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Abstract: Researchers are increasingly focused on understanding how the microbiota influences
disease susceptibility and contributes to overall health. Given the vast number of microorganisms
inhabiting our gastrointestinal tract and the extensive surface area they occupy, their impact on our
well-being is undeniable. For example, when we consider the gut microbiota's collective genetic
information—referred to as the microbiome—and view our genetic profile as a blend of both
microbial and human genes, it becomes evident that the microbiota may play a pivotal role in the
development of genetically predisposed diseases. Investigating these complex interactions could
pave the way for new therapeutic strategies, such as targeting dysbiosis, to complement conventional
treatments and enhance patient care. Parkinson's disease (PD) is a multifactorial condition
characterized by various genetic and environmental factors that collectively increase the risk of
developing the disease. There is strong evidence of the involvement of the enteric nervous system
where the pathological processes may start initially and to proceed later to the brain. Moreover, it
has been observed that most of PD patients exhibit qualitative and quantitative alterations in the
composition of the intestinal microbiota, such as dysbiosis and increased proliferation in the small
intestine. Despite this evidence, the available literature largely focuses on information regarding the
fecal microbiota, while knowledge of the microbiota in the upper sections of the intestine, such as the
duodenum, remains limited. Since modulation of the microbiota may have an effect on both motor
and gastrointestinal symptoms, further research exploring how a balanced diet, probiotics, and/or
fecal transplants may have a role in PD therapy is warranted.

Keywords: microbiota; Parkinson’s disease; probiotics; microbiota-gut-brain axis

1. Introduction

The global population is aging but the factors contributing to normal versus pathological aging
are still uncertain. Finding a comprehensive definition that fully explains the concept of aging is
difficult, considering that this is not a single reductionist phenomenon based on a unidirectional
pathway as many try to describe [1].

In recent years, the concept of inflammaging was proposed referring to a basal state of mild
inflammation in the elderly population [2], present systemically without clinically relevant
manifestations for a long time [3]. This is interesting considering that many diseases typical of elderly
share an inflammatory pathogenesis and an asymptomatic stage.
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Furthermore, age is considered the primary risk factor for neurodegenerative diseases like
Parkinson's and Alzheimer’s disease, as shown by their increasing frequency in a world that
continues to age.

Among the many alterations that occur with ageing, one concerns the microbiota [4]. An altered
balance between beneficial and pro-inflammatory bacteria has been observed in aged mice and it is
believed that this may be associated with the degeneration of the enteric nervous system (ENS)
during the aging process [5], suggesting the existence of an interaction between commensal
microorganisms and neurodegenerative diseases.

Dysbiosis may not only arise as part of the physiological aging process, but it may also result
from inflammaging itself, representing an adaptation of the microbiota to the changes induced by
this chronic inflammatory state. Adding an additional layer of complexity, there is growing evidence
that the pathological condition is associated with changes in the gut microbiota due to lifestyle-
related variations. Discriminating the primary cause of dysbiosis among the various hypotheses
proposed in affected patients remains a significant challenge for research.

In the literature, several studies have demonstrated the effectiveness of microbiota-targeted
interventions for various neurological disorders. For instance, treating dysbiosis in patients with
multiple sclerosis can reduce inflammation and reactivate the immune system [6]. Similar research is
also promising in Alzheimer’s disease [7,8].

Considering these findings and the fact that, in recent years, the prevalence of PD is increasing
more rapidly than other neurodegenerative disorders leading to the alarming expression
"Parkinson’s pandemic” [9,10], it becomes particularly relevant to explore potential microbiota-
targeted therapies for this neurological condition.

In this review, we aimed at performing an analysis of the interactions between the gut
microbiota-brain axis and PD, exploring the mechanisms through which these connections may
influence the onset and progression of the disease, particularly in the small intestine. Furthermore,
we provide an updated overview of current scientific knowledge on the modulation of this axis for
therapeutic purposes, highlighting its potential clinical implications and future perspectives in the
treatment of PD.

2. Gut Microbiota

The gut microbiota is the collection of bacteria, archaea, fungi, and viruses that inhabit our
gastrointestinal tract [4]. It is estimated that each person has about 3.8x10' bacterial cells all over the
body, the equivalent of the number of human cells, thus meaning that each of us has a ratio of bacteria
to human cells closer to 1:1 [11].

In the microbiota of a healthy individual, there are mainly strict anaerobes, and up to 50 different
bacterial phyla can be identified, although Bacteroidetes and Firmicutes are mainly dominant [12]. The
functions performed by these microorganisms vary, starting from their contribution to metabolism
or protection against pathogens. Recently, research has focused on the discovery of the role of the gut
microbiota in maintaining health as well as in favoring the development of several diseases including
neurodegenerative conditions [12].

