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Parametric Identifiability of Dynamic Systems Based
on Adaptive Systems

Nikolay Karabutov

MIREA —Russian Technological University; nik.karabutov@gmail.com

Abstract. Many publications have been devoted to the problem of parametric identifiability (PI). The
major focus is on a priori identifiability. The parametric identifiability problem using experimental
data (the so-called practical identifiability (PID)) is less studied. This is a parametric identification
task. PI has not been studied using current data (in adaptive systems). We propose an approach to
estimating PI based on the application of Lyapunov functions. The role of the excitation constancy is
shown. Conditions of local parametric identifiability (LPI) for a class of linear dynamical systems are
got based on current experimental data. The case is considered when both the state vector and the
input-output set are measured. Estimates are obtained for the parametric residual. Case of limiting
LPI on the set of current data is studied. Influence of initial conditions on PI is analysed. The case of
m -parametric identifiability is studied. Approach to estimating the PI of linear dynamical systems
and systems with periodic coefficients based on the application of Lyapunov exponents is proposed.

The LPI of decentralised systems is analysed. Examples are given.

Keywords: parametric identifiability; periodic dynamical system; lyapunov function; adaptive
algorithm; decentralized system; nonlinearity; quadratic condition; Lyapunov exponent

1. Introduction

Estimation of the model parameters is possible if the conditions guaranteeing their receipt are
met. Many publications have been devoted to the issues of identifiability (see, for example, [1-10]).
Much attention is paid to the analysis of a priori identifiability (AI) (in the literature, it is structural
identifiability). Al conditions often have an algebraic form. To obtain them, such approaches are used
as differential algebra [11], time series analysis [12] and some others [4,13-15]. The observability role
[16] in identifiability problems is noted.

Some authors study the identifiability problem based on experimental data (see review [4]). This
is practical identifiability. PID is based on obtaining a mathematical model and verifying it. This
approach gives good results for systems with a known structure. In [17], low-order models are used
to solve the problem of unidentifiable parameters. This approach is based on performing many
adjustments.

Statistical hypotheses and criteria are used to solve the problem of estimating unidentifiable
parameters. The probability profile parameter is used in [18]. Markov chains based on the Monte
Carlo method [19] are used to estimate unidentifiable parameters. The apply of these approaches is
associated with certain difficulties.

The Fisher information matrix is used to solve of PID problems [20]. Other statistical approaches
are discussed in [4]. The result of solving the PID problem is the model with an accurate forecast. If
this is not true, then the structural identification problem is solved. A more complete analysis of the
state of the PID problem is given in the review [4]. Note that the PID problem interpretation does not
accurately reflect the problem. This is the parametric identification problem with decision-making
elements.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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As follows from the presented analysis, the emphasis is on the study Al problem. Practical
identifiability has not been sufficiently investigated. The focus is on synthesizing a mathematical
model using various methods and evaluating its predictive properties. Various statistics, methods,
and criteria are used to decision-making about the PRI. If the parametric identifiability condition is
not met, various multistep procedures are proposed. These approaches are not always effective. For
a more complex class of systems (multidimensional, decentralized, and interconnected), this problem
requires further investigation. PI issues were not considered in adaptive systems.

In this paper, we study the PI problem for a class of adaptive models. The approach is proposed
for obtaining conditions of local PI based on a class of adaptive algorithms. Conditions for limiting
LPI are obtained. We show the dependence of adaptive identification system (ASI) properties on the
initial conditions. A generalization of the results is given for the case of m-parametric identifiability.
The linear system case with periodic parameters is considered. The PI problem solution is reduced to
the application of Lyapunov exponents.

2. Problem Statement

Consider the system

X=4X + Bu,

=C"X,
Y 6)

where ueR, yeR are input and output, X eR" is the state vector, C=[10...0] ,
B=[00..05], 4eR™.

Set of experimental data
1)) ={u(r). y(0). 1€ T=[1y.1,]} o)

Assumption1. 4 is Hurwitz matrix.
Problem. Evaluate the system (1) parametric identifiability using the of the set I(z) analysis.

3. Approach to PI Estimation

The representation is valid for the system (1) in space (u,y):
g=A"P, 4)

where 4eR” is the vector of parameters, PeR” is the generalised input vector, which is
got based on the processing (u,y) by a system of auxiliary filters.

To evaluate elements of vector 4, introduce the model based on the set I, = {u(¢), y(r)} foreach

fk(y-y+ AP, 6)

where AeR* isthe vector of model parameters, & >0 is the parameter setting the properties
of the model.
Equation for identification error (prediction) e=Jp—y:

& —ke+AA"P, 6)
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where AMd=A-4
Let the elements of the vector p, € P by constantly excited (CE):

vtelt,,T], @)

>0, a >
where % 0, a, 0.

Notation:
(i) @ (A) is a class of systems (1);
(ii) #(4) is a congruent representation (4) on the set I, ={u(u), y(t), 1> 1,};
(iii) Q, is the frequency spectrum of the element p, € P;
(iv) p,e@#, or p ece;
(v) p, ¢ @7z if the CE condition is not held true.
(vi) the variable is u(¢) € @% if it has a non-degenerate frequency spectrum for all € J.
Definition 1. The system (1) of class % (4) is locally parametrically identifiable on the set T,
if the condition
A4eG, ={4eR™:

A-A|<e, Vizt >1, &1} .

is fulfilled for its representation (4) in class /(4), where A" is some reference vector of system
parameters (4), ¢,2>0.

We see if there is an identification algorithm vector A4 of the system (5) on I(f) = {L,, t>1,} for
some {A(to,i )} , then starting from the moment ¢*, the condition (8) will be fulfilled for the estimates
of vector 4.

Consider the Lyapunov function V,(¢)=0.5¢(¢).

Theorem 1. Let 1) assumption 1 holds, i.e. the matrix in (1) Ae.r;2)the system (1) represents
how (4) to set 1(¢); 3) the identification system is described by equation (6); 4) ue@%,; ye@o®,,
Pe@%, . Then the system (4) is locally parametrically identifiable in the region G, if A4=0

follows from AA"P =0 and the condition is satisfied:
2 2k
|a4@) <=7, )
aP

T p— _— nxn
POP O <apl,, >0 1, €R™ oy it matrix.

where

The proof of Theorem 1 is given in Appendix A.

