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Abstract

Background: Dynamic whole-body (D-WB) FDG PET/CT is a novel technique that enables the direct
reconstruction of multiparametric images representing the FDG metabolic uptake rate (MRepc) and
"free" FDG (DVrpc). Applying complementary parameters with distinct characteristics compared to
static SUV images, the aims of this study are as follows: 1) to determine the threshold values of SUV,
MRerpg, and DVepc for malignant and benign lesions; 2) to compare the specificity of MRepc and DVrpc
images with static SUVbw images; 3) to assess whether any of the dynamic imaging parameters
correlate more significantly with malignancy or non-malignancy in the examined lesions based on
the measured values obtained from D-WB FDG PET/CT. Results: Patlak PET parameters (MRepg,
DVrpc) combined with mean SUVuw achieved the highest accuracy of 0.82 (Fl-score = 0.90) for
malignancy detection. Classification accuracy in tumors was 0.86 (F1 = 0.92), lymph nodes reached
0.81 (F1 = 0.89). Relative contribution analysis showed that DVrpoc accounted for up to 65 % of
classification weight. The ROC analysis demonstrated AUC values above 0.8 for all models, with
optimal thresholds achieving sensitivities around 0.85 and specificities up to 0.93. Thresholds for
malignancy detection were for mean values: SUVww>5.8 g/mL, MRrpc>0.05 pmol/mL/min, DVepc> 68
%; for maximal values: SUVbw> 8.7 g/mL, MRrpc> 0.11 pmol/mL/min, DVepc> 202 %. Conclusions:
The D-WB [*¥F]JFDG PET/CT images in this study highlight the potential for improved differentiation
between malignant and benign lesions compared to conventional SUVbow imaging in patients with
locally advanced head and neck cancers presenting with cervical lymphadenopathy and carcinoma
of unknown primary (CUP). This observation may be particularly relevant in common diagnostic
dilemmas, especially in distinguishing residual or recurrent tumors from post-radiotherapy changes.
Further validation in larger cohorts with histopathological confirmation is warranted.

Keywords: PET/CT; SUV; multiparametric PET; dynamic PET; FDG; Patlak modeling; head and neck
tumour; lymphadenopathy
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1. Background

Positron Emission Tomography/Computed Tomography (PET/CT) hybrid imaging is one of the
most widely used, modern, and rapidly developing methods, primarily employed in oncological
diagnostics but also for the evaluation of infection and inflammation [1].

PET/CT imaging is conventionally performed at a single time point, for the most commonly used
tracer 2-deoxy-2-[18F]fluoro-D-glucose ([*¥F]FDG), 60 minutes after its administration, followed by
the reconstruction of a standardized uptake value (SUVuw) image, assessing the semiquantitative
relation of the tracer uptake to glucose metabolism, normalized by the injected dose and body weight,
and adjusted for factors such as timing and decay correction [2—4]

Although SUVbw is a commonly used semi-quantitative measure of tracer activity in tissues, it is
influenced by a wide range of factors (such as patient body composition, time from injection, blood
glucose, scanner calibration and others), imparing the overall precision, physiological reliability and
repeatibility of measured values [5,6].

Advancements in PET scanner technology and software have introduced new opportunities for
PET/CT image quatification. Dynamic whole-body (D-WB) imaging is a recently developed
technique for standard Field-Of-View PET/CT that involves multiple whole-body (WB) passes and
the extraction of image-derived input functions (IDIF) [7,8], providing dynamic PET data for the
reconstruction of WB multiparametric images based on linear Patlak analysis [9].

Multiparametric imaging supplements the standard SUVsw image with two new parametric
images: one displaying the effective metabolic rate of ['*F]FDG being phosphorylated to ['*F]FDG-6-
phosphate (FDG-6-P) in the tissues (MRrpc), and the other displaying the distribution volume of free
[®F]FDG in the reversible compartments and fractional blood volume (DVenc) [8]. Unlike SUVbw
images, thus allowing the reader to differentiate between free and bound FDG-6-P in tissue.