The gut microbiome, on the other hand, is the collective genetic information contained within
the microbiota [13]. The number of genes encoded by the bacteria residing in the gut is approximately
one hundred times that of the host individual, with 3.3 million genes identified compared to the
22,000 genes comprising the entire human genome [14]. These data are even more interesting if
interpreted from the viewpoint of interindividual diversity: while each person shares 99.9% of their
genetic heritage with others, they differ by 80-90% in terms of the microbiome [14]. Therefore,
adopting a different perspective where we consider the human genetic heritage as the sum of human
and microbial traits, we understand the importance of characterizing and deepening aspects related
to the microbiome, which is one of the main objectives of the Human Microbiome Project (HMP) [15].

For conducting the analyses of the microbial composition, the most common approach is to use
the 16S rRNA marker gene. This choice is made not only because this marker is present in all
microorganisms but also because it strikes the right balance between a conserved sequence (which
allows for accurate alignment) and variation that permits phylogenetic analysis [15]. The information

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.0962.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 13 June 2025 d0i:10.20944/preprints202506.0962.v1

3 of 18

derived from this type of analysis provides a valuable starting point but remains inherently limited.
As in other areas of medicine, leveraging omics approaches offers a more comprehensive perspective
of the microbiota, not as a collection of individual components but as a complex ecosystem, where
interactions are examined not only among microorganisms but also between them and the host.
Currently, studies utilizing these technologies are still limited [16,17]; however, as their number
increases, they will provide more detailed insights into metabolic pathways and bioactive
compounds, contributing to a deeper understanding of the microbiota's role.

Given the complexity of the gut microbiome, it is understood that there are still many steps to
take to gain a deeper knowledge, but if research continues in this direction, it is possible to leverage
these enormous diversities to develop personalized and targeted therapies for individual patients
[14].

2.1. The Effects of Drugs on the Microbiota

Awareness of the interactions between drugs and the microbiota is growing in parallel with the
increasing number of studies aimed at exploring these connections.

It is now well established that there is a bidirectional communication between these two
elements. On one hand, drugs can indirectly influence the composition and activity of the microbiota
by modifying microenvironments. A well-known example is the use of proton pump inhibitors
(PPIs), which by increasing the pH of the stomach favors oral microbiota to abnormally travel to the
intestine and causes dysbiosis by disrupting the existing specific commensal microbial GI distribution
[18]. Another mechanism by which drugs may alter the intestinal microflora involves promoting the
growth of specific bacterial species or, conversely, reducing their numbers—an effect observed even
with non-antibiotic drugs that exhibit antimicrobial activity [19]. On the other hand, microorganisms
can also influence drugs, giving rise to the concept of pharmacomicrobiomics [20,21]. The gut
microbiota can modify both the pharmacokinetics and pharmacodynamics of a drug, potentially
altering its efficacy and safety profile, leading to side effects or even adverse reactions. This is
achieved either through direct drug transformation or by modulating metabolism and/or the immune
system [22,23]. Indeed, gut microorganisms can produce enzymes involved in drug
biotransformation reactions, or even generate molecules that compete with the drug for the same
substrates [24]. It is intuitive to assume that antibiotics, which directly target bacterial cells, can
significantly alter the gut microbiota. The overuse of antibiotics has been observed to cause the
development of many disorders associated with intestinal dysbiosis [25]. Since most commercially
available antibiotics have broad-spectrum activity, their effects are not limited to pathogens but also
impact the healthy gut flora [26]. Consequently, resistant bacteria may develop, further disrupting
the microbiota balance [27]. Less obvious is the idea that even non-antibiotic drugs can lead to similar
alterations. However, numerous studies have already demonstrated this association [28,29]. Given
that an increasing number of patients today undergo polypharmacotherapy, a recent interesting
study examined the possible effects of multi-drug therapy and provided evidence for wide changes
in metabolic potential, taxonomy and resistome in relation to commonly used drugs, further
reinforcing the findings [30]. However, as shown in Figure 1, pharmacological treatments are just one
of the many factors that can impact the gut microbiota.
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Figure 1. Numerous factors can influence the composition and functionality of the gut microbiota, leading to
variations that may have significant implications for host health. Among these, diet and medication are the most
common variables, as they affect a large portion of the population and are relatively easy to modify. The
interaction between dietary patterns, drug therapy, and the gut microbiota is an expanding area of scientific
interest, since changes in these domains can profoundly impact microbial balance and, consequently, overall
well-being (Image created with ©BioRender.com and ©Canva 2025).

