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Abstract: To address the issue of agricultural robot loss of control caused by GNSS signal degradation 

or loss in complex agricultural environments such as farmland and orchards, this study proposes a 

neural network-based SLAM/GNSS fusion localization algorithm. First, a tightly-coupled lidar 

inertial odometry via smoothing and mapping algorithm is employed to obtain the robot's observed 

pose in the SLAM coordinate system without prior maps. Subsequently, dual-antenna Real-Time 

Kinematic measurements are utilized to acquire positioning and orientation data. These data are then 

processed through Gauss-Kruger projection and coordinate transformation to derive the robot's 

observed pose in the GNSS coordinate system. Then, coordinate system alignment preprocessing is 

implemented to unify the coordinate system of multi-sensor observed poses, followed by outlier 

filtering and drift correction to optimize the SLAM poses. Finally, a neural network-based dynamic 

weight adjustment fusion localization algorithm is designed to integrate pose observations from two 

distinct coordinate systems, thereby enhancing the robot’s localization accuracy and stability in weak 

or GNSS-denied environments. Experimental results on the robotic platform demonstrate that, 

compared to the SLAM algorithm without pose optimization, the proposed SLAM/GNSS fusion 

localization algorithm reduced the whole process average position deviation by 37%. Compared to 

the fixed-weight fusion localization algorithm, the proposed SLAM/GNSS fusion localization 

algorithm achieved a 74% reduction in average position deviation during transitional segments with 

GNSS signal degradation or recovery. These results validate the superior positioning accuracy and 

stability of the proposed SLAM/GNSS fusion localization algorithm in weak or GNSS-denied 

environments. Orchard experimental results demonstrate that, at an average speed of 0.55m/s, the 

proposed SLAM/GNSS fusion localization algorithm achieves an overall average position deviation 

of 0.12m, with average position deviation of 0.06m in high GNSS signal quality zones, 0.11m in 

transitional sections under signal degradation or recovery, and 0.14m in fully GNSS-denied 

environments. These results validate the proposed SLAM/GNSS fusion localization algorithm 

maintains high localization accuracy and stability even under conditions of low and highly 

fluctuating GNSS signal quality, meeting the operational requirements of most agricultural robots. 

Keywords: agricultural robots; GNSS-degraded or denied environments; fusion localization; neural 

networks 

 

1. Introduction 

In recent years, China has faced intensifying population ageing, with rural labor shortages 

emerging as a critical constraint on rural revitalization. Agricultural automation and 

intelligentization represent an irreversible trend for the future of farming [1–3]. With continuous 

advancements in technology, agricultural robots have emerged as a viable solution to replace human 
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labor in repetitive agricultural tasks. These robots not only significantly enhance operational 

efficiency and quality but also inject new momentum into sustainable agricultural development. 

Their immense potential and promising prospects have garnered significant attention within the 

global agriculture technology sector [4–6]. Among the core technologies for agricultural robots, 

positioning systems play a pivotal role, serving as the fundamental enabler for autonomous 

navigation operations [7–9]. 

In open-field environments, RTK (Real-Time Kinematic) enabled GNSS (Global Navigation 

Satellite Systems) provide centimeter-level positioning accuracy, which has become the primary 

technical dependency for current agricultural robot navigation systems [10–15]. However, in 

occluded environments, GNSS signals suffer from degradation or even loss of fixed solutions, leading 

to drastic declines in positioning accuracy that severely compromise the reliability of autonomous 

navigation. Therefore, achieving continuous and precise robot localization in weak or GNSS-denied 

environments has emerged as a key research focus in agricultural robotics [16–22]. Cao et al. [23] 

proposed a neural network-based predictive MEMS-SINS error feedback correction method. This 

approach trains the neural network during GPS (Global Positioning System) availability and utilizes 

the trained model to predict MEMS-SINS errors during GPS outages. In four 50-second simulated 

GPS-denied experiments, the method achieved an average position error of 3.8m. Shen et al. [24] 

proposed a Radial Basis Function-based Multilayer Perceptron-assisted Cubature Kalman Filter to 

compensate for position and velocity errors during GPS outages. In a 500-second GPS signal 

interruption test, the algorithm's mean square error below 23.11m. Liu et al. [25] addressed the 

challenge of cumulative errors in MEMS-INS during GPS signal loss by developing a neural network-

aided GPS/MEMS-INS integrated navigation system. Experimental simulations under GPS-denied 

conditions demonstrated that this approach outperformed traditional frameworks using Standard 

Kalman Filter and Unscented Kalman Filter, achieving approximately 65% improvement in velocity 

and positional accuracy. Zhang et al. [26] proposed a BDS (BeiDou Navigation Satellite System) 

outage endurance method for agricultural machinery navigation. By designing a Self-Calibrating 

Variable-Structure Kalman Filter for BDS/INS data fusion, this approach maintains straight-line 

tracking accuracy within limited durations. In robotic platform trials, during 20-second simulated 

BDS outages, the method achieved an average lateral deviation of 0.31m on linear paths and an 

average positioning discrepancy of 0.77m between INS (Inertial Navigation System) and BDS on 

rectangular paths. However, cumulative errors inherent to the INS system limit its long-term 

operational viability. Wei et al. [27] addressed the challenge of GNSS signal occlusion in orchard 

environments by implementing a Kalman Filter-based fusion framework integrating GNSS and 

LiDAR (Light Detection and Ranging) data. To mitigate motion-induced distortion in LiDAR scans, 

an odometry-aided correction method was applied, enabling autonomous navigation for agricultural 

robots. Experimental results demonstrated a mean lateral deviation of less than 11cm between actual 

and planned trajectories. However, the validity of GNSS signal availability during trials remains 

unverified, as the experiments did not isolate GNSS signals to quantify environmental signal 

degradation levels. Hu et al. [28] proposed a laser-based localization method for agricultural robots, 

which achieves robot positioning by fusing ToF (time-of-flight) measurements from laser scanning 

with point cloud features acquired by a LiDAR receiver. Experimental results demonstrated that the 

average maximum deviations during straight-line and curvilinear motion were 4.1cm and 6.2cm, 

respectively. This method is primarily applicable to GNSS-denied indoor environments such as 

hangars and greenhouses, requiring unobstructed visibility between the LiDAR and receiver. 

