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Abstract: This review provides a comprehensive analysis of recent advancements in lower limb
exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing
modalities, human-robot interaction, evaluation methods, and technical innovations. The study
spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use,
and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to
balance support and real-world navigation. Control approaches vary from traditional impedance and
fuzzy logic models to advanced data-driven frameworks including reinforcement learning, recurrent
neural networks, and digital twin-based optimization. These controllers support personalized and
adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase
synchronization across different users and tasks. Hardware platforms include powered multi-
degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-
specific configurations. Innovations in actuator design, modular architecture, and lightweight
materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG,
IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain
classification, and user monitoring. Human-robot interaction strategies emphasize safe, intuitive, and
cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait
metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and
human-subject trials across clinical and real-world environments, with performance measured
through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review
highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering
promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse
populations. Following a detailed review of current developments, strategic recommendations are
made to enhance and evolve existing exoskeleton technologies.

Keywords: lower limb exoskeletons; adaptive control systems; human-robot interaction (HRI);
rehabilitation robotics; wearable assistive technology

1. Introduction

Lower limb exoskeletons represent one of the most promising advancements in wearable
robotics, offering innovative solutions for mobility assistance, gait rehabilitation, and physical
augmentation. Originally designed for military and industrial purposes, exoskeletons have evolved
into highly sophisticated biomedical devices capable of restoring locomotor function in individuals
with neuromuscular impairments. Their clinical applications span a wide spectrum, including spinal
cord injuries (SCI), cerebral palsy (CP), stroke, and age-related mobility decline. With the rise of
personalized healthcare and advances in control engineering, sensing technology, and human-robot
interaction (HRI), the field has shifted toward developing intelligent, adaptable systems that respond
dynamically to user intent and environmental conditions.
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The application of exoskeletons in neurorehabilitation has grown substantially over the past
decade. Robotic gait training, for instance, has been shown to significantly enhance motor outcomes
in SCI patients. Reference [1] highlights notable improvements in standardized assessments such as
the Spinal Cord Independence Measure (SCIM III), Walking Index for Spinal Cord Injury (WISCII),
and the 6-Minute Walk Test (6MWT) when robotic therapy is compared with conventional methods.
In pediatric populations, exoskeletons offer a novel means of improving gait mechanics and physical
independence in children with CP. As shown in Reference [2], exoskeleton-assisted walking
improves spatiotemporal gait parameters, increases energy efficiency, and supports greater hip and
knee joint extension during stance phases.

While these outcomes underscore the therapeutic promise of lower limb exoskeletons,
significant disparities remain between adult and pediatric applications. References [3,4] reveal that
the pediatric exoskeleton market remains underdeveloped, with few clinically validated systems
available. Pediatric devices must be designed to accommodate varying body sizes, developmental
stages, and neuromotor impairments, making this segment uniquely challenging yet critically
important. Current pediatric systems emphasize ergonomic form factors, minimal weight, and
safety-conscious actuation thresholds. However, further clinical validation is necessary before these
devices can be widely adopted.

From a technical standpoint, modern exoskeletons are increasingly incorporating adaptive
control strategies that leverage biosignals and environmental feedback. Traditional methods such as
impedance control and joint trajectory tracking are being complemented by more intelligent systems
utilizing reinforcement learning, fuzzy logic, neural networks, and digital twins. These control
algorithms  allow  exoskeletons to  interpret electromyographic = (EMG)  signals,
electroencephalography (EEG) activity, and inertial measurements to recognize gait phases, decode
motion intention, and adjust assistance levels in real time. References [5,6] stress the importance of
human motion intention recognition (HMIR) in enabling natural, responsive interaction between the
user and the device.

Hardware and actuation technologies have similar advances. The field has seen a transition from
rigid, heavy frames to lightweight, modular designs utilizing energy-efficient motors and compliant
mechanisms. Innovations such as gravity-compensated joints, passive spring-damper systems, and
bio-inspired actuators contribute to user comfort and reduce metabolic costs during use. Reference
[7] discusses the importance of robust sensor integration and control feedback loops to enhance
system responsiveness and user safety. Reference [8] addresses fall prevention strategies, such as
Zero Moment Point (ZMP) and Lyapunov stability criteria, which are essential for real-world
deployment in unstructured environments.

However, despite these achievements, the field faces several critical limitations. Clinically, many
studies are limited by small sample sizes, short follow-up durations, and lack of control groups. These
constraints reduce the statistical power of findings and limit generalizability across broader patient
populations. Furthermore, outcome measures vary widely across studies, creating challenges for
cross-comparison and meta-analyses. Pediatric exoskeleton research remains sparse, with limited
data on long-term safety, adaptability, and developmental impact. Technically, current systems still
struggle with stable and accurate control in dynamic or unpredictable settings. Many rely on lab-
based validations that may not translate effectively to real-world usage.

Another persistent challenge lies in performance benchmarking. Reference [9] notes the absence
of standardized evaluation frameworks, which hinder comparative analysis and slows the pathway
from prototype to product. Similarly, Reference [10] introduces the concept of embodiment, how
users neurologically integrate exoskeletons into their motor schema as a critical yet underexplored
metric of system effectiveness. Quantitative tools like high-density EEG may offer new avenues for
evaluating user-device synchrony and long-term neuroplastic changes.

Given the breadth of existing research and the rapid pace of innovation, there is a clear need for
more targeted, domain-specific review articles to guide future development. Future reviews could
focus on specific populations, such as pediatric users, stroke survivors, or the elderly to explore how
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design parameters, safety considerations, and clinical needs vary. Another important direction is the
standardization of performance metrics, which would allow for consistent benchmarking across
studies and devices. Reviews on human-in-the-loop control strategies, Al-driven motion prediction,
and hybrid exoskeletons (combining active and passive elements) would also provide valuable
insight into emerging trends.

In this review, we synthesize these multidisciplinary advancements, drawing from over a
hundred recent works. We classify systems based on their control strategies, hardware
configurations, sensing modalities, application focus, and evaluation approaches. The objective is to
provide a comprehensive framework that captures the current landscape of lower limb exoskeleton
research, highlights key innovations, identifies challenges, and outlines strategic opportunities for
future development. As the field progresses toward intelligent, personalized, and context-aware
systems, such a synthesis is essential for guiding research, design, and deployment of next-generation
assistive technologies.

This review follows a structured and systematic format to ensure both clarity and analytical
depth. Section 2 outlines the review methodology, including the sources of references and the
selection criteria. Section 3 explores the various application domains of human lower extremity
exoskeletons. Section 4 provides an in-depth examination of control strategies, highlighting their
evolution and diversity. Section 5 addresses sensing modalities, perception algorithms, and their role
in environmental interaction. Section 6 discusses advances in hardware design and actuation
mechanisms. Section 7 focuses on human-robot interaction approaches, emphasizing user
engagement and cooperative control. Section 8 reviews evaluation methodologies, subject types, and
performance metrics. Section 9 summarizes key technological innovations and contributions across
the field. Section 10 presents future research directions aimed at advancing the next generation of
intelligent, adaptive, and user-centered exoskeleton systems. Section 11 concluded the main ideas,
reinforces the central message, and provides a sense of closure to the work.

2. Methodology

This systematic review was conducted to identify, evaluate, and synthesize recent advancements
in lower limb exoskeleton systems across domains of rehabilitation, assistive mobility, human-robot
interaction, sensing technologies, control strategies, and hardware design. The review methodology
followed a structured, multi-phase process consisting of literature identification, screening, eligibility
assessment, and final inclusion, in line with established best practices for engineering-focused
systematic reviews.

2.1. Literature Search and Identification

A comprehensive literature search was performed across multiple academic databases including
IEEE Xplore and ScienceDirect. The search strategy incorporated a combination of keywords and
Boolean operators, targeting terms such as "lower limb exoskeleton," "wearable robotics,"

"o

"rehabilitation gait assistance,” "human-robot interaction," "adaptive control,” and "exoskeleton robot
sensor fusion." The search was limited to English-language peer-reviewed journal articles and

conference papers published between 2016 and 2024 to ensure relevance to current technologies.

2.2. Inclusion and Exclusion Criteria

Articles were considered eligible if they met the following criteria:

e  Focused on lower limb or full-body exoskeleton systems with application to gait, posture, or
mobility.

. Introduced original control algorithms, hardware innovations, sensing modalities, or human-
robot interaction mechanisms.

e Included evaluation through simulation, bench-top testing, phantom validation, or human-
subject trials.
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e  Provided sufficient methodological detail and quantitative performance metrics.
Exclusion criteria included:
The exclusion of articles was determined by the following criteria:
e  Purely conceptual papers without implementation or evaluation.
e  Studies centered exclusively on prosthetics, orthotics, or upper-limb exoskeletons.
° Reviews, editorials, and non-peer-reviewed content.