Hybrid imaging with PET/CT plays a significant role in the diagnostic work-up of squamous
cell carcinoma (SCC) of the head and neck, particularly in staging challenging cases where clinical
evaluation and other imaging methods can be unreliable. FDG PET/CT is also widely used to detect
hidden primary tumors, assess response to chemoradiotherapy, and to detect relapsing disease
[10,11].

Metastases to cervical lymph nodes from carcinoma of unknown primary origin (CUP) account
for approximately 3-7 % of all head and neck cancers [10-13]. Given the previously mentioned
limitations of SUVbw-based evaluation, false-positive and false-negative results may occur, posing a
significant diagnostic challenge [14,15]. False-negative results are commonly caused by factors such
as the proximity of the lesion to areas with high metabolism, artifacts caused by dental prostheses,
limited PET resolution, inherently low FDG avidity in some tumors, significant necrosis or cystic
components of the tumor, and small lesion size [14,15]. On the other hand, inflammation and post-
treatment fibrosis are the most common causes of false-positive results [15,16]. The pharyngeal tonsils
are the most frequent site of both false-positive and false-negative findings on FDG-PET [15,16].

This study therefore aimed to evaluate the possible advantages of performing D-WB FDG PET
multiparametric analysis of tumors in the head and neck region.

2. Methods

2.1. Patient Population

The study was a retrospective analysis of D-WB PET/CT data from 43 patients (23 males, 20
females) selected from all D-WB PET/CT examinations performed between January 2020 and June
2021 at the Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital. The majority
of patients (n = 38; 88.4%) underwent staging for primary tumors of the head and neck region, most
of whom presented with cervical lymphadenopathy at the time of examination (n = 31; 72.1%). In a
smaller subgroup, the indication was primary cervical lymphadenopathy of unknown origin (n = 5;
11.6%). (Figure 1). Table 1 shows histology of examinated lessions.
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Figure 1. Studied group characteristics.
Table 1. Histology of examined lesions.
. Tumor Lymph nodes
Histol
istology (n=38) (n=104)

Malignant 30 (78.9 %) 82 (78.8 %)
Squamous cell carcinoma 25 (65.8 %) 62 (50.6 %)

Other malignities (lymphoma, adenocarcinoma, verucosic
carcinoma, epithelial-myoepithelial carcinoma, epitheloid sarcoma, 5(13.2 %) 20 (19.2 %)

sebocellular carcinoma)

Non-malignant (e.g. inflammation, physiological finding) 8 (21 %) 22 (21.1 %)

2.2. Data acquisition and Image Reconstruction

Participants were scanned using a fully automated multiparametric PET/CT acquisition protocol
(FlowMotion® Multiparametric PET, Siemens Healthineers, Knoxville, USA) on a Siemens Biograph
Vision 600 PET/CT scanner (Siemens Healthineers, Knoxville, USA) with 26.2 cm axial field of view.
In short, a 20-min multiparametric PET acquisition protocol using a population based input-function
(PBIF) [17] scaled to the late IDIF, was started 50 minutes after a standardized injection of FDG
(4 MBg/kg) using an Intego PET Infusion System (MEDRAD, Inc., Warrendale, PA, USA). First, a
low-dose WB CT (25 Ref mAs, 120 kV, Care Dose4D, Care kV, Admire level 3) was performed. The
PET reconstruction parameters for D-WB were the following: For the SUVuw image, we used
TrueX+TOF, 6 iterations, 5 subsets, 440x440 matrix, no filtering, and relative scatter correction. For
the dynamic PET images used for IDIF extraction, we used TrueX+TOF, 4 iterations, 5 subsets,
440x440 matrix, no filtering, and relative scatter correction. Parametric images of MRrpc and DVrpc
were generated using direct Patlak reconstruction method with non-negativity constraints using list-
mode data from four 5 min passes (50-70 min), TrueX+TOF, 8 iterations, 5 subsets, 30 nested loops,
440x440 matrix, 2 mm Gaussian filter, and relative scatter correction. (Figure 2) A more detailed
overview of this protocol is described by Dias et al. [8,17].
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Figure 2. Schema of 20-minutes D-WB PET/CT protocol. Created with BioRender.