However, its effectiveness is limited in outdoor scenarios due to potential occlusions. The 

aforementioned research studies provide valuable insights into achieving continuous and precise 

robot localization in weak or GNSS-denied environments. However, they still face limitations such 

as relatively low localization accuracy and suboptimal stability. 

To address the aforementioned issues, this study proposes a neural network-based SLAM/GNSS 

fusion localization algorithm. The algorithm integrates the local accuracy of LiDAR-inertial odometry 

with the global stability of GNSS. It achieves multi-sensor observed pose coordinate system 
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unification through coordinate system alignment preprocessing, optimizes SLAM (Simultaneous 

Localization and Mapping) poses via outlier filtering and drift correction, and dynamically adjusts 

the weights of poses from distinct coordinate systems via a neural network according to the GDOP 

(Geometric Dilution of Precision). These mechanisms collectively enhance the robot's localization 

accuracy and stability in weak or GNSS-denied environments. A wheeled differential-drive robotic 

platform was developed to preliminarily validate the algorithm's performance. Furthermore, field 

experiments were conducted in actual orchard environments to investigate the algorithm's 

effectiveness under orchard terrain conditions and tree-obstructed scenarios. 

2. Materials and Methods 

2.1. Algorithm Framework 

The SLAM/GNSS fusion localization algorithm proposed in this study achieves continuous and 

precise positioning for robots in weak or GNSS-denied environments by integrating LIO-SAM 

(tightly-coupled lidar inertial odometry via smoothing and mapping) [29] and dual-antenna RTK 

measured positioning and orientation data. This study adopts a loosely coupled approach, where the 

SLAM and GNSS subsystems operate independently. A neural network-based dynamic weight 

adjustment fusion localization algorithm was designed to perform data integration. The overall 

framework is illustrated in Figure 1, with the corresponding nomenclature provided in Table 1. First, 

the point cloud data from LiDAR and the acceleration and angular velocity from IMU (Inertial 

Measurement Unit) are coupled into LIO-SAM to obtain the observed pose of the center point of the 

drive wheel axis in the SLAM coordinate system. Subsequently, the real-time dynamically measured 

positioning orientation data from the dual antennas are subjected to Gauss-Kruger projection and 

coordinate transformation to obtain the observed pose of the center point of the drive wheel axis in 

the GNSS coordinate system. Then, coordinate system alignment preprocessing is implemented to 

unify the coordinate system of multi-sensor observed poses, followed by outlier filtering and drift 

correction to optimize the SLAM poses. Finally, the observed poses from two distinct coordinate 

systems and the GDOP are fed into the neural network model to dynamically adjust the optimization 

weights of each observed pose, thereby outputting the fused pose. 

 

Figure 1. Framework of the SLAM/GNSS fusion localization algorithm. 

Table 1. Nomenclature corresponding to Figure 1. 

Symbol Meaning 

iF  The point cloud data from LiDAR 

jA  The acceleration from IMU 

j  The angular velocity from IMU 
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kZ  The positioning orientation data from the dual antennas 

  The initial RTK heading angle 

gnss

kP  The observed pose in the GNSS coordinate system 

slam

jP  The observed pose in the SLAM coordinate system 

'slam

jP  The SLAM pose after preprocessing of coordinate system alignment 

''slam

jP  The optimized SLAM pose 

fused

jP  The fused pose 

i, j, k
 

The time-series markers of the LiDAR, IMU, and RTK 

2.2. SLAM/GNSS Fusion Localization Algorithm 

2.2.1. LiDAR-Inertial Odometry 

The research employs the LIO-SAM algorithm for state estimation. This algorithm constructs a 

factor graph optimization framework, as shown in Figure 2, incorporating four key factors: IMU 

preintegration factor, LiDAR odometry factor, GPS factor, and loop closure factor. By applying 

nonlinear optimization methods to optimize the factor graph, the system achieves globally consistent 

robot poses, enabling high-precision state estimation and map construction. 

 

Figure 2. Factor graph optimization framework of LIO-SAM. 

The IMU pre-integration factor efficiently computes the relative motion increments between 

consecutive LiDAR keyframes i and i+1 by pre-integrating IMU data. These increments include 

positional increment 
, 1i iP +  velocity increment 

, 1i iV +  and rotational increment 
, 1i iR + , which are 

incorporated as constraints into the factor graph for optimization. The IMU pre-integration 

formulation is expressed as follows: 
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where g is the acceleration of gravity; 
, 1i it +  is the time interval between two neighboring 

keyframes; 
iV  and 

1iV +
 are the velocities at the moments i and i+1; 

iP  and 
1iP+
 are the positions at 

the moments i and i+1; T

iR  is the rotation matrix transpose at the moment i; and 
1iR +
 is the rotation 

matrix at the moment i+1. 

The LiDAR odometry factor first extracts features from preprocessed point cloud data using a 

curvature-based method, categorizing them into edge features and planar features, while introducing 

the concept of LiDAR keyframes. A sliding window approach is then employed to construct a point 

cloud map containing a fixed number of recent LiDAR scans. Finally, the point-to-edge distance 
ke

d  

and point-to-plane distance 
kp

d  are utilized to formulate pose estimation equations. 
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where k, u, v and w are feature indices in the corresponding set; 
1,

e

i kp +
, 

,
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i up  and 
,
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on edge features; and 
1,

p
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, ,
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i up , ,

p
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,

p

i wp  are points on planar features. 

The GaussNewton method is used to solve for the optimal transformation by minimizing: 
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(3) 

where 
1iT +

 is the pose at moment i+1; 
1' e

iF+
 is the edge feature transformed to the world 

coordinate system; and 
1' p

iF+
 is the planar feature transformed to the world coordinate system. 

The relative pose transformation between two adjacent keyframes is computed: 

, 1 1

T

i i i iT T T+ + =
 

(4) 

where 
iT  is the pose at moment i. 