2.2. The Impact of Diet on the Microbiota

The gut microbiota, thanks to its vast interindividual variability, can be considered our second
fingerprint. Given the great diversity within this ecosystem, there is no single configuration that can
be defined as a "healthy microbiota" [13]. This implies that different approaches may be pursued to
improve it. Well-balanced dietary patterns—such as the Mediterranean diet, a high-fiber diet, or a
balanced plant-based diet—can lead to significant differences in microbial composition, and all are
potentially associated with improved overall well-being [31]. Conversely, an unbalanced diet leads
to various types of dysbiosis, and since the role of the gut microbiota in maintaining health is now
widely recognized, it is evident that poor dietary habits can contribute to a wide range of health
disorders. To assess the health status of our gut bacterial ecosystem, a reliable indicator appears to
be the measurement of alpha diversity [32]. Notably, this measure increases significantly until
adulthood, and studies have shown that many diseases—even very different ones—share the
common feature of reduced alpha diversity [34]. It has been observed that higher consumption of
refined sugars, processed foods, and other key components of the so-called Western diet is associated
with a decrease in gut microbiota diversity [35]. Conversely, adopting the Mediterranean diet as a
lifestyle choice has been shown to enhance both microbial diversity and richness [36].

Many factors influencing the gut microbiota are established early in life, including the mode of
delivery [37] and maternal or early childhood diet [38]. For example, the gut microbiota of children
with a normal or high body mass index (BMI) tends to show greater diversity compared to that of
underweight children [39]. In contrast, in adults, the pattern appears reversed —overweight or obese
individuals, or those with a high BMI, often exhibit reduced alpha diversity [40,41]. These
observations highlight that, in order to effectively modulate the gut microbiota to support overall
health, it is more beneficial to focus on long-term dietary patterns rather than isolated nutrient
interventions, which may be promising but still require further investigation.

3. Microbiota-Gut-Brain Axis

Over the past 70 years, numerous studies have examined the interactions between two complex
systems —the gut and the brain —introducing and gradually reinforcing the concept of the "gut-brain
axis" [42—44]. These early findings have been further supported by physiological experiments,
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advanced experimental techniques [45] and investigations using functional magnetic resonance
imaging (fMRI) [46]. Together, this body of research has revealed a close interconnection between the
central nervous system (CNS) and the ENS. More recently, growing interest in the role of gut
microorganisms has led to a broader perspective, culminating in the concept of the "microbiota—gut-
brain axis"[47]. These three components—the microbiota, the gut, and the brain—communicate
bidirectionally. Microorganisms can influence gut barrier, motility and secretion, which in turn affect
brain function. Conversely, the brain can modulate the gut environment and microbiota composition
through neural, endocrine, and immune pathways [47]. These new findings allow us to identify
various therapeutic applications of the microbiota-gut-brain axis, such as the use of neuromodulators
in the treatment of digestive disorders, both to manage pain and address the inflammatory
component [48]. Some early observations also suggest the possibility of treating brain disorders with
microorganisms. For example, fecal transplantation has been shown to be effective in relieving the
symptoms of autistic patients with digestive problems and dysbiosis, leading to a decrease in both
neurological and gastrointestinal symptoms [49].

An innovative approach is the use of optogenetic technology. Originally developed to
investigate the gut-brain interconnections, it has also been found to enable precise control over gut
microbiota metabolism and the regulation of genetically engineered bacteria for therapeutic
purposes. [50]. Therefore, the microbiota-gut-brain axis represents a promising therapeutic target for
a variety of pathological conditions, including neurological diseases. However, further research is
essential to deepen our understanding, enhance the reliability of findings, and enable their translation
into routine clinical practice.

4. Involvement of the microbiota-gut-brain axis in Parkinson's disease

PD is named after the British physician James Parkinson, who first described its key features in
his 1817 work, An Essay on the Shaking Palsy. PD is a progressive neurodegenerative disorder and one
of the most disabling conditions affecting the CNS [51,52]. The pathological hallmark of PD is the
deposition of aggregated a-synuclein in the neurons, so called Lewy bodies [53] and progressive loss
of striatal dopamine nerve terminals in the caudate and putamen resulting in dopamine
depletion[53,54]. Manifestations of PD include motor symptoms and non-motor symptoms. The signs
that most characterize the pathology are bradykinesia, resting tremor, rigidity and postural
instability. In addition to these, patients are subjected to secondary motor function impairments such
as gait impairments, micrographia, speech difficulties, dysphagia and dystonia [54]. It has been
observed that certain enteric clinical manifestations, leading to bloating, constipation, nausea, or
weight loss, occur in PD patients many years before appearance of motor symptoms [55]. There are
several risk factors that predispose individuals to the onset of PD, many of which share the ability to
influence the gut microbiota, suggesting a possible interaction between them [56]. For the initial
evaluation of the involvement of the gut-brain axis in PD, the contribution of preclinical research has
been fundamental. It has been shown that germ-free mice exhibit dysregulated dopamine activity in
various areas of the brain [57]. Indeed, the gut microbiota can produce various neurotransmitters,
including dopamine [47]. Alterations in the gut microbiota may negatively affect the immune
response, thereby influencing neuroinflammation. Under conditions of dysbiosis, systemic
inflammation can occur, potentially triggering protein aggregation that may propagate to the brain
via the vagus nerve. More broadly, it is understood that the microbiota influences brain activity and
function through the vagus nerve [58].