2.3. Screening and Selection Process

From the initial pool of 320 articles, duplicates and non-relevant titles were removed, resulting
in 284 articles eligible for abstract screening. Two independent reviewers assessed abstracts for
alignment with inclusion criteria. Discrepancies were resolved by consent. This yielded 188 full-text
articles for in-depth analysis.

During full-text screening, an additional 60 papers were excluded due to insufficient technical
contribution, lack of experimental validation, or focus outside the review scope (e.g., pure
biomechanics or wearable sensor studies). A final cohort of 128 articles was included in the review,
representing a comprehensive and diverse cross-section of recent work in lower limb exoskeleton
research.

2.4. Data Extraction and Thematic Classification

For each included study, relevant data were systematically extracted into a structured matrix.
Categories included:
e  Application focus (e.g., gait rehabilitation, terrain adaptation, pediatric use)
e  Control strategy (e.g., impedance control, machine learning, reinforcement learning)
e  Hardware and actuation (e.g., passive, powered, compliant, modular systems)
. Sensing and perception (e.g., EMG, EEG, IMU, vision-based systems)
¢  Human-robot interaction (e.g., adaptive assistance, intent recognition)
e  Evaluation method (e.g., simulation, phantom validation, human-subject testing)
e Key contributions (e.g., novel controllers, biomechanical insights, clinical findings)
This structured approach enabled both quantitative and qualitative comparative analysis across
thematic domains, facilitating the identification of trends, gaps, and emerging opportunities in the
field. Error! Reference source not found. shows the study selection process.
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Figure 1. Flow diagram of the study selection process.

Sections 3 to 9 compare, contrast, and analyze recent human lower extremity exoskeleton
research works from multiple perspectives.

3. Application Focus

Lower limb exoskeletons are developed with diverse application goals, ranging from clinical
rehabilitation to terrain-adaptive mobility and occupational support. These systems are tailored to
assist individuals with gait impairments, enhance locomotor function, or provide physical relief
during repetitive tasks. Application focus plays a pivotal role in shaping system requirements,
including control strategies, actuation complexity, and user interaction paradigms. Recent research
spans domains such as post-stroke gait recovery, pediatric mobility, terrain navigation, and
industrial load bearing. This section categorizes and compares exoskeleton developments based on
their intended functional use cases. Error! Reference source not found. illustrates major applications:
(1) Clinical Rehabilitation for elderly or injured individuals regaining mobility, (2) Pediatric Mobility
support for children with motor impairments, (3) Terrain Navigation aiding users in challenging
outdoor environments, and (4) Industrial Load Bearing for enhancing strength and reducing fatigue
in manual labor tasks.
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Figure 2. The illustration highlights four primary use cases: (1) Clinical Rehabilitation for elderly or injured
individuals regaining mobility, (2) Pediatric Mobility support for children with motor impairments, (3) Terrain
Navigation aiding users in challenging outdoor environments, and (4) Industrial Load Bearing for enhancing

strength and reducing fatigue in manual labor tasks.

3.1. Clinical Rehabilitation and Gait Restoration

The majority of exoskeleton research has focused on clinical rehabilitation, particularly targeting
populations with impaired motor function due to stroke, cerebral palsy, or other neuromuscular
conditions. Several studies demonstrate the use of exoskeletons to support sit-to-stand transitions
and overground gait rehabilitation in both healthy subjects and impaired users [11-14]. These
applications typically employ adaptive control techniques to personalize assistance levels according
to the user’s needs. Similarly, rehabilitation for hemiplegic and neuromuscular patients has been
explored in [15,16] with a particular focus on achieving symmetric gait and improving motor
coordination.

More specialized interventions, such as crouch gait correction in pediatric cerebral palsy
patients, are addressed in [17], while [18] expands this focus by designing pediatric exoskeletons for
community-based mobility outside clinical settings. These systems often prioritize lightweight
structure, safe actuation, and adaptive gait phase tracking suited for children. In a broader clinical
context, references [19-61] further contribute to real-world locomotor recovery efforts. These systems
support various stages of rehabilitation-acute, sub-acute, and chronic often integrating machine
learning, sensor fusion, and task-specific torque adaptation.

3.2. Cognitive-Motor Integration and Intention Recognition

An emerging area of application focuses on neural integration, where brain-machine interfaces
(BMI) and biosignal decoding are used to directly map user intention to movement commands.
Studies such as [62-64] demonstrate the integration of EEG and motor imagery signals for real-time
exoskeleton control. These systems enable more seamless communication between user and machine,
especially beneficial for individuals with limited voluntary control. EMG/sEMG-based motion
recognition, covered in [65-72] supports a more accessible route to intention detection by leveraging
residual muscular activity. These signals, often processed through deep learning or hybrid classifiers,
enable recognition of user intent across various locomotion modes.

3.3. Terrain Adaptation and Environment-Aware Gait Assistance

Exoskeletons capable of adapting to real-world terrain conditions represent a significant
application area aimed at extending usability beyond controlled environments. References [73-83]
explore terrain classification and transition prediction using vision systems, IMUs, or multi-modal
fusion techniques. For example, [74] employs a CNN-based system for predicting foot landing in
complex terrains, while [83] proposes terrain-aware gait switching models using GRU networks and
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CNN classifiers. These approaches are particularly valuable for enhancing safety and autonomy
during stair ascent/descent, slope walking, or uneven ground navigation. Exoskeletons such as those
presented in references [84-88] further support this functionality through adaptive locomotion
strategies focused on balance and trajectory correction in dynamic terrain.

3.4. Load-Bearing and Occupational Support

Beyond clinical applications, several exoskeletons are developed for enhancing occupational
performance, particularly in load-bearing tasks. Reference [89] presents a passive mechanical design
that supports users during high-load activities, such as military operations or rescue work. Industrial
applications are further detailed in references [90-94], which evaluate static force distribution and
postural support during tasks like squatting, kneeling, or lifting. These exoskeletons typically
prioritize ergonomic comfort, mechanical simplicity, and reliability over precision control, making
them suitable for prolonged use in constrained settings. For instance, [52] utilizes electromagnetically
controlled mechanisms to provide squat support with minimal energy expenditure.

3.5. Posture Support and Self-Balancing Systems

Postural assistance and fall prevention represent another application frontier, especially for
populations with reduced balance or trunk control. References [95-109] target balance correction,
squat stability, and posture maintenance during both static and dynamic tasks. Systems like the 12-
DOF exoskeleton in [33] offer full-body self-balancing capabilities through distributed actuation and
kinematic modeling. Meanwhile, studies such as references [100,109] focus on maintaining upright
stability during sudden perturbations by modeling body dynamics as an inverted pendulum and
compensating accordingly. These systems often integrate trunk actuation and CoG tracking to
stabilize the user under dynamic conditions.

3.6. Energy Efficiency and Regeneration

A niche but growing area of application involves energy-efficient exoskeletons that minimize
metabolic cost or enable energy regeneration during locomotion. For example, reference [110] uses
bond graph modeling to capture mechanical energy during sit-to-stand transitions, while references
[111,112] demonstrate energy-saving joint designs and control policies. These strategies are
particularly valuable in mobile, battery-powered exoskeletons where runtime and weight are critical
concerns. Study [112] reports a 35% reduction in metabolic cost using synchronized torque assistance
based on ground reaction force feedback.

3.7. Evaluation and Performance Benchmarking

Quantitative evaluation and benchmarking of exoskeleton performance are increasingly seen as
essential for widespread deployment and clinical adoption. Reference [113] introduces a multi-
indicator performance evaluation model that integrates gait symmetry, timing, torque, and user
effort. Likewise, reference [114] focuses on stiffness modeling of the human-exoskeleton interface,
essential for ensuring safe and efficient interaction. Study [115] presents an intelligent model that
predicts clinical rehabilitation outcomes based on motion and physiological inputs, demonstrating
the role of Al in guiding therapy. Additionally, reference [45] applies unsupervised clustering and
PCA to assess biomechanical performance across various users and tasks.

4. Control Strategy of Human Lower Limb Exoskeleton Robots

Control strategy is a foundational element in the design and effectiveness of lower limb
exoskeletons. It determines how the system interprets user intent, regulates actuation, and responds
to internal and external dynamics. Early approaches were dominated by model-based controllers
such as PID and impedance control, offering stability and simplicity but limited adaptability. Recent
advances have introduced machine learning, reinforcement learning, and hybrid frameworks that
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allow for real-time adaptation and personalized assistance. Biosignal-driven control using EMG or
EEG has also become central for intuitive human-robot coordination. Moreover, digital twin models
and neural estimators are now enhancing prediction and precision in complex tasks. This section
explores and classifies control approaches across the selected articles, highlighting their evolution
and application-specific relevance. Error! Reference source not found. shows major approaches to
exoskeleton control: (1) Model-Based Control using classical control algorithms like PID, CTC, (2)
Machine Learning for data-driven decision-making and adaptability, (3) Biosignal-Driven Control
leveraging EMG or EEG for intuitive user intent recognition, and (4) Digital Twin models for
predictive and synchronized control based on virtual-human representations.