The GPS factor provides global positional constraints to the system by integrating GPS 

measurement data. Upon receiving GPS observations, the data is transformed into a local Cartesian 

coordinate system. When new nodes are added to the factor graph, the corresponding GPS factor is 

associated with these nodes to establish spatial constraints. 

The loop closure factor employs a simple yet effective Euclidean distance-based detection 

method. The algorithm first searches historical keyframes to identify candidate loop closure frames 

that are temporally distant but spatially proximate. Subsequently, scan-to-map optimization is 

performed to estimate the relative pose transformation between the current keyframe and the 

candidate frame. This transformation is then incorporated as a loop closure factor into the factor 

graph for global trajectory optimization. 

2.2.2. Coordinate System Alignment 

The SLAM coordinate system is defined with its origin at the initial position of the center point 

of the drive wheel axis. Its positive X-axis aligns with the robot's forward direction, while the positive 

Y-axis is oriented towards the robot's left side following the right-hand rule. The GNSS coordinate 

system shares the same origin but adopts an ENU (East-North-Up) frame convention, with the 

positive X-axis pointing to geodetic east and the positive Y-axis to geodetic north. The arbitrary initial 

orientation of the robot typically results in a fixed angular deviation θ about the Z-axis between the 
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SLAM and GNSS coordinate systems, as shown in Figure 3. To enable fusion of observed poses from 

these two distinct coordinate systems, coordinate system alignment is required. 

 

Figure 3. Coordinate system framework. 

During the system initialization phase, the initial heading angle θ is obtained through dual-

antenna RTK measurements. The SLAM coordinate system is then rotated about the Z-axis by -θ to 

align with the GNSS coordinate system, resulting in an intermediate coordinate system MID that 

serves as the base coordinate system for SLAM. By establishing the coordinate transformation 

relationship from the SLAM coordinate system to the MID coordinate system, positional coordinates 

in the SLAM coordinate system can be transformed into the MID coordinate system, thereby 

achieving unification of the coordinate system for multi-sensor observed poses. The transformation 

is formulated as follows: 

( ) ( )

( ) ( )

cos sin 0

sin cos 0

0 0 1

mid slam slam
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mid SLAM slam slam

mid slam slam

x x x

y R y y

z z z
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(5) 

where 
slamx , 

slamy  and 
slamz  are the position coordinates under the SLAM coordinate system; 

midx , 
midy  and 

midz  are the position coordinates under the MID coordinate system; and MID

SLAMR  is 

the rotation matrix from the SLAM coordinate system to the MID coordinate system. 

2.2.3. SLAM Pose Optimization 

During the implementation of the LIO-SAM algorithm for simultaneous localization and 

mapping, sporadic localization outliers may emerge in the LiDAR-inertial odometry. These 

localization outliers, characterized by abrupt pose jumps at specific timestamps, often result from 

dynamic object interference, sensor noise, or feature matching errors. These localization outliers must 

be filtered out to enhance the system's temporal continuity and operational stability. The pose outlier 

detection proceeds by first computing the Euclidean displacement between the current and previous 

poses in the SLAM coordinate frame. If this displacement exceeds a predefined threshold, the current 

pose is identified as an outlier. The system then substitutes the outlier with a linearly extrapolated 

pose derived from the previous pose data, as formalized below: 
1

1

1

1

1

1

t

t t x

t

t t y

t

t t

x x k t

y y k t

k t 

−

−

−

−

−

−

 = + 


= + 


= +   

(6) 

where 
tx , 

ty  and 
t  are the x, y coordinates and heading angle at the current moment; 

1tx −
, 

1ty −
 and 

1t −
 are the x, y coordinates and heading angle at the previous moment; 1t

xk
− , 1t

yk
−  and 

1tk
−  are the rate of change of x, y coordinates and heading angle at the previous moment; and t  is 

the time interval between the current moment and the previous moment. 
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GNSS data is not entered into the LIO-SAM framework because LIO-SAM does not fully utilize 

GNSS information [30]. The radar inertial odometers may have accumulated errors due to drift 

during long time operation of the system. When the quality of the GNSS signal is high, the drift of 

the radar inertial odometer can be suppressed by using the coordinate data under the GNSS 

coordinate system as a global position constraint, thus reducing the cumulative error and improving 

the stability of the system. When RTK has a fixed solution and the GNSS signal quality is high, 

calculate the difference between the pose in the GNSS coordinate system and the pose in the SLAM 

coordinate system. When the difference exceeds the set distance threshold or angle threshold, correct 

the position coordinates in the SLAM coordinate system. Since this is designed for wheeled robots 

moving on a plane, we only consider distance deviations in the X and Y directions and heading angle 

deviation. The correction formula is as follows: 

mix

mix

mix

x x x

y y y

  

= + 


= + 
 = +   

(7) 

where 
mixx , 

mixy  and 
mix  are the x, y coordinates and heading angles after correction; x , y  

and   are the x, y coordinates and heading angles before correction; and x , y  and   are the 

x, y coordinates and heading angle differences. 

2.2.4. Neural Network-Based Dynamic Weight Adjustment 

LIO-SAM assigns fixed observation weights to both GNSS and LiDAR odometry [30]. However, 

in practical scenarios, the signal quality of GNSS significantly differs between open and obstructed 

environments. The fixed-weight strategy fails to adequately account for the environmental sensitivity 

of GNSS signal quality, resulting in high-quality observations not being fully leveraged. Given the 

powerful adaptive and nonlinear mapping capabilities of neural networks, this study proposes a 

neural network model with dynamic weight adjustment. It adaptively adjusts the weights of poses 

from two distinct coordinate systems based on the magnitude of GDOP through end-to-end training, 

aiming to achieve the fusion of SLAM and GNSS poses. 

