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Article 

Parametric Identifiability of Dynamic Systems Based 

on Adaptive Systems 

Nikolay Karabutov 

MIREA—Russian Technological University; nik.karabutov@gmail.com 

Abstract. Many publications have been devoted to the problem of parametric identifiability (PI). The 

major focus is on a priori identifiability. The parametric identifiability problem using experimental 

data (the so‐called practical identifiability (PID)) is less studied. This is a parametric identification 

task. PI has not been studied using current data (in adaptive systems). We propose an approach to 

estimating PI based on the application of Lyapunov functions. The role of the excitation constancy is 

shown. Conditions of local parametric identifiability (LPI) for a class of linear dynamical systems are 

got based on current experimental data. The case is considered when both the state vector and the 

input‐output set are measured. Estimates are obtained for the parametric residual. Case of limiting 

LPI on the set of current data is studied. Influence of initial conditions on PI is analysed. The case of 

m ‐parametric identifiability is studied. Approach to estimating the PI of linear dynamical systems 

and systems with periodic coefficients based on the application of Lyapunov exponents is proposed. 

The LPI of decentralised systems is analysed. Examples are given. 

Keywords:  parametric  identifiability;  periodic  dynamical  system;  lyapunov  function;  adaptive 

algorithm; decentralized system; nonlinearity; quadratic condition; Lyapunov exponent 

 

1. Introduction 

Estimation of the model parameters is possible if the conditions guaranteeing their receipt are 

met. Many publications have been devoted to the issues of identifiability (see, for example, [1‐10]). 

Much attention is paid to the analysis of a priori identifiability (AI) (in the literature, it is structural 

identifiability). AI conditions often have an algebraic form. To obtain them, such approaches are used 

as differential algebra [11], time series analysis [12] and some others [4,13‐15]. The observability role 

[16] in identifiability problems is noted. 

Some authors study the identifiability problem based on experimental data (see review [4]). This 

is practical  identifiability. PID  is based on obtaining a mathematical model and verifying  it. This 

approach gives good results for systems with a known structure. In [17], low‐order models are used 

to  solve  the problem  of unidentifiable parameters. This  approach  is  based  on performing many 

adjustments. 

Statistical hypotheses and criteria are used  to solve  the problem of estimating unidentifiable 

parameters. The probability profile parameter  is used  in  [18]. Markov chains based on  the Monte 

Carlo method [19] are used to estimate unidentifiable parameters. The apply of these approaches is 

associated with certain difficulties. 

The Fisher information matrix is used to solve of PID problems [20]. Other statistical approaches 

are discussed in [4]. The result of solving the PID problem is the model with an accurate forecast. If 

this is not true, then the structural identification problem is solved. A more complete analysis of the 

state of the PID problem is given in the review [4]. Note that the PID problem interpretation does not 

accurately reflect the problem. This is the parametric identification problem with decision‐making 

elements. 
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As  follows  from  the presented  analysis,  the  emphasis  is on  the  study AI problem. Practical 

identifiability has not been  sufficiently  investigated. The  focus  is on synthesizing a mathematical 

model using various methods and evaluating its predictive properties. Various statistics, methods, 

and criteria are used to decision‐making about the PRI. If the parametric identifiability condition is 

not met, various multistep procedures are proposed. These approaches are not always effective. For 

a more complex class of systems (multidimensional, decentralized, and interconnected), this problem 

requires further investigation. PI issues were not considered in adaptive systems. 

In this paper, we study the PI problem for a class of adaptive models. The approach is proposed 

for obtaining conditions of local PI based on a class of adaptive algorithms. Conditions for limiting 

LPI are obtained. We show the dependence of adaptive identification system (ASI) properties on the 

initial conditions. A generalization of the results is given for the case of  m ‐parametric identifiability. 

The linear system case with periodic parameters is considered. The PI problem solution is reduced to 

the application of Lyapunov exponents. 

2. Problem Statement 

Consider the system 

 

,

,T

X AX Bu

y C X

 



&

  (1) 

where  u ,  y   are  input  and  output,  nX    is  the  state  vector,   1 0 .... 0
T

C  , 

 0 0 .... 0
T

B b ,  n nA  . 

Set of experimental data 

    0( ) ( ), ( ), , kt u t y t t t t    .  (2) 

Assumption 1.  A   is Hurwitz matrix. 

Problem. Evaluate the system (1) parametric identifiability using the of the set  ( )t   analysis. 

3. Approach to PI Estimation 

The representation is valid for the system (1) in space  ( , )u y :   

  Ty A P& ,    (4) 

where  2nA   is  the vector of parameters,  2nP   is the generalised  input vector, which  is 

got based on the processing  ( , )u y   by a system of auxiliary filters. 

To evaluate elements of vector  A , introduce the model based on the set   ( ), ( )t u t y t   for each 

t : 

  ˆ垐 ( ) Ty k y y A P   & ,  (5) 

where  2ˆ nA   is the vector of model parameters,  0k    is the parameter setting the properties 

of the model.   

Equation for identification error (prediction)  ˆe y y  : 

  Te e A P   & ,  (6) 
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where  ˆA A A   . 

Let the elements of the vector  ip P   by constantly excited (CE): 

  2: ( )
ip i i ip t  VX      0 ,t t T  ,  (7) 

where  0, 0i i   . 

Notation:   

(i)  ( )X Af   is a class of systems (1); 

(ii)  ( )y Af   is a congruent representation (4) on the set   0( ), ( ),t u u y t t t  ; 

(iii)  i   is the frequency spectrum of the element  ip P ; 

(iv) 
ii pp VX   or  ip VX ; 

(v)  ip VX   if the CE condition is not held true. 

(vi) the variable is  ( )u t VX   if it has a non‐degenerate frequency spectrum for all  t . 
Definition 1. The system (1) of class  ( )X Af   is locally parametrically identifiable on the set  t  

if the condition   

 
 2 * *

0: &n
A A tA A A A t t t         

,  (8) 

is fulfilled for its representation (4) in class  ( )y Af , where  *A   is some reference vector of system 

parameters (4),  0A  . 