MODEL-BASED CONTROL ~ MACHINE LEARNING BIOSIGNAL-DRIVEN CONTROL DIGITAL TWIN

Figure 3. Four major approaches to exoskeleton control: (1) Model-Based Control using classical control
algorithms like PID, (2) Machine Learning for data-driven decision-making and adaptability, (3) Biosignal-
Driven Control leveraging EMG or EEG for intuitive user intent recognition, and (4) Digital Twin models for

predictive and synchronized control based on virtual-human representations.

4.1. Model-Based and Adaptive Control Strategies

Model-based control remains a foundational approach in many exoskeleton systems. Classic
examples include the use of Lyapunov-based adaptation combined with Swarm Optimization in
reference [11] where the Swarm-Initialized Adaptive (SIA) controller balances responsiveness and
robustness. Similarly, reference [15] applies explicit model-based fuzzy control derived through low-
dimensional approximations to improve real-time performance in uncertain environments. These
methods offer robust stability but often rely on accurate system modeling, which can be challenging
in human-exoskeleton interactions.

Other studies have enhanced this foundation by integrating adaptive mechanisms. For example,
reference [14] introduces an Adaptive Interaction Torque Assist-As-Needed (AITAAN) approach,
which dynamically adjusts assistance based on user effort, while reference [116] uses Neighborhood
Field Optimization (NFO) for system identification in conjunction with adaptive backstepping
control. Reference [13] blends multiple layers of control-ACPG, NDO, and PPC-into a unified
framework for robust trajectory tracking, highlighting the trend toward combining modular adaptive
techniques.

4.2. Impedance, Compliance, and Torque Control Approaches

Impedance and compliance-based strategies are widespread due to their effectiveness in
maintaining safe, intuitive interaction. Reference [65] uses a RBFNN combined with type-2 fuzzy
logic to estimate impedance in uncertain settings, while reference [28] introduces a Dynamic
Parameter Fuzzy Impedance Controller (DPFIC) to adapt impedance dynamically during disturbed
gait. Similarly, reference [30] modulates torque through compliance-based CPGs and impedance
control, aiming for natural joint-level assistance.

Reference [95] stands out for its bio-inspired compliance control using Anthropomorphic
Viscoelastic Muscle Models (AVMM) and Adaptive Viscoelastic Compliance Control (AVCC),
simulating muscle-like behavior for dynamic walking. This anthropomorphic approach allows the
exoskeleton to better absorb and release energy during transitions like stance to swing. Moreover,
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reference [81] builds on this by adjusting impedance in real-time according to gait phase and
intention.

4.3. Intelligent and Learning-Based Control Architectures

The integration of machine learning has dramatically expanded control capabilities. Reference
[66] employs a Zeroing Neural Network (ZNN) combined with a deep CNN for robust torque
estimation. Reference [117] leverages reinforcement learning with critic networks in an event-
triggered impedance controller, showing how learning-based methods can reduce communication
overhead while maintaining responsiveness. Similarly, reference [118] adopts a repetitive learning
controller based on phase observers to handle cyclic gait disturbances.

Digital twin-enhanced learning systems are exemplified in references [27,119] where DDPG and
PSO optimize trajectory tracking using synchronized virtual models. These approaches offer high
accuracy and adaptability, especially in non-stationary environments. Concurrent learning also
appears in references [36,59,61] offering robust tracking performance across variable tasks without
needing task-specific tuning.

The use of fuzzy systems optimized via metaheuristics is also notable. For instance, reference
[120] compares fuzzy-PID controllers tuned with the Dragonfly Algorithm (DFA) versus Genetic
Algorithms (GA), showing DFA’s superior convergence and performance. These hybrid learning
approaches balance interpretability with performance and are increasingly being integrated into real-
time systems.

4.4. Terrain-Adaptive and Gait-Phase-Aware Controllers

Exoskeletons often function on varied terrain, prompting the development of terrain-adaptive
control strategies. References [73,74] both use CNNs with visual and IMU inputs for terrain
classification and foot landing prediction. These models allow the exoskeleton to anticipate changes
in elevation or obstacle presence. References [79,83] extend this concept by using multimodal sensor
fusion (IMU, camera) with temporal models (GRU, CNN) to support real-time gait adjustments
during terrain transitions.

Gait-phase-specific controllers are exemplified by reference [12], which aligns variable
admittance control with FFT-derived step frequency, and reference [121] uses bilateral mixing for
gait guidance based on phase transitions. Reference [122] applies a Graph Convolutional Network
(GCN) to classify gait events (heel strike, toe-off, etc.) with high accuracy, enabling precise assistance
timing. These gait-aware systems are crucial for ensuring smooth and personalized support across
walking cycles.

4.5. Event-Triggered and Energy-Efficient Controllers

Event-triggered control has seen in references [117,123], is a growing area of interest due to its
capacity for reducing computational and communication loads. Reference [123] combines Sliding
Mode Control (SMC) with event-triggering and a GA-BP-based EMG estimator for intention
recognition, achieving responsive yet efficient control.

In parallel, controllers targeting energy efficiency are emerging. Reference [110] models
mechanical energy regeneration during sit-to-stand using bond graphs, while reference [112]
implements torque assistance based on CoM and GRF feedback to reduce metabolic cost by up to
35%. Reference [111] simulates energy-efficient movement in a 2-DOF knee exoskeleton with parallel
springs, showcasing passive elements as a viable alternative to high-energy actuation.

4.6. Motion Prediction and User Intention Estimation

Accurate prediction of user motion and intention is vital for effective assistance. EMG and sSEMG
signals are used extensively in references [67-72] processed through classifiers such as autoencoders,
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CNNs, GATs, and U-Net+LSTM hybrids. These systems decode gait mode, stride initiation, and force
exertion in real time, enhance responsiveness.

EEG-based intention detection is tackled in references [62-64]. Reference [62] integrates Error-
Related Potentials (ErrP) to correct false gait starts in BMI-driven systems, while reference [63] uses
ensemble classification with CSP features and attention layers to decode motor imagery with high
accuracy. Reference [64] combines multiple EEG features with multivariate optimization for
enhanced classification reliability in motor intention decoding.

4.7. Structural, Multi-Modal, and Self-Balancing Control

The structural complexity of exoskeletons is mirrored in their control strategies. Reference [98]
presents a hybrid serial-parallel actuation system requiring precise kinematic modeling for self-
balancing, while references [124,125] use RBFNN and GRU-PD controllers, respectively, to manage
complex mechanical configurations. Self-balancing and posture stability are further explored in
references [100,103,109], with controllers based on inverted pendulum models, foot placement
prediction, and multi-DOF actuation.

Systems that integrate multiple control objectives are also becoming prevalent. For instance,
reference [85] applies a dual closed-loop structure with TSLSTM-based sensor fusion to handle
unilateral gait disturbances, while references [31,32,40] blend gait generation, mode recognition, and
torque control into coherent frameworks that adapt across walking speeds and environments.

4.8. Evaluation and Biomechanical Feedback Controllers

An often overlooked but crucial aspect of control lies in how performance is evaluated and
adapted over time. References [25,45,113] propose clustering, SOM, and PCA-based systems for
multi-indicator evaluation of exoskeleton performance. These tools enable personalization and
iterative optimization, linking biomechanics (torque, step length, joint angles) with controller
performance.

Controllers such as those in references [38,41,50] integrate feedback from gait deviation models,
GRF, or EMG drift to recalibrate assistance dynamically. This closed-loop performance monitoring
ensures long-term effectiveness, especially in rehabilitation contexts where user state changes over
time.

5. Sensing Modalities & Perception

Sensing modalities and perception systems are critical enablers of intelligent and responsive
lower limb exoskeletons. They provide the data necessary for interpreting user intent, monitoring
physical interaction, and adapting to environmental conditions. Modern exoskeletons leverage a
wide range of sensors, including electromyography (EMG), electroencephalography (EEG), inertial
measurement units (IMUs), force/torque sensors, and vision-based systems. These inputs are often
fused using advanced signal processing and machine learning techniques to improve accuracy and
robustness. Effective perception not only enhances safety and performance but also enables context-
aware control and human-robot synergy. This section reviews the sensing strategies employed in
recent exoskeleton systems and examines their integration into perception-driven control
architectures. Error! Reference source not found. illustrates key sensor types used to interpret user
intent and monitor system dynamics, including EMG and EEG biosignals, inertial measurement units
(IMUs), force/torque sensors, vision-based perception, and surface electrodes. These modalities
collectively enable accurate, adaptive, and context-aware control in human-exoskeleton interaction.
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Figure 4. Key sensor types used to interpret user intent and monitor system dynamics, including EMG and EEG
biosignals, inertial measurement units (IMUs), force/torque sensors, vision-based perception, and surface

electrodes.