Remark 1. The vector X(¢) reconstruction in (1), based on (4) and schemes proposed in the
literature, gives estimates that do not correspond to components X(¢). This follows directly from
(4). Therefore, adaptive control laws based on the use of vector P elements are applied in control
systems. Estimation x, =%, x, € X can be obtained directly from (4). The remaining components
X(t) are determined based on the symbolic differentiation operation.

Corollary from Theorem 1. If the adaptive algorithm

Af= —TeP , (10

is used to evaluate the vector 4 in (4), then the local parametric identifiability of the system (1)

follows from the estimation

V() <V(t,)- ij‘V?(T)dr

[
’

where V() =V,()+V,(t), V., (t)=05AA"T"'A4, T =T" >0 isadiagonal matrix.
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Let vector P(f) elements be measurable for each ¢. Here, the system (4) is detectable. Then
observability, detectability and recoverability of the system (1) follow from properties of system (4).

The proof corollary from Theorem 1 is given in Appendix B.

Consider the Lyapunov (LF) function ¥, =0.5E" RE, where R=R" >0.

Structures of classes ¢ (4) and #,(A) are congruent, so the following statement is valid for

system (1).
Theorem 2. Let 1) the conditions of Theorem 1 are fulfilled for the system (4) of class =, (A) ; 2) classes

(A) and & (A) are congruent; 3) ue@<,, X(t)e@e, . Then system (1) is locally parametrically
identifiable on class 7, (A) if

|4 @, +|ABJ} @, <4477,

where ETQEZ#ETRE, #>0 RK+KTR:_Q, Q:QT>0, "AZ":tr(AZTAZ), tr is the

7

matrix trace.
The proof of Theorem 2 is given in Appendix C.
Consider the adaptive model

B ke dx+ By, (11)
and apply the integral algorithm class

& T
A=-T.ERX

(12)
AB= T ,REu

to tuning of matrix 2, B.
The identification system is described by the equation:
B=KE+AAX +ABu, (13

where E=X-X , X eR” ismodel (11) state vector, K €..7” isthe matrix of dimension nxn

, j,ﬁ’ are tuning matrices.

Corollary from Theorem 2. If the conditions of Theorem 2 are fulfilled, and the class of
algorithms (12) is used to tuning the model (11) parameters, then the local parametric identifiability
of the system (1) follows from the estimation

Vi () <V, (t,) -2 j V.(t)dr
o . (14)

The proof corollary from Theorem 1 is given in Appendix D.

We see that the local PI depends on the choice of initial conditions, and fulfilment of the
requirements for variables and system input.

Remark 2. Presented results differ from the results [4] based on the application of Al methods.
If the decision is made based on experimental data, then various statistics [4] are used. In this paper,
we apply the approach to the PI analysis based on the current data analysis. This approach has not
been used in PI tasks.

If conditions of Theorem 2 are fulfilled, then the class of algorithms (12) will be called locally
identifying.

In the future, for the convenience of reference, the adaptive algorithm (10) will be related to class
., and the law (12) to class .7, .

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Definition 2. A system (1) of class ¢4 (4) is extremely locally parametrically identifiable (ELPI)

on the set I, if the condition

Al ={A e R :lim|[d- 4| —> & & 0(0) Vi=1 >4, &JI,}
t—o , (15)
is satisfied for its representation (4) in class ¢/ (4), where A" is some reference vector of system
(5) parameters, O(0) is an area of zero.

Here, the vector 4 identifiability is understood as the limit proximity to 4 . Under certain
conditions, the global PI of the vector 4 follows from (15).

Consider again the system (6) and LF ¥, (¢) = A4" (£)[ 'AA(r) .

Theorem 3. Let the conditions of Theorem 1 be fulfilled and (i) there is a Lyapunov function V,
admitting an infinitesimal upper limit; (ii) there is 9>0 such that the condition
eAA"P = l9(||AA||2 +e’ ) is satisfied for sufficiently large ¢ in some area of zero; (iii) Pe#%, with
parameters ., a, ; (iv) The inequality

VgAL s _E‘QQP&‘VA +i‘95PVy
! e, (e
is valid for the trajectories of the adaptive system (6) and (10), where A, is the minimum

eigenvalue of the matrix I'. Then the system (6), (10) is locally parametrically identifiable on the set
I, with estimating V,(t) <S,(¢) if the functional condition
126 EPI/e < VA
9, Ay

is satisfied, where:

t
S (=S, (1,)+ 7 j eIV (2)dr (18)

l

is the upper solution of the comparison system $=-cS,+xzV, for (16) if S,(t,)2V,(t,),

4

3a,

=

Sa,, o=0.75%a,4,.

The proof of Theorem 3 is given in Appendix E.
We see that the PI in the class of algorithms (10) or (12) depends on the initial conditions and

properties of the information set. LPI is guaranteed for systems of class #4 (4) and ,(4) with

asymptotic stability by error. However, estimate elements of the matrices will belong to the domain

G, . This is a typical state of adaptive identification systems based on the class of algorithms (10),
(12).

Remark 3. The region G, can be compressed to &, and limiting conditions for LPI can be

got if conditions (9) or (17) for ASI are fulfilled. In real-world conditions, ASI guarantees almost

extremely local parametric identifiability.

4. On ELPI

The ELPI fulfilment guarantees the transition to global PI (GPI). For static procedures (least

squares method, maximum likelihood method), ELPI is ensured by the properties of the information

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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matrix. For methods based on the class .7, properties of the information matrix are not directly
applicable, because the processes are complex in ASI.
With GPI, we understand the condition fulfilment:

Ae(éAz{AeRz”:

A=A|=0vt2( >1, &I}, (19)

The proposed interpretation of GPI as belonging the parameters of model (6) to the set G 4 s
linked to the absolute stability of an adaptive system.

Global parametric identifiability follows from Theorem 4 for systems of class 7(4) .

Theorem 4. Let: 1) the conditions of Theorems 1 and 3 are fulfilled; 2) The system of inequalities is valid

for processes in the system (6), (10)

1

2 A 14
<y 3 , (20)
R A
44424444317
A

where .,A. are the maximum and minimum eigenvalues of the matrix T . Then (a) the

system (4) is globally parametrically identifiable on the class (A), (b) the system (6), (10)

is exponentially stable with the estimate:

W, (1) <e™"™s (1), (21)

e A 216G 4., 22
PZZT P

where S, eR? is the state vector of the comparison system $%(t)= 4;S,(t), S (t,) =W, (1,).