We see if there is an identification algorithm vector  Â   of the system (5) on   0( ) ,tt t t     for 

some    0,iA t , then starting from the moment  *t , the condition (8) will be fulfilled for the estimates 

of vector  A . 

Consider the Lyapunov function  2( ) 0.5 ( )eV t e t .   

Theorem 1. Let 1) assumption 1 holds, i.e. the matrix in (1)  A[ ; 2) the system (1) represents 

how (4) to set  ( )t ; 3) the identification system is described by equation (6); 4)  uuVX ;  yyVX ,

PPVX .  Then  the  system  (4)  is  locally  parametrically  identifiable  in  the  region  A   if  0A   

follows from  0TA P    and the condition is satisfied: 

 
2

2 2
( ) ( )e

P

k
A t V t


  ,  (9) 

where  ( ) ( ) , 0T
P n PP t P t I   , 

n n
nI    is the unit matrix. 

The proof of Theorem 1 is given in Appendix A. 

Remark 1. The vector  ( )X t reconstruction  in  (1), based on  (4) and  schemes proposed  in  the 

literature, gives estimates that do not correspond to components  ( )X t . This follows directly from 

(4). Therefore, adaptive control laws based on the use of vector  P   elements are applied in control 

systems. Estimation  2x y &,  2x X   can be obtained directly from (4). The remaining components 

( )X t   are determined based on the symbolic differentiation operation. 

Corollary from Theorem 1. If the adaptive algorithm   

  A eP  &
,  (10) 

is used to evaluate the vector  A in (4), then the local parametric identifiability of the system (1) 

follows from the estimation 

0

0( ) ( ) 2 ( )
t

e

t

V t V t k V d   
, 

where  ( ) ( ) ( )eV t V t V t  ,  1( ) 0.5 TV t A A
     ,  0T      is a diagonal matrix. 
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Let vector  ( )P t   elements be measurable  for each  t . Here,  the system  (4)  is detectable. Then 

observability, detectability and recoverability of the system (1) follow from properties of system (4). 

The proof corollary from Theorem 1 is given in Appendix B. 

Consider the Lyapunov (LF) function  0.5 T
EV Е RЕ , where  0TR R  . 

Structures of classes  ( )X Af   and  ( )y Af   are congruent, so the following statement is valid for 

system (1). 

Theorem 2. Let 1) the conditions of Theorem 1 are fulfilled for the system (4) of class ( )y Af ; 2) classes 

( )X Af   and ( )y Af   are  congruent;  3)  uuVX ,  ( ) XX t VX .  Then  system  (1)  is  locally  parametrically 

identifiable on class  ( )X Af   if   

 
2 2 24X u EA B V      ,     

where 
T TЕ QЕ Е RЕ ,  0  , 

TRK K R Q   ,  0TQ Q  ,   tr TA A A    ,  tr   is  the 

matrix trace. 

The proof of Theorem 2 is given in Appendix C. 

Consider the adaptive model   

  ˆ垐 ,X KE AX Bu   &
  (11) 

and apply the integral algorithm class   

 
ˆ T

A

B

A ERX

B REu

 

  

&

&
  (12) 

to tuning of matrix ˆ ˆ,A B .   

The identification system is described by the equation: 

  ,E KE AX Bu    &
    (13) 

where  ˆE X X  ,  ˆ nX    is model (11) state vector,  K [   is the matrix of dimension  n n

,  ˆ ˆ,A B   are tuning matrices. 

Corollary  from  Theorem  2.  If  the  conditions  of  Theorem  2  are  fulfilled,  and  the  class  of 

algorithms (12) is used to tuning the model (11) parameters, then the local parametric identifiability 

of the system (1) follows from the estimation 

  0

0( ) ( ) 2 ( )
t

W W E

t

V t V t V d    
.  (14) 

The proof corollary from Theorem 1 is given in Appendix D. 

We  see  that  the  local  PI  depends  on  the  choice  of  initial  conditions,  and  fulfilment  of  the 

requirements for variables and system input. 

Remark 2. Presented results differ from the results [4] based on the application of AI methods. 

If the decision is made based on experimental data, then various statistics [4] are used. In this paper, 

we apply the approach to the PI analysis based on the current data analysis. This approach has not 

been used in PI tasks. 

If conditions of Theorem 2 are fulfilled, then the class of algorithms (12) will be called locally 

identifying. 

In the future, for the convenience of reference, the adaptive algorithm (10) will be related to class 
y

IAT , and the law (12) to class  X
IAT . 
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Definition 2. A system (1) of class  ( )X Af   is extremely locally parametrically identifiable (ELPI) 

on the set  t   if the condition 

 
 2 * *

0: lim , (0) &n
A tt

A A A A t t t 


           % % %
, (15) 

is satisfied for its representation (4) in class  ( )y Af , where  *A   is some reference vector of system 

(5) parameters,  (0)   is an area of zero. 

Here,  the vector  A   identifiability  is understood as  the  limit proximity  to  *A . Under certain 

conditions, the global PI of the vector  A   follows from (15). 

Consider again the system (6) and LF  1( ) ( ) ( )TV t A t A t
     . 

Theorem 3. Let the conditions of Theorem 1 be fulfilled and (i) there is a Lyapunov function  V  

admitting  an  infinitesimal  upper  limit;  (ii)  there  is  0    such  that  the  condition 

 2 2Te A P A e      is satisfied for sufficiently large  t   in some area of zero; (iii)  PPVX    with 

parameters ,P P  ; (iv) The inequality 

 

3 4

4 3P P e
P

V V a V  
    &

,    (16) 

  is valid  for  the  trajectories of  the adaptive  system  (6) and  (10), where     is  the minimum 

eigenvalue of the matrix   . Then the system (6), (10) is locally parametrically identifiable on the set 

t  with estimating  ( ) ( )V t S t    if the functional condition   

 
2

16

9
P e

P

a V V
  




,  (17) 

is satisfied, where: 

   0

0

( ) ( )
0( ) ( )

t
t t t

e

t

S t e S t e V d       
        (18) 

is the upper solution of the comparison system eS S V    &  for (16) if    0 0S t V t  , 

4

3 P
P

a 


 , 0.75 P   . 