In PD, accumulations of phosphorylated a-synuclein are initially found in the ENS and may
reach the CNS through the vagus nerve, which itself does not appear to suffer direct damage [59,60].
These observations suggest that the ENS facilitates the spread of the disease [60]. However, further
studies are needed to definitively determine whether this represents a key pathogenetic event in PD.
Based on current evidence, it is believed that such interactions contribute to disease development,
albeit with interindividual variability.

In addition to immune and neural pathways, certain metabolic processes also operate along the
microbiota-gut-brain axis. Gut microorganisms can produce trimethylamine N-oxide (TMAO), a
metabolite associated with neuroinflammation and protein misfolding —hallmarks observed in PD
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patients [58]. Recent studies have investigated the link between TMAO and PD, suggesting that
elevated circulating levels of TMAO may play a role in the pathogenesis and progression of the
disorder. For instance, increased TMAO levels have been shown to exacerbate motor impairments
and promote neuroglial inflammation in MPTP-induced murine models of PD [61]. Other researchers
have shown that reduced plasma concentrations of TMAOQO in patients with early-stage PD are
associated with a more rapid escalation of L-DOPA therapy and an increased risk of progression to
dementia, suggesting a potential prognostic value of this metabolite [62]. Although these results may
appear conflicting, it is important to consider that TMAO is a metabolite whose production depends
on the interaction between diet and the gut microbiota. Its formation involves hepatic oxidation of
trimethylamine (TMA), which is generated by bacterial fermentation of dietary precursors such as
choline. Consequently, such discrepancies among studies may reflect differences in the populations
analyzed, particularly in terms of dietary habits, which in turn influence the composition of the gut
microbiota. Once the pathophysiological role of TMAO in PD will be clarified, it may be of interest
to implement targeted dietary interventions in patients by modulating the intake of foods rich in its
precursors such as red meat, egg yolk, and full-fat dietary products [63] in order to influence systemic
TMADO levels.

If the enteric accumulation of pathological a-synuclein is replicated in experimental models, it
subsequently appears in the brain; conversely, if a-synuclein pathology originates elsewhere, it still
spreads to the enteric nervous system, causing damage there [64]. Finally, it has been observed that
patients with PD often exhibit dysbiosis, with alterations that are both qualitative and quantitative.
Up to 54% of PD patients present with small intestinal bacterial overgrowth (SIBO), which is
associated not only with gastrointestinal symptoms but also with more severe motor fluctuations
[65]. In light of these observations, it appears plausible that the bidirectional interaction between the
gut and the CNS in the pathogenesis of PD is significantly influenced by intestinal dysbiosis, which
leads to alterations in the metabolic activity of the gut microbiota. Within this context, the hypothesis
that modulating the gut-microbiota-brain axis may contribute to improving the condition of PD
patients is gaining increasing relevance.

5. Parkinson’s Therapy and Gut Microbiota

In light of the previously discussed overview of the main pathogenic mechanisms underlying
PD, the rationale behind the three principal therapeutic strategies currently employed in its
management becomes more evident. These include oral pharmacological treatments based on L-
DOPA, dopamine agonists, and monoamine oxidase type B inhibitors (MAO-Bls). Additionally,
catechol-O-methyltransferase (COMT) inhibitors are commonly used in clinical practice in
combination with L-DOPA, aiming to reduce its peripheral metabolism and thereby prolong its
therapeutic efficacy.

Although all of these options are considered valid first-line strategies, L-DOPA is associated
with superior therapeutic efficacy in clinical practice [66] and is therefore generally preferred over
alternative treatments. This predominant use may account for the relatively greater number of
studies investigating the interactions between L-DOPA —a dopamine precursor—and the gut
microbiota. By contrast, as highlighted in our analysis, specific experimental evidence exploring the
interactions between the gut microbiota and dopamine agonists or monoamine oxidase type B
inhibitors (MAO-BIs) remains limited to date.