The proof of Theorem 4 is given in Appendix F.
From Theorem 4, we obtain GPI on the set of initial conditions and ELPI. Since the systems are

congruent, this condition is also valid for systems (1) of class ¢ (4) . To substantiate this statement,

apply the approach [22].

5. About m-Parametric Identifiability
Let the CE condition not be fulfilled. The problem of identifiability, and identification, must be

solved. Consider the approach to solving this problem using the example of the class ¢/ (4) system.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2025

Let the system and the model have the form (4) and (5). We assume that « ¢ #% . The term
AA"P in (6) is represented as

AA"P=AATP=[ A4S 547 | P P,

where Py ez, P(t)e o7 ; I:Az% 5AT:| is the representation A4 corresponding to the

vector P(¢).

Transform the equation for error (6) to the form

& —ke+ AP+ o(4,P), (23)

where w=64"P, w(4,P)eR is uncertainty caused by non-fulfilment of the condition

ueze, AYe Yo 4, Y i isthe part of the vector A evaluated on the class .2, deR>
, m<n.

Let |a)(A,P)| <eg,,where ¢,>0.
Definition 3. A system of class /(4) is m-locally parametrically identifiable on the set

ﬁ{0= {P(t), ul)g oz, t> to} if the condition
Me€, = {Yer?:|Ho 4| <c,. 6,>0vi20 >4, &1 (24)

is satisfied with its representation (4) in class = (4).
Theorem 5. Let (i) the system (1) be stable; (ii) the Lyapunov function Vo= O.SA%}},A% admits an
infinitesimal limit, where Ty, =T >0 is the diagonal matrix; (iii) u(t) & @ . Then the system (4) is locally

parametrically identifiable in the domain G 4 if

0.50, |A4f +0.5¢2 <2k, (25)

and all trajectories of the system (4) belong the area

Go={e(t) e R,Ad R :V,(t) <V, (t,) -2k, 'V, +0.577'c |, (26)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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where V, =V, +2, n=min(1,24,).

The proof of Theorem 5 is given in Appendix G.

From Theorem 5, we see that the PI domain depends on the CE fulfilment of the information set
of the system. If the CE condition is not fulfilled, the parameter &, increases because of the effect of
parametric uncertainty o . Here, estimate (14) is more realistic and, under certain conditions, ELPI
is possible with estimate (18).

Remark 4. In biological systems, structural identifiability issues are considered. Most times,
lineal systems with numerous parameters are studied. Various algorithms are proposed and
identifiability conditions are investigated to reduce the number of estimated parameters. In ASI, a

multiplicative approach is used to identify a system with various parameters [23]. Here, PI is

understood as parametric identifiability in some parametric domain G(G,), depending on the

vector of multiplicative parameters (MPV). As a rule, MPV estimates belong to a certain limited area,
which is formed based on of a priori information and analysis of the information set. This

identifiability applies to systems satisfying specified quality requirements.
6. Lyapunov Exponents in PI Problem

6.1. Stationary System of Class ¢/ (4)

Lyapunov characteristic exponents (LE) are the characteristic of a dynamical system. LE is an
indirect PI estimate of the system. This approach to PI has not been considered in the literature. The
LE application has its own peculiarities in the proposed paradigm of PI. In particular, it is necessary
to consider the issue of detectability, recoverability and identifiability of LE based on the information
set of the system. Identifiability is understood as the detectability of Lyapunov exponents. Known
approaches allow us to estimate only the maximum (largest) LE [24]. A more promising approach is
based on the analysis of geometric frameworks (GF) reflecting the change in LE [24]. Issues of LE
detectability based on GF analysis are presented in [24]. Therefore, they are not considered here.
Detectability is the important issue for evaluating LE.

In [24], the criteria for <727 -detectability of Lyapunov exponents are presented. &2~ -
detectability and recoverability we understood as the ability to the LE estimate. &% -detectability
imposes certain requirements on experimental data. The approach allows us to obtain the full range
LE.

Let m=n—-1-v,where v isthe number of non-recoverable LE.

Definition 4. The system (1) is called m-detectable with a v -non-recoverability level if the o

lineal (LE) has an insignificant level.
As follows from definition 4, that if the system of class ¢4 (4) is m-detectable with a level of

v -non-recoverability, then this is a sufficient condition for m -parametric identifiability of the
system. The CE requirement plays an important role, as it guarantees the S-synchronizability and

structural identifiability of the nonlinear system.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2025 d0i:10.20944/preprints202506.1561.v1

9 of 25

Remark 5. The definition 4 provides sufficient conditions for evaluating PI systems of class
¢, (4) . This issue requires further study. Note that LE (for the classes ¢4 (4) under consideration,

the Lyapunov exponents are the eigenvalues of the matrix) depend on system parameters.
Analysing nonstationary (periodic) systems is more difficult, since it is difficult to isolate the
parametric space here.
Using LE translates the PI problem into the space of Lyapunov exponent [25] for periodic
systems (PS).

6.2. PS for Class ¢ (4)

Consider the system (1) with the matrix A(f) . For convenience, the system will be denoted by

Assumptions.

Al. A(t) isabounded continuous Frobenius matrix

|40 <a,, @7)

where «, >0, || is matrix norm.

A2. A(f) is almost periodic, i.e. a subsequence can be selected from any sequence
At)= A(t—1,) (28)

converging uniformly along the entire axis to some almost periodic matrix A(z).

A3. A(t) is the Hurwitz matrix for almost all 7> 0
Let 27, = {;{i (0),i= Ln,t> t } is a spectrum of LE g, (i = I,_n) .

Definition 5. The function y,(¢) is almost periodic in the Bohr sense [26] or the 227 - function
[25], if such a positive number /=/(5) exists, that any segment [a,a+/] contains at least one
number T, for which it is hold
[f(x+T,)-f(x)| <5 and te[0,%). (29)
If x(t) is a ©»7 -function, then it is az -almost periodic [26], where «a, 7 are positive

numbers.
Let the order of the system S, be known. Apply the geometric structure X, = to decide on

the spectrum 27, [26]. Here k (t,p)= p(j/g )/t , p(j%) =p, = 1n|yg )

general solution of the system (1).

