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Abstract 

Background: Dynamic whole-body (D-WB) FDG PET/CT is a novel technique that enables the direct 
reconstruction of multiparametric images representing the FDG metabolic uptake rate (MRFDG) and 
"free" FDG (DVFDG). Applying complementary parameters with distinct characteristics compared to 
static SUV images, the aims of this study are as follows: 1) to determine the threshold values of SUV, 
MRFDG, and DVFDG for malignant and benign lesions; 2) to compare the specificity of MRFDG and DVFDG 
images with static SUVbw images; 3) to assess whether any of the dynamic imaging parameters 
correlate more significantly with malignancy or non-malignancy in the examined lesions based on 
the measured values obtained from D-WB FDG PET/CT. Results: Patlak PET parameters (MRFDG, 
DVFDG) combined with mean SUVbw achieved the highest accuracy of 0.82 (F1-score = 0.90) for 
malignancy detection. Classification accuracy in tumors was 0.86 (F1 = 0.92), lymph nodes reached 
0.81 (F1 = 0.89). Relative contribution analysis showed that DVFDG accounted for up to 65 % of 
classification weight. The ROC analysis demonstrated AUC values above 0.8 for all models, with 
optimal thresholds achieving sensitivities around 0.85 and specificities up to 0.93. Thresholds for 
malignancy detection were for mean values: SUVbw>5.8 g/mL, MRFDG>0.05 µmol/mL/min, DVFDG> 68 
%; for maximal values: SUVbw> 8.7 g/mL, MRFDG> 0.11 µmol/mL/min, DVFDG> 202 %. Conclusions: 
The D-WB [¹⁸F]FDG PET/CT images in this study highlight the potential for improved differentiation 
between malignant and benign lesions compared to conventional SUVbw imaging in patients with 
locally advanced head and neck cancers presenting with cervical lymphadenopathy and carcinoma 
of unknown primary (CUP). This observation may be particularly relevant in common diagnostic 
dilemmas, especially in distinguishing residual or recurrent tumors from post-radiotherapy changes. 
Further validation in larger cohorts with histopathological confirmation is warranted. 

Keywords: PET/CT; SUV; multiparametric PET; dynamic PET; FDG; Patlak modeling; head and neck 
tumour; lymphadenopathy 
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1. Background 

Positron Emission Tomography/Computed Tomography (PET/CT) hybrid imaging is one of the 
most widely used, modern, and rapidly developing methods, primarily employed in oncological 
diagnostics but also for the evaluation of infection and inflammation [1].  

PET/CT imaging is conventionally performed at a single time point, for the most commonly used 
tracer 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), 60 minutes after its administration, followed by 
the reconstruction of a standardized uptake value (SUVbw) image, assessing the semiquantitative 
relation of the tracer uptake to glucose metabolism, normalized by the injected dose and body weight, 
and adjusted for factors such as timing and decay correction [2–4] 

Although SUVbw is a commonly used semi-quantitative measure of tracer activity in tissues, it is 
influenced by a wide range of factors (such as patient body composition, time from injection, blood 
glucose, scanner calibration and others), imparing the overall precision, physiological reliability and 
repeatibility of measured values [5,6]. 

Advancements in PET scanner technology and software have introduced new opportunities for 
PET/CT image quatification. Dynamic whole-body (D-WB) imaging is a recently developed 
technique for standard Field-Of-View PET/CT that involves multiple whole-body (WB) passes and 
the extraction of image-derived input functions (IDIF) [7,8], providing dynamic PET data  for the 
reconstruction of WB multiparametric images based on linear Patlak analysis [9].  

Multiparametric imaging supplements the standard SUVbw image with two new parametric 
images: one displaying the effective metabolic rate of [18F]FDG being phosphorylated to [18F]FDG-6-
phosphate (FDG-6-P) in the tissues (MRFDG), and the other displaying the distribution volume of free 
[18F]FDG in the reversible compartments and fractional blood volume (DVFDG) [8]. Unlike SUVbw 
images, thus allowing the reader to differentiate between free and bound FDG-6-P in tissue. 