5.1. Levodopa

One of the most evident pathogenic alterations in PD is the progressive loss of dopaminergic
neurons, which produce the neurotransmitter dopamine, in brain substantia nigra pars compacta
(SNc), leading to reduced dopamine concentrations in the striatum [53]. Consequently, a rational
therapeutic strategy involves the restoration of appropriate levels of dopamine. However, due to its
chemical structure, dopamine is unable to cross the blood-brain barrier, necessitating the use of its
precursor, L-DOPA, which remains the gold standard in PD treatment. Despite its clinical efficacy,
orally administered L-DOPA presents significant limitations in terms of bioavailability. Owing to
extensive first-pass metabolism in the small intestine, particularly the duodenum and proximal
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jejunum —its primary site of absorption —and subsequent peripheral conversion, only approximately
1-5% of the administered dose effectively reaches the CNS [67]. In addition to reduced therapeutic
efficacy, peripheral metabolism of L-DOPA results in the production of metabolites that contribute
to adverse effects [68], For this reason, simply increasing the dosage is not a viable strategy for
overcoming its limited bioavailability.

Interestingly, these biotransformations are mediated by enzymes that, besides being expressed
in enteric mucosa, may be encoded by specific bacterial species within the gut microbiota. For
instance, some studies have demonstrated that Enterococcus faecalis expresses tyrosine
decarboxylase (TDC), an enzyme capable of converting L-DOPA into dopamine [69,70]. Additionally,
the same researchers observed similar activity in Enterococcus faecium [69]. These observations
suggest that a higher abundance of gut bacteria expressing TDC in the small intestine may impair the
absorption of the levodopa/carbidopa combination. This implies the existence of interindividual
variability in drug efficacy, potentially attributable to differences in gut microbiota composition.
Indeed, the study by Van Kessel et al. (2019) reported a positive correlation between the relative
abundance of the bacterial TDC gene and both the daily L-DOPA dose and disease duration [70].
Supporting this finding, a subsequent study involving PD patients showed that moderate responders
to L-DOPA exhibited a higher abundance of the TDC gene and Enterococcus faecalis compared to
good responders [71]. However, these and similar studies share a significant methodological
limitation: the quantification of the TDC gene was performed on fecal samples. It is well established
that L-DOPA absorption primarily occurs in the proximal small intestine [72], and that gut microbiota
composition varies markedly along the gastrointestinal tract. Consequently, analyses based solely on
fecal samples may not accurately reflect microbial activity at the site of drug absorption, thus limiting
the validity of the conclusions drawn from these studies.

Given the evidence that L-DOPA is inactivated by decarboxylase activity, current commercial
formulations co-administer this dopamine precursor with inhibitors such as carbidopa, benserazide,
or methyldopa. These compounds are intended to inhibit peripheral decarboxylation and enhance
central availability. However, none of these inhibitors has demonstrated a sufficiently effective
inhibitory action against the bacterial tyrosine decarboxylase enzyme [70].

Beyond modulating absorption profiles, the gut microbiota also plays a significant role in the
interindividual variability of side effects manifestation. For example, Clostridium sporogenes has
been shown to mediate a specific biotransformation of L-DOPA by producing aromatic
aminotransferase. This enzyme utilizes unabsorbed intestinal L-DOPA as a substrate, leading to the
formation of an inactive deaminated metabolite, which has also been implicated in the onset of
gastrointestinal side effects.[73].

Identifying potential targets of microbiota-mediated alterations in L-DOPA first-pass
metabolism in the small intestine may contribute to the optimization of PD therapy by enhancing L-
DOPA bioavailability and, consequently, improving its therapeutic efficacy while minimizing
adverse effects. At present, the broader adoption of subcutaneous L-DOPA delivery systems offers a
promising strategy to circumvent intestinal metabolic interference [74-76]. Such approaches may
exert beneficial effects not only on gastrointestinal disturbances but also on the management of motor
symptoms.

The main mechanisms and interactions mentioned are summarized in figure 2.
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Figure 2. The image illustrates the interaction between L-DOPA and the gut microbiota, highlighting the main
microbial species involved in the drug's metabolism. Additionally, it distinguishes between the administration
of L-DOPA as monotherapy and its combination with decarboxylase inhibitors, aiming to show how the latter
reduce the premature conversion of L-DOPA into dopamine, potentially improving its systemic bioavailability.
However, the efficacy of peripheral decarboxylase inhibitors exhibits significant interindividual variability,
likely due to their inability to target the bacterial enzyme responsible for L-DOPA metabolism. As a result, some
individuals require higher doses to achieve an adequate therapeutic effect. This representation provides a clear
overview of the role of the gut microbiota in L-DOPA pharmacokinetics, emphasizing the importance of
considering microbe-drug interactions in the management of PD. A deeper understanding of these mechanisms
could pave the way for new therapeutic strategies, including targeted modulation of gut microbiota composition
to enhance treatment efficacy or personalized dosing based on the patient’s microbiome profile; (Image created
with ©BioRender.com and ©Canva 2025).