2.3. Image Analysis and VOI Delineation

Multiparametric images were visually inspected using Hermes Gold Client v.2.5.0 (Hermes
Medical Solutions AB, Stockholm, Sweden). VOI delineation of the multiparametric images was
performed by AHD using PMOD® 4.0 (PMOD Technologies Ltd, Ziirich, Switzerland).
Semiquantitative values of SUVmax and SUVmean were obtained from the conventional PET
reconstructions, whereas MRrpc and DVepc values were extracted from the multiparametric images.

A region of interest (VOI) was placed on the primary tumor and the FDG-avid lymph nodes. In
patients with indications of cervical lymphadenopathy, the VOI was placed on the FDG-avid lymph
nodes. In total 142 VOIs on each of three images were analyzed.

Note the high quality of Patlak images, the improved target to background activity of the MRrpc
images when compared to the SUVuw images, but also the marked activity in certain areas of the
lesions on the DVroc images (Figure 3).

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 3. Example of SUV, MRroc and DVrpc images in a patient with SCC (thick arrows) and local lymph node
metastisation in the neck region (think arrows).

2.4. Statistical Analysis

Dynamic PET data from 43 patients were analyzed and categorized into two classes based on
the presence or absence of malignancy. Average and maximum standardized uptake values
(SUVyy), as well as dynamic PET parameters (MRpp; and DVgpg), were measured in solid tumors or
nodes.

A binomial logistic regression was performed to estimate the additional predictive value of
dynamic PET in malignancy recognition. The optimal parameters B¢ = (Bsyvc, Bmrc, Bove) and Ac
of the logistic regression model, defined as

1

for predicting the probability of class C given a measured value M, were determined using
scikit-learn Python module using Ibfgs minimization [18]. Precision, recall (sensitivity), and F1-score,
based on maximum probability decisions, were estimated for each class in the optimal model and for
all carcinoma types combined.

In clinical applications, different probability thresholds could be used as decision criteria,
considering subsequent treatment costs. To evaluate the model's performance across this range of
possible thresholds, the receiver operating characteristic (ROC) curve and the area under the curve
(AUC) were determined for the optimal model. Probability thresholds for maximum Youden index
and minimum distance to ideal point were found with corresponding sensitivity and specificity.

Six different models with various input data were studied:

M, = (SUwa: MRFDG:DVFDG)' (2)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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M, = (SUVpw, MRppg, DVipg, SUVpw - MRppg, SUVpw 3)
* DVppg, MREpg - DVepg),
Mz = (MRgpg, DVepe), 4)
My = (SUVpyw), ©)
Ms = (MRppg), (6)
Mg = (DVipg) (7)

to estimate the additional predictive value of dynamic PET. The three parameters SUVy,,,
MRppg and DVpp, are expected to be linearly dependent under the assumptions underlying the
Patlak plot. The models containing all three basic parameters may therefore be interpreted as a test
of the condition’s validity: when the classification metrics show no additional benefit compared to
use of only two of the parameters, the linear dependency of the parameters can be assumed.

The formula (1) can be inverted for B¢M, so a threshold for p-value Tp can be transformed to a
threshold Tgy for a simple linear expression in terms of BcM:

o = In (= - 1)-4c ®
so that the conditions
P, (CIM) > Tp 9)
BcM > Ty (10)

are equivalent.

3. Results

Dynamic PET parameters were evaluated in cohort of 43 patients, categorized into malignancy
and non-malignancy lesion classes. Six binomial logistic regression models (M1-Ms) were trained
using combinations of average or maximum SUVbw, MRrpc and DVrpe to assess the predictive value
of dynamic PET imaging.