Hybrid imaging with PET/CT plays a significant role in the diagnostic work-up of squamous 
cell carcinoma (SCC) of the head and neck, particularly in staging challenging cases where clinical 
evaluation and other imaging methods can be unreliable. FDG PET/CT is also widely used to detect 
hidden primary tumors, assess response to chemoradiotherapy, and to detect relapsing disease 
[10,11]. 

Metastases to cervical lymph nodes from carcinoma of unknown primary origin (CUP) account 
for approximately 3–7 % of all head and neck cancers [10–13]. Given the previously mentioned 
limitations of SUVbw-based evaluation, false-positive and false-negative results may occur, posing a 
significant diagnostic challenge [14,15]. False-negative results are commonly caused by factors such 
as the proximity of the lesion to areas with high metabolism, artifacts caused by dental prostheses, 
limited PET resolution, inherently low FDG avidity in some tumors, significant necrosis or cystic 
components of the tumor, and small lesion size [14,15]. On the other hand, inflammation and  post-
treatment fibrosis are the most common causes of false-positive results [15,16]. The pharyngeal tonsils 
are the most frequent site of both false-positive and false-negative findings on FDG-PET [15,16]. 

This study therefore aimed to evaluate the possible advantages of performing D-WB FDG PET 
multiparametric analysis of tumors in the head and neck region. 

2. Methods 

2.1. Patient Population  

The study was a retrospective analysis of D-WB PET/CT data from 43 patients (23 males, 20 
females) selected from all D-WB PET/CT examinations performed between January 2020 and June 
2021 at the Department of Nuclear Medicine & PET-Centre, Aarhus University Hospital. The majority 
of patients (n = 38; 88.4%) underwent staging for primary tumors of the head and neck region, most 
of whom presented with cervical lymphadenopathy at the time of examination (n = 31; 72.1%). In a 
smaller subgroup, the indication was primary cervical lymphadenopathy of unknown origin (n = 5; 
11.6%). (Figure 1). Table 1 shows histology of examinated lessions. 
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Figure 1. Studied group characteristics. 

Table 1. Histology of examined lesions. 

Histology 
Tumor 
 (n=38) 

Lymph nodes 
(n=104) 

Malignant 30 (78.9 %) 82 (78.8 %) 
Squamous cell carcinoma 25 (65.8 %) 62 (50.6 %) 

Other malignities (lymphoma, adenocarcinoma, verucosic 
carcinoma, epithelial-myoepithelial carcinoma, epitheloid sarcoma, 

sebocellular carcinoma) 
5 (13.2 %) 20 (19.2 %) 

Non-malignant (e.g. inflammation, physiological finding) 8     (21 %) 22 (21.1 %) 

2.2. Data acquisition and Image Reconstruction 

Participants were scanned using a fully automated multiparametric PET/CT acquisition protocol 
(FlowMotion® Multiparametric PET, Siemens Healthineers, Knoxville, USA) on a Siemens Biograph 
Vision 600 PET/CT scanner (Siemens Healthineers, Knoxville, USA) with 26.2 cm axial field of view. 
In short, a 20-min multiparametric PET acquisition protocol using a population based input-function 
(PBIF) [17] scaled to the late IDIF, was started 50 minutes after a standardized injection of FDG 
(4 MBq/kg) using an Intego PET Infusion System (MEDRAD, Inc., Warrendale, PA, USA). First, a 
low-dose WB CT (25 Ref mAs, 120 kV, Care Dose4D, Care kV, Admire level 3) was performed. The 
PET reconstruction parameters for D-WB were the following: For the SUVbw image, we used 
TrueX+TOF, 6 iterations, 5 subsets, 440×440 matrix, no filtering, and relative scatter correction. For 
the dynamic PET images used for IDIF extraction, we used TrueX+TOF, 4 iterations, 5 subsets, 
440×440 matrix, no filtering, and relative scatter correction. Parametric images of MRFDG and DVFDG 
were generated using direct Patlak reconstruction method with non-negativity constraints using list-
mode data from four 5 min passes (50–70 min), TrueX+TOF, 8 iterations, 5 subsets, 30 nested loops, 
440×440 matrix, 2 mm Gaussian filter, and relative scatter correction. (Figure 2) A more detailed 
overview of this protocol is described by Dias et al. [8,17]. 
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Figure 2. Schema of 20-minutes D-WB PET/CT protocol. Created with BioRender. 

