNSS significantly differs between open and obstructed
environments. The fixed-weight strategy fails to adequately account for the environmental sensitivity
of GNSS signal quality, resulting in high-quality observations not being fully leveraged. Given the
powerful adaptive and nonlinear mapping capabilities of neural networks, this study proposes a
neural network model with dynamic weight adjustment. It adaptively adjusts the weights of poses
from two distinct coordinate systems based on the magnitude of GDOP through end-to-end training,
aiming to achieve the fusion of SLAM and GNSS poses.

The structure of the neural network model is shown in Figure 4. The input layer contains 5-
dimensional features: the 2D SLAM position coordinates after preprocessing of coordinate system
alignment, 2D GNSS position coordinates, and the GDOP. The first and second hidden layers are
fully connected layers with 128 neurons each, using the ReLU (Rectified Linear Unit) as the activation
function for feature extraction. The third hidden layer is also a fully connected layer with 64 neurons
and ReLU activation, designed to further compress features. The fourth weight generation layer is a
fully connected layer with 2 neurons, employing the Softmax function as the activation function to
output normalized weights for GNSS and SLAM poses. The fifth fusion layer is a parameter-free
mathematical operation layer that performs weighted summation of SLAM and GNSS position
coordinates to output the fused position coordinates. The fusion formula is as follows:

X fused = WanssXenss T Watam™.

gnss " gnss slam™ slam
8)
Yy fused = Wgns.vy gnss + Wslam Yy slam
Wgnss + Wetam = 1

where w,,  is the weight of GNSS position; w,

slam

is the weight of SLAM position; x,  and

gnss

Ve, are the position coordinates in GNSS coordinate system; x

slam

and y, are the position

coordinates in SLAM coordinate system; and x,,, and v, are the fused position coordinates.
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Figure 4. Architecture diagram of the neural network-based model.

This study adopts the MAE (Mean Absolute Error) as the loss function, which computes the
mean absolute error L,,, between the fused position coordinates and the ground truth position

coordinates. The mathematical formulation is defined as follows:

©)

N
Ly = %; |p}used ~Pine
where p',, is the fusion position coordinate of the i-th sample; p!  is the ground truth
position coordinate of the i-th sample; and N is the total number of samples.

The training dataset was collected in real-world environments by controlling the robot to
maneuver repeatedly between open and obstructed areas. During this process, 5-dimensional input
data were continuously recorded, while 2-dimensional ground truth output data were acquired using
a total station. After temporal synchronization, the raw data were processed to create a custom
dataset, which was then split into 70% for training, 20% for validation, and 10% for testing. The model
was trained using the Adam optimizer with a learning rate of 0.001, a batch size of 32, and trained
for 100 epochs. The ReduceLROnPlateau strategy was applied for learning rate decay.

Finally, the fused heading angle is obtained by performing a weighted summation of the SLAM
and GNSS heading angles. The fusion formula is defined as follows:

efused = Wenss ggnss + WoanOitam (10)

where 6, is the heading angle in the GNSS coordinate system; 6,

gnss slam

is the heading angle in

the SLAM coordinate system; and &,,,, is the fused heading angle.

2.3. Robotic Platform Experiments
2.3.1. Experimental Platform

To preliminarily validate the performance of the SLAM/GNSS fusion localization algorithm, a
robotic platform was developed based on the AgileX TRACER MINI wheeled differential chassis,
with its physical prototype shown in Figure 5. The hardware components of the platform include:
Yentek G3750F-P4 embedded industrial computer (Intel i9-13900 processor, 32GB RAM);
Unicorecomm UM982 satellite receiver (10Hz output frequency, horizontal positioning accuracy:
0.8cm +1ppm, heading accuracy: 0.1° per 1m baseline); WHEELTEC N100 IMU (400Hz output
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frequency, accelerometer/gyroscope/magnetometer linearity <0.1%); Ouster OS1 3D LiDAR (10Hz
point cloud output, 128 scan lines); Display screen and 24V power supply. The software component
consists of a localization system based on the SLAM/GNSS fusion localization algorithm. This system
is developed within the ROS (Robot Operating System) framework using C++ and deployed on the
embedded industrial computer. The satellite receiver's positioning and heading data, along with the
IMU's inertial attitude data, are input to the localization system via serial port, while the LiDAR's
point cloud data is streamed via Ethernet. The localization system employs neural networks to
perform multi-sensor data fusion, continuously outputting the robot's fused pose.