5.2. Dopamine Agonists

Although current evidence on the interactions between other classes of drugs used in PD
treatment and the gut microbiota remains limited, further investigation in this area is warranted.
Drug-microbiota interactions may significantly influence individual responses to therapy,
potentially leading to variability in clinical outcomes.

Preclinical studies in animal models have suggested that treatment with dopamine agonists may
contribute to reduced intestinal motility and the development of SIBO. According to van Kessel et al.
(2022), these alterations were associated with an increased abundance of bacterial genera such as
Lactobacillus and Bifidobacterium, alongside a reduction in species belonging to the
Lachnospiraceae and Prevotellaceae families [77].

It is worth noting that in the aforementioned study, dopamine agonists were administered in
combination with L-DOPA-carbidopa. Consequently, disentangling the specific effects of each
pharmacological agent on gut microbiota composition and gastrointestinal motility remains an open
question and a critical area for future research.

5.3. COMT inhibitors

As previously mentioned, COMT inhibitors represent one of the most widely used
pharmacological classes in the treatment of PD. However, a major limitation of these agents is their
potential to induce gastrointestinal side effects.
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Over time, several studies have reported dysbiosis in patients undergoing treatment with COMT
inhibitors, including an increased abundance of Enterobacteriaceae [78] and Lactobacilluslacteae [79],
along with a decrease in Bifidobacteria [80] and Lachnospiraceae [79]. Collectively, these alterations
reflect a microbial imbalance marked by an overrepresentation of potentially pathogenic species and
a concomitant depletion of commensal bacteria with anti-inflammatory properties. This dysbiotic
profile may play a key role in the onset of the gastrointestinal side effects commonly associated with
COMT inhibitor therapy.

Notably, the use of entacapone has been found to be inversely associated with fecal levels of
butyrate—one of the most abundant short-chain fatty acids (SCFAs) produced by the gut microbiota
[81]. Given the central role of SCFAs in modulating host physiological functions, including immune
regulation and intestinal barrier integrity, further investigation into the implications of entacapone
on SCFA metabolism is therefore of considerable interest.

6. Potential Strategies of Microbial Intervention in Parkinson's Disease
6.1. Food (Diet, Prebiotics)

Food represents a vast field of exploration in the realm of well-being, offering numerous
opportunities since it is a universal aspect of everyday life. Moreover, making small dietary
adjustments is relatively simple and accessible. Evidence indicates that adherence to a healthy dietary
pattern in individuals with PD is associated with a reduction in circulating lipopolysaccharide (LPS)
levels —pro-inflammatory endotoxins that are typically elevated in affected patients and implicated
in neurodegenerative processes [82,83]. The same dietary habits can also increase the abundance of
SCFA-producing species, benefiting both the intestine by strengthening the epithelial barrier and the
CNS by reducing neuroinflammation [83]. To achieve these effects and support the classification of
diet as a health-promoting intervention in PD, an adequate intake of dietary fiber is essential. This
can be readily attained through the regular consumption of fiber-rich foods such as vegetables, fruits,
legumes, and whole grains.

A strategy consistent with these findings and shown to be beneficial in alleviating symptoms of
PD is the use of prebiotics. These compounds selectively promote the growth and activity of beneficial
host microorganisms—for instance, through the direct administration of sodium butyrate [84]. A
recent clinical study investigated the effects of a four-week high-fiber diet supplemented with the
prebiotic lactulose in individuals with PD. The intervention led to a notable increase in Bifidobacteria,
which was associated with a significant rise in fecal SCFA production, resulting in improvements in
gastrointestinal symptoms, particularly constipation. Furthermore, the study reported an elevation
in neuroprotective metabolites, including S-adenosylmethionine, suggesting additional potential
benefits beyond the gastrointestinal tract [85].

However, research on prebiotics in PD treatment is progressing much more slowly than that on
probiotics and remains limited, despite promising findings on prebiotic-probiotic associations (i.e.
symbiotics), as we will discuss later.

Among the bioactive compounds with potential therapeutic relevance in PD through gut
microbiota modulation, polyphenols are of particular interest. These molecules, characterized by
strong antioxidant properties, are abundant in plant-based foods such as fruits, vegetables, tea, cocoa,
extra virgin olive oil, and a variety of spices, and are well known for their neuroprotective effects.

Experimental studies have demonstrated that specific polyphenols—such as epigallocatechin
gallate, the main catechin found in green tea, and curcumin—can inhibit a-synuclein aggregation
and attenuate neuroinflammatory responses [86]. In addition to their direct antioxidant and anti-
inflammatory actions, polyphenols also influence the gut microbiota by modulating its composition
and metabolic activity. Notably, regular dietary intake of flavonoids has been associated with an
increased production of SCFAs by intestinal microbes, further supporting their role in maintaining
gut and brain health. [87].