, V,(t) isan evaluation of the

fo()k, = Ak, Ak, k(0) i A7

SK,,  described by the function , where or _function, Ju ()

. A, . . .
contains areas s , where a drastic change is taking place.

Theorem 6. If the system S, is stable and recoverable, and the function f, (t) contains at the interval
[to,t*] c jg (t* S?) at least regions (7, then the system S, has anorder m andis <77 -identifiable
( ¢z -detectable).

In terms of Theorem 6, jg is a time interval in which an estimate of the general solution of the

system S, are obtained.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2025 d0i:10.20944/preprints202506.1561.v1

10 of 25

It follows from Theorem 6 that the system S, is identifiable on the set {SKk, } . As shown in
[25], the location of local minima on SX,,  coincides with regions 7, of the structure SX,, .This

result allows us to obtain the set %,, containing estimates LE of the system S, . Cardinal #,, may
not match the LE number of the system. %, characterizes the set of system S, lineals.

The detectability (identifiability) of the periodic system (1) with the matrix A(f) follows from
[25].

Theorem 7. Let 1) assumptions Al-A3 are fulfilled for the system; 2) the system S, is

recoverable; 3) u(t) e @7, ; 4) set {kX’ . (t)} elements are 277, -functions; 5) the structure SK,

contains at least v regions of <7,’, which to local minima correspond to the structure §X,, . Then
the set M,, is @27 -detectable or fully detectable.

Corollary from Theorem 7. If structures SLy contain only m of regions <7,", which to local
minima correspond on SK,: then the system S er 1S m -detectable with an v -non-recoverable level.

Remark 6. Eigenvalues 4 () of the matrix A(f) are periodic functions of time. Therefore,
lineals £(¢) and £*'(¢) corresponding to these functions may overlap. This can generate an infinite
range of LE. Determine the acceptable range for %#,, and the number that determines the mobility
of the largest Lyapunov exponent. The set %,, upper bound is determined by the allowable
mobility limit of the largest LE y,. The estimate is fair for y, [25]:

7, <supJ',
' ke, (30)

where ,]IL,. is the interval of the change of the ith indicator &, ,. The region M, lower

v

boundary is bounded by the smallest LE x, [25].
Definition 6. The system S, of class (Z ) with matrix A(f) satisfying assumptions Al-
A3 islocally M, -identifiable on the set ﬁf’z {X(0), u(1), t >1,}, if spectrum 27, of LE belonging to
the class 27 -function exists such that
X (Z) eEM,, = {;(,.(t) € 7, :|;(l. -X

g, 20
where “#

The problem of assessing the LE adequacy has its own specifics. Let ¢/ & is phase portrait of

<e, Vie[r. "] >y, &]I(t)}, i=Ln, (31)

x

the system S, .
Definition 7 [25]. Estimates of Lyapunov exponents y, are y-adequate in the R space, if

areas of their definition coincide with o -almost-periodicity regions of structure S, T

Theorem 8 [25]. Let:(i) the S, -system is stable and recoverable; (ii) the set M, is 27 -detectable;

(iii) definition regions <, on the SL,  structure coincide with ax -almost-periodicity regions for the G5

P

structure S, . Then estimates of elements for the set M, are y -adequate to the regions amx -almost

periodicity S
Remark 8. We have considered only one approach to assessing the PI of periodic systems. The
PS can be considered as a system with an interval parametric domain and identifiability can be
estimated within the specified limits. Here, the approaches described above in sections 4 and 5 are
applied.
So, the problem of estimating LPI is reduced to a more adequate task of estimating LE for these

systems. The PI conditions in a special space are got and the methods of its estimation are given. The

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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adequacy concept of LE estimates is introduced and the area for the LE location is highlighted. We

have shown the existence of a LE set for the system S, .

7. About LPI for Decentralized Systems

Consider a decentralized system (DS)

Ko AX 4Bu+ > AX +F(X),
Si: i i 1+ lul+j:12j¢[ ij _/+ 1( z) (32)

Y, =CX,

where X, eR", Y eR" are state and output vectors of the S§,-subsystem, u, € R is control,

m

. . A . i XN

i=lLm, E n,=n . The elements of the matrices 4 e "™.,Be ",4,€? " are unknown;
i=1

C, € R%*"  The matrix Z.j reflects the mutual influence of the subsystem §,. F (X,)eR" considers

the nonlinear state of subsystem 2 §,, and the 4, €.2%” is the Hurwitz matrix (stable).

Assumption 2. F,(X,) belongs to the class

A (mamy) ={F(X)e| ":m X <F(X)<m,X, F(0)=0} (33)
and satisfies the quadratic condition
(X —F (X)) (F(X)-7X)20, (34)

where 7, >0,7,>0.

The information set of measurements for the S, -subsystem has the form
L, ={X,(0), u,(t), X, (6), t € I =[t,.1,]} -
Mathematical model

E- K (X, - X))+ AX + B+ Y AX 4E(X,), (35)

A

where K, €.7” is a matrix with known elements; 4,, B, 4, are tuning matrices, F, is a

priori defined nonlinear vector function.
Problem. Obtain PI estimates for the system (32) based on the set I, analysis.

DS (32) is nonlinear, so the condition CE (7) is represented as:
“7 0 (e, <ul(0)<a, )&(Q, (0) cQy(@),

Where Q, () is the set of frequencies for u,; Qg(w) is the set of acceptable frequencies of
input u,, ensuring S-synchronizability of the system.

A

Get the equation for the error E, = X, - X,:

i i
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M —
B K +AX + 0B+ 3, AT, 40 (X)), @

J=lj#i

where A4, =4, —A4,AB, = lﬁ?—Bi,AZj = A, — A, ,AF, = F,—F, are parametric residuals.

ij /A B

Consider the system (37) and LF V,(E,)=0.5E' RE,

i

where R =R/ >0 isa positive symmetric

matrix.

Let A4 = [tr(AdA4)),

trace of the matrix.
The following modification of Theorem 1 [27] is true.