Figure 4 shows the measured data in parameter space for patients categorized into the two
classes. The optimal binomial regression model parameters B, and A for six different models M1 —
Ms are presented for the mean and maximum values (see Supplementary Table S1 and S2).
Performance metrics (precision, recall, and F1-score) for mean value and each class are detailed in
Supplementary Table S3. We also investigated the Mi analyzing node and tumor performance
separately with performance measures for comparison presented in Supplementary Table 54.
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Figure 4. Lesion classification in parameter space using mean value SUVbw, MRrpc, DVepc.

3.1. Diagnostic Performance of Models

Across all evaluated binomial logistic regression models, Model M1 (SUVbw, MRepc, DVEpc)
consistently showed the highest diagnostic performance in distinguishing malignant from benign
lesions. Using mean values, M1 achieved an accuracy of 0.82, precision of 0.83, recall of 0.98, F1-score
of 0.90, and specificity of 0.21. Models M2 and Ms demonstrated comparable performance with
slightly lower or similar F1-scores and precision. Models based solely on dynamic parameters (Ms,
Ms, Ms) provided similar classification performance to hybrid models, confirming the independent
diagnostic value of kinetic features.

In the subgroup analysis (Supplementary Table S4), the classification performance further
improved for solid tumors, with M1 reaching an F1-score of 0.92 and perfect recall (1.00). Performance
in lymph nodes remained strong with an F1-score of 0.89. Models using maximum values showed
slightly reduced but comparable diagnostic metrics.

3.2. ROC and Threshold Analysis

Receiver operating characteristic (ROC) curves for each model are illustrated in Figures 5 and 6
for mean and maximum values, respectively. Area under the ROC curve (AUC) values confirmed the
superior performance of M1 across all input combinations.

Supplementary Tables S5 and S6 present optimal probability thresholds derived from the
Youden index, minimum distance to the ideal point, and thresholds for achieving 95 % sensitivity.
For M1 using mean values, the maximum Youden index corresponded to a threshold of 0.85
(sensitivity: 0.56, specificity: 0.93), while the minimal distance threshold was 0.71. Comparable trends
were observed for maximum values.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 5. ROC curves for the binomial regression models for mean value .
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Figure 6. ROC curves for the binomial regression models for maximum value.

3.3. Relative Feature Contributions

For the relative contributions of each feature within the classification models, see Supplementary
Table S7. In M1, DVepc accounted for 65 % of the decision weight, SUVbw for 34 %, and MRroc for only
1%. In Ms, DVrpc contributed up to 97 % of the model's predictive value. These findings suggest that
DVrpg plays a prominent role in the predictive performance of the classification models.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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3.4. Decision Thresholds and Clinical Translation

Linear threshold functions were derived to support clinical implementation. For Model M3, the
optimal linear decision rule based on mean values was: DVrpc [%] + (7.2 x MRepc [pumol/min/ml])>
70. For maximum values, the rule changed to: DVrpc [%] + (-29 x MRrpG [pmol/min/ml])> 194 (Table
2). Normalized single-parameter thresholds based on the Youden index for mean values were:
SUVbw> 5.8 g/mL, MRepc> 0.050 pmol/mL/min, DVepc> 68 %. (Table 3).

Table 2. Thresholds derived from maximum Youden index, minimum distance to ideal point and for 95 %
sensitivity for dynamic PET. The thresholds are derived for equation: DVipc [%] + weight x MRppg
[umol/min/ml]> threshold.