5.1. Vision and Inertial Fusion for Terrain and Motion Perception

Computer vision combined with inertial sensing is a popular approach to enhance terrain
awareness and gait planning. References [73,74] integrate vision (camera-based systems) and IMU
data using deep learning models like CNNs and MobileNetV2 to classify terrain types and predict
foot landing zones. These systems allow proactive gait adjustment by identifying upcoming obstacles
or uneven surfaces, improving safety in unstructured environments. Further advancements in terrain
classification include in references [76,78,79] which utilize camera, LIDAR, and IMU fusion to
robustly differentiate between stairs, ramps, and level ground under variable lighting and terrain
textures.

IMUs are also widely applied for movement classification. Reference [126] combines IMU and
pressure data using GMM and DTW for terrain mode recognition. Similarly, references [127,128]
apply TCN and LSTM classifiers to IMU-derived gait phase data, demonstrating robustness to noise
and small datasets.

5.2. EEG and Brain-Computer Interface-Based Sensing

Brain-derived signals offer a non-muscular avenue for decoding user intent. Reference [62]
integrates EEG with Error-related Potential (ErrP) detection across multiple feedback modalities
(tactile, visual, combined), allowing for correction of false intentions in asynchronous BMI systems.
Reference [63] applies deep and shallow neural network to classify Motor Imagery (MI), enabling
intuitive control of gait functions. Additionally, reference [64] explores multifeatured EEG fusion
(e.g., CFC, CSP, PSD) to enhance classification robustness, showing high potential for locked-in or
high-impairment users.

5.3. EMG, MMG, and Hybrid Biosignal Sensing

EMG remains a dominant modality for estimating user intent, muscular effort, and control
parameters. Studies [14,65,66,116] use EMG for torque estimation via neural networks, CNNs, or
NDO frameworks. Similarly, reference [23] utilizes a GA-BP neural network to predict motion
intention from EMG. In references [70-72,129], EMG signals are processed using advanced deep
learning architectures-such as GAT, CNN, U-Net, and LSTM-for precise phase detection and gait
classification.

Hybrid biosignal approaches compare EMG and MMG efficacy. Reference [69] applies machine
learning regressors to evaluate both modalities for joint torque prediction, concluding EMG has a
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slight edge but MMG remains viable. Studies like references [46,48,50,52,60,104] combine EMG with
foot pressure sensors to improve reliability of motion prediction and gait segmentation under varied
walking conditions.

5.4. Ground Reaction Force (GRF), Pressure, and Force Sensor Integration

GREF and pressure sensors contribute to ground interaction estimation and postural stability. [86]
uses CoM and GRF data for torque assistance in hip and ankle exoskeletons, optimizing energy
expenditure. References [38,42,81] fuse EMG with GRF and mechanical encoders to track gait phase
and detect limb-loading asymmetries, improving rehab personalization. Reference [37] incorporates
6-axis force/torque sensors to supply feedback for reinforcement learning-based hip torque control,
enabling fine-tuned assistance in real time. Reference [130] stands out by embedding parasitic force
sensors in the shank, which correct misalignment between human and exoskeleton.

5.5. Multimodal Sensor Fusion and Deep Learning Enhancements

Sensor fusion combined with deep learning is critical in capturing complex locomotor dynamics.
References [21,23] use FFT-based methods and sensor fusion for trajectory generation and intent
estimation, improving responsiveness and comfort. References [49,51,55] apply Kalman filters and
neural estimation for state prediction, reducing error in complex motions like stair climbing or fall
recovery.

Multimodal fusion is further exemplified in reference [75], where foot pressure, joint angle, and
terrain features are used to adapt an A-CPG model in real-time. Reference [119] enhances control
accuracy through feedback from a virtual twin, synchronized with real-world sensor data. Reference
[85] employs multi-sensor fusion and dual closed-loop control using temporal LSTM-based models
to ensure stable gait in asymmetric walking. Reference [25] introduces an evaluation framework
using sensor-derived gait metrics like speed, symmetry, and motion fluency to assess human-
exoskeleton cooperation across tasks.

5.6. Phantom Systems and Simulation Validation

For exoskeleton evaluation, some studies use biomechanical phantoms or simulated models.
References [87,131] deploy 3D-printed legs embedded with force plates and motion tracking to
simulate joint torques and validate controller performance. These setups enable safe, repeatable
testing of force transfer, torque limits, and interface behavior. Reference [49] uses a digital twin to
estimate the impact of model uncertainty on trajectory tracking, allowing for control refinement in
simulation before deployment.

5.7. Pediatric and Pathological Gait Monitoring

Customized sensing approaches are required for children with irregular gait patterns. Reference
[18] uses LSTM-based gait phase estimation to handle irregularities in pediatric gait. Reference [108]
monitors gait timing, angular offset, and foot orientation in children with crouch gait, using a multi-
point control exosuit. These specialized sensors and models are crucial for ensuring safety and
effectiveness in non-standard user populations.

5.8. Gait Performance and Classification Systems

Some research focuses on categorizing gait types or evaluating therapy outcomes. Reference
[115] integrates subject physiological data, joint torque, and gait kinematics to predict rehabilitation
success using machine learning. References [44,45,82] use wearable inertial sensors to classify motion
types (walking, turning) and assign biomechanical performance scores through clustering and PCA.
These evaluation tools provide a foundation for evidence-based therapy progression and objective
performance tracking.
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5.9. IMU and Terrain-Linked Perception

IMUs are often used to assess gait symmetry, torso sway, and segment timing. Reference [97]
deploys them during balance beam walking to evaluate postural control, while references [53,83,100]
track foot placement and elevation to adapt walking patterns across stairs or inclines. These sensors
enable context-aware control and those are especially relevant for real-world deployment in non-
clinical environments.

Overall, the sensing strategies vary in complexity and application specificity. Vision and IMU
fusion ([73,74,79]) is ideal for terrain awareness, while EMG/EEG models ([62,64,70]) offer high-
resolution intent prediction. GRF and torque sensors ([37,112,130]) excel in interaction torque and
postural feedback. Deep learning frameworks enable sensor fusion models to scale across
environments and user conditions. The choice of modality is closely tied to system goals-
rehabilitation, terrain navigation, pediatric use, or industrial support-and continues to evolve toward
multi-modal, adaptive solutions.

6. Hardware Design & Actuation

Hardware design and actuation form the structural and functional backbone of lower limb
exoskeleton systems. These elements define how mechanical assistance is delivered, how well the
system aligns with human biomechanics, and the overall comfort, weight, and usability of the device.
Designs vary widely, from fully actuated multi-degree-of-freedom systems to lightweight passive or
semi-passive configurations using springs, dampers, or compliant joints. Advances in actuation
technologies, including variable stiffness actuators, hydraulic drives, and energy-regenerative
mechanisms have significantly improved performance, efficiency, and safety. Furthermore, modular
and pediatric-specific designs are expanding the accessibility of exoskeletons across different
populations and use cases.

This section examines the evolution of hardware and actuation strategies in modern exoskeleton
development. Error! Reference source not found. illustrates hardware design and actuation
strategies in lower limb exoskeletons. The illustration categorizes four key hardware configurations:
(1) Fully Actuated systems offering high control precision, (2) Passive designs utilizing mechanical
elements like springs, (3) Variable Stiffness systems with hydraulic drives for adaptable force output,
and (4) Pediatric-specific designs tailored for children, focusing on lightweight and ergonomic
structure. These variations address different user needs, biomechanical compatibility, and
performance requirements.

Fully Passive  Variable Stiffness  Pediatric
Actuated (Hydraulic Drive)

Figure 5. Hardware design and actuation strategies in lower limb exoskeletons. (1) Fully Actuated systems

offering high control precision, (2) Passive designs utilizing mechanical elements like springs, (3) Variable

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2023.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2023.v1

14 of 35

Stiffness systems with hydraulic drives for adaptable force output, and (4) Pediatric-specific designs tailored for

children, focusing on lightweight and ergonomic structure.