The structure of the neural network model is shown in Figure 4. The input layer contains 5-

dimensional features: the 2D SLAM position coordinates after preprocessing of coordinate system 

alignment, 2D GNSS position coordinates, and the GDOP. The first and second hidden layers are 

fully connected layers with 128 neurons each, using the ReLU (Rectified Linear Unit) as the activation 

function for feature extraction. The third hidden layer is also a fully connected layer with 64 neurons 

and ReLU activation, designed to further compress features. The fourth weight generation layer is a 

fully connected layer with 2 neurons, employing the Softmax function as the activation function to 

output normalized weights for GNSS and SLAM poses. The fifth fusion layer is a parameter-free 

mathematical operation layer that performs weighted summation of SLAM and GNSS position 

coordinates to output the fused position coordinates. The fusion formula is as follows: 

1

fused gnss gnss slam slam

fused gnss gnss slam slam

gnss slam

x w x w x

y w y w y

w w

 = +


= +


+ =  

(8) 

where 
gnssw  is the weight of GNSS position; 

slamw  is the weight of SLAM position; 
gnssx  and 

gnssy  are the position coordinates in GNSS coordinate system; 
slamx  and 

slamy  are the position 

coordinates in SLAM coordinate system; and fusedx  and fusedy  are the fused position coordinates. 
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Figure 4. Architecture diagram of the neural network-based model. 

This study adopts the MAE (Mean Absolute Error) as the loss function, which computes the 

mean absolute error 
MAEL  between the fused position coordinates and the ground truth position 

coordinates. The mathematical formulation is defined as follows: 

1

1 N
i i

MAE fused true

i

L p p
N =

= −
 

(9) 

where i

fusedp  is the fusion position coordinate of the i-th sample; i

truep  is the ground truth 

position coordinate of the i-th sample; and N is the total number of samples. 

The training dataset was collected in real-world environments by controlling the robot to 

maneuver repeatedly between open and obstructed areas. During this process, 5-dimensional input 

data were continuously recorded, while 2-dimensional ground truth output data were acquired using 

a total station. After temporal synchronization, the raw data were processed to create a custom 

dataset, which was then split into 70% for training, 20% for validation, and 10% for testing. The model 

was trained using the Adam optimizer with a learning rate of 0.001, a batch size of 32, and trained 

for 100 epochs. The ReduceLROnPlateau strategy was applied for learning rate decay. 

Finally, the fused heading angle is obtained by performing a weighted summation of the SLAM 

and GNSS heading angles. The fusion formula is defined as follows: 

fused gnss gnss slam slamw w  = +
 (10) 

where 
gnss  is the heading angle in the GNSS coordinate system; 

slam  is the heading angle in 

the SLAM coordinate system; and fused  is the fused heading angle. 

2.3. Robotic Platform Experiments 

2.3.1. Experimental Platform 

To preliminarily validate the performance of the SLAM/GNSS fusion localization algorithm, a 

robotic platform was developed based on the AgileX TRACER MINI wheeled differential chassis, 

with its physical prototype shown in Figure 5. The hardware components of the platform include: 

Yentek G3750F-P4 embedded industrial computer (Intel i9-13900 processor, 32GB RAM); 

Unicorecomm UM982 satellite receiver (10Hz output frequency, horizontal positioning accuracy: 

0.8cm +1ppm, heading accuracy: 0.1° per 1m baseline); WHEELTEC N100 IMU (400Hz output 
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frequency, accelerometer/gyroscope/magnetometer linearity <0.1%); Ouster OS1 3D LiDAR (10Hz 

point cloud output, 128 scan lines); Display screen and 24V power supply. The software component 

consists of a localization system based on the SLAM/GNSS fusion localization algorithm. This system 

is developed within the ROS (Robot Operating System) framework using C++ and deployed on the 

embedded industrial computer. The satellite receiver's positioning and heading data, along with the 

IMU's inertial attitude data, are input to the localization system via serial port, while the LiDAR's 

point cloud data is streamed via Ethernet. The localization system employs neural networks to 

perform multi-sensor data fusion, continuously outputting the robot's fused pose. 

 

Figure 5. Physical prototype of robotic platform. 1. RTK dual antenna 2. Display screen 3. Embedded 

industrial computer 4. IMU. 5.Wheeled differential chassis 6. Power supply 7. Satellite receiver 8. LiDAR 9. Prism. 

2.3.2. Experimental Protocol 

The robotic platform experiments were conducted at the College of Engineering, South China 

Agricultural University, with the experimental scenario shown in Figure 6. A Leica MS60 total station 

in automated tracking mode was utilized to record the robot's ground truth position coordinates in 

real-time by tracking a prism mounted on the robot. The total station operates at a 10Hz measurement 

frequency, achieving a positioning error of 1mm within a 100m range. A rectangular path was 

planned with the starting point set in an area of high GNSS signal quality to facilitate coordinate 

system alignment during the system initialization phase. The robot was remotely controlled to 

approximately follow the predefined path, transitioning from GNSS-available zones to GNSS-denied 

zones, then back to GNSS-available zones. During the robot's walking process, the position 

coordinates in GNSS coordinate system, position coordinates in SLAM coordinate system and fused 

position coordinates output from the localization system are recorded in real-time. Three repeated 

trials were conducted under identical experimental conditions. Following temporal synchronization 

and uniform time sampling of the data, the following metrics were calculated: the average position 

deviation d  throughout the whole process, the average position deviation 
1d  in areas of high GNSS 

signal quality, the average position deviation 
2d  in transitional zones experiencing signal 

degradation or recovery, the average position deviation 
3d  in GNSS-denied environments, and the 

average velocity v . These metrics were used to evaluate the localization accuracy and stability of the 

SLAM/GNSS fusion localization algorithm. 
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Figure 6. Experimental scenario of robotic platform. 

2.4. Orchard Experiments 

2.4.1. Experimental Platform 

To investigate the operational performance of the SLAM/GNSS fusion localization algorithm in 

actual orchard terrains and tree-obstructed environments, the aforementioned software and 

hardware systems were ported to an AgileX BUNKER tracked differential chassis. Its key technical 

specifications are summarized in Table 2, and the physical prototype is shown in Figure 7. 

Table 2. Key technical specifications of tracked differential chassis. 