Dietary supplements also fall within this category. In particular, supplementation with omega-
3 fatty acids (omega-3s) has been shown to exert beneficial effects on the CNS by supporting blood—
brain barrier integrity, slowing the progression of neurodegeneration, and inhibiting
neuroinflammatory processes. Moreover, omega-3s are believed to protect dopaminergic
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neurotransmission through mechanisms involving the inhibition of NF-kB signaling pathways
[88,89]. The gut microbiota may also contribute to these effects by adopting a more anti-inflammatory
profile in response to omega-3 supplementation; however, this hypothesis requires further validation
through targeted research efforts [90]. A critical analysis of the current literature reveals a scientific
gap between the extensive body of preclinical and observational studies and the limited availability
of evidence-based dietary guidelines specifically aimed at modulating the development or
progression of PD. Interventional studies in this area remain in the early stages and are still
insufficient to support formal clinical recommendations.

6.2. Probiotics

Probiotics are defined by the World Health Organization as "the moderate intake of live
microorganisms with beneficial effects on the host’s health" [91].

As soon as the scientific community began focusing on the benefits of microbiota modulation
through probiotics in PD therapy, promising results quickly emerged regarding the gastrointestinal
symptoms of the disease, particularly constipation one of the most frequently occurring signs. The
beneficial effects of probiotics are thought to arise from the introduction of specific bacterial strains
or modulation of microbial abundance, which in turn leads to the production of metabolites capable
of reinforcing the integrity of the intestinal mucosa [92] and inhibiting harmful bacteria [93]. Further
evidence supporting the existence and functional relevance of the microbiota—gut-brain axis in PD
comes from studies demonstrating that probiotics can exert effects not only at the gastrointestinal
level but also within the CNS. In particular, certain probiotic strains have been shown to modulate
neurotransmitter activity and exert neuroprotective effects on dopaminergic neurons [94]. Notably, a
2023 meta-analysis reported significant improvements in scores on the Unified Parkinson’s Disease
Rating Scale (UPDRS) Part III, indicating that probiotic supplementation may also contribute to
attenuating motor symptom severity and, more broadly, influence disease progression [95].

In order to explore the wide range of potential probiotic-based therapies for patients with PD, it
is essential to introduce a distinction between the use of single-strain probiotics and multi-strain
probiotic formulations. Several preclinical studies have reported promising outcomes with single-
strain probiotic interventions. In 2022, Lactobacillus plantarum DP189 was administered for two weeks
in an MPTP-induced murine model of PD. This intervention resulted in a significant reduction in
neuroinflammation and a decrease in the accumulation of a-synuclein in the brain [96]. The same
animal model was used to investigate the effects of Lacticaseibacillus rhammnosus E9. Oral
administration of this strain produced beneficial outcomes at both the central and intestinal sites,
including increased cerebral dopamine levels, attenuation of intestinal barrier damage, and
restoration of microbial balance [97].

The efficacy of Bifidobacterium breve has been demonstrated in two different strains tested in PD
animal models. The first, strain CCFM1067, exerted neuroprotective effects by suppressing glial
activation, while also modulating the gut microbiota by reducing the abundance of pathogenic
bacteria such as Escherichia and promoting beneficial genera such as Akkermansia, leading to an
increase in SCFAs with anti-inflammatory properties [98]. Similarly, the B. breve Bifll strain was
shown to improve motor function and intestinal permeability [99]. In a clinical context, a study
involving 82 patients with PD evaluated the effects of the single-strain probiotic B. lactis Probio-M8
administered for 12 weeks in combination with standard therapy. The results indicated an
improvement in both motor and non-motor symptoms (such as sleep quality and bowel regularity),
alongside favorable modifications in gut microbiota composition [100].

When considering the administration of multi-strain formulations, a noteworthy clinical study
investigated the oral supplementation of a capsule containing L. acidophilus, L. fermentum, L. reuteri,
and B. bifidum over a three-month period. This intervention led to a reduction in the total score of the
UPDRS, indicating a clinical improvement in patients. Moreover, a decrease in systemic
inflammatory markers such as high-sensitivity C-reactive protein was observed [101].

Despite these promising findings, certain limitations of probiotic use must be considered. Most
probiotic products available on the market fail to reach their target site the intestine because they are
inactivated by stomach acid. To overcome this physical barrier, a more advanced product, Symprove
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K-1803, has been developed. This orally administered probiotic can deliver live bacteria to the
intestinal tract [102]. While probiotics appear to be effective in reducing both motor and non-motor
symptoms, further studies are necessary to determine the most appropriate therapeutic interventions
and evaluate their long-term effects.