6.1. Standard Multi-DOF Powered Systems

Several foundational studies rely on traditional powered exoskeletons with multiple degrees of
freedom (DOF), which serve as reliable testbeds for control and gait assistance development. Systems
in references [11-14] employ standard actuators with torque or position control across hip and knee
joints, supporting tasks such as sit-to-stand transitions and overground gait training. These designs
offer high controllability and adaptability but are often limited by weight, complexity, and power
requirements.

6.2. Passive and Mechanically Intelligent Designs

A trend toward passive and mechanically efficient systems is evident in references [89-93,110].
The exoskeleton in reference [89] features a reconfigurable U-C-R joint with passive gravity
compensation, supporting joint alignment and load transfer. Industrial applications are addressed in
references [90,92] which use chair-like passive support to reduce muscular effort during static tasks.
Reference [110] introduces a wire-rope system with energy storage springs to regenerate mechanical
energy during sit-to-stand transitions, promoting energy efficiency without active motors.
Additionally, reference [93] demonstrates an electromagnetically controlled passive squat support
system for ergonomic stability in industrial tasks.

6.3. Compliant and Bio-Inspired Actuation

Compliance-focused and biologically inspired hardware improves comfort and energy transfer.
Reference [95] stands out with its Anthropomorphic Viscoelastic Muscle Model (AVMM), which
mimics muscular elasticity and viscosity for dynamic walking. Modular bio-inspired solutions are
further explored in references [35,43,77,80,112] where passive joints, biarticular springs, and Central
Pattern Generator (CPG)-driven actuators produce human-like movement. These mechanisms enable
smoother transitions between gait phases and improve energy efficiency, especially when integrated
with impedance control strategies like in reference [30].

6.4. Pediatric and Lightweight Adaptations

Hardware tailored for pediatric or low-mobility populations is evident in the references
[17,18,33,108]. These designs emphasize reduced size, weight, and torque saturation control. For
instance, reference [18] presents a 1.78 kg unilateral exoskeleton for pediatric use, while reference
[108] employs a soft-rigid compliant suit with multi-point actuation for crouch gait correction in
children with cerebral palsy. Reference [33] adds passive ankle and hip modules for low-impact
rehabilitation in young users.

6.5. Modular and Terrain-Adaptive Platforms

Modular systems designed for multi-environment operation are presented in references
[31,121,125,132]. Reference [121] uses bilateral gait control with trajectory mixing, while reference
[132] tests the Exoped® with modular actuators on stairs, level ground, and obstacle-rich
environments. The design in reference [125] features variable trajectory modules to adapt to
asymmetrical walking, and reference [31] introduces a physical testbed with an adaptive admittance
controller to simulate terrain changes. These systems improve platform generalizability and real-
world relevance.

6.6. High-Fidelity Sensing and Phantom-Based Hardware

Experimental hardware and test phantoms are used in references [24,87,130,131] to study
interface dynamics and torque validation. Reference [17] integrates parasitic force sensors into a 2-
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DOF knee system to correct joint misalignment in real time. References [87,131] employ 3D-printed
ballistic gel limbs embedded with 6-axis sensors for testing compliance and stiffness under realistic
conditions. Reference [24] presents a virtual and physical model of a human-exoskeleton-walker
system, validating coordinated movement and CoM tracking via simulation.

6.7. Digital Twin and Al-Augmented Hardware

Digital twin integration is increasingly common in references [27,47,49,104,119], where real-time
virtual counterparts optimize motor control and system identification. References [24,63] utilize
direct-drive actuators whose trajectories are tuned via virtual feedback, while references [47,104] use
actor-critic models to improve real-time torque allocation. Reference [49] further quantifies the
impact of model uncertainty in these digital ecosystems, offering insights into reliability and
predictability in real deployments.

6.8. Torque-Sensing and Deep Learning-Enhanced Designs

Systems with embedded torque sensing and stiffness control-seen in references [36,37,41]
support adaptive behavior and predictive assistance. For example, reference [37] uses 6-axis force-
torque sensors for feedback in a DDPG-controlled hip actuator, while [36] uses concurrent learning
for robust adaptation to joint variability. These systems demonstrate how integrating deep learning
with mechanical sensing enhances both responsiveness and robustness.

6.9. Embedded Sensor Platforms for Gait Evaluation

Gait analysis and feedback-rich systems are featured in references [38,40,45], which incorporate
wearable sensors and motion tracking for performance monitoring. These platforms enable precise
detection of gait phases and can generate real-time biomechanical feedback for clinical or sports
applications. Similarly, references [79,81,82] embed IMU, EMG, and vision-based sensing to support
terrain classification and motion segmentation, bridging perception and control.

6.10. Lightweight, Foldable, and Wearable Systems

Several systems prioritize portability and user compliance. References [94,102,105,107] focus on
compact, high-torque exoskeletons for daily or home use. Reference [102] achieves 30 Nm output at
under 0.5 kg mass, ideal for ankle actuation, while reference [94] offers passive support with
adjustable frames to reduce muscle activation during prolonged use. Reference [107] presents a
foldable mobility-assist exoskeleton suitable for community integration, underscoring a shift toward
practical and socially integrated wearables.

6.11. Self-Balancing and Whole-Body Support Systems

Balancing systems with multiple DOFs are explored in references [98,100,103,109]. Reference
[98] proposes a 12-DOF exoskeleton using parallel and serial mechanisms to support upright posture.
References [100,116] integrate foot and trunk actuation to prevent falls, while reference [109] focuses
on autonomous balance control through distributed sensing and self-corrective motion generation.
These designs are particularly suited for elderly users or those recovering from neurological injury.

6.12. Trunk-Lower Limb Coordination Systems

Reference [101] presents a unique hardware innovation by integrating trunk and lower-limb
actuation to stabilize users during complex motion. This holistic approach considers whole-body
coordination, particularly important for dynamic balance during walking or turning, where the
center of mass must be closely regulated.

Overall, the landscape of exoskeleton hardware reflects a shift from monolithic, powered
systems ([11,13,14]) toward distributed, lightweight, and intelligent platforms tailored to specific
tasks or populations. Whether through passive support ([89,92]), bio-inspired compliance [35,95]),
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digital twin augmentation ([27,119]), or pediatric design ([18,108]), innovations are converging on
systems that are more comfortable, responsive, and usable in diverse contexts.

7. Human-Robot Interaction (HRI) Approach

Human-Robot Interaction (HRI) plays a central role in the effectiveness, safety, and user
acceptance of lower limb exoskeletons. It governs how the system interprets user intention, adapts to
individual capabilities, and responds to biomechanical and environmental changes. Modern HRI
approaches have moved beyond passive compliance to incorporate biosignal-driven control,
adaptive impedance tuning, and real-time cooperative intent modeling. These strategies enable more
intuitive, responsive, and personalized assistance, especially important in rehabilitation and
mobility-impaired populations. Furthermore, human-in-the-loop learning and user feedback
integration are enhancing the transparency and comfort of interaction. This section explores the
various HRI methodologies employed in contemporary exoskeletons and their impact on system
usability and adaptability. Error! Reference source not found. highlights four critical HRI
approaches: (1) Intention Recognition for interpreting user goals, (2) Adaptive Impedance for
dynamically adjusting support based on movement and feedback, and (3) pediatric interface (4)
impaired user interface.

INTENTION ADAPTIVE PEDIATRIC IMPAIRED-
RECOGNITION SUPPORT INTERFACE  USERINTERFACE

Figure 6. Human-Robot Interaction strategies in lower limb exoskeletons. (1) Intention Recognition for
interpreting user goals, (2) Adaptive Impedance for dynamically adjusting support based on movement and

feedback, and (3) pediatric interface (4) impaired user interface.

7.1. Gait-Adaptive and Torque-Based Interaction

Several exoskeletons employ gait-adaptive strategies that adjust assistance levels in real-time.
Studies such as references [12-14] implement admittance or torque-based control mechanisms that
modulate support in response to step frequency, trajectory error, or user effort. These systems are
typically used in gait rehabilitation and aim to strike a balance between robotic assistance and user
autonomy, encouraging active user participation and preventing over-reliance.

7.2. Biosignal-Driven Intention Recognition

User intent detection through biosignals is a major pillar of intuitive HRI. Systems in references
[9,62,65] decode intention using EMG or EEG, triggering actuation or modulating assistance
accordingly. For instance, reference [62] combines EEG with error-related potentials (ErrP) to reduce
false activations, while [65,66] employ fuzzy logic or CNNs to process EMG for joint torque
estimation. Similar intent-based HRI is extended in references [33,64,70-72,129], where deep learning
models process biosignals in real time to enable low-latency, user-driven responses, including for
users with irregular gait patterns or low signal quality.
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7.3. Fault-Tolerant and Safe Interaction Control

Ensuring safety and robustness is vital in clinical applications. Controllers in references
[16,117,118] are designed for robust tracking even under faults or uncertainties. These use adaptive
neural models or reinforcement learning with stability guarantees (e.g., Lyapunov-based design) to
maintain performance without endangering the user. Similarly, reference [23] combines sliding mode
control (SMC) with EMG intent estimation for asymptotic convergence under bounded disturbance.