AZl.j " = / tr(AA; AAv.) are the norm of matrixes A4, A;IU , tr(-) isthe

Ay,

Theorem 9. Let: 1) the matrix 4, €.7";2) X()ec7, , , X, (t)e Py W ez, 4 ;3)

N3
uj >

F(X,)e. 7} (n,7,) and

|£:(x) <na,, AFAF <2, +5,,

i

where x,>0,7, >0, 7]27](72'1,71'2)>0,§EIaxv(X.)>0, n=27z+1, T=mm,, m=m+n1,,

8. >0. Then subsystem (32) is locally parametrically identifiable on the set 1,, if

J=1j#i

2(@, a4l +a, a8 + i a, ||A71,.j||2 1203, +5, J <2,V (38)

T _ A4,>0
where A, =4, —k,,

Q=0 >0
The proof of Theorem 9 is given in Appendix H.
Corollary 1 of Theorem 9. Let conditions of Theorem 9 be fulfilled. Then the nonlinearity F, (X,)

T = —
is the minimum eigenvalue of the matrix Qf; k>0 , KiR +K; R, =-0,

7

is locally structurally identifiable in the parametric sector
A, (”p”z) = {Xi eR":7m X, <F(X)< ﬂin}

if

z. 2>
where “i 0.

The proof corollary 1 from Theorem 9 is given in Appendix L

Consider the system (37) and class .%;;" algorithms to tune its parameters:
Af=-T , ERX],

_ T
s =1 ERX,
AR =-T, E/ Ru,
i B, i qu ’ ( 40)
where I',, I';, T', are diagonal matrices of the corresponding dimensions.

Lyapunov function for analysis of system (37) and (4): Wy =V, +V, ;:
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V,, =0.5tr(Ad'T A4 )+05 Y tr(AZ,.j F;;AZH.)+O.5AB,T I, AB,
J=Lji , V.(E))=05E'RE,.
Corollary 2 of Theorem 9. Let 1) conditions of Theorem 9 be fulfilled; 2) the class .%;;" of

algorithms is used to tuning parameters of the model (35). Then the system (32) is locally
parametrically identifiable if
O'i;(i(t—to)SZ,[yfo'iJ‘V(r)dr
o , (41)
where ;(i=277&X[+§F[ , 7/1.":min(l,2iki),0'=,ul.—7»& >0 ; LlR‘,/TR‘ are The minimum and

maximum eigenvalues of the matrix R,, and the estimate is held

t
Wy, () < Wy (6) =2 o, [V (0 e + 0,7, (=1, )
o .(42)
The proof corollary 2 from Theorem 9 is given in Appendix J.
As follows from Theorem 9, system (32) is LPI and structurally identifiable with nonlinearity
F,(X,) in the parametric sector ¢ (7,,7,) on the set of initial conditions and 1.

i i

If we perform nonlinearity factorization (see, for example, [27])
éi%Xi)zl%G(Xi’Ni,l)]Vi,zl (43)

where N,, e R"™ is a priori estimation of known parameters, N,, € R"* is vector of tuning
parameters, the structure IS{L(XI.,N“)is formed a priori considering the known vector N, , and

apply the algorithm
I&;z :_FF,ﬁi/GRiEi(X[’Ni,I), (44)

where T, is a diagonal matrix with positive diagonal elements, then we obtain the

conditions for global parametric identifiability for DS on the class of algorithms .#;* and

(44). They are based on the modernization of results [27].

8. Examples

1. Consider an engine control system with the Bouc-Wen hysteresis

mie- ce- F(x,2,0) = f(0), (45)
F(x,2,0) = ake(t)+ (1- )kd=(z) , (46)
£ d”! (ake Bl sign() -y, 47)

where m >0 is mass, ¢>0 is damp, F(x,z) is the recovering force, d >0, n>0, k>0,
ae(0,1), f(¢) is exciting force, a,,y are some numbers. Set of experimental data

I, ={f (), y(t),teJ}. Vector of parameters A= [m,c,a,k,a,ﬂ,}/,n]r.

To estimate PI on the set I, equation (45) is transformed to the form [28]

=ax+a,p +a,p.+bp,, (48)
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Be=—pp, %, =—up, + [ e =—pp. vz, 4> 0,
=—(ak- _ - ((1-
where a, = —(c—um)/m, a4, (ak (e ,um))/m, a, (( a)k)/m.
Model for system identification (48)
$k (x-x)+df+a,p, +dp. +lp,, (49)

where k >0; a(f), i=1,2,3, b(r) are adjustable model parameters. Let ¢=%—x. From (48)

and (49), we obtain the equation for the identification error:

& —ke+Aax+Aa,p, +Aa;p. +Abp,, (50)

where Ag, =a,()—a,, Aa, =d{1)—a,, Aa, = a,(t)—a,, Ab=b(t)—b.

The variable z isnot measured. Apply the model to estimate z:
g= —k, (xz —x)+é§+a2px+l;pf. (51)

and introduce a residual ¢, =x-%.. Let ¢ 1is current estimate z. Then we get the model to

evaluate z
Bk (z-c.)+ X B M sign(z) - 7} (52)

A

where k. >0; B, 7 are estimates of hysteresis parameters (47); %:(x(t+r)—x(t))/r, T 18

the integration step.
Introduce a residual ¢ =Z-¢_, satisfying equations

(&:—kzg+AJ&kAﬁ|%Z£sign(z)+ﬁnﬁ +A7%’|" +1,, (53)

Ny = |44z sign(z)—|%i§ sign(z), n, =& —%?2 "

where A8 e &AB=p-p,Ay=y-7, AB=B-f, Ay=y—7.Present (49) as:

ek (x—x)+dfsrap, +dp. +bp,, (54)
Bo=—up.+2, (55)

and (50) is written as:
&= —k.e+Aax+Aa,p, +Aa,p. +Abp, . (56)

Evaluate the identification quality using the Lyapunov function. V,(t)=0.5¢"(¢) . Get adaptive
algorithms from ¥<0:
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A/&: —1ﬂ8|1¥2§sign(z), Age _178%2‘1" , (57)
where y, >0, 7, >0 are parameters ensuring the stability of algorithms (57).
Consider functionals:
P P P P 0.5 > 5 0.5
AD, (1) =(Ad; (1)+Ad3 () + Aa; () + A’ (1)), AD, ,(1)=(Ay* () +AB (1)) (58)

Figures 1 and 2 represent PI evaluations of the system (45) — (47). The ASI has two loops: the
main one (variable e) and the auxiliary one (variable ¢). Figure 1 shows the structure A,

described by the function ¢, :[e|> AD,, and Figure 2 presents the structure .7, ,, , described by

the function ¢, ,:[e[>AD, ,.