2.3. Image Analysis and VOI Delineation 

Multiparametric images were visually inspected using Hermes Gold Client v.2.5.0 (Hermes 
Medical Solutions AB, Stockholm, Sweden). VOI delineation of the multiparametric images was 
performed by AHD using PMOD® 4.0 (PMOD Technologies Ltd, Zürich, Switzerland). 
Semiquantitative values of SUVmax and SUVmean were obtained from the conventional PET 
reconstructions, whereas MRFDG and DVFDG values were extracted from the multiparametric images.  

A region of interest (VOI) was placed on the primary tumor and the FDG-avid lymph nodes. In 
patients with indications of cervical lymphadenopathy, the VOI was placed on the FDG-avid lymph 
nodes. In total 142 VOIs on each of three images were analyzed. 

Note the high quality of Patlak images, the improved target to background activity of the MRFDG 
images when compared to the SUVbw images, but also the marked activity in certain areas of the 
lesions on the DVFDG images (Figure 3). 
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Figure 3. Example of SUV, MRFDG and DVFDG images in a patient with SCC (thick arrows) and local lymph node 
metastisation in the neck region (think arrows). 

2.4. Statistical Analysis  

Dynamic PET data from 43 patients were analyzed and categorized into two classes based on 
the presence or absence of malignancy.  Average and maximum standardized uptake values 
(SUVୠ୵), as well as dynamic PET parameters (𝑀𝑅ி஽ீ and 𝐷𝑉ி஽ீ), were measured in solid tumors or 
nodes.  

A binomial logistic regression was performed to estimate the additional predictive value of 
dynamic PET in malignancy recognition. The optimal parameters Bେ = (βୗ୙୚େ , β୑ୖେ, βୈ୚େ) and Aେ 
of the logistic regression model, defined as 

𝑃௕(𝐶|𝑀) = 1 −
1

1 + 𝑒஻಴ெା஺಴
.  (1) 

for predicting the probability of class 𝐶 given a measured value 𝑀, were determined using 
scikit-learn Python module using lbfgs minimization [18]. Precision, recall (sensitivity), and F1-score, 
based on maximum probability decisions, were estimated for each class in the optimal model and for 
all carcinoma types combined. 

In clinical applications, different probability thresholds could be used as decision criteria, 
considering subsequent treatment costs. To evaluate the model's performance across this range of 
possible thresholds, the receiver operating characteristic (ROC) curve and the area under the curve 
(AUC) were determined for the optimal model. Probability thresholds for maximum Youden index 
and minimum distance to ideal point were found with corresponding sensitivity and specificity. 

Six different models with various input data were studied:  

 Mଵ = (SUVୠ୵, 𝑀𝑅ி஽ீ , 𝐷𝑉ி஽ீ), (2) 
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 Mଶ = (SUVୠ୵, 𝑀𝑅ி஽ீ , 𝐷𝑉ி஽ீ , SUVୠ୵ ⋅ 𝑀𝑅ி஽ீ , SUVୠ୵

⋅ 𝐷𝑉ி஽ீ , 𝑀𝑅ி஽ீ ⋅ 𝐷𝑉ி஽ீ), 

(3) 

 Mଷ = (𝑀𝑅ி஽ீ , 𝐷𝑉ி஽ீ), (4) 