7.4. Bio-Inspired Compliance and Physical Alignment

Physical human-robot compatibility is critical for long-term comfort. References [95,130]
introduce bio-inspired solutions, viscoelastic muscle modeling and parasitic force sensors to improve
joint alignment and compliance. Systems in references [35,77,80] further improve this by integrating
passive or compliant actuators to reduce shear forces and encourage naturalistic movement. These
approaches enhance safety and reduce user fatigue, especially during long sessions.

7.5. Personalized Assistance for Special Populations

Pediatric and gait-irregular populations require specialized HRI. References [18,63] employ EEG
and LSTM-based models for intention recognition in children and irregular gait contexts. References
[60,108] develop lightweight, soft-rigid exosuits tailored for pediatric users, emphasizing safety, fit,
and adaptive control. These designs accommodate size, torque constraints, and variability in muscle
control, essential for effective therapy in children or users with spasticity.

7.6. Evaluation-Based and Performance-Aware HRI

Some systems focus on HRI evaluation and user cooperation measurement. References
[24,25,28,30,113,133] propose multi-indicator or biomechanical assessment tools to monitor and adapt
assistance strategies. These range from CoM-targeted coordination in multi-agent systems [60] to
energy-based or performance-indexed torque modulation reference [133]. Similarly, reference [45]
uses unsupervised learning to score biomechanical effectiveness based on user profiles and gait
variability.

7.7. Human-in-the-Loop and Impedance Control Approaches

Human-in-the-loop controllers actively adapt to user inputs. References [84,85] adjust
impedance in real time using user feedback, while references [46,50,54,59,61] refine admittance or
impedance parameters according to physiological responses and joint behavior. These systems
enhance transparency and responsiveness and are particularly effective during co-adaptive learning
or rehabilitation training where patient ability evolves.

7.8. Terrain-Adaptive and Environment-Aware Support

Environment-driven adaptation is tackled in references [31,32,75] where terrain feedback is used
to adjust motion plans or control parameters. Learning-based controllers in references [37,78]
respond to environmental conditions using reinforcement learning or uncertainty-aware models,
enabling the exoskeleton to behave predictively in complex or unstructured terrains.

7.9. Symmetry and Balance-Oriented HRI

Gait symmetry and postural balance are addressed in systems such as references
[57,101,103,125]. Reference [65] combines data-driven and analytical models for symmetric walking
in impaired users, while references [109,116] integrate trunk motion with lower-limb actuation to
enhance global stability. Reference [109] adds a six-DOF self-balancing platform that reacts to
postural changes and mitigates falls in uncooperative or unexpected scenarios.
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7.10. Passive Assistance for Ergonomic Support

Ergonomic passive exoskeletons like those in references [91,92] provide structural support to
minimize muscular effort without relying on sensors or actuation. These are ideal for occupational
tasks like lifting or squatting. Though simple, their mechanical configuration requires careful HRI
design to prevent misalignment and ensure comfort over long durations.

7.11. Adaptive Support Based on Capability

Torque and stiffness adaptive controllers such as those in references [34,36,38] adjust assistance
based on real-time feedback of user capability, especially useful in progressive rehabilitation or post-
stroke therapy. These controllers promote engagement by reducing assistance as user performance
improves.

7.12. Trajectory Learning and Predictive HRI

HRI informed by user-specific motion profiles is explored in references [40,41,45]. These systems
learn from previous movements to predict desired joint trajectories or allocate assistance
probabilistically. Reinforcement learning and encoder-decoder architectures used in references
[47,52,104] are also fall into this category, where systems continuously refine control policies to match
user intent over time.

Across the spectrum of designs, HRI strategies have evolved from fixed torque or position
control to real-time, adaptive, and intention-aware systems. Whether through biosignal decoding
([62,66,70]), terrain and environmental feedback ([75,79]), or co-adaptive impedance tuning ([50,59]),
the common thread is personalization and safety. The field continues to move toward seamless
interaction, where exoskeletons interpret, predict, and respond to human needs with minimal latency
and maximum comfort.

8. Evaluation Methods & Subjects

Evaluation methods and subject testing are essential components in validating the performance,
safety, and real-world applicability of lower limb exoskeletons. These assessments help to determine
how well a system supports functional tasks, adapts to different users, and meets clinical or assistive
objectives. Evaluation approaches range from simulation and phantom-based testing to
comprehensive trials involving healthy, impaired, pediatric, and elderly subjects. Metrics often
include joint tracking accuracy, gait symmetry, energy efficiency, user effort, and clinical outcome
scores. As exoskeleton technologies become more sophisticated and user-specific, rigorous and
standardized evaluation becomes increasingly important. This section reviews the methodologies
and populations used to assess the effectiveness of modern exoskeleton systems. Error! Reference
source not found. figure illustrates key strategies used to assess the performance and real-world
applicability of exoskeletons, including simulation-based analysis, testing with robotic phantoms,
healthy participant trials, and evaluations involving clinical populations.
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Figure 7. Evaluation Methods and Subject Testing Approaches in Lower Limb Exoskeleton Research. This figure
illustrates key strategies used to assess the performance and real-world applicability of exoskeletons, including
simulation-based analysis, testing with robotic phantoms, healthy participant trials, and evaluations involving

clinical populations.

8.1. Simulations and Healthy Subject Testing

A large number of studies begin with simulations or controlled trials involving healthy
participants to validate the mechanical integrity and control responsiveness of exoskeletons.
References [11-14] valuate sit-to-stand and gait functionalities through lab-based simulations and
healthy subject tests, providing foundational validation. Similarly, references [65,66,116] assess
controller performance and torque estimation accuracy using simulation platforms before
transferring to hardware testing. Studies like reference [132] extend this by testing the Exoped® in
three real-world walking conditions level ground, stairs, and obstacle negotiation demonstrating the
importance of environmental diversity even in healthy trials.

8.2. Pathological and Comparative Clinical Evaluations

Moving toward clinical applicability, references like reference [15] conduct comparative
assessments between healthy and hemiplegic patients to understand therapeutic impacts. Others
such as [34,36,38—40] directly involve post-stroke or impaired users in rehabilitation settings,
evaluating outcomes like gait symmetry and torque assistance accuracy. Pediatric-focused studies
like references [18,33] assess gait segmentation and assistive effectiveness in children with cerebral
palsy. Notably, reference [108] conducts therapy validation with multi-point gait feedback tailored
to pediatric crouch gait.

8.3. Terrain-Specific and Outdoor Evaluations

Some evaluations focus on performance in natural environments. References [73,75] validate
terrain classification and adaptive gait using cross-validation and four-subject terrain trials involving
gravel, slopes, and steps. References [76,78,79] emphasize outdoor terrain-adaptiveness using camera
and IMU data, tested under real-world conditions. Similarly, reference [97] assesses postural sway
and stride performance on a balance beam with and without exoskeletal assistance, while reference
[90] tests static force transfer across multiple heights and directions in a chair-type exoskeleton using
20 subjects.

8.4. Biosignal Validation and Dataset-Based Evaluations
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Several studies validate signal-processing models using biosignal datasets collected from
multiple subjects. EMG/sEMG-focused studies presented in references [19,67-70,126] collect multi-
subject datasets for classifier training and validation. Reference [66] achieves 98.9% accuracy with a
Graph Attention Network (GAT) model for locomotion recognition. EEG-based trials such as
references [62,63] use 6-8 subjects to characterize error-related potentials (ErrP) or motor imagery,
while reference [64] reports about 87% accuracy through multi-feature EEG fusion. These
experiments emphasize classifier robustness and inter-subject generalizability.

8.5. Biomechanical Evaluation and Phantom-Based Testing

References like references [45,87,111,113,114] delve into biomechanical and interface
performance using phantoms, marker tracking, and clustering techniques. Reference [114] estimates
soft tissue stiffness in six subjects using fluoroscopy and motion capture, and reference [87] uses a
ballistic gel phantom to validate torque transmission. Meanwhile, reference [45] applies PCA and
clustering to biomechanical data across tasks to produce subject-specific performance scores.

8.6. Validation of Control Accuracy and Tracking

A number of studies use precise metrics to evaluate trajectory tracking, torque output, and gait
phase classification. For example, reference [125] reports joint RMS errors <3.3° and torque RMS <3.7
Nm. Reference [122] evaluates a GCN gait phase classifier in level and incline environments,
achieving 97.43% accuracy. Studies like references [71,72,129] assess CNN and LSTM-based phase
classifiers using noisy biosignals, with accuracies exceeding 90%. Similarly, reference [27] uses digital
twin comparison and confirms angular tracking errors under 0.05 rad, while references [49,55]
explore convergence error in simulation versus experimental setups.