J—
=
e >
PR —
Y=l G
N —
‘ <
‘
T

=== T T

0 5 10 15 20

0,500

0,375+

7.8
0,250

0,125+

0,000

Figure 2. Structure .7, ,, ,
AD,,

Presented structures confirm the fulfilment of the Theorem 1 conditions, since trajectories of the
system for sufficiently large ¢ get into the region G.

2. Consider the system, the phase portrait of which is shown in Figure 3. The set of experimental
data I(¢#) is known. Input u(t)=5+2sin(0.27¢) . Figure 3 shows the presence of oscillations in the
system, the frequency of which differs from the frequency of the input. Therefore, the system is the
system with periodic coefficients.

To determine LE, we apply the approach [25] and obtain estimates of the general solution and

its derivative.
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7,(0)=[0.75;0.07;-0.22][1u(r) r)] , (1) = [~0.394;-0.059;0,078][1 u(r) )]’ - (59)

The coefficients of determination for these models are equal 0.99. Next, we determine estimates
of the free movement for the system. The evaluation of order for the system follows from Figure 4.

1,2
1,0
081
0,61
04
Y 0.2 )
0,0 (
-0,24 —
-0,4
-0,6

-0,8 T T T T
0,4 0,8 1.2 1,6 2,0 2,4

-0,450 -0,225 0,000 0,225 0,450

k

s

Figure 4. LE set

-0,18 T T T T T T T T
-04 -03 -0,2 -01 0,0, 01 02 03 04 05

Ve

Figure 5. Estimate of y -adequacy of LE

It follows from SK.,, that the system has a third order. From s% and SK,,. »we get the

Ak,
set LE (Figure 4).
The upper estimate for x, is —2.04. Mobility limit for y, is -0.8. y -adequacy confirmation

of LE estimates is shown in Figure 5. The eigenvalues of the state matrix of the system S, are:

M, ={~2.04;~1.842;-1.77,~1.167;0.878}
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So, we see that the set 9, is &7” -detectable, and the system has the third order. Since the

elements of the set %,, are recoverable and detectable, the system § . is LPL

9. Conclusions

The problem of estimating parametric identifiability based on current experimental data is
considered. Methods of the priori identifiability based on the analysis of the information matrix are
not applicable in this case. We consider the approach based on the application of the second
Lyapunov method to the PI study. LPI conditions are got based on the adaptive identification
application to the linear dynamical system. We analyse data on state vector and current information
on input and output in the problem PI. Conditions and estimates have been obtained that guarantee
PI and LPL

The m-parametric identifiability case is considered when the condition of constant excitation is
not fulfilled. PI estimates are got for decentralised nonlinear systems and systems with periodic
parameters. We show that Lyapunov exponents should be used to PI analyses of the system with
periodic parameters.

Modelling examples are presented that confirm the efficiency of the proposed approach.

Appendix A

Proof of Theorem 1. Consider the LF V,(¢) = 0.5¢°(¢) . For Lé‘, we get:
= _fe* +eAd" P (A.1)
or, applying condition 4 of Theorem 1,

2
7

1 _
1< kv e a4 (A2)

where @, <PP" <a,, a,>0,a,>0.
Let u(#) and y(¢) correspond to Fourier series with multiple frequencies Q,, Q , where Q
depends on the spectrum u(¢) .. System (1) is a frequency filterand A €.~ . Therefore, the frequency

spectra of the elements of the vector P will vary. Therefore, sets Q o where p, € P, will not have

common areas. Then A4=0 follows from the identifiability condition A4"P=0.
So, condition 4 is necessary for the local identifiability of the system (6). As condition 4 is

fulfilled, for the limited trajectories (identifiability) of the system (4), it is necessary that:
2 27
|ad@)|” < 7V(z) . (A3)

Appendix B
Proof of Corollary 1 from Theorem 1. For &, we get:

= _ke? +eAA" P = —ke* — ART A4,

e ot ik (B.1)
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where 7, =0.5¢", V, =0.5A4'T"'A4. Let V=V, +V,. Present (B.1) as:
< 2ky, - 21, ©2)
0.5 kv, '
where from
V() <V(t,)-2k j V.(r)dr (B.3)
or V)<V, .m
Appendix C
Proof of Theorem 2. The derivative LF V, =0.5E" RE has the form
& = —E"QF + E" R(AAX + ABu) (C.1)
or
< —uE"RE +|E" R(AAX + ABu), (C.2)

where E'QE>uE"RE, u>0, Q=0" >0 is a positive definite matrix satisfying the equation
RK+K"R=-0, R=R">0. Then (C.2)

1< BT RE +|E"R(AX + ABu)| < 24V, + 0.5 (@, [Ad] + @, [aB[ ), (C3)

where |Ad|" =tr(A4"Ad), |AB|' =AB"AB, @], <X(OX (<@,

n

is the identity matrix.

From (C.3), we obtain the condition of LPI:
|a4] @, +|AB[| @, < 4p’v,.m (C.4)

Appendix D

Proof of Corollary 1 from Theorem 2. Consider LF V), =V, +V, ,, where:

V5 =0.5tr(A4'TA4)+0.5AB'T,'AB,

r,T, are diagonal matrices with positive diagonal elements.

If we consider (12), then (C.1) is written as:
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1& = —E"QF + E" R(AAX + ABu) =
=-E"QE - i AR RA4) -~ ABET ' RAB. (D.1)
4 44 43{ 44 4 Af 43
Obtain
<2V, =V, (6) <V, (t,)-2u j V.(r)dr .| (D.2)
Appendix E

Proof of Theorem 3. Apply algorithm (10) and represent the derivative ¥, =A4'T'A4 as:

= —end"P. (E.1)

Let $>0 existsuch that in some region 0 the condition eA4’P = 19(||AA||2 + e2) is satisfied.