The proof of Theorem 3 is given in Appendix E. 

We see that the PI in the class of algorithms (10) or (12) depends on the initial conditions and 

properties of the  information set. LPI  is guaranteed for systems of class  ( )X Af   and  ( )y Af   with 

asymptotic stability by error. However, estimate elements of the matrices will belong to the domain 

A . This is a typical state of adaptive identification systems based on the class of algorithms (10), 

(12). 

Remark 3. The region  A   can be compressed to  A%   and  limiting conditions for LPI can be 

got  if conditions  (9) or  (17)  for ASI are  fulfilled.  In  real‐world conditions, ASI guarantees almost 

extremely local parametric identifiability. 

4. On ELPI 

The ELPI  fulfilment guarantees  the  transition  to global PI  (GPI). For  static procedures  (least 

squares method, maximum likelihood method), ELPI is ensured by the properties of the information 
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matrix. For methods based on the class  IAT , properties of the information matrix are not directly 

applicable, because the processes are complex in ASI. 

With GPI, we understand the condition fulfilment: 

   2 * *
0: 0 &n

A tA A A A t t t         
)

.  (19) 

The proposed interpretation of GPI as belonging the parameters of model (6) to the set  A
)
  is 

linked to the absolute stability of an adaptive system. 

Global parametric identifiability follows from Theorem 4 for systems of class  ( )y Af . 

Theorem 4. Let: 1) the conditions of Theorems 1 and 3 are fulfilled; 2) The system of inequalities is valid 

for processes in the system (6), (10) 

 

{

1

4 3

3 4 G

G

P
e e

P P
WP

A

k
V Vk

VV a

 

  







                 

&

&

1 4 4 4 4 2 4 4 4 43

,  (20) 

where ,    are the maximum and minimum eigenvalues of the matrix  . Then (a) the 

system (4) is globally parametrically identifiable on the class ( )y Af , (b) the system (6), (10) 

is exponentially stable with the estimate: 

   0

0( ) ( )GA t t
G GW t e S t ,    (21) 

if  

 
22 29 16P Pk a    ,  (22) 

where 2
GS   is the state vector of the comparison system ( ) ( )G G GS t A S t& ,    0 0G GS t W t . 

The proof of Theorem 4 is given in Appendix F. 

From Theorem 4, we obtain GPI on the set of initial conditions and ELPI. Since the systems are 

congruent, this condition is also valid for systems (1) of class  ( )X Af . To substantiate this statement, 

apply the approach [22]. 

5. About  m ‐Parametric Identifiability 

Let the CE condition not be fulfilled. The problem of identifiability, and identification, must be 

solved. Consider the approach to solving this problem using the example of the class  ( )y Af   system. 
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Let  the system and  the model have  the  form  (4) and  (5). We assume  that  uVX . The  term 
TA P   in (6) is represented as 

TT T T T T TA P A P A A P P          
% % , 

where ( ) , ( )
P

P t P t VX VX%
% ; T TA A  

%  is the representation A  corresponding to the 

vector ( )P t . 

Transform the equation for error (6) to the form 

   ,Te e A P A P    %& ,  (23) 

where TA P  ,  ,A P   is uncertainty caused by non-fulfilment of the condition 

uVX , ˆA A A  % % , ˆ ˆA A%  is the part of the vector Â  evaluated on the class y
IAT , 2ˆ mA%

, m n . 

Let   ,A P   , where  0  .   

Definition  3. A  system  of  class   y Af   is  m ‐locally  parametrically  identifiable  on  the  set 

 0( ), ( ) ,t P t u t t t  VX%   if the condition   

   2 * *
0: , 0 &m

A m m tA A A A t t t           
(% % % % .  (24) 

is satisfied with its representation (4) in class ( )y Af . 

Theorem 5. Let (i) the system (1) be stable; (ii) the Lyapunov  function  10.5
A

V A A
    %

% %%   admits an 

infinitesimal limit, where  0T

A A
   % %   is the diagonal matrix; (iii)  ( )u t VX . Then the system (4) is locally 

parametrically identifiable in the domain  A
(
  if   

 
2 20.5 0.5 2P m eA k V   %   (25) 

and all trajectories of the system (4) belong the area  

   2 1 1 2
0( ) , : ( ) ( ) 2 0.5n

v v m ee t A V t V t k V    
          ,    (26) 
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where v eV V V  %,  min 1,2  . 

The proof of Theorem 5 is given in Appendix G. 

From Theorem 5, we see that the PI domain depends on the CE fulfilment of the information set 

of the system. If the CE condition is not fulfilled, the parameter  m   increases because of the effect of 

parametric uncertainty   . Here, estimate (14) is more realistic and, under certain conditions, ELPI 

is possible with estimate (18). 

Remark  4.  In biological  systems,  structural  identifiability  issues are  considered. Most  times, 

lineal  systems  with  numerous  parameters  are  studied.  Various  algorithms  are  proposed  and 

identifiability conditions are investigated to reduce the number of estimated parameters. In ASI, a 

multiplicative  approach  is  used  to  identify  a  system with  various  parameters  [23]. Here,  PI  is 

understood  as  parametric  identifiability  in  some  parametric  domain   G A ,  depending  on  the 

vector of multiplicative parameters (MPV). As a rule, MPV estimates belong to a certain limited area, 

which  is  formed  based  on  of  a  priori  information  and  analysis  of  the  information  set.  This 

identifiability applies to systems satisfying specified quality requirements. 

6. Lyapunov Exponents in PI Problem 

6.1. Stationary System of Class   
X Af  

Lyapunov characteristic exponents (LE) are the characteristic of a dynamical system. LE is an 

indirect PI estimate of the system. This approach to PI has not been considered in the literature. The 

LE application has its own peculiarities in the proposed paradigm of PI. In particular, it is necessary 

to consider the issue of detectability, recoverability and identifiability of LE based on the information 

set of the system. Identifiability is understood as the detectability of Lyapunov exponents. Known 

approaches allow us to estimate only the maximum (largest) LE [24]. A more promising approach is 

based on the analysis of geometric frameworks (GF) reflecting the change  in LE [24]. Issues of LE 

detectability based on GF analysis are presented  in  [24]. Therefore,  they are not considered here. 