 Mସ = (SUVୠ୵), (5) 

 Mହ = (𝑀𝑅ி஽ீ), (6) 

 M଺ = (𝐷𝑉ி஽ீ) (7) 

to estimate the additional predictive value of dynamic PET. The three parameters 𝑆𝑈Vୠ୵ , 
𝑀𝑅ி஽ீ  and 𝐷𝑉ி஽ீ  are expected to be linearly dependent under the assumptions underlying the 
Patlak plot. The models containing all three basic parameters may therefore be interpreted as a test 
of the condition’s validity: when the classification metrics show no additional benefit compared to 
use of only two of the parameters, the linear dependency of the parameters can be assumed. 

The formula (1) can be inverted for BେM, so a threshold for p-value T୔ can be transformed to a 
threshold T୆୑ for a simple linear expression in terms of BେM: 

 𝑇஻ெ = ln ൬
1

1 − 𝑇௉
− 1൰ − 𝐴஼ , (8) 

so that the conditions 

 Pୠ(C|M) > T୔ (9) 

 BେM > T୆୑ (10) 

are equivalent.  

3. Results 

Dynamic PET parameters were evaluated in cohort of 43 patients, categorized into malignancy 
and non-malignancy lesion classes. Six binomial logistic regression models (M1-M6) were trained 
using combinations of average or maximum SUVbw, MRFDG and DVFDG to assess the predictive value 
of dynamic PET imaging. 

Figure 4 shows the measured data in parameter space for patients categorized into the two 
classes. The optimal binomial regression model parameters 𝐵஼  and 𝐴஼  for six different models M1 – 
M6 are presented for the mean and maximum values (see Supplementary Table S1 and S2).  
Performance metrics (precision, recall, and F1-score) for mean value and each class are detailed in 
Supplementary Table S3. We also investigated the M1 analyzing node and tumor performance 
separately with performance measures for comparison presented in Supplementary Table S4. 
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Figure 4. Lesion classification in parameter space using mean value SUVbw, MRFDG, DVFDG. 

3.1. Diagnostic Performance of Models 

Across all evaluated binomial logistic regression models, Model M1 (SUVbw, MRFDG, DVFDG) 
consistently showed the highest diagnostic performance in distinguishing malignant from benign 
lesions. Using mean values, M1 achieved an accuracy of 0.82, precision of 0.83, recall of 0.98, F1-score 
of 0.90, and specificity of 0.21. Models M2 and M3 demonstrated comparable performance with 
slightly lower or similar F1-scores and precision. Models based solely on dynamic parameters (M3, 
M5, M6) provided similar classification performance to hybrid models, confirming the independent 
diagnostic value of kinetic features. 

In the subgroup analysis (Supplementary Table S4), the classification performance further 
improved for solid tumors, with M1 reaching an F1-score of 0.92 and perfect recall (1.00). Performance 
in lymph nodes remained strong with an F1-score of 0.89. Models using maximum values showed 
slightly reduced but comparable diagnostic metrics. 

3.2. ROC and Threshold Analysis 

Receiver operating characteristic (ROC) curves for each model are illustrated in Figures 5 and 6 
for mean and maximum values, respectively. Area under the ROC curve (AUC) values confirmed the 
superior performance of M1 across all input combinations. 

Supplementary Tables S5 and S6 present optimal probability thresholds derived from the 
Youden index, minimum distance to the ideal point, and thresholds for achieving 95 % sensitivity. 
For M1 using mean values, the maximum Youden index corresponded to a threshold of 0.85 
(sensitivity: 0.56, specificity: 0.93), while the minimal distance threshold was 0.71. Comparable trends 
were observed for maximum values. 
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Figure 5. ROC curves for the binomial regression models for mean value . 

 

Figure 6. ROC curves for the binomial regression models for maximum value. 