Then (E.1)

3 1
W= =5([adf |7+ ) == Sadf [P~ S|l |7l - 9 <

X (E2)
2 2
<= I[P +2ld slad]P).
As Pe@@, n a,<||P(0)| <&, then
3 =
< -39, |a4]” +2|e| 9y, |a4]. (E3)
Apply the inequality [29]
—a bz <22 +Lb2 , a>0,b>0,z>0.
2 2a
Then
< —%9% a4 + (E4)
As |Ad]" 222,7,, where A, is the minimum eigenvalue of the matrix T .Then:
&< ——190:1,/1 V,+—9a,V. (E.5)
3gp
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It follows from (E.5) that PI is guaranteed on a certain set {ﬁ(to )} and on the set I, if

and fair evaluation 7, (r)<S,(t), where:

—o (11, 4 — h —o(t-7
S, (H)=e"" '))SA(10)+3(Z 9a, [ (v)de

“p f

o =0.759a,4., S(t) is the upper solution of the comparison system $&-oS+zV, for V(1)

4

3a,

(E.5),if 8,(1)2V, (1), 7= Ya, .

Appendix F

Proof of Theorem 4. From the proofs of the corollary of Theorem 1 and Theorem 3, we obtain

K< iV +——a, |Adf
e 2k P
3 A (F.1)
VgALS _ZIQQP&FVA +3_‘9‘7PVe'
ap
As |Ad|" =AA'TT A4 < AA'T'A4 <27,V , then (F.1)
—k 1z Zl_
& kT
&5 4 3 ol (F.2)
4 3_‘9‘713 ——9a, A :V{
¥4 442474 4430

Ag

The matrix 4, is an M -matrix [30] if conditions (-1)'A,(4;)>0 are fulfilled for the major

minors. Obtain

k>0, 9k*a, A, =162, . (F.3)
PLr P

If the conditions (F.3) are fulfilled, then the adaptive system (6), (10) is exponentially stable (ES).
As follows from the ES, estimates of the vector A4 in (4) are extremely locally parametrically
identifiable under given initial conditions. The estimate (21) is got using the approach described in

the proof of Theorem 3.1

Appendix G
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Proof of Theorem 5. Consider (23) and represent the derivative of LF V, as:
= _je® +eALOP +ew (G.1)
or
K< kv +——a, |adf
2k (G.2)

1< —ke? +* +0.50, ”Az%ﬁz +0.5¢2,

where k, =k-1>0, |P@)| <v,, v, # &, . From (G.2), we obtain the condition m-local PI:

0.50, [a4f +0.552 <2k,7,. (G.3)
Represent (G.1) in the form
Be= —ke’ + (AL P4 54" P) = ke’ —AMT ' TAL% eor . (G.4)
Then (G.4)
< 2k 22,54 0.5¢ 1050 . (G.5)
Transform (G.5)

s 2k ¥, 24, %4050,
R (G.6)

ey 22 80< 2k V. 40.50".
Let n=min(1,24,), ¥,=V,+Vp and k, =k-1. Then:
< 2k n7'V, +0.5n7'e2. (G.7)

The estimate for V, (see (26)) follows from (G.7). ®

Appendix H

Proof of Theorem 9. 1 has the form:

IA;L: _EiTQiEi +EiTRi (A‘AIXt +ABiui + i A‘Z?ij +AF; (Xl )j (Hl)

=L

or
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< T ELOE, +|Ef{R,.| A4 X, +ABu, + lf MY, HAF (X)) <
R o (H.2)

2
<AV, + kY, +o.5(AA,.X,. +ABu,+ Y A4 X, +AF,(X, )J ,
J=l, i
where 2, >0 is the minimum eigenvalue of the matrix Q,.
Apply the Cauchy-Bunyakovsky-Schwarz inequality and Titu's lemma to the last term in (H.2)
and get

y

2
o.s(AA[X[+AB,.u[+ > A4X, +AE(Xi)J <

J=Lj#i

(H.3)
<ol b +lasflaf + 3 A o] s o |
Consider condition 1) of Theorems 9 and & write as:
< 3V + 2(@[ Ia4l +a, |aB) + z a, a4, +aF (x, )||2j, (H.4)
ST
where 7 =24 -k . Apply Lemmas 1, 2 [26] and get for |aF|’
AFTAF, =|AF|" <2na, +6,, (H.5)
where n=27+7’, n=m+nx,, T=m7,, 5, 20.
Then (H.4)
< -7+ 2[5& |ad)f +a, [AB ] + lﬁ @, |a%,[ +2na, +5, J . (H.6)
AT

If state variables are CE and the condition (38) is fulfilled, then the system (32) is the LPI on the

set 1, .1

Appendix I

Proof of Corollary 1 from Theorem 9. As follows from Theorem 9, DS is locally parametrically
identifiable if the condition (38) is satisfied. Apply Lemmas 1, 2 [26] to the last terms in (H.6) and get:

Wi, +6, =2(na, +5,)-0, =2|AF[ -5, (L1)

Therefore,

|AE| <02527,+05(5, - 2.60,-¢, ¢,). (L2)
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. N = I? Lo =
where 6, =min(|a4 ] +[aB["), ¢ =min 3 [AL [, &, =min ) @, .
J=1,j#i j=l,j#i
As ¢, ¢, <6, —x0,, then |AF| <0257V, +z. 1
Appendix ]
Proof of Corollary 2 from Theorem 9. Represent & (H.2) as:
W= _E'QE +E'R, (AA,.X,. +ABu, + lz .AZ,].XJ. +AF, (X,)+AF, (Xi)J =
J=Lj#
- -E/QE, ~t(ARTRAL)- Y tr(A}Efr; RI.AZI./.)— (J.1)
oL ' ‘
~AKT, RAB, + E/ RAF, (X,).
Let EQE, > yE/ RE, >2uV,, where 1 >0. Then:
@Lg _ZluiV; - Z_R, V%’,i + ||EiTRi ||||AE|| <
_ ) J.2)
<2uV, =22, 0%, + 2, V, +05|AF,
where 1,, 4, are minimum and maximum eigenvalues of the matrix R,.
The estimate (H.5) is fair for AF, . Therefore, (J.2) is represented as:
< 2| 1t = A |V =24, &, +na
V’gc ﬁ-’ 2 iR" ! 4& ad -Hf%XQ +4%‘F" ’ (.3)
O Xi
ptlgl+ 2&1&, D%i <=20V + 7,
where y, =2na, +6, . Lety;' = min(1,2/_1Rl ),0' = 4, — A, >0 . Transform (J.3):
W%, <207V, 47,2 (J4)
Then
t
W, (1) < W (1) 2 o, [V (D) + 0,7, (1= 1) (J-5)

[

if o.4,(t-1,)< Zﬁfv[jV(r)dT .