Figure 5. Physical prototype of robotic platform. 1. RTK dual antenna 2. Display screen 3. Embedded
industrial computer 4. IMU. 5.Wheeled differential chassis 6. Power supply 7. Satellite receiver 8. LIDAR 9. Prism.

2.3.2. Experimental Protocol

The robotic platform experiments were conducted at the College of Engineering, South China
Agricultural University, with the experimental scenario shown in Figure 6. A Leica MS60 total station
in automated tracking mode was utilized to record the robot's ground truth position coordinates in
real-time by tracking a prism mounted on the robot. The total station operates at a 10Hz measurement
frequency, achieving a positioning error of Imm within a 100m range. A rectangular path was
planned with the starting point set in an area of high GNSS signal quality to facilitate coordinate
system alignment during the system initialization phase. The robot was remotely controlled to
approximately follow the predefined path, transitioning from GNSS-available zones to GNSS-denied
zones, then back to GNSS-available zones. During the robot's walking process, the position
coordinates in GNSS coordinate system, position coordinates in SLAM coordinate system and fused
position coordinates output from the localization system are recorded in real-time. Three repeated
trials were conducted under identical experimental conditions. Following temporal synchronization
and uniform time sampling of the data, the following metrics were calculated: the average position
deviation d throughout the whole process, the average position deviation d, in areas of high GNSS

signal quality, the average position deviation d, in transitional zones experiencing signal
degradation or recovery, the average position deviation d, in GNSS-denied environments, and the

average velocity v .These metrics were used to evaluate the localization accuracy and stability of the
SLAM/GNSS fusion localization algorithm.
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Figure 6. Experimental scenario of robotic platform.

2.4. Orchard Experiments
2.4.1. Experimental Platform

To investigate the operational performance of the SLAM/GNSS fusion localization algorithm in
actual orchard terrains and tree-obstructed environments, the aforementioned software and
hardware systems were ported to an AgileX BUNKER tracked differential chassis. Its key technical
specifications are summarized in Table 2, and the physical prototype is shown in Figure 7.

Table 2. Key technical specifications of tracked differential chassis.

Parameters Value
Length x Width x Height/ (mm x mm X mm) 1023x778x400
Total Mass / kg 130
Max Speed / (m - s71) 1.5
Min Turning Radius / mm 0
Max Gradeability / ° 30
Ground Clearance / mm 560

Figure 7. Physical prototype of orchard platform. 1. RTK dual antenna 2. Embedded industrial computer
3. Display screen 4. Tracked differential chassis 5. IMU 6. Power supply 7. Satellite receiver 8. LIDAR 9. Prism.
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2.4.2. Experimental Protocol

The orchard experiments were conducted at the Horticultural Teaching and Research Base of
South China Agricultural University, with the experimental scenario depicted in Figure 8. A
rectangular path was planned with the starting point positioned in a GNSS high-signal-quality area
to facilitate coordinate system alignment during initialization. The robot was remotely controlled to
approximately follow the predefined path. Throughout the traversal, both the fused position
coordinates from the localization system and the ground truth position coordinates from the total
station were recorded in real-time. Three repeated trials were conducted under identical
experimental conditions. Following temporal synchronization and uniform time sampling of the data,
the following metrics were calculated: the average position deviation d throughout the whole
process, the average position deviation d, in areas of high GNSS signal quality, the average position

deviation d, in transitional zones experiencing signal degradation or recovery, the average position
deviation d, in GNSS-denied environments, and the average velocity v . These metrics were

utilized to evaluate the localization accuracy and stability of the SLAM/GNSS fusion localization
algorithm in actual orchard terrains and tree-obstructed environments.

Figure 8. Orchard experimental scenario.

3. Results and Discussion
3.1. Analysis of Robotic Platform Experimental Results

The fused trajectory versus the ground truth trajectory from the robotic platform experiment 1
is shown in Figure 9 (a). The position deviation over time for the localization system employing the
SLAM/GNSS fusion localization algorithm is shown in Figure 9 (b). The position deviation over time
for the SLAM localization subsystem without pose optimization is shown in Figure 9 (c). The position
deviation over time for the fixed-weight fusion localization system is shown in Figure 9 (d). The
GDOP over time is shown in Figure 9 (e), while the time-varying weights assigned to SLAM and
GNSS poses are shown in Figure 9 (f).
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Figure 9. (a) Trajectory comparison from robotic platform experiment 1; (b) Position deviation variation curves
of the positioning system using the SLAM/GNSS fusion localization algorithm from robotic platform experiment
1; (c) Position deviation variation curves of the SLAM localization subsystem without pose optimization from
robotic platform experiment 1; (d) Position deviation variation curves of the fixed-weight fusion localization
system from robotic platform experiment 1; (€) GDOP variation curve from robotic platform experiment 1; (f)

Weight Variation Curve from robotic platform experiment 1.