Detectability is the important issue for evaluating LE. 

In  [24],  the  criteria  for  _c ‐detectability  of  Lyapunov  exponents  are  presented.  _c ‐

detectability and recoverability we understood as the ability to the LE estimate.  _c ‐detectability 

imposes certain requirements on experimental data. The approach allows us to obtain the full range 

LE. 

Let  1m n    , where     is the number of non‐recoverable LE. 

Definition 4. The system (1) is called  m ‐detectable with a   ‐non‐recoverability level if the    

lineal (LE) has an insignificant level. 

As follows from definition 4, that if the system of class   
X Af   is  m ‐detectable with a level of 

 ‐non‐recoverability,  then  this  is  a  sufficient  condition  for  m ‐parametric  identifiability  of  the 

system. The CE requirement plays an  important role, as  it guarantees the S‐synchronizability and 

structural identifiability of the nonlinear system. 
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Remark 5. The definition  4 provides  sufficient  conditions  for  evaluating PI  systems of  class 

 
X Af . This issue requires further study. Note that LE (for the classes   

X Af   under consideration, 

the Lyapunov exponents are the eigenvalues of the matrix) depend on system parameters. 

Analysing nonstationary  (periodic) systems  is more difficult, since  it  is difficult to  isolate the 

parametric space here. 

Using  LE  translates  the  PI  problem  into  the  space  of  Lyapunov  exponent  [25]  for  periodic 

systems (PS). 

6.2. PS for Class   
X Af  

Consider the system (1) with the matrix  ( )A t . For convenience, the system will be denoted by 

perS . 

Assumptions. 

A1.  ( )A t   is a bounded continuous Frobenius matrix 

  ( ) AA t  ,  (27) 

where 0A  ,   is matrix norm. 

A2.  ( )A t   is almost periodic, i.e. a subsequence can be selected from any sequence 

  ( ) ( )iA t A t     (28) 

converging uniformly along the entire axis to some almost periodic matrix ( )A t . 

 

A3.  ( )A t   is the Hurwitz matrix for almost all  0t   

Let   
0

( ), 1, ,iA
t i n t t  e is a spectrum of LE  i    1,i n . 

Definition 5. The function  ( )i t   is almost periodic in the Bohr sense [26] or the UY ‐ function 

[25],  if  such  a  positive  number  ( )l l    exists,  that  any  segment   ,a a l   contains  at  least  one 

number  fT , for which it is hold 

  ( ) ( )ff x T f x        and   0,t  .  (29) 

If  ( )i t   is  a  UY ‐function,  then  it  is   ‐almost  periodic  [26], where  ,    are  positive 
numbers. 

Let the order of the system  perS   be known. Apply the geometric structure 
,sk SK   to decide on 

the spectrum  A
e   [26]. Here   ˆ( , )s gk t y t  ,   垐 ln ( )g g gy y t   ,  ˆ ( )gy t   is an evaluation of the 

general solution of the system (1). 

,sk SK   described by the function  ( ) :sk s sf t k k , where  sk .  ( )sk t   is  UY ‐function,  ( )skf t  

contains areas  skW , where a drastic change is taking place. 

Theorem 6. If the system  perS   is stable and recoverable, and the function  ( )skf t   contains at the interval 
*

0 , gt t        *t t   at least regions  skW , then the system  perS   has an order  m   and is  _c ‐identifiable 

(_c ‐detectable). 

In terms of Theorem 6,  g   is a time interval in which an estimate of the general solution of the 

system  perS   are obtained. 
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It follows from Theorem 6 that the system  perS   is identifiable on the set   
,

i
sk 

SK . As shown in 

[25], the location of local minima on 
,

i
sk 

SK   coincides with regions  skW   of the structure 
,sk SK . This 

result allows us to obtain the set  LEM   containing estimates LE of the system perS . Cardinal  LEM  may 

not match the LE number of the system.  LEM   characterizes the set of system  perS   lineals. 

The detectability (identifiability) of the periodic system (1) with the matrix  ( )A t   follows from 

[25]. 

Theorem  7.  Let  1)  assumptions  A1‐A3  are  fulfilled  for  the  system;  2)  the  system  perS is 

recoverable; 3)  ( ) uu t VX ;  4)  set   , ( )i
sk t   elements are  UY ‐functions; 5)  the  structure 

,
i
sk 

SK  

contains at least  v   regions of  v
skW , which to local minima correspond to the structure

,
i
sk 

SK . Then 

the set  LEM   is  _c ‐detectable or fully detectable. 

Corollary  from Theorem  7.  If  structures 
,

i
sk 

SL   contain  only  m   of  regions v
skW , which  to  local 

minima correspond on 
,

i
sk 

SK , then the system perS   is  m ‐detectable with an   ‐non‐recoverable level. 

Remark  6.  Eigenvalues  ( )i t   of  the matrix  ( )A t   are  periodic  functions  of  time.  Therefore, 

lineals  ( )i tL   and  1( )i tL   corresponding to these functions may overlap. This can generate an infinite 

range of LE. Determine the acceptable range for  LEM   and the number that determines the mobility 

of  the  largest  Lyapunov  exponent.  The  set  LEM   upper  bound  is  determined  by  the  allowable 

mobility limit of the largest LE  1 . The estimate is fair for  1   [25]: 

  ,

1
1 sup i

sk 
  

,  (30) 

where 
,

1
i
sk 

   is  the  interval  of  the  change  of  the  ith  indicator  ,
i
sk  .  The  region  LEM   lower 

boundary is bounded by the smallest LE  n   [25]. 

Definition 6. The system  perS   of class   X Af  with matrix  ( )A t   satisfying assumptions A1–

A3 is locally  LEM ‐identifiable on the set   0( ), ( ),t X t u t t t % , if spectrum 
A

e   of LE belonging to 

the class UY ‐function exists such that 

     * ** **
0( ) : , , & ( )i LE i i iA

A t t t t t t t              e M ,  1,i n ,   (31) 

where 
0 
. 