8.7. Fall Recovery, Balance, and Stability Evaluation

Fall prevention and balance are evaluated under constrained or perturbation-based conditions.
Reference [134] tests stair-climbing and trip-avoidance in experimental setups, while references
[57,100,102,107] validate devices across inclines and postural changes. Reference [109] uses
workspace coverage and stability modeling to validate self-balancing design. These tests are crucial
for assessing robustness and safety in dynamic or unexpected conditions.

8.8. Multimodal Functional and Cooperative Testing

Functional assessments using standardized tasks such as Timed Up and Go (TUG), squats, and
6-Minute Walk Tests (6MWT) are used in references [56,61,105,106]. These involve rehabilitation
patients and evaluate real-world task success. Reference [25] uses a weighted multi-indicator
framework across five tasks to quantify human-robot cooperation. Studies like references [24,31,119]
assess coordinated motion through trajectory tracking or virtual modeling.

8.9. Simulation-Only or Early-Stage Studies

Some references rely purely on simulations to test early-stage concepts. References
[29,30,32,86,88,110,135] simulate gait control models, stair negotiation, hydraulic responses, and
disturbance rejection without human subjects. These simulations are instrumental for identifying
theoretical weaknesses and control boundaries before physical trials.

The choice of evaluation method varies with system maturity and application context. Early-
stage systems typically use simulation ([30,110]), while mature platforms progress to healthy trials
([11,13,136]) and eventually to clinical or pathological validation ([15,34,108]). Terrain adaptability
([75,79]), signal classifier robustness ([64,70]), and co-adaptive learning ([25,61]) also guide evaluation
frameworks. Overall, the literature demonstrates a clear progression from simulation to real-world
validation, increasingly leveraging subject-specific and task-diverse methodologies.
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9. Key Innovations/Contributions

Key innovations and contributions in lower limb exoskeleton research reflect the field’s rapid
progression toward more intelligent, adaptable, and user-centric systems. These advancements span
multiple domains, including control algorithms, mechanical design, sensing integration, and user
interaction strategies. Innovations such as reinforcement learning-based controllers, bio-inspired
compliant actuation, and multimodal intent recognition have significantly improved system
performance, safety, and usability. Additionally, novel evaluation frameworks and predictive clinical
outcome models are expanding the role of exoskeletons in personalized rehabilitation. This section
highlights the most impactful technical and conceptual breakthroughs across recent studies,
illustrating how they collectively shape the future of wearable robotic mobility.

9.1. Breakthroughs in Control Architectures and Learning-Based Adaptation

Many references mark major milestones in adaptive and learning-based control. For instance,
reference [11] pioneered the use of Swarm-Based Adaptive Systems (SBAS) with Lyapunov control
in lower-limb exoskeletons, enhancing robustness and real-time adaptability. Reference [15]
innovatively applied the Lagrange mean theorem to linearize nonlinear dynamics within a fuzzy
control framework, reducing computational load. In reference [12], FFT-enabled variable admittance
control allowed real-time gait adaptation to user cadence. Learning-based breakthroughs were
further advanced by reference [117], which converted impedance control into a reinforcement
learning problem via critic networks, and reference [118] introduced a repetitive learning framework
for enhanced disturbance rejection.

Digital twin technology became a control game-changer in references [27,119], where high-
fidelity simulations and DDPG optimizers enabled sub 0.05 rad error in joint tracking.
Complementary to these, concurrent learning controllers in references [36,61] allowed for real-time
adaptation without needing extensive pre-training, paving the way for more generalizable assistance.

9.2. Terrain Awareness, Gait Phase Prediction, and Environment Adaptation

Terrain-aware prediction models represent another wave of innovation. References [73,74]
leveraged CNN:Ss for terrain and foot landing prediction, achieving 97.4% and <6% location deviation,
respectively. Reference [75] used adaptive central pattern generators (A-CPG) to react to real-time
terrain feedback, enabling robust locomotion across surfaces. Gait phase estimation saw advances
through deep learning models such as the GCN in reference [122], which outperformed LSTM and
CNN in phase classification while requiring fewer labeled samples. Similar improvements in gait
segmentation and classification appeared in references [70,72,127], with accuracy rates consistently
exceeding 90%.

9.3. Robust and Fault-Tolerant Control Mechanisms

Fault-tolerance and safety-critical control are essential for clinical and assistive applications. In
reference [16], adaptive neural fault-tolerant control ensured high-performance tracking under
actuator faults. Reference [130] reduced shear-induced skin misalignment through parasitic force
modeling, while reference [123] introduced event-triggered sliding mode control (SMC) with EMG
intention decoding to optimize efficiency. In terms of robustness, references [135,137] offered hybrid
SMC and extended state observer (ESO) methods for smooth, chatter-free torque control. Reference
[55] contributed an improved torque observer that boosted fall recovery prediction accuracy by 15-
20%.

9.4. Passive and Energy-Efficient Mechanical Innovations

Hardware innovation focused heavily on passive and energy-saving designs. Reference [89]
introduced a U-C-R joint configuration with passive gravity compensation, achieving 87.8% load
transfer during stance. Reference [110] applied bond graph modeling for regenerative energy capture
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in sit-to-stand tasks, while reference [111] demonstrated 12.9% energy savings with a parallel spring-
based model. Reference [77] enhanced hip-knee energy coupling through passive biarticular spring-
dampers. Similarly, reference [91] s soft-rigid hybrid exosuit supported 88% of hip load and lowered
metabolic cost by about 13%.

9.5. Pediatric, Pathology-Aware, and Gait-Impaired Innovations

Systems tailored for specific populations introduced thoughtful design constraints. Reference
[17] addressed crouch gait rehabilitation in children using a robust controller resilient to spasticity.
Reference [108] provided precise 95.4% gait timing synchronization in a pediatric exosuit with multi-
point sensing. Reference [18] developed a lightweight LSTM-based gait estimator that achieved 97%
torque tracking despite irregular gait profiles in children. In clinical prediction, reference [115]
achieved >90% accuracy in forecasting rehabilitation outcomes using multi-modal sensor data and
machine learning.

9.6. Human-Robot Cooperation and Biomechanical Evaluation

Multi-indicator evaluation and biomechanical modeling contributed significantly to HRI
understanding. Reference [113] introduced a self-organizing map (SOM) framework to assess gait
quality beyond single-metric evaluation. Reference [25] developed a universal evaluation index
incorporating speed, symmetry, and torque. Reference [45] generated biomechanical performance
scores through PCA and clustering, offering a scalable benchmarking method. Phantom-based
contributions are discussed in references [87,131] helped validate force transmission models under
realistic tissue compliance.

9.7. Reinforcement Learning, HRI Modeling, and Co-Adaptive Interfaces

HRI innovation saw a fusion of biosignal-driven control and intelligent learning. Reference [62]
integrated error-related EEG potentials with BMI to correct 72.6% of false gait starts. Reference [63]
combined deep and shallow neural layers to improve motor imagery decoding by 4%. Reference [64]
used multi-feature EEG fusion to enhance classification by 4-6%. Meanwhile, references [37,47] used
actor-critic and DDPG models, respectively, to achieve dynamic torque modulation in collaborative
gait tasks.

Human-in-the-loop adaptations were exemplified by reference [84] which introduced a barrier-
energy controller for intention-aware impedance tuning. Reference [50] presented the Personalized
Assistance Estimator (PAE) to adjust control effort based on EMG drift. For balance-focused HRI,
references [100,101] modeled foot placement and trunk-limb coordination to improve postural
stability, achieving over 22% improvement in fall recovery.

9.8. Gait Pattern Generation, Symmetry, and Predictive Modeling

Gait generation systems increasingly leverage modular, predictive frameworks. Reference [132]
proposed a multi-block trajectory generator using CoM, CoP, and swing path for real-world
transitions. References [32,41] introduced learning-based generators capable of adjusting to varying
speeds and user trajectories, while reference [125] used GRU + PD models for symmetry correction.
Reference [40] implemented probabilistic assist-as-needed allocation, and reference [41] improved
coordination with RNN-predicted joint trajectories.