Ms weight for MRrpc Youden index distance 95 % sensitivity
mean 7.2 70 70 52
max -29 194 147 94

Table 3. Normalized thresholds Ty, = TgM/B derived from maximum Youden index, minimum distance to
ideal point and for 95 % sensitivity for individual parameters.

unit Youden index distance 95.0 % sensitivity
SUVbw (g/mL) 5.8 3.0 2.4
mean MRerpc (pumol/mL/min) 0.050 0.050 0.026
DVrpc (%) 68 68 51
SUVbw (g/mL) 8.7 4.4 3.4
max MRepG (umol/mL/min) 0.110 0.110 0.051
DVrpc (%) 202 168 96

4. Discussion

4.1. Interpretation of Key Findings

Our results clearly demonstrate that Patlak PET parameters, particularly MReoc and DViog,
significantly improve the differentiation between malignant and non-malignant lesions compared to
conventional SUVbw-based metrics. Among all evaluated models, the combination of mean SUVbw,
MRspg, and DVepc (Model M) achieved the highest diagnostic performance, with an accuracy of 82
% and an F1-score of 0.90. When stratified by lesion type, Model M1 performed better in solid tumors
(accuracy: 0.86; F1 = 0.92) than in lymph nodes (accuracy: 0.81; F1 = 0.89), suggesting greater
robustness in predicting malignancy in primary lesions compared to metastatic lymphadenopathy.

4.2. Added Value of Kinetic Parameters

These findings are consistent with established knowledge that SUVbw has limitations as a
standalone quantitative biomarker in nuclear medicine. Its sensitivity to physiological and technical
sources of variability, such as blood glucose levels, imaging time-point, image noise, scanner
resolution, and ROI delineation, can undermine reproducibility and diagnostic confidence [19]. In
contrast, dynamic Patlak PET imaging allows for kinetic modeling of tracer uptake, offering a more
biologically meaningful assessment of tissue metabolism, minimizing the impact of confounding
factors like plasma glucose activity and imaging time-point dependence. Importantly, models using
only dynamic parameters (Models Ms, Mi, Ms) performed comparably to hybrid models,
underscoring the independent diagnostic utility of kinetic Patlak features.

4.3. Feature Importance and Model Complexity

Feature importance analysis (Supplementary Table S7) highlighted DVroc as the most prominent
contributor in this model analysis. In Model M1, DVepc accounted for approximately 65 % of the

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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classification decision, compared to 34 % for SUVuw and only 1 % for MRepc. In Model Ms, which
included only MRrpc and DVepc, DVepc contributed to 97 % of the decision weight. These findings
are notable given that DVepc is a often overlooked parameter due to questions regarding its
reproducibilty and clinical relevance [20],underscoring its potential diagnostic value in this context.
Interestingly, more complex models (e.g., M2, Ms) that incorporated all three parameters did not
outperform simpler two-parameter models. This may reflect underlying linear dependency among
the features, as suggested by the Patlak graphical model, where over-parameterization could reduce
interpretability without improving accuracy.

4.4. Clinical Implications in Head and Neck Oncology

From a clinical perspective, these findings are particularly relevant for recurrent head and neck
cancers, where anatomical distortion caused by surgery, reconstruction, radiation fibrosis, and
inflammation complicate interpretation of conventional PET metrics. In such settings, improved
lesion characterization using kinetic features can potentially reduce diagnostic uncertainty and help
avoid unnecessary biopsies or surgical interventions. To support clinical translation, we proposed
simplified linear decision thresholds based on DVrpoc and MRrpoc (Table 2), and suggested parameter
cutoffs for malignancy detection using normalized data (Table 3) for mean values: SUVw>5.8 g/mL,
MRspc> 0.05 pmol/mL/min, DVepc> 68 %. These values may serve as practical reference points,
adaptable to desired tradeoffs between sensitivity and specificity in routine clinical use.

5. Limitations

This study has several limitations. First, the small sample size (n = 43) restricts the
generalizability of the findings. Second, lesions were not stratified by histological subtype,
anatomical subsite, or treatment intensity (e.g., radiotherapy dose), factors that may influence tracer
kinetics. Third, although kinetic parameters were derived using the Patlak model, which assumes
irreversible tracer uptake over time, a behavior generally observed in malignant lesions, we did not
independently validate this assumption. In lesions with necrosis, disrupted vasculature, or
heterogeneous perfusion, the Patlak model’s assumptions, particularly the irreversibility of tracer
uptake, may not be satisfied. This could lead to inaccurate MRroc and DVrpc estimates, as potencial
reversible tracer or non-linear kinetics are not accounted for in the model. Additionally, we did not
compare Patlak modeling with alternative kinetic approaches, such as full compartmental models
(LAFOV PET) or nonlinear regression methods, which might better capture complex tracer dynamics
in selected lesions.