The problem of assessing the LE adequacy has its own specifics. Let  ˆˆ ,g gy y
f

&
is phase portrait of 

the system  perS . 

Definition 7  [25]. Estimates of Lyapunov  exponents  i   are   ‐adequate  in  the     space,  if 
areas of their definition coincide with   ‐almost‐periodicity regions of structure  ˆˆ ,g gy y&

S . 

Theorem 8 [25]. Let:(i) the  perS ‐system is stable and recoverable; (ii) the set LEM   is  _c ‐detectable; 

(iii) definition regions  j
slW   on the

,
i
sk 

SL   structure coincide with ‐almost‐periodicity regions for the G5 

structure ˆˆ ,g gy y&
S .  Then  estimates  of  elements  for  the  set  LEM   are  ‐adequate  to  the  regions   ‐almost 

periodicity  ˆˆ ,g gy y&
S . 

Remark 8. We have considered only one approach to assessing the PI of periodic systems. The 

PS  can be  considered  as  a  system with  an  interval parametric domain  and  identifiability  can be 

estimated within the specified limits. Here, the approaches described above in sections 4 and 5 are 

applied. 

So, the problem of estimating LPI is reduced to a more adequate task of estimating LE for these 

systems. The PI conditions in a special space are got and the methods of its estimation are given. The 
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adequacy concept of LE estimates is introduced and the area for the LE location is highlighted. We 

have shown the existence of a LE set for the system  perS . 

7. About LPI for Decentralized Systems 

Consider a decentralized system (DS) 

 
 

1,

,
:

,

m

i i i i i ij j i i
j j ii

i i i

X A X B u A X F X
S

Y С X

 


   


 

&
  (32) 

where  in
iX  ,  iq

iY    are state and output vectors of  the  iS ‐subsystem,  iu    is control, 

1,i m , 
1

m

i
i

n n


 .  The  elements  of  the  matrices  , , i ji i i
n nn n n

i i ijA B A   　 ?   are  unknown; 

i iq n
iC  . The matrix  ijA   reflects the mutual influence of the subsystem  jS .    in

i iF X    considers 

the nonlinear state of subsystem 2 iS , and the  iA [   is the Hurwitz matrix (stable). 

Assumption 2.   i iF X   belongs to the class 

 

     1 2 1 2, ( ) : ( ) , (0) 0n
F F X X F X X F       a ¡   (33) 

and satisfies the quadratic condition 

       2 1 0
T

X F X F X X    ,  (34) 

where 1 20, 0   . 
The information set of measurements for the  iS ‐subsystem has the form 

    , 0( ), ( ), ( ), ,o i i i j kX t u t X t t t t    .   

Mathematical model 

     
1,

ˆˆ垐 垐
m

i i i i i i i i ij j i i
j j i

X K X X A X B u A X F X
 

     &
,  (35) 

where  iK [   is a matrix with known  elements;  ˆ ,iA   ˆ
iB ,  ˆ

ijA   are  tuning matrices,  îF   is  a 

priori defined nonlinear vector function.   

Problem. Obtain PI estimates for the system (32) based on the set  ,o i   analysis. 

DS (32) is nonlinear, so the condition CE (7) is represented as: 

     
uu u u u Su

  
       

             XV ,   

Where  ( )
iu    is  the set of  frequencies  for  iu ;  S ( )   is  the set of acceptable  frequencies of 

input  iu , ensuring S‐synchronizability of the system.   

Get the equation for the error  ˆ
i i iE X X  : 
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   
1,

M

i i i i i i i ij j i i
j j i

E K E A X B u A X F X
 

       & ,  (37) 

where ˆˆ 垐, , ,i i i i i i ij ij ij i i iA A A B B B A A A F F F             are parametric residuals. 

Consider the system (37) and LF    0.5 T
i i i i iV E E R E , where  0T

i iR R    is a positive symmetric 

matrix.   

Let   tr T
i i iA A A    ,   tr T

ij ij ijA A A      are the norm of matrixes  iA ,  ijA ,  tr( )   is the 

trace of the matrix. 

The following modification of Theorem 1 [27] is true. 

Theorem 9. Let: 1) the matrix  iA [ ; 2)  ,( )
XX ii

iX t  VX , ,( )
XX jj

jX t  cX   α ,α( )
uu ii

iu t cX ; 3) 

   1 2,i i FF X  a   and   

    2

ii i XF X  ,  2
i i

T
i i X FF F      ,     

where 0,          0
iX iX             , 22    , 1 2   , 1 2    , 

0
iF  . Then subsystem (32) is locally parametrically identifiable on the set ,o i  if 

 
22 2

1,

2 2
i i j i i i

m

X i u i X ij X F Q i
j j i

A B A V     
 

 
        

 
 ,  (38) 

where 
i iQ Q ik   ,  0i    is the minimum eigenvalue of the matrix  iQ ;  0ik  , 

T
i i i i iK R K R Q   , 

0T
i iQ Q  . 

The proof of Theorem 9 is given in Appendix H. 

Corollary 1 of Theorem 9. Let conditions of Theorem 9 be fulfilled. Then the nonlinearity  i iF X  

is locally structurally identifiable in the parametric sector 

 
   1 2 1 2, : ( )i

i

n
X i i i i iX X F X X      f 

,   

if   

 
2

0.25i i i iF V z  
,  (39) 

where  0iz  . 

The proof corollary 1 from Theorem 9 is given in Appendix I. 

Consider the system (37) and class  iS
IAT   algorithms to tune its parameters: 

 

,

,

,

i

ij

i

T
i A i i i

T
ij j i jA

T
i B i i i

A E R X

A E R X

B E R u

  

  

  

&

&

&
 (40) 

where 
iA , 

ijA
 , 

iB   are diagonal matrices of the corresponding dimensions.   