[

References

1. Villaverde A. F. Observability and structural identifiability of nonlinear biological systems.
arXiv:1812.04525v1 [g-bio.QM] 11 Dec 2018, 2022.

2. Renardy M., Kirschner D., and Eisenberg M. Structural identifiability analysis of age-structured
PDE epidemic models. Journal of Mathematical Biology, 2022, 84(1-2); 2022.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2025 d0i:10.20944/preprints202506.1561.v1

24 of 25

3. Weerts, H. H. M., Dankers, A. G., &, Van den Hof, P. M. J. Identifiability in dynamic network
identification. IFAC-PapersOnLine, 2015, 48(28), pp- 1409-1414.
https://doi.org/10.1016/j.ifacol.2015.12.330

4. Wieland F.-G., Hauber A. L., Rosenblatt M., Tonsing C. and Timmer J. On structural and practical
identifiability. Current opinion in systems biology, 2021, 2, pp. 60-69.

5. Miao H., Xia X., Perelson A. S., and Wu H. On identifiability of nonlinear ode models and
applications in viral dynamics. SIAM Rev Soc Ind Appl Math, 2011; 53(1), pp. 3-39.
doi:10.1137/090757009

6. Bellman R, Astrom K: On structural identifiability. Math Biosci. 1970, 7, pp. 329-339,
https://doi.org/10.1016/0025-5564(70)90132-X.

7. Anstett-Collina F., Denis-Vidalc L., Millérioux G. A priori identifiability: An overview on
definitions and approaches. Annual reviews in control, 2021, 50, pp.139-149.
d0i.10.1016/j.arcontrol.2020.10.006. hal-03003563

8. Hong H., Ovchinnikov A., Pogudin G., Yap C. Global identifiability of differential models.
Communications on Pure and Applied Mathematics, 2020, 73 (9). 18311879.

9. Denis-Vidal L., Joly-Blanchard G., Noiret C., System identifiability (symbolic computation) and
parameter estimation (numerical computation). Numerical Algorithms, 2003, 34(2-4), pp. 283-
292.

10. Boubaker O., Fourati A., Structural identifiability of nonlinear systems: an overview. In: Proc. of
the IEEE International Conference on Industrial Technology, ICIT'04, December 8-10, 2004, pp. 1244
1248.

11. S. Audoly, G. Bellu, L. D’Angi o, M. P. Saccomani, and C. Cobelli. Global identifiability of
nonlinear models of biological systems. I[EEE Trans. Biomed. Eng., 2001, 48(1), pp. 55-65.

12. Chis O.-T., Banga J. R., and Balsa-Canto E. GenSSI: a software toolbox for structural identifiability
analysis of biological models. Bioinformatics, 2011, 27(18), pp. 2610-2611,

13. Denis-Vidal L., Joly-Blanchard G., and Noiret C. Some effective approaches to check the
identifiability of uncontrolled nonlinear systems. Math. Comput. Simul, 2001, 57(1), pp. 35—44.

14. X. Xia and C. H. Moog. Identifiability of nonlinear systems with application to HIV/AIDS models.
IEEE Trans. Autom. Control, 2003, 48(2), pp. 330-336.

15. Stigter J. D. and Molenaar ]J. A fast algorithm to assess local structural identifiability. Automatica,
2015, 58, pp. 118-124.

16. Villaverde A. F. Observability and structural identifiability of nonlinear biological systems.
Complexity, 2019, Article ID 8497093. https://doi.org/10.1155/2019/8497093

17. Hengl S., Kreutz C., Timmer J. and Maiwald T. Data-based identifiability analysis of non-linear
dynamical models. Bioinformatics, 2007, 23(19), pp. 2612-2618.

18. Murphy S.A, van der Vaart AW: On profile likelihood. Journal of the American Statistical Association,
2000, 95, pp. 449-465, https://doi.org/10.2307/2669386

19. Raue A, Kreutz C, Theis F.J., Timmer J. Joining forces of Bayesian and frequentist methodology: a
study for inference in the presence of non-identifiability. Phil Trans R Soc A, 2013, 371:20110544.
https://doi.org/10.1098/rsta.2011.0544

20. Neale MC, Miller MB: The use of likelihood-based confidence intervals in genetic models. Behav
Genet, 1997, 27, pp. 113-120. https://doi.org/10.1023/A:1025681223921.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1561.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2025 d0i:10.20944/preprints202506.1561.v1

25 of 25

21. Cedersund G: Prediction uncertainty estimation despite unidentifiability: an overview of recent
developments. In Uncertainty in biology, 2016, pp. 449-466, https://doi.org/10.1007/978-3-319-
21296-8_17.

22. Karabutov N. Identification of decentralized control systems. Preprints ID 143582.
Preprints202412.1808.v1. doi:10.20944/preprints202412.1808.v1

23. Karabutov N. Adaptive observers for linear time-varying dynamic objects with uncertainty
estimation. International journal of intelligent systems and applications, 2017, 9(6), pp- 1-15.

24. Karabutov N.N. Identifiability and Detectability of Lyapunov Exponents for Linear Dynamical
Systems.  Mekhatronika, = Avtomatizatsiya, = Upravlenie, ~ 2022,  23(7), pp. 339-
350. https://doi.org/10.17587/mau.23.339-350

25. Karabutov N. Identifiability and detectability of Lyapunov exponents in robotics. In Design and
control advances in robotics, Ed. Mohamed Arezki Mellal, IGI Global Scientific Publishing, 2022,
10(11), pp. 152-174.

26. Bohr G. Almost periodic functions. Moscow: Librocom, 2009.

27. Karabutov N. Adaptive identification of decentralized systems. In Advances in mathematics
research. Volume 37. Ed. A. R. Baswell. New York: Nova Science Publishers, Inc. 2025. 79-115.

28. Karabutov N.N., Shmyrin A.M. Application of adaptive observers for system identification with
Bouc-Wen hysteresis. Bulletin of the Voronezh State Technical University, 2019, 15(6), pp. 7-13.

29. Barbashin E. A. Lyapunov functions. Moscow: Nauka Publ., 1970

30. Gantmakher F. R. Theory of matrices. Moscow, Nquka, 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202506.1561.v1
http://creativecommons.org/licenses/by/4.0/