During the intervals of 0-19.8s and 65-80s, the GDOP remained low, indicating high GNSS signal
quality. The SLAM/GNSS fusion localization algorithm optimized the SLAM pose through outlier
filtering and drift correction. The weights assigned to GNSS and SLAM poses showed not much
difference and remained stable, resulting in an average positional deviation of 0.03m in these
segments. During the 19.9s-23.5s interval, the GDOP gradually increased, indicating a progressive
degradation in GNSS signal quality. The SLAM/GNSS fusion localization algorithm dynamically
adjusted the weights via the neural network, with the GNSS pose weight continuously decreasing
while the SLAM pose weight correspondingly increased. This resulted in an average positional
deviation of 0.06m for this segment. During the 60.7s-64.9s interval, the GDOP gradually decreased,
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indicating a progressive improvement in GNSS signal quality. The SLAM/GNSS fusion localization
algorithm dynamically adjusted the weights via the neural network, with the SLAM pose weight
continuously decreasing while the GNSS pose weight correspondingly increased. This resulted in an
average positional deviation of 0.08m for this segment. During the 23.8s-60.5s interval, the GDOP
exceeded 4, indicating virtually no GNSS signals. The RTK fixed solution was lost, and the GNSS
pose weight was set to 0, while the SLAM pose weight was assigned a value of 1. The system thus
relied solely on LiDAR odometry for localization. This segment exhibited an average positional
deviation of 0.1lm with no significant dispersion in localization error, demonstrating stable
performance over extended durations.

The results from three repeated trials are summarized in Table 3. The SLAM/GNSS fusion
localization algorithm achieved the following metrics: d = 0.07m, a_’1 = 0.04m, 472 = 0.06m, d_3 =

0.10m, v = 0.57m/s. Compared to the SLAM algorithm without pose optimization, the proposed
SLAM/GNSS fusion localization algorithm reduced the whole process average position deviation by
37%. Compared to the fixed-weight fusion localization algorithm, the proposed SLAM/GNSS fusion
localization algorithm achieved a 74% reduction in average position deviation during transitional
segments with GNSS signal degradation or recovery. Experimental results on the robotic platform
demonstrate the superior positioning accuracy and stability of the proposed SLAM/GNSS fusion
localization algorithm in weak or GNSS-denied environments.

Table 3. Experimental results of robotic platform.

Experiment - - = = _ .
d/m d /m d,/m d,/m v/ (mes™)
NO.
1 0.07 0.03 0.07 0.11 0.60
2 0.07 0.04 0.07 0.10 0.54
3 0.06 0.04 0.05 0.08 0.58
Average 0.07 0.04 0.06 0.10 0.57

3.2. Analysis of Orchard Experimental Results

The fused trajectory versus the ground truth trajectory from the orchard experiments 1 is shown
in Figure 10 (a). The deviation d between the fused positions and ground truth positions over time is
shown in Figure 10 (b). The GDOP over time is shown in Figure 10 (c), while the time-varying weights
assigned to SLAM and GNSS poses are shown in Figure 10 (d).
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Figure 10. (a) Trajectory comparison from orchard experiment 1; (b) Position deviation variation curve from
orchard experiment 1; (c) GDOP variation curve from orchard experiment 1; (d) Weight Variation Curve from

orchard experiment 1.

During the 0-9.5s interval, the robot transitioned from an open area to a tree-obstructed zone.
The GDOP gradually increased, indicating a progressive degradation in GNSS signal quality. The
SLAM/GNSS fusion localization algorithm dynamically adjusted the weights via the neural network,
resulting in a continuous decrease in the GNSS pose weight and a corresponding increase in the
SLAM pose weight. During the 9.8s-107.3s interval, the robot operated entirely within a tree-
obstructed environment. The GDOP fluctuated between 2.8552 and 4.1664, indicating low and highly
fluctuating GNSS signal quality. The SLAM/GNSS fusion localization algorithm dynamically
adjusted the pose weights via the neural network, with both GNSS and SLAM weights continuously
adapting to real-time GNSS signal quality variations.

The results from three repeated trials are summarized in Table 4. The SLAM/GNSS fusion
localization algorithm achieved the following metrics: d =0.12m, d, = 0.06m, d, = 0.11m, d, =

0.14m, v = 0.55m/s. Experimental results in the orchard demonstrate that the proposed
SLAM/GNSS fusion localization algorithm maintains high localization accuracy and stability even
under conditions of low and highly fluctuating GNSS signal quality, meeting the operational
requirements of most agricultural robots.