Lyapunov function for analysis of system (37) and (4):  ,iS i iW V V  : 
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   1 1 1

,
1,

0.5tr 0.5 tr 0.5
i ij i

m
T T T

i i A i ij A ij i B i
j j i

V A A A A B B  


 

           
,    0.5 T

i i i i iV E E R E .   

Corollary 2 of Theorem 9. Let 1)  conditions of Theorem 9 be  fulfilled; 2)  the  class  iS
IAT   of 

algorithms  is  used  to  tuning  parameters  of  the  model  (35).  Then  the  system  (32)  is  locally 

parametrically identifiable if 

 

 
0

0 2 ( )
t

i i i i

t

t t V d       %

,  (41) 

where  2
i ii X F    ,   1 min 1,2 , 0

i ii R i R         ;  ,
i iR R    are  The  minimum  and 

maximum eigenvalues of the matrix  iR , and the estimate is held 

 

 
0

0 0( ) ( ) 2 ( )
i i

t

S S i i i i

t

W t W t V d t t        %

. (42) 

The proof corollary 2 from Theorem 9 is given in Appendix J. 

As follows from Theorem 9, system (32) is LPI and structurally identifiable with nonlinearity 

 i iF X   in the parametric sector   1 2,
iX  f   on the set of initial conditions and  ,o i . 

If we perform nonlinearity factorization (see, for example, [27]) 

   ,1 ,2
垐 ?( ) ,T
i i i i i iF X F X N N % ,  (43) 

where  ,1

,1
ˆ in

iN    is a priori  estimation of known parameters,  ,2

,2
ˆ in

iN    is vector of  tuning 

parameters,  the  structure   ,1,i i iF X N% is  formed  a priori  considering  the  known  vector  ,1iN ,  and 

apply the algorithm 

 
 ,2 ,1

垐 ,
i

T
i F i i i i iN F R E X N & %

,  (44) 

where 
iF  is a diagonal matrix with positive diagonal elements, then we obtain the 

conditions for global parametric identifiability for DS on the class of algorithms iS
IAT  and 

(44). They are based on the modernization of results [27]. 

8. Examples 

1. Consider an engine control system with the Bouc–Wen hysteresis 

  ( , , ) ( ),mx cx F x z t f t  && &   (45) 

  ( , , ) ( ) (1 ) ( )F x z t kx t kdz t    ,  (46) 

   1 ( )
n n

z d ax x z sign z x z   & & && ,      (47) 

where 0m   is mass, 0c   is damp, ( , , )F x z t  is the recovering force, 0d  , 0n  , 0k  , 

(0,1)  , ( )f t  is exciting force, , ,a    are some numbers. Set of experimental data 

 ( ), ( ),o f t y t t   . Vector of parameters  , , , , , , ,
T

A m c a k n   . 

To estimate PI on the set  o , equation (45) is transformed to the form [28]   

    1 2 3x z fx a x a p a p bp   & ,  (48) 
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  , , , 0,x x f f z zp p x p p f p p z            & & &    

where  1 ( ) /a c m m   , 
  2 /a k c m m     

, 
  3 1 /a k m  

. 

Model for system identification (48) 

    1 2 3
ˆ垐 垐 ?x x z fx k x x a x a p a p bp      & ,  (49)   

where 0xk  ; ˆ ( )ia t , 1,2,3i  , ˆ( )b t  are adjustable model parameters. Let ˆe x x  . From (48) 

and (49), we obtain the equation for the identification error: 

  1 2 3x x z fe k e a x a p a p bp         & ,    (50) 

where 1 1 1ˆ ( )a a t a   , 2 2 2 3 3 3
ˆ垐( ) , ( ) , ( )a a t a a a t a b b t b         .  

The variable  z   is not measured. Apply the model to estimate  z : 

    1 2
ˆ垐 垐z x z x fx k x x a x a p bp     & .  (51) 

and introduce a residual ˆz zx x   . Let z  is current estimate z . Then we get the model to 

evaluate z  

    ˆ ˆ垐 垐 ?( )
n n

z zz k z x x z sign z x z       & % % %& & &   (52) 

where 0zk  ; ̂ , ̂  are estimates of hysteresis parameters (47);  ( ) ( )x x t x t   %& ,   is 

the integration step. 
Introduce a residual  ˆ zz   , satisfying equations 

   垐 ?
n n

zk x x z sign z x z               % %& & & & ,  (53) 

     垐
n n

x z sign z x z sign z   %& & ,  ˆ
n n

x z x z   %& & ,   

where ˆ ˆ, ,x x x              %& & & , ˆ     , ˆ     . Present (49) as: 

  ˆ1 2 3
ˆ垐 垐 ?( )x x z fx k x x a x a p a p bp      & ,  (54) 

  垐 ˆz zp p z  & ,  (55) 

and (50) is written as: 

  ˆ1 2 3x x z fe k e a x a p a p bp         & .  (56) 

Evaluate the identification quality using the Lyapunov function.  2( ) 0.5 ( )V t t  . Get adaptive 

algorithms from  0V & : 
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 垐 ?,

n n
x z sign z x z           & % %&& &

,  (57) 

where  0, 0      are parameters ensuring the stability of algorithms (57). 

Consider functionals: 

   0.52 2 2 2
1 2 3( ) ( ) ( ) ( ) ( )aD t a t a t a t b t         ,   0.52 2

, ( ) ( ) ( )D t t t        .  (58) 

Figures 1 and 2 represent PI evaluations of the system (45) – (47). The ASI has two loops: the 

main  one  (variable  e )  and  the  auxiliary  one  (variable   ).  Figure  1  shows  the  structure  , ae D]  

described by the function  :| |a ae D   , and Figure 2 presents the structure 
,, D  ]   described by 

the function  , ,:| | D       . 

0 5 10 15 20
0

1

2

3

4

5

6

7



aD

, ae Dc]

t

e
 

Figure 1. Structure  , ae D]  
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0,125

0,250

0,375

0,500

,, D  c],D 
t


 

Figure 2. Structure 
,, D  ]  

Presented structures confirm the fulfilment of the Theorem 1 conditions, since trajectories of the 

system for sufficiently large  t   get into the region   . 