Parameters Value 

Length × Width × Height / (𝑚𝑚 ×𝑚𝑚 ×𝑚𝑚) 1023×778×400 

Total Mass / 𝑘𝑔 130 

Max Speed / (𝑚 ⋅ 𝑠−1) 1.5 

Min Turning Radius / 𝑚𝑚 0 

Max Gradeability / ° 30 

Ground Clearance / 𝑚𝑚 560 

 

Figure 7. Physical prototype of orchard platform. 1. RTK dual antenna 2. Embedded industrial computer 

3. Display screen 4. Tracked differential chassis 5. IMU 6. Power supply 7. Satellite receiver 8. LiDAR 9. Prism. 
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2.4.2. Experimental Protocol 

The orchard experiments were conducted at the Horticultural Teaching and Research Base of 

South China Agricultural University, with the experimental scenario depicted in Figure 8. A 

rectangular path was planned with the starting point positioned in a GNSS high-signal-quality area 

to facilitate coordinate system alignment during initialization. The robot was remotely controlled to 

approximately follow the predefined path. Throughout the traversal, both the fused position 

coordinates from the localization system and the ground truth position coordinates from the total 

station were recorded in real-time. Three repeated trials were conducted under identical 

experimental conditions. Following temporal synchronization and uniform time sampling of the data, 

the following metrics were calculated: the average position deviation d  throughout the whole 

process, the average position deviation 
1d  in areas of high GNSS signal quality, the average position 

deviation 
2d  in transitional zones experiencing signal degradation or recovery, the average position 

deviation 
3d  in GNSS-denied environments, and the average velocity v . These metrics were 

utilized to evaluate the localization accuracy and stability of the SLAM/GNSS fusion localization 

algorithm in actual orchard terrains and tree-obstructed environments. 

 

Figure 8. Orchard experimental scenario. 

3. Results and Discussion 

3.1. Analysis of Robotic Platform Experimental Results 

The fused trajectory versus the ground truth trajectory from the robotic platform experiment 1 

is shown in Figure 9 (a). The position deviation over time for the localization system employing the 

SLAM/GNSS fusion localization algorithm is shown in Figure 9 (b). The position deviation over time 

for the SLAM localization subsystem without pose optimization is shown in Figure 9 (c). The position 

deviation over time for the fixed-weight fusion localization system is shown in Figure 9 (d). The 

GDOP over time is shown in Figure 9 (e), while the time-varying weights assigned to SLAM and 

GNSS poses are shown in Figure 9 (f). 
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(a) 
 

(b) 

 

(c) 
 

(d) 

 

(e) 

 

(f) 

Figure 9. (a) Trajectory comparison from robotic platform experiment 1; (b) Position deviation variation curves 

of the positioning system using the SLAM/GNSS fusion localization algorithm from robotic platform experiment 

1; (c) Position deviation variation curves of the SLAM localization subsystem without pose optimization from 

robotic platform experiment 1; (d) Position deviation variation curves of the fixed-weight fusion localization 

system from robotic platform experiment 1; (e) GDOP variation curve from robotic platform experiment 1; (f) 

Weight Variation Curve from robotic platform experiment 1. 

During the intervals of 0-19.8s and 65-80s, the GDOP remained low, indicating high GNSS signal 

quality. The SLAM/GNSS fusion localization algorithm optimized the SLAM pose through outlier 

filtering and drift correction. The weights assigned to GNSS and SLAM poses showed not much 

difference and remained stable, resulting in an average positional deviation of 0.03m in these 

segments. During the 19.9s-23.5s interval, the GDOP gradually increased, indicating a progressive 

degradation in GNSS signal quality. The SLAM/GNSS fusion localization algorithm dynamically 

adjusted the weights via the neural network, with the GNSS pose weight continuously decreasing 

while the SLAM pose weight correspondingly increased. This resulted in an average positional 

deviation of 0.06m for this segment. During the 60.7s-64.9s interval, the GDOP gradually decreased, 
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indicating a progressive improvement in GNSS signal quality. The SLAM/GNSS fusion localization 

algorithm dynamically adjusted the weights via the neural network, with the SLAM pose weight 

continuously decreasing while the GNSS pose weight correspondingly increased. This resulted in an 

average positional deviation of 0.08m for this segment. During the 23.8s-60.5s interval, the GDOP 

exceeded 4, indicating virtually no GNSS signals. The RTK fixed solution was lost, and the GNSS 

pose weight was set to 0, while the SLAM pose weight was assigned a value of 1. The system thus 

relied solely on LiDAR odometry for localization. This segment exhibited an average positional 

deviation of 0.11m with no significant dispersion in localization error, demonstrating stable 

performance over extended durations. 

The results from three repeated trials are summarized in Table 3. The SLAM/GNSS fusion 

localization algorithm achieved the following metrics: d  = 0.07m, 
1d  = 0.04m, 

2d  = 0.06m, 
3d  = 

0.10m, v  = 0.57m/s. Compared to the SLAM algorithm without pose optimization, the proposed 

SLAM/GNSS fusion localization algorithm reduced the whole process average position deviation by 

37%. Compared to the fixed-weight fusion localization algorithm, the proposed SLAM/GNSS fusion 

localization algorithm achieved a 74% reduction in average position deviation during transitional 

segments with GNSS signal degradation or recovery. Experimental results on the robotic platform 

demonstrate the superior positioning accuracy and stability of the proposed SLAM/GNSS fusion 

localization algorithm in weak or GNSS-denied environments. 

Table 3. Experimental results of robotic platform. 

Experiment 

NO. 
/d m  1 /d m  

2 /d m  
3 /d m  1/ ( )v m s−  

1 0.07 0.03 0.07 0.11 0.60 

2 0.07 0.04 0.07 0.10 0.54 

3 0.06 0.04 0.05 0.08 0.58 

Average 0.07 0.04 0.06 0.10 0.57 

3.2. Analysis of Orchard Experimental Results 

The fused trajectory versus the ground truth trajectory from the orchard experiments 1 is shown 

in Figure 10 (a). The deviation d between the fused positions and ground truth positions over time is 

shown in Figure 10 (b). The GDOP over time is shown in Figure 10 (c), while the time-varying weights 

assigned to SLAM and GNSS poses are shown in Figure 10 (d). 

 

(a) 
 

(b) 
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(c) 

 

(d) 

Figure 10. (a) Trajectory comparison from orchard experiment 1; (b) Position deviation variation curve from 

orchard experiment 1; (c) GDOP variation curve from orchard experiment 1; (d) Weight Variation Curve from 

orchard experiment 1. 