3.3. Relative Feature Contributions 

For the relative contributions of each feature within the classification models, see Supplementary 
Table S7. In M1, DVFDG accounted for 65 % of the decision weight, SUVbw for 34 %, and MRFDG for only 
1%. In M3, DVFDG contributed up to 97 % of the model's predictive value. These findings suggest that 
DVFDG plays a prominent role in the predictive performance of the classification models. 
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3.4. Decision Thresholds and Clinical Translation 

Linear threshold functions were derived to support clinical implementation. For Model M3, the 
optimal linear decision rule based on mean values was: DVFDG [%] + (7.2 × MRFDG [µmol/min/ml])> 
70. For maximum values, the rule changed to: DVFDG [%] + (-29 × MRFDG [µmol/min/ml])> 194 (Table 
2). Normalized single-parameter thresholds based on the Youden index for mean values were: 
SUVbw> 5.8 g/mL, MRFDG> 0.050 µmol/mL/min, DVFDG> 68 %. (Table 3). 

Table 2. Thresholds derived from maximum Youden index, minimum distance to ideal point and for 95 % 
sensitivity for dynamic PET. The thresholds are derived for equation: DVFDG [%] + weight x 𝑀𝑅ி஽ீ 
[µmol/min/ml]> threshold. 

M3 weight for MRFDG  Youden index distance 95 % sensitivity 
mean 7.2 70 70 52 
max -29 194 147 94 

Table 3. Normalized thresholds T୑ = T୆M/B derived from maximum Youden index, minimum distance to 
ideal point and for 95 % sensitivity for individual parameters. 

 unit Youden index distance 95.0 % sensitivity 

mean 
SUVbw (g/mL) 5.8 3.0 2.4 

MRFDG (µmol/mL/min) 0.050 0.050 0.026 
DVFDG (%) 68 68 51 

max 
SUVbw (g/mL) 8.7 4.4 3.4 

MRFDG (µmol/mL/min) 0.110 0.110 0.051 
DVFDG (%) 202 168 96 

4. Discussion 

4.1. Interpretation of Key Findings 

Our results clearly demonstrate that Patlak PET parameters, particularly MRFDG and DVFDG, 
significantly improve the differentiation between malignant and non-malignant lesions compared to 
conventional SUVbw-based metrics. Among all evaluated models, the combination of mean SUVbw, 
MRFDG, and DVFDG (Model M1) achieved the highest diagnostic performance, with an accuracy of 82 
% and an F1-score of 0.90. When stratified by lesion type, Model M1 performed better in solid tumors 
(accuracy: 0.86; F1 = 0.92) than in lymph nodes (accuracy: 0.81; F1 = 0.89), suggesting greater 
robustness in predicting malignancy in primary lesions compared to metastatic lymphadenopathy. 

4.2. Added Value of Kinetic Parameters 

These findings are consistent with established knowledge that SUVbw has limitations as a 
standalone quantitative biomarker in nuclear medicine. Its sensitivity to physiological and technical 
sources of variability, such as blood glucose levels, imaging time-point, image noise, scanner 
resolution, and ROI delineation, can undermine reproducibility and diagnostic confidence [19]. In 
contrast, dynamic Patlak PET imaging allows for kinetic modeling of tracer uptake, offering a more 
biologically meaningful assessment of tissue metabolism, minimizing the impact of confounding 
factors like plasma glucose activity and imaging time-point dependence. Importantly, models using 
only dynamic parameters (Models M3, M4, M6) performed comparably to hybrid models, 
underscoring the independent diagnostic utility of kinetic Patlak features. 