6. Future Directions

Future research should aim to validate these results in larger, multicenter cohorts, with
stratification by tumor subtype, treatment history, and anatomical context. Given the specific
assumptions of the Patlak model, further studies should evaluate its applicability across different
lesion types, and explore alternative or hybrid kinetic modeling approaches that may better capture
complex tracer dynamics. Moreover, integration of dynamic PET data with multimodal imaging,
radiomics, or molecular biomarkers could enhance diagnostic accuracy in complex post-treatment
settings. Development of clinical decision-support tools based on dynamic metrics may aid tumor
boards in real-time decision-making. Assessing automation feasibility, model reproducibility, and
clinician acceptance will be critical for translation into practice. Ultimately, prospective trials are
needed to determine whether incorporating dynamic PET metrics into clinical workflows improves
key outcomes including diagnostic accuracy, treatment decisions, avoidance of invasive procedures,
patient quality of life, and healthcare cost-effectiveness.

7. Conclusions

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Dynamic PET data appears to enhance the distinction between malignant and non-malignant
lesions, particularly in solid tumors. This study provides evidence for the diagnostic value of
dynamic imaging parameters in classifying malignant lesions. Logistic regression models that
incorporate a limited number of kinetic features demonstrate a favorable balance between accuracy
and interpretability, highlighting their potential as decision-support tools in clinical practice.
Moreover, the identification of clinically relevant thresholds may enable more reliable detection of
tumor recurrence. Future studies with larger cohorts are warranted to further validate these findings
and confirm their clinical applicability.

Authors contribution: GH: Initiation and design of the study; data extraction; analysis and interpretation of the
results; drafting and approval of the manuscript; accountable of all aspects of the work. AHD: data extraction;
critical revision and approval of the manuscript; accountable of all aspects of the work. JP: critical revision and
approval of the manuscript; accountable of all aspects of the work. OLM: critical revision and approval of the
manuscript; accountable of all aspects of the work. PK: analysis and interpretation of the results; critical revision
and approval of the manuscript; accountable of all aspects of the work. LCG: critical revision and approval of
the manuscript; accountable of all aspects of the work.

Funding: The work is supported by a grant IGA_LF_2025_007.

Ethics approval and consent to participate: The study was approved by the Danish Patient Safety Authority.
The study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of
Helsinki. All methods were carried out in accordance with relevant guidelines and regulations. Informed

consent was obtained from each patient before inclusion into the study.
Consent for publication: Not applicable.

Aviability of data and materials: The datasets used and analysed during the current study are available from

the corresponding author on reasonable request.

Acknowledgments: Thanks to the Head of the Department of Nuclear Medicine, University Hospital Olomouc
and Palacky University Olomouc, for their general support and for contributing to the development of

conditions necessary for my research work.

Competing interests: The authors declare that they have no competing interests.

References

1. Hess S, Blomberg BA, Zhu HJ, Heilund-Carlsen PF, Alavi A. The Pivotal Role of FDG-PET/CT in Modern
Medicine. Academic Radiology 2014;21:232-49. https://doi.org/10.1016/j.acra.2013.11.002.

2. EskianM, Alavi A, Khorasanizadeh M, Viglianti BL, Jacobsson H, Barwick TD, et al. Effect of blood glucose
level on standardized uptake value (SUV) in 18F- FDG PET-scan: a systematic review and meta-analysis of
20,807 individual SUV measurements. Eur ] Nuc Med Mol Imaging 2019;46:224-37.
https://doi.org/10.1007/s00259-018-4194-x.