9.9. Classification and Segmentation Accuracy

Innovations in motion classification and segmentation bolstered exoskeleton responsiveness.
Reference [67] 's EMG classifier combined autoencoders and TCNs to surpass 99% accuracy.
Reference [68]’s multi-layer TCN was robust to signal degradation down to 10dB SNR. Reference
[82]’s spatial-temporal GCN distinguished walking modes (turning, stepping) with high reliability,
and reference [44] achieved >92% F1 score for clinical gait categorization.
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The references reveal a dynamic interplay of algorithmic, mechanical, and application-specific
innovations. Control methods evolved from model-based adaptation reference [11,15] to co-adaptive
and learning-driven systems ([37,117,119]). Sensing innovations-from CNN-based terrain prediction
[73,79] to GCN-based gait phase classification. Reference [122] -redefine real-time responsiveness.
Pediatric and post-stroke personalization ([17,18,108]) and biomechanical benchmarking ([45,113])
mark progress toward truly user-centered exoskeletons. These contributions collectively advance the
field toward more intelligent, intuitive, and inclusive assistive systems.

10. Future Research Recommendations

As the field of lower limb exoskeletons continues to expand in both technological scope and real-
world relevance, several critical research directions are emerging. These directions are shaped by
persistent limitations, interdisciplinary gaps, and the evolving needs of diverse user populations.
Future work must not only refine the components of exoskeleton systems control, sensing, hardware
but also ensure cohesive integration that supports safe, intuitive, and effective user experiences. The
following recommendations outline strategic priorities for the next generation of research in this
domain.

10.1. Development of Standardized Evaluation Protocols and Benchmarking Tools

A major limitation in current exoskeleton research is the lack of standardized evaluation metrics
and protocols across studies. Variability in testing methods, subject groups, and performance
indicators impedes meaningful comparison and replication. Future research should focus on
establishing community-adopted benchmarking frameworks that incorporate biomechanical,
physiological, and usability metrics. Tools such as open-source datasets, task-specific protocols (e.g.,
sit-to-stand, stair negotiation), and clinically validated scoring systems (e.g.,, FMA-LE, 6MWT) can
facilitate cross-platform assessment and accelerate clinical translation.

10.2. Conducting Long-Term, Real-World Usability and Efficacy Studies

While many studies demonstrate promising results in controlled laboratory environments, there
remains a significant gap in controlled environment evaluation and real-world evaluation. Future
research should prioritize extended-duration trials in home, community, and outdoor settings to
assess device reliability, user satisfaction, and functional independence. These studies should include
a variety of target populations such as stroke survivors, elderly users, or children with cerebral palsy
and track outcomes like mobility progression, adherence, and psychosocial impact over time.

10.3. Advancing Environmental Perception and Predictive Control

Real-world deployment demands systems that can perceive and adapt to unstructured
environments in real time. Future exoskeletons should integrate advanced perception systems such
as stereo vision, depth sensing, LIDAR, and semantic segmentation fused with inertial and pressure
data. Research should focus on predictive control algorithms capable of anticipating changes in
terrain, user state, or intended movement, thereby improving safety and responsiveness. Learning-
based environment modeling and preemptive gait planning will be especially valuable in dynamic
settings like urban walking or uneven terrain.

10.4. Improving the Reliability and Intuitiveness of User Intent Recognition

User intent detection remains one of the most critical yet challenging aspects of exoskeleton
control. Current approaches rely heavily on biosignals such as EMG and EEG, which are often noisy,
user-dependent, and require extensive calibration. Future studies should explore hybrid intent
recognition frameworks that combine physiological signals with behavioral cues, motion data, and
adaptive learning algorithms. The goal is to develop robust, low-latency systems that generalize
across users and tasks without sacrificing precision or comfort.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2023.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 May 2025 d0i:10.20944/preprints202505.2023.v1

24 of 35

10.5. Developing Robust and Efficient Learning-Based Personalization Frameworks

Personalization is essential for maximizing exoskeleton efficacy, particularly in rehabilitation.
However, achieving this in a scalable and data-efficient manner remains a key research challenge.
Future work should investigate reinforcement learning, meta-learning, and co-adaptive systems that
can tailor control policies to individual users with minimal supervision. Transfer learning across
similar users or tasks may also accelerate adaptation in clinical and at-home settings. Additionally,
the integration of digital twins can facilitate virtual pre-training and continuous improvement of
personalized assistance strategies.

10.6. Investigating Human-Robot Co-Adaptation and Long-Term Interaction Dynamics

The future of exoskeletons lies in co-adaptive systems that evolve with the user over time. This
requires a deeper understanding of how humans respond physically and behaviorally to robotic
assistance. Future research should incorporate longitudinal interaction models, including motor
learning, user feedback, and neuroplasticity metrics. By studying co-adaptation dynamics,
developers can design exoskeletons that not only assist but also rehabilitate through responsive and
incremental challenges.

10.7. Exploring Synergies in Hybrid Systems and Multimodal Assistance

Combining multiple assistive technologies such as exosuits, walkers, and smart insoles offers
promising avenues for enhanced functionality. Future systems could dynamically allocate support
based on context, effort, and task complexity, providing hybrid mechanical and sensory
augmentation. Research should explore how to coordinate and optimize these multimodal systems
for seamless cooperation and redundancy, especially in populations with complex impairments.

10.8. Enhancing Trust, Transparency, and Safety Through Explainable Al

As Al-driven control strategies become increasingly prevalent, ensuring transparency and user
trust is paramount. Future research should integrate explainable AI (XAI) into exoskeleton decision-
making pipelines to make assistance strategies interpretable to clinicians, users, and caregivers. This
will be especially important for safety-critical applications and for increasing user confidence in
autonomous adaptations.

10.9. Deepening Focus on Specific User Populations and Contexts

Finally, future studies should aim for more user-centered design. This includes developing
exoskeletons that address the specific needs of underrepresented populations, such as children,
individuals with progressive neurodegenerative diseases, or those with asymmetric impairments.
Cultural, ergonomic, and lifestyle factors should also be considered to improve device adoption and
accessibility globally.

11. Conclusion

The rapid evolution of lower limb exoskeleton technologies over the past decade reflects the
convergence of robotics, biomechanics, control engineering, and human-centered design. This review
has analyzed 128 studies spanning a broad range of applications, including clinical rehabilitation,
terrain-adaptive mobility, pediatric support, industrial load assistance, and daily living
augmentation. The findings reveal a rich and growing landscape of innovation, where exoskeletons
are becoming increasingly intelligent, modular, personalized, and context aware.

A key takeaway is the significant diversification in application focus. Exoskeletons are no longer
limited to rigid, clinical environments but are now being developed for use in natural terrain, home-
based therapy, and dynamic occupational settings. Systems have been tailored for specific
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populations, such as post-stroke patients, children with cerebral palsy, or elderly users
demonstrating the growing emphasis on inclusive and personalized assistance.

Control strategies have progressed from simple impedance and PID controllers to advanced
adaptive frameworks incorporating fuzzy logic, reinforcement learning, and digital twin
optimization. These advances enable more natural and effective human-robot interaction by
responding to real-time changes in gait dynamics, user effort, and environmental inputs. Multi-layer
control architectures, intent recognition models, and co-adaptive algorithms have made exoskeletons
more flexible, safe, and efficient.

Similarly, the development of hardware has shifted toward lightweight, compliant, and energy-
efficient designs. From powered multi-DOF frames to passive and soft exosuits, systems now
prioritize ergonomic integration, portability, and biomechanical alignment. Modular actuation,
variable stiffness actuators, and passive spring-damper structures allow for greater mechanical
transparency and user comfort.

Sensing modalities and perception systems are enabling exoskeletons to become more
responsive and intuitive. The integration of EMG, EEG, IMUs, vision, and force sensors often
processed using deep learning techniques has improved accuracy in gait phase detection, terrain
classification, and user intent estimation. These multimodal systems support predictive control and
safer operation in complex, unstructured environments.

Human-robot interaction has become increasingly personalized and cooperative, with systems
now capable of adjusting assistance levels based on user capability, performance, and real-time
feedback. Pediatric systems, rehabilitation-focused interfaces, and balance-support designs
exemplify how HRI has matured into a central pillar of exoskeleton functionality.

Despite these advancements, the review highlights ongoing challenges that warrant future
research. These include achieving seamless co-adaptation between user and machine, improving
robustness in real-world scenarios, enhancing interpretability of Al-driven systems, and establishing
standardized evaluation metrics. Furthermore, broader clinical validation and user trials are
necessary to support regulatory approval and large-scale adoption.

In summary, the current state of lower limb exoskeleton research showcases substantial
technological maturity and promising real-world potential. Continued interdisciplinary
collaboration will be essential to address remaining gaps and drive the field toward deployable,
scalable, and personalized mobility solutions. The integration of intelligent control, ergonomic
hardware, and intuitive interaction represents the next frontier in wearable robotics. This progress
could greatly improve rehabilitation, help people live more independently, and change the way we
move in everyday life.
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