During the 0-9.5s interval, the robot transitioned from an open area to a tree-obstructed zone. 

The GDOP gradually increased, indicating a progressive degradation in GNSS signal quality. The 

SLAM/GNSS fusion localization algorithm dynamically adjusted the weights via the neural network, 

resulting in a continuous decrease in the GNSS pose weight and a corresponding increase in the 

SLAM pose weight. During the 9.8s-107.3s interval, the robot operated entirely within a tree-

obstructed environment. The GDOP fluctuated between 2.8552 and 4.1664, indicating low and highly 

fluctuating GNSS signal quality. The SLAM/GNSS fusion localization algorithm dynamically 

adjusted the pose weights via the neural network, with both GNSS and SLAM weights continuously 

adapting to real-time GNSS signal quality variations. 

The results from three repeated trials are summarized in Table 4. The SLAM/GNSS fusion 

localization algorithm achieved the following metrics: d  = 0.12m, 
1d  = 0.06m, 

2d  = 0.11m, 
3d  = 

0.14m, v  = 0.55m/s. Experimental results in the orchard demonstrate that the proposed 

SLAM/GNSS fusion localization algorithm maintains high localization accuracy and stability even 

under conditions of low and highly fluctuating GNSS signal quality, meeting the operational 

requirements of most agricultural robots. 

Table 4. Orchard experimental results. 

Experiment 

NO. 
/d m  1 /d m  

2 /d m  
3 /d m  1/ ( )v m s−  

1 0.12 0.06 0.12 0.13 0.67 

2 0.11 0.05 0.10 0.15 0.53 

3 0.12 0.07 0.11 0.14 0.46 

Average 0.12 0.06 0.11 0.14 0.55 

3.3. Discussion 

The requirement to position the robot's starting point in high GNSS signal quality areas for 

coordinate system alignment during initialization imposes limitations on the applicability of the 

proposed SLAM/GNSS fusion localization algorithm across diverse operational scenarios. 

Since the total station cannot directly provide ground truth heading angles for tracked mobile 

devices, this study omitted heading angle deviation as an experimental metric. Future research could 

focus on acquiring accurate ground truth heading angles for robots in GNSS-denied environments to 

further analyze the heading angle accuracy of the proposed SLAM/GNSS fusion localization 

algorithm. 
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Typical agricultural machines operate at a speed of 1 to 1.5 m/s, but experimental average speed 

described above was only about 0.5 m/s. At velocities exceeding 1 m/s, the algorithm may sacrifice 

positional precision to maintain real-time performance. Subsequent studies can add high-speed 

testing scenarios to verify the accuracy and stability of the algorithm at typical farm machine 

operating speeds. 

In real agricultural scenarios, dust generated during robotic operations and frequent 

precipitation during the rainy season can have an impact on the point cloud quality of the LiDAR. 

Suspended particulate matter in the dust scatters the laser light, resulting in noticeable noise. 

Raindrops reflect and absorb the laser light, resulting in anomalous increases or disappearances in 

the point cloud. The distortion of LiDAR point cloud data will affect the effectiveness of the algorithm 

to a certain extent, so in subsequent research we need to consider how to eliminate these effects as 

much as possible to improve the stability of the algorithm in harsh environments. For example, a 

waveform recognition algorithm can be used to analyze the reflectivity size and orientation of the 

noise and set an appropriate threshold to filter the noise. Or a deep learning based denoising method 

can be used to develop a noise filtering network based on semantic information. 

4. Conclusions 

To address the issue of agricultural robot loss of control caused by GNSS signal degradation or 

loss in complex agricultural environments such as farmland and orchards, this study proposes a 

neural network-based SLAM/GNSS fusion localization algorithm. It achieves multi-sensor observed 

pose coordinate system unification through coordinate system alignment preprocessing, optimizes 

SLAM poses via outlier filtering and drift correction, and dynamically adjusts the weights of poses 

from distinct coordinate systems via a neural network according to the GDOP. These mechanisms 

collectively enhance the robot's localization accuracy and stability in weak or GNSS-denied 

environments. 

To preliminarily validate the performance of the SLAM/GNSS fusion localization algorithm, 

robotic platform experiments were conducted. The experimental results demonstrate that, at an 

average speed of 0.57m/s, the proposed SLAM/GNSS fusion localization algorithm achieves an 

overall average position deviation of 0.07m, with average position deviation of 0.04m in areas of high 

GNSS signal quality, 0.06m in transitional zones experiencing signal degradation or recovery, and 

0.10m in fully GNSS-denied environments. Compared to the SLAM algorithm without pose 

optimization, the proposed SLAM/GNSS fusion localization algorithm reduced the whole process 

average position deviation by 37%. Compared to the fixed-weight fusion localization algorithm, the 

proposed SLAM/GNSS fusion localization algorithm achieved a 74% reduction in average position 

deviation during transitional segments with GNSS signal degradation or recovery. These results 

validate the superior positioning accuracy and stability of the proposed SLAM/GNSS fusion 

localization algorithm in weak or GNSS-denied environments. 

To investigate the operational performance of the SLAM/GNSS fusion localization algorithm in 

actual orchard terrains and tree-obstructed environments, orchard field experiments were conducted. 

The experimental results demonstrate that, at an average speed of 0.55m/s, the proposed 

SLAM/GNSS fusion localization algorithm achieves an overall average position deviation of 0.12m, 

with average position deviation of 0.06m in high GNSS signal quality zones, 0.11m in transitional 

sections under signal degradation or recovery, and 0.14m in fully GNSS-denied environments. These 

results validate the proposed SLAM/GNSS fusion localization algorithm maintains high localization 

accuracy and stability even under conditions of low and highly fluctuating GNSS signal quality, 

meeting the operational requirements of most agricultural robots. 