Table 4. Orchard experimental results.

Experiment _ — - - _ O
d/m d /m d,/m d,/m v/ (mes™)
NO.
1 0.12 0.06 0.12 0.13 0.67
2 0.11 0.05 0.10 0.15 0.53
3 0.12 0.07 0.11 0.14 0.46
Average 0.12 0.06 0.11 0.14 0.55

3.3. Discussion

The requirement to position the robot's starting point in high GNSS signal quality areas for
coordinate system alignment during initialization imposes limitations on the applicability of the
proposed SLAM/GNSS fusion localization algorithm across diverse operational scenarios.

Since the total station cannot directly provide ground truth heading angles for tracked mobile
devices, this study omitted heading angle deviation as an experimental metric. Future research could
focus on acquiring accurate ground truth heading angles for robots in GNSS-denied environments to
further analyze the heading angle accuracy of the proposed SLAM/GNSS fusion localization
algorithm.
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Typical agricultural machines operate at a speed of 1 to 1.5 m/s, but experimental average speed
described above was only about 0.5 m/s. At velocities exceeding 1 m/s, the algorithm may sacrifice
positional precision to maintain real-time performance. Subsequent studies can add high-speed
testing scenarios to verify the accuracy and stability of the algorithm at typical farm machine
operating speeds.

In real agricultural scenarios, dust generated during robotic operations and frequent
precipitation during the rainy season can have an impact on the point cloud quality of the LiDAR.
Suspended particulate matter in the dust scatters the laser light, resulting in noticeable noise.
Raindrops reflect and absorb the laser light, resulting in anomalous increases or disappearances in
the point cloud. The distortion of LiDAR point cloud data will affect the effectiveness of the algorithm
to a certain extent, so in subsequent research we need to consider how to eliminate these effects as
much as possible to improve the stability of the algorithm in harsh environments. For example, a
waveform recognition algorithm can be used to analyze the reflectivity size and orientation of the
noise and set an appropriate threshold to filter the noise. Or a deep learning based denoising method
can be used to develop a noise filtering network based on semantic information.

4. Conclusions

To address the issue of agricultural robot loss of control caused by GNSS signal degradation or
loss in complex agricultural environments such as farmland and orchards, this study proposes a
neural network-based SLAM/GNSS fusion localization algorithm. It achieves multi-sensor observed
pose coordinate system unification through coordinate system alignment preprocessing, optimizes
SLAM poses via outlier filtering and drift correction, and dynamically adjusts the weights of poses
from distinct coordinate systems via a neural network according to the GDOP. These mechanisms
collectively enhance the robot's localization accuracy and stability in weak or GNSS-denied
environments.

To preliminarily validate the performance of the SLAM/GNSS fusion localization algorithm,
robotic platform experiments were conducted. The experimental results demonstrate that, at an
average speed of 0.57m/s, the proposed SLAM/GNSS fusion localization algorithm achieves an
overall average position deviation of 0.07m, with average position deviation of 0.04m in areas of high
GNSS signal quality, 0.06m in transitional zones experiencing signal degradation or recovery, and
0.10m in fully GNSS-denied environments. Compared to the SLAM algorithm without pose
optimization, the proposed SLAM/GNSS fusion localization algorithm reduced the whole process
average position deviation by 37%. Compared to the fixed-weight fusion localization algorithm, the
proposed SLAM/GNSS fusion localization algorithm achieved a 74% reduction in average position
deviation during transitional segments with GNSS signal degradation or recovery. These results
validate the superior positioning accuracy and stability of the proposed SLAM/GNSS fusion
localization algorithm in weak or GNSS-denied environments.

To investigate the operational performance of the SLAM/GNSS fusion localization algorithm in
actual orchard terrains and tree-obstructed environments, orchard field experiments were conducted.
The experimental results demonstrate that, at an average speed of 0.55m/s, the proposed
SLAM/GNSS fusion localization algorithm achieves an overall average position deviation of 0.12m,
with average position deviation of 0.06m in high GNSS signal quality zones, 0.11m in transitional
sections under signal degradation or recovery, and 0.14m in fully GNSS-denied environments. These
results validate the proposed SLAM/GNSS fusion localization algorithm maintains high localization
accuracy and stability even under conditions of low and highly fluctuating GNSS signal quality,
meeting the operational requirements of most agricultural robots.
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