4.3. Feature Importance and Model Complexity 

Feature importance analysis (Supplementary Table S7) highlighted DVFDG as the most prominent 
contributor in this model analysis. In Model M1, DVFDG accounted for approximately 65 % of the 
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classification decision, compared to 34 % for SUVbw and only 1 % for MRFDG. In Model M3, which 
included only MRFDG and DVFDG, DVFDG contributed to 97 % of the decision weight. These findings 
are notable given that DVFDG is a often overlooked parameter due to questions regarding its 
reproducibilty and clinical relevance [20],underscoring its potential diagnostic value in this context. 
Interestingly, more complex models (e.g., M2, M5) that incorporated all three parameters did not 
outperform simpler two-parameter models. This may reflect underlying linear dependency among 
the features, as suggested by the Patlak graphical model, where over-parameterization could reduce 
interpretability without improving accuracy. 

4.4. Clinical Implications in Head and Neck Oncology 

From a clinical perspective, these findings are particularly relevant for recurrent head and neck 
cancers, where anatomical distortion caused by surgery, reconstruction, radiation fibrosis, and 
inflammation complicate interpretation of conventional PET metrics. In such settings, improved 
lesion characterization using kinetic features can potentially reduce diagnostic uncertainty and help 
avoid unnecessary biopsies or surgical interventions. To support clinical translation, we proposed 
simplified linear decision thresholds based on DVFDG and MRFDG (Table 2), and suggested parameter 
cutoffs for malignancy detection using normalized data (Table 3) for mean values: SUVbw>5.8 g/mL, 
MRFDG> 0.05 µmol/mL/min, DVFDG> 68 %. These values may serve as practical reference points, 
adaptable to desired tradeoffs between sensitivity and specificity in routine clinical use. 

5. Limitations 

This study has several limitations. First, the small sample size (n = 43) restricts the 
generalizability of the findings. Second, lesions were not stratified by histological subtype, 
anatomical subsite, or treatment intensity (e.g., radiotherapy dose), factors that may influence tracer 
kinetics. Third, although kinetic parameters were derived using the Patlak model, which assumes 
irreversible tracer uptake over time, a behavior generally observed in malignant lesions, we did not 
independently validate this assumption. In lesions with necrosis, disrupted vasculature, or 
heterogeneous perfusion, the Patlak model’s assumptions, particularly the irreversibility of tracer 
uptake, may not be satisfied. This could lead to inaccurate MRFDG and DVFDG estimates, as potencial 
reversible tracer or non-linear kinetics are not accounted for in the model. Additionally, we did not 
compare Patlak modeling with alternative kinetic approaches, such as full compartmental models 
(LAFOV PET) or nonlinear regression methods, which might better capture complex tracer dynamics 
in selected lesions. 

6. Future Directions 

Future research should aim to validate these results in larger, multicenter cohorts, with 
stratification by tumor subtype, treatment history, and anatomical context. Given the specific 
assumptions of the Patlak model, further studies should evaluate its applicability across different 
lesion types, and explore alternative or hybrid kinetic modeling approaches that may better capture 
complex tracer dynamics. Moreover, integration of dynamic PET data with multimodal imaging, 
radiomics, or molecular biomarkers could enhance diagnostic accuracy in complex post-treatment 
settings. Development of clinical decision-support tools based on dynamic metrics may aid tumor 
boards in real-time decision-making. Assessing automation feasibility, model reproducibility, and 
clinician acceptance will be critical for translation into practice. Ultimately, prospective trials are 
needed to determine whether incorporating dynamic PET metrics into clinical workflows improves 
key outcomes including diagnostic accuracy, treatment decisions, avoidance of invasive procedures, 
patient quality of life, and healthcare cost-effectiveness. 

7. Conclusions 
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Dynamic PET data appears to enhance the distinction between malignant and non-malignant 
lesions, particularly in solid tumors. This study provides evidence for the diagnostic value of 
dynamic imaging parameters in classifying malignant lesions. Logistic regression models that 
incorporate a limited number of kinetic features demonstrate a favorable balance between accuracy 
and interpretability, highlighting their potential as decision-support tools in clinical practice. 
Moreover, the identification of clinically relevant thresholds may enable more reliable detection of 
tumor recurrence. Future studies with larger cohorts are warranted to further validate these findings 
and confirm their clinical applicability.  
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