6.3. Synbiotics

The combination of prebiotics and probiotics in a single formulation is referred to as a synbiotic.
This dual approach appears to be more effective in supporting gut microbiota balance than the use
of either component alone [103]. Current research primarily focuses on evaluating whether synbiotics
administration can improve gastrointestinal symptoms associated with CNS disorders, including PD
[104,105]. In a murine model of PD, an experimental synbiotic composed of polymannuronate (PM)
and Lactobacillus rhamnosus GG demonstrated promising results following a five-week treatment
regimen. The intervention preserved dopaminergic neurons and improved motor function, as
evidenced by behavioral test outcomes. Notably, the synbiotic exerted greater neuroprotective effects
than either component administered individually [106].

The positive outcomes of these studies encourage further exploration of the use of these
therapies in such populations.

6.4. Antibiotics

The overarching goal of gut microbiota modulation is to restore a healthy balance between
beneficial and potentially harmful bacterial species. Within this framework, an alternative strategy to
those previously discussed involves targeting and reducing specific pathogenic taxa.

As noted earlier, PD patients tend to exhibit excessive bacterial proliferation, particularly in the
small intestine known as SIBO [107]. Broad-spectrum antibiotics such as rifaximin and tetracyclines
have demonstrated efficacy in eradicating SIBO [108,109]. Importantly, SIBO may affect the
metabolism of L-DOPA by promoting the overgrowth of gut bacteria expressing the TDC gene, which
reduces L-DOPA bioavailability [110]. This raises the hypothesis that eliminating SIBO may enhance
L-DOPA absorption and, in turn, improve motor symptoms. However, a clinical study investigating
rifaximin for SIBO treatment did not report significant changes in L-DOPA pharmacokinetics [65].

Beyond their antimicrobial activity, certain antibiotics have also shown neuroprotective
properties. In a preclinical study, Zhou and colleagues (2021) demonstrated that ceftriaxone exerted
anti-inflammatory effects in a murine model of PD, highlighting its potential CNS benefits [111].
Clinically, a combination therapy involving a sodium phosphate enema followed by oral rifaximin
and polyethylene glycol was associated with reduced motor fluctuations and a significant
improvement in dyskinesia severity and duration in PD patients [112]. An interesting strategy,
currently under evaluation (Trial ID: 2024-510629-24-00) is to reduce the gut bacteria that
decarboxylate L-DOPA by administering antibiotics, such as rifaximin, for potentially increasing the
bioavailability and effectiveness of L-DOPA in PD patients. While these findings are promising, it
remains unclear whether the observed benefits stem from microbiota modulation or other
mechanisms of action.

Should future studies confirm these effects, careful evaluation of the risk-benefit profile of long-
term antibiotic use in this patient population will be essential before considering their
implementation as a viable therapeutic strategy.

7. Potential Developments

Even though studies are still in their early stages, the microbiota is already identified as a
potential disease biomarker [10].

The presence of analytical microbiota markers that yield objective results would significantly
enhance clinical diagnosis even in the prodromal phase of PD which is often characterized by
symptoms such as constipation and nausea symptoms which suggest early involvement of the
gastrointestinal tract [113]. Early intervention is crucial for ensuring effective, long-lasting treatments,
without waiting for the emergence of motor symptoms, which indicate advanced disease stages.
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Should these hypotheses be validated, the microbiota could emerge as a therapeutic target (e.g.,
through the use of probiotics, prebiotics, or fecal transplantation) for symptomatic treatment, disease
progression modulation, or adjunctive therapies aimed at mitigating the side effects of CNS-targeted
drugs [60].

As reviewed herein, various therapeutic strategies based on microbiota modulation have
demonstrated promising potential in PD. However, to establish their efficacy with greater confidence,
further clinical studies involving patient cohorts and analysis of small intestine microbiota-mediated
influence are necessary. It is also clear that, following an initial phase of exploratory research, there
is an urgent need to transition from observational to experimental studies. This shift is essential for
drawing more robust conclusions and more precisely defining the impact of these interventions.
Ultimately, enhancing our understanding of the microbiome — specifically, the genetic information
encoded within the microbiota of small intestine — holds significant promise for advancing our
knowledge of PD, where genetic factors play a central role in both predisposition and disease
progression.

We anticipate that this represents the beginning of a broader journey. As scientific evidence
continues to accumulate, it is conceivable that the research community will recognize a fundamental
shift in perspectives regarding neurodegenerative diseases. The gut-brain axis is not merely an
intriguing area of investigation; it is a pivotal element, especially in PD. Here, gastrointestinal
alterations are not secondary manifestations but integral components of the pathological process,
with profound implications for both disease progression and clinical management.
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