2. Consider the system, the phase portrait of which is shown in Figure 3. The set of experimental 

data  ( )t   is known. Input  ( ) 5 2sin(0.2 )u t t  . Figure 3 shows the presence of oscillations  in the 

system, the frequency of which differs from the frequency of the input. Therefore, the system is the 

system with periodic coefficients. 

To determine LE, we apply the approach [25] and obtain estimates of the general solution and 

its derivative. 
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  ;ˆ (0.75;0.( ) 1 ) (0 )7 0.22
T

qy t u t u t  & ,    0.394; 0.05 7ˆ ( ) 19;0,0 8 ( ) ( )
T

qy t u t u t  & & .  (59) 

The coefficients of determination for these models are equal 0.99. Next, we determine estimates 

of the free movement for the system. The evaluation of order for the system follows from Figure 4. 
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-0,4

-0,2

0,0
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Figure 3. Phase portrait 
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Figure 4. LE set 
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Figure 5. Estimate of   ‐adequacy of LE   

It follows from  1
,sk 

SK   that the system has a third order. From  1
,sk 

SK   and  2
,sk 

SK , we get the 

set LE (Figure 4). 

The upper estimate for  m   is  2.04 . Mobility limit for  1   is –0.8.   ‐adequacy confirmation 

of LE estimates is shown in Figure 5. The eigenvalues of the state matrix of the system  perS   are: 

 
 2.04; 1.842; 1.77; 1.167; 0.878LE      M

.  
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So, we see that the set  LEM   is  _c ‐detectable, and the system has the third order. Since the 

elements of the set  LEM   are recoverable and detectable, the system  perS   is LPI. 

9. Conclusions 

The  problem  of  estimating  parametric  identifiability  based  on  current  experimental  data  is 

considered. Methods of the priori identifiability based on the analysis of the information matrix are 

not  applicable  in  this  case. We  consider  the  approach  based  on  the  application  of  the  second 

Lyapunov method  to  the  PI  study.  LPI  conditions  are  got  based  on  the  adaptive  identification 

application to the linear dynamical system. We analyse data on state vector and current information 

on input and output in the problem PI. Conditions and estimates have been obtained that guarantee 

PI and LPI. 

The  m ‐parametric identifiability case is considered when the condition of constant excitation is 

not  fulfilled. PI  estimates  are got  for decentralised nonlinear  systems  and  systems with periodic 

parameters. We show that Lyapunov exponents should be used to PI analyses of the system with 

periodic parameters. 

Modelling examples are presented that confirm the efficiency of the proposed approach. 

Appendix A 

Proof of Theorem 1. Consider the LF  2( ) 0.5 ( )eV t e t . For  eV&, we get: 

  2 T
eV ke e A P   &   (A.1) 

or, applying condition 4 of Theorem 1, 

 
21

2e PV kV A
k
   & ,  (A.2) 

where T
P PPP   , 0, 0P P   . 

Let  ( )u t   and  ( )y t   correspond to Fourier series with multiple frequencies  ,u y  , where  y  

depends on the spectrum  ( )u t . System (1) is a frequency filter and  A[ . Therefore, the frequency 

spectra of the elements of the vector  P   will vary. Therefore, sets 
ip , where  ip P , will not have 

common areas. Then  0A    follows from the identifiability condition  0TA P  . 

So,  condition  4  is  necessary  for  the  local  identifiability  of  the  system  (6). As  condition  4  is 

fulfilled, for the limited trajectories (identifiability) of the system (4), it is necessary that: 

 
2

2 2
( ) ( )A t V t




  .    (A.3) 

Appendix B 

Proof of Corollary 1 from Theorem 1. For  eV&, we get: 

 
2 2 1 ,

2 2 ,

T T
e

e e

V ke e A P ke A A

V kV V





         

  

&&

& &
  (B.1) 
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where 20.5eV e , 10.5 TV A A
     . Let eV V V  . Present (B.1) as: 

 
2 2 ,

0.5 ,

e e

e

V kV V

V kV

  

 

& &

&
  (B.2) 

where from 

 
0

0( ) ( ) 2 ( )
t

e

t

V t V t k V d      (B.3) 

or 0( ) ( )V t V t . 

Appendix C 

Proof of Theorem 2. The derivative LF  0.5 T
EV Е RЕ   has the form   

   T T
EV Е QЕ Е R AX Bu     &   (C.1) 

or 

   T T
EV Е RЕ Е R AX Bu     & ,  (C.2) 

where T TЕ QЕ Е RЕ , 0  , 0TQ Q   is a positive definite matrix satisfying the equation 
TRK K R Q   , 0TR R  . Then (C.2) 

     2 212 0.5T T
E E X uV Е RЕ Е R AX Bu V A B               & ,  (C.3) 

where  2
tr TA A A    , 2 TB B B    , ( ) ( )T

X n X nI X t X t I  ux , nI  is the identity matrix. 

From (C.3), we obtain the condition of LPI: 

 
2 2 24X u EA B V      .  (C.4) 

Appendix D 

Proof of Corollary 1 from Theorem 2. Consider LF  ,W E A BV V V  , where: 

   1 1
, 0.5tr 0.5T T

A B A BV A A B B         ,     

,A B   are diagonal matrices with positive diagonal elements.  

If we consider (12), then (C.1) is written as: 
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Е QЕ A R A B R B 

      

         
&

&

& &
1 4 4 4 4 4 2 4 4 4 4 4 3

  (D.1) 

Obtain 

 
0

02 ( ) ( ) 2 ( )
t

W E W W E

t

V V V t V t V d        & .  (D.2) 

Appendix E 

Proof of Theorem 3. Apply algorithm (10) and represent the derivative  1TV A A
       as: 

  TV e A P   & .  (E.1) 

Let  0    exist such that in some region 0 the condition   2 2Te A P A e      is satisfied. 