3. Lindholm P, Minn H, Leskinen-Kallio S, Bergman ], Ruotsalainen U, Joensuu H. Influence of the blood
glucose concentration on FDG uptake in cancer--a PET study. ] Nucl Med 1993;34:1-6.

4. Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI
definition on the accuracy of standard uptake values: a simulation study. ] Nucl Med 2004;45:1519-27.

5. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol 2000;27:643-6.
https://doi.org/10.1016/s0969-8051(00)00155-4.

6.  Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. ] Nucl
Med 2004;45:1431-4.

7.  Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET
parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol
2013;58:7391-418. https://doi.org/10.1088/0031-9155/58/20/7391.

8. Dias AH, Pedersen MF, Danielsen H, Munk OL, Gormsen LC. Clinical feasibility and impact of fully

automated multiparametric PET imaging using direct Patlak reconstruction: evaluation of 103 dynamic

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1866.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 September 2025 d0i:10.20944/preprints202509.1866.v1

12 of 12

whole-body 18F-FDG PET/CT scans. Eur ] Nuc Med Mol Imaging 2021;48:837-50.
https://doi.org/10.1007/s00259-020-05007-2.

9.  Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from
multiple-time uptake data. ] Cereb Blood Flow Metab 1983;3:1-7. https://doi.org/10.1038/jcbfm.1983.1.

10. Bakhshayesh Karam M, Doroudinia A, Safavi Nainee A, Kaghazchi F, Yousefi Koma A, Mehrian P, et al.
Role of FDG PET/CT scan in head and neck cancer patients. Archives of Iranian Medicine 2017;20:452-8.

11. Szyszko TA, Cook GJR. PET/CT and PET/MRI in head and neck malignancy. Clin Radiol 2018;73:60-9.
https://doi.org/10.1016/j.crad.2017.09.001.

12.  Zhuang SM, Wu X-F, Li]-], Zhang G-H. Management of lymph node metastases from an unknown primary
site to the head and neck (Review). Mol Clin Oncol 2014;2:917-22. https://doi.org/10.3892/mco0.2014.361.

13. Liu Y. FDG PET/CT for metastatic squamous cell carcinoma of unknown primary of the head and neck.
Oral Oncol 2019;92:46-51. https://doi.org/10.1016/j.oraloncology.2019.03.014.

14. Tsetsos N, Poutoglidis A, Arsos G, Tsentemeidou A, Kilmpasanis A, Katsampoukas D, et al. 18F-FDG-
PET/CT interpretation pitfalls in patients with head and neck cancer. American Journal of Otolaryngology
2022;43:103209. https://doi.org/10.1016/j.amjoto.2021.103209.

15. Purohit BS, Ailianou A, Dulguerov N, Becker CD, Ratib O, Becker M. FDG-PET/CT pitfalls in oncological
head and neck imaging. Insights Imaging 2014;5:585-602. https://doi.org/10.1007/s13244-014-0349-x.

16. Metser U, Miller E, Lerman H, Even-Sapir E. Benign nonphysiologic lesions with increased 18F-FDG
uptake on PET/CT: characterization and incidence. AJR Am ] Roentgenol 2007;189:1203-10.
https://doi.org/10.2214/AJR.07.2083.

17. Dias AH, Smith AM, Shah V, Pigg D, Gormsen LC, Munk OL. Clinical validation of a population-based
input function for 20-min dynamic whole-body 18F-FDG multiparametric PET imaging. EJNMMI Phys
2022;9:60. https://doi.org/10.1186/s40658-022-00490-y.

18. PedregosaF, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research 2011;12:2825-30.

19. Keyes JW Jr. SUV: standard uptake or silly useless value? ] Nucl Med. 1995 Oct;36(10):1836-9.

20. Laffon E, Marthan R. Is Patlak y-intercept a relevant metrics? Eur J Nucl Med Mol Imaging. 2021
May;48(5):1287-1290. https://doi.org/10.1007/s00259-020-05074-5

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202509.1866.v1
http://creativecommons.org/licenses/by/4.0/