Author Contributions: Conceptualization, H.Z., J.H., J.W., and Y.C.; methodology, H.Z., J.H., J.W., and Y.C.; 

validation, H.Z., J.W., and Y.C.; formal analysis, H.Z., Y.C., J.W., and Z.L.; investigation, H.Z., J.W., and F.X.; 

resources, H.Z. and J.H.; data curation, H.Z., J.W., Y.C., Z.L., J.H., and L.H.; writing—original draft preparation, 

H.Z., J.W., Y.C., and F.X.; writing—review and editing, H.Z., J.W., and J.H.; visualization, H.Z., J.W., Y.C., and 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2025 doi:10.20944/preprints202506.1068.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1068.v1
http://creativecommons.org/licenses/by/4.0/


 16 of 18 

 

P.W.; supervision, J.H.; project administration, H.Z. and J.W.; funding acquisition, J.H. and L.H. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This research was funded by Special Fund for Hunan innovative province construction project 

(2023NK1020), Key R&D Plan Project of Shandong Province (2022SFGC0202). 

Data Availability Statement: Data is contained within the article. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Luo, X.W; Hu, L; He, J; Zhang, Z.G.; Zhou, Z.Y.; Zhang, W.Y.; Liao, J; Huang, P.K. Key Technologies and 

Practice of Unmanned Farm in China[J]. Transactions of the Chinese Society of Agricultural Engineering. 2024, 

40(1): 1-16. https://doi.org/10.11975/j.issn.1002-6819.202312126. 

2. Liu, J.Z; Jiang, Y.X. Industrialization Trends and Multi-arm Technology Direction of Harvesting Robots[J]. 

Transactions of the Chinese Society for Agricultural Machinery.2024, 55(10): 1-17. 

https://doi.org/10.6041/j.issn.1000-1298.2024.10.001. 

3. Sun, Z.Q.; Tang, S.Y.; Luo, X.F.; Dong, J.W.; Xu, N. Research and Application Status of Path Planning for 

Agricultural Inspection Robots. Agric. Equip. Veh. Eng. 2025, 63, 18–24. https://doi.org/10.3969/j.issn.1673-

3142.2025.01.003. 

4. Wang, N; Han Y.X; Wang, Y.X; Wang, T.H.; Zhang, M; Li, H. Research Progress of Agricultural Robot Full 

Coverage Operation Planning[J]. Transactions of the Chinese Society for Agricultural Machinery. 2022, 53(s1): 

1-19. https://doi.org/10.6041/j.issn.1000-1298.2022.S1.001. 

5. Zhang, M, Ji, Y.H.; Li S.C.; Cao R.Y.; Xu H.Z.; Zhang, Z.Q. Research Progress of Agricultural Machinery 

Navigation Technology[J]. Transactions of the Chinese Society for Agricultural Machinery. 2020, 51(4): 1-18. 

https://doi.org/10.6041/j.issn.1000-1298.2020.04.001. 

6. Xu, T.; Zhou, Z.Q. Current Status and Trends of Agricultural Robotics Development. Agric. Equip. Technol. 

2024, 2025, 51(01). 

7. Chen, Y, Zhang, T.M; Sun, D.Z.; Peng, X.D.; Liao, Y.Y. Design and experiment of locating system for 

facilities agricultural vehicle based on wireless sensor network[J]. Transactions of the Chinese Society of 

Agricultural Engineering. 2015, 31(10): 190-197. https://doi.org/10.11975/j.issn.1002-6819.2015.10.025. 

8. Ma, Q.; Tang, G.Y.; Fu, Z.Y.; Deng, H.G.; Fan, J.N.; Wu, C.C. Research progress on autonomous agricultural 

machinery technology and automatic parking methods in China[J]. Transactions of the Chinese Society of 

Agricultural Engineering. 2025, 41(10): 15-27. https://doi.org/10.11975/j.issn.1002-6819.202410129. 

9. Liu, C.L.; Gong, L.; Yuan, J.; Li, Y.M. Development Trends of Agricultural Robots[J]. Transactions of the 

Chinese Society for Agricultural Machinery. 2022, 53(7): 1-22,55. https://doi.org/10.6041/j.issn.1000-

1298.2022.07.001. 

10. Liu, Z.P.; Zhang, Z.G.; Luo, X.W; Wang, H; Huang, P.K.; Zhang, J. Design of automatic navigation 

operation system for Lovol ZP9500 high clearance boom sprayer based on GNSS[J]. Transactions of the 

Chinese Society of Agricultural Engineering. 2018, 34(1): 15-21. https://doi.org/10.11975/j.issn.1002-

6819.2018.01.03. 

11. Zhang, Z.G.; Luo, X.W.; Zhao, Z.X.; Huang, P.S. Trajectory Tracking Control Method Based on Kalman 

Filter and Pure Pursuit Model for Agricultural Vehicle[J]. Transactions of the Chinese Society for Agricultural 

Machinery. 2009, 40(Z1): 6-12. https://doi.org/10.3969/j.issn.1000-1298. 

12. Ding, Y.C.; He, Z.B.; Xia, Z.Z.; Peng, J.Y.; Wu, T.H. Design of navigation immune controller of small 

crawler-type rape seeder[J]. Transactions of the Chinese Society of Agricultural Engineering. 2019, 35(7): 12-20. 

https://doi.org/10.11975/j.issn.1002-6819.2019.07.002. 

13. Li, Q.T.; Liu, B. Design and Path Planning of Agricultural Machinery Automatic Navigation System Based 

on GNSS[J]. Test Meas. Technol. 2024, 38, 256–263. https://doi.org/10.3969/j.issn.1671-7449.2024033. 

14. Hu, J.T; Gao, L, Bai, X.P.; Li, T.C.; Liu, X.G. Review of research on automatic guidance of agricultural 

vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering. 2015, 31(10): 1-10. 

https://doi.org/10.11975/j.issn.1002-6819.2015.10.001. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2025 doi:10.20944/preprints202506.1068.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.11975/j.issn.1002-6819.2015.10.025.
https://doi.org/10.6041/j.issn.1000-1298.2022.07.001.
https://doi.org/10.6041/j.issn.1000-1298.2022.07.001.
https://doi.org/10.20944/preprints202506.1068.v1
http://creativecommons.org/licenses/by/4.0/


 17 of 18 

 

15. Ji, C.Y.; Zhou, J. Current Situation of Navigation Technologies for Agricultural Machinery[J]. Transactions 

of the Chinese Society for Agricultural Machinery. 2014, 45(9): 44-54. https://doi.org/10.6041/j.issn.1000-

1298.2014.09.008. 