Then (E.1) 

 
 2 2 2 2 2 22 2

2 2

3 1

4 4
3

2 .
4

V A P e A P A P e

A P e A P

   

 

           

    

&

  (E.2) 

As  PPVX   и 
2

( )P PP t   , then 

 
23

2
4 P PV A e a A      & .  (E.3) 

Apply the inequality [29] 

  2 2 21

2 2

a
az bz z b

a
     ,  0, 0, 0a b z   .   

Then   

 
2 23 2

8 3P P
P

V A a e 
    & .  (E.4) 

As 
2

2A V   , where     is the minimum eigenvalue of the matrix   . Then: 

 
3 4

4 3P P e
P

V V a V  
    & .  (E.5) 
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It follows from (E.5) that PI is guaranteed on a certain set    0Â t   and on the set  t   if 

 
2

16

9
P e

P

V a V
 



    

and fair evaluation ( ) ( )V t S t  , where: 

   0

0

( ) ( )
0

4
( ) ( )

3

t
t t t

P e
P t

S t e S t a e V d    


   
       

0.75 P   , ( )S t  is the upper solution of the comparison system eS S V   &  for ( )V t  

(E.5), if    0 0S t V t  , 4

3 P
P

a 


 . 

Appendix F 

Proof of Theorem 4. From the proofs of the corollary of Theorem 1 and Theorem 3, we obtain 

 

21
,

2
3 4

.
4 3

e P

P P e
P

V kV A
k

V V a V



  
  

   

  

&

&
  (F.1) 

As 
2 1 1 2T TA A A A A V  

            , then (F.1) 

 

{

1

4 3

3 4 G

G

P
e e

P P
WP

A

k
V Vk

VV a

 

  







                 

&

&

1 4 4 4 4 2 4 4 4 43

.  (F.2) 

The matrix  GA   is an  M ‐matrix  [30]  if conditions   ( 1) 0i
i GA     are  fulfilled  for  the major 

minors. Obtain 

  0k  , 
22 29 16P Pk a    .  (F.3) 

If the conditions (F.3) are fulfilled, then the adaptive system (6), (10) is exponentially stable (ES). 

As  follows  from  the  ES,  estimates  of  the  vector  A   in  (4)  are  extremely  locally  parametrically 

identifiable under given initial conditions. The estimate (21) is got using the approach described in 

the proof of Theorem 3. 

Appendix G 
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Proof of Theorem 5. Consider (23) and represent the derivative of LF  eV   as: 

  2 T
eV ke e A P e    %&   (G.1) 

or 

 

2

22 2 2

1
,

2

0.5 0.5 ,

e P

e P

V kV A
k

V ke e A 



 

   

     

&

%&
  (G.2) 

where 1 0mk k   , 2
( ) ,P P PP t     . From (G.2), we obtain the condition m -local PI: 

 
2 20.5 0.5 2P m eA k V   % .  (G.3) 

Represent (G.1) in the form 

   2 2 1T T T
eV ke e A P A P ke A A e           % % %& % .  (G.4) 

Then (G.4) 

  2 22 2 0.5 0.5e eV kV V e      && % .  (G.5) 

Transform (G.5) 

 
{

2

1

2

2 2 0.5 ,

2 2 0.5 .

e m e

k

e m e

V k V V

V V k V

 

 

 



 

   

   

&& %

&& %
  (G.6) 

Let  min 1,2  , v eV V V  % and 1mk k  . Then: 

  1 1 22 0.5v m eV k V      & .  (G.7) 

The estimate for  vV   (see (26)) follows from (G.7).  

Appendix H 

Proof of Theorem 9.  iV&  has the form: 

   
1,

m
T T

i i i i i i i i i i ij j i i
j j i

V E Q E E R A X B u A X F X
 

 
         

 
&   (H.1) 

or 
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
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  (H.2) 

where 0i   is the minimum eigenvalue of the matrix iQ . 

Apply the Cauchy‐Bunyakovsky‐Schwarz inequality and Tituʹs lemma to the last term in (H.2) 

and get   

 

 

 

2

1,

2 2 22 2 2 2

1,

0.5

2 .

m

i i i i ij j i i
j j i

m

i i i i ij j i i
j j i

A X B u A X F X

A X B u A X F X

 

 

 
       
 
 

        
 




  (H.3) 

Consider condition 1) of Theorems 9 and  iV&  write as: 

   2 22 2

1,

2
i i j

m

i i i X i u i X ij i i
j j i

V V A B A F X   
 

 
          

 
& ,  (H.4) 

where i i ik   . Apply Lemmas 1, 2 [26] and get for 2

iF  

 
2

2
i i

T
i i i X FF F F        ,  (H.5) 

where 22    , 1 2    , 1 2   , 0
iF  . 

Then (H.4) 

 
22 2

1,

2 2
i i j i i

m

i i i X i u i X ij X F
j j i

V V A B A     
 

 
          

 
& .  (H.6) 

If state variables are CE and the condition (38) is fulfilled, then the system (32) is the LPI on the 

set  ,o i . 

Appendix I 

Proof  of Corollary 1  from Theorem  9. As  follows  from Theorem 9, DS  is  locally parametrically 

identifiable if the condition (38) is satisfied. Apply Lemmas 1, 2 [26] to the last terms in (H.6) and get: 

    2
2 2 2

i i i i i iX F X F F i FF            ,  (I.1) 

Therefore, 

   2

,0.25 0.5
ii i i F i i j jF V           ,  (I.2) 
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where   22 2

,
1, 1,

min , min , min
j

m m

i i i j ij j Xi j j
j j i j j i

A B A    
   

        . 

As , ij j F i i      , then 2
0.25i i i iF V z   .  

Appendix J 

Proof of Corollary 2 from Theorem 9. Represent iV& (H.2) as: 
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Let  2T T
i i i i i i i i iE Q E E R E V   , where  0i  . Then: 
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  (J.2) 

where ,
i iR R   are minimum and maximum eigenvalues of the matrix iR .  

The estimate (H.5) is fair for iF . Therefore, (J.2) is represented as: 
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2 2 ,
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where 2
i ii X F    . Let  1 min 1,2 , 0

i ii R i R         . Transform (J.3): 

  2 ,
iS i i i i iW V     &   (J.4) 

Then 
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