16. Luo, X.W.; Liao, J.; Hu, L.; Zhou, Z.Y.; Zhang, Z.G.; Zang, Y.; Wang, P.; He, J. Research progress of 

intelligent agricultural machinery and practice of unmanned farm in China[J]. Journal of South China 

Agricultural University. 2021, 42(6): 8-17. https://doi.org/10.7671/j.issn.1001-411X.202108040. 

17. Wang, J.; Chen, Z.W.; Xu, Z.S.; Huang, Z.D.; Jing, J.S.; Niu, R.X. Inter-rows Navigation Method of 

Greenhouse Robot Based on Fusion of Camera and LiDAR[J]. Transactions of the Chinese Society for 

Agricultural Machinery. 2023, 54(3): 32-40. https://doi.org/10.6041/j.issn.1000-1298.2023.03.003. 

18. Yousuf S, Kadri MB. Information Fusion of GPS, INS and Odometer Sensors for Improving Localization 

Accuracy of Mobile Robots in Indoor and Outdoor Applications[J]. Robotica. 2021; 39(2): 250-276. 

https://doi.org/10.1017/S0263574720000351 

19. Yin, X.; Wang, Y.X,; Chen, Y.L.; Jin, C.Q.; Du, J. Development of autonomous navigation controller for 

agricultural vehicles[J]. International Journal of Agricultural and Biological Engineering. 2020; 13(4): 70–76. 

https://doi.org/10.25165/j.ijabe.20201304.5470. 

20. He, Y.; Huang, Z.Y.; Yang, N.Y.; Li, X.Y.; Wang, Y.W.; Feng, X.P. Research Progress and Prospects of Key 

Navigation Technologies for Facility Agricultural Robots[J]. Smart Agriculture. 2024, 6(5): 1-19. 

https://doi.org/10.12133/j.smartag.SA202404006. 

21. Liu, Y.; Ji, J.; Pan, D.; Zhao, L.J.; Li, M.S. Localization Method for Agricultural Robots Based on Fusion of 

LiDAR and IMU[J]. Smart Agriculture. 2024, 6(3): 94-106. https://doi.org/10.12133/j.smartag.SA202401009. 

22. Jin, B.; Li, J.X.; Zhu, D.K.; Guo, J.; Su, B.F. GPS/INS navigation based on adaptive finite impulse response-

Kalman filter algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering. 2019, 35(3): 75-81. 

https://doi.org/10.11975/j.issn.1002-6819.2019.03.010. 

23. Cao, J.J.; Fang, J.C.; Sheng, W.; Bai, H.X. Adaptive neural network prediction feedback for MEMS-SINS 

during GPS outage[J]. Journal of Astronautics. 2009, 30(06). https://doi.org/10.3873/j.issn.1000-

1328.2009.06.030. 

24. Shen, C.; Zhang, Y.; Tang, J.; Cao, H.; Liu, J. Dual-optimization for a MEMS-INS/GPS system during GPS 

outages based on the cubature Kalman filter and neural networks[J]. Mechanical Systems and Signal 

Processing. 2019, 133106222-106222. https://doi.org/10.1016/j.ymssp.2019.07.003. 

25. Liu, Q.Y.; Hao, L.L; Huang, S.J.; Zhu, S.Y. A New Study of Neural Network Aided GPS/MEMS-INS 

Integrated Navigation[J]. Journal of Geomatics Science and Technology. 2014, 31(04): 336-341. 

https://doi.org/10.3969/j.issn.1673-6338.2014.04.002. 

26. Zhang, W.Y.; Wang J; Zhang, Z.G.; He, J; Hu, L; Luo, X.W. Self-calibrating Variable Structure Kalman Filter 

for Tractor Navigation during BDS Outages[J]. Transactions of the Chinese Society for Agricultural Machinery. 

2020, 51(3): 18-27. https://doi.org/10.6041/j.issn.1000-1298.2020.03.002. 

27. Wei, Y.F.; Li, Q.L.; Sun, Y.T.; Sun, Y.J.; Hou, J.L. Research on Orchard Robot Navigation System Based on 

GNSS and Lidar[J]. Journal of Agricultural Mechanization Research. 2023, 45(10): 55-61+69. 

https://doi.org/10.13427/j.cnki.njyi.2023.10.035. 

28. Hu, L; Wang, Z.M.; WANG P; HE J; JIAO J.K.; Wang C.Y.; Li, M.J. Agricultural robot positioning system 

based on laser sensing[J]. Transactions of the Chinese Society of Agricultural Engineering. 2023, 39(5): 1-7. 

https://doi.org/10.11975/j.issn.1002-6819.202211144. 

29. Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Rus, D. LIO-SAM: Tightly-coupled Lidar Inertial 

Odometry via Smoothing and Mapping[J]. 2020 IEEE/RSJ International Conference on Intelligent Robots and 

Systems. https://doi.org/10.1109/IROS45743.2020.9341176. 

30. Liu, H.; Pan, G.S.; Huang, F.X.; Wang, X.; Gao, W. LiDAR-IMU-RTK fusion SLAM method for large-scale 

environment[J]. Journal of Chinese Inertial Technology. 2024, 32(09): 866-873. 

https://doi.org/10.13695/j.cnki.12-1222/o3.2024.09.003. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2025 doi:10.20944/preprints202506.1068.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.6041/j.issn.1000-1298.2023.03.003.
https://doi.org/10.1017/S0263574720000351
https://doi.org/10.25165/j.ijabe.20201304.5470.
https://doi.org/10.12133/j.smartag.SA202404006.
https://doi.org/10.12133/j.smartag.SA202401009.
https://doi.org/10.11975/j.issn.1002-6819.2019.03.010.
https://doi.org/10.20944/preprints202506.1068.v1
http://creativecommons.org/licenses/by/4.0/


 18 of 18 

 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 June 2025 doi:10.20944/preprints202506.1068.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202506.1068.v1
http://creativecommons.org/licenses/by/4.0/

