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Department of Statistics, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 
Thailand; autcha.ar@kmitl.ac.th; autcha.ar@kmitl.ac.th 

Abstract: The statistical technique, the multiple regression model, is employed to analyze the 
relationship between the dependent variable and several independent variables. The 
multicollinearity problem is one of the assumptions in the multiple regression model that occurred 
in the relationship among independent variables. The ordinal least square is the standard method 
to evaluate parameters in the regression model, but the multicollinearity problem affects the 
unstable estimator. The Liu regression is proposed to approximate the Liu estimators based on the 
Liu parameter to overcome multicollinearity. For this paper, we have proposed the modified Liu 
parameter to estimate the biasing parameter in scaling options to compare the ordinal least square 
estimator with two modified Liu parameters and six standard Liu parameters. The performance of 
the modified Liu parameter is considered with the generating independent variables from the 
multivariate normal distribution in the Toeplitz correlation pattern as the multicollinearity data, 
where the dependent variable is obtained from the independent variable multiplied with a 
coefficient of regression and with the error from the normal distribution. The mean absolute 
percentage error is computed as an evaluation criterion of estimation. For application, the Hepatitis 
C patients dataset is a real dataset to investigate the benefit of the modified Liu parameter. Through 
the simulation and real dataset, it can be seen from the results that the modified Liu parameter 
outperforms the other Liu parameters and the ordinal least square estimator. It can recommend the 
user for estimating parameters by using the modified Liu parameter when the independent variable 
exits the multicollinearity problem. 

Keywords: Liu parameter; multicollinearity; multiple regression; Toeplitz correlation 
 

1. Introduction 

Regression analysis is a potent statistical tool that illuminates the connection between one or 
more independent variables and a dependent variable. Essential in data analysis and predictive 
modeling, it finds broad application across fields such as economics, finance, healthcare, and social 
sciences. However, regression models must meet certain assumptions to provide reliable and valid 
results. These assumptions form the foundation of regression analysis and guide researchers in 
interpreting the results accurately. One problematic assumption to avoid is the linear relationship 
among the independent variables called multicollinearity, which occurs when two or more 
independent variables are correlated, increasing the standard error of the coefficients. This escalation 
in standard errors can render the coefficients of certain independent variables statistically 
insignificant despite their potential significance. In essence, multicollinearity distorts the 
interpretation of variables by inflating their standard errors [1]. Shrestha [2] discussed the primary 
techniques for investigating multicollinearity using questionnaires for survey data to support 
customer satisfaction.  

Traditional regression techniques often struggle to handle multicollinearity effectively, leading 
to biased results and unreliable predictions. Researchers have developed various methods to mitigate 
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these challenges, including Liu Regression. Liu Regression is a technique developed to address 
multicollinearity in regression analysis. It combines the principles of Ridge Regression with 
orthogonalization to effectively mitigate the effects of multicollinearity. Dawoud et al. [3] devised a 
novel modified Liu estimator to employ multicollinearity in a regression model with a single 
parameter, incorporating two biasing parameters, with at least one designed to mitigate this issue. 
Jahufer [4], on the other hand, employed the Liu estimator to alleviate the impact of multicollinearity 
and the influence of specific observations, devising approximate deletion formulas for identifying 
influential points. 

Searching for accurate models that can efficiently handle complex datasets while offering robust 
predictions is perpetual in predictive analytics. Among the array of methodologies, the Liu 
Regression Model is a game-changer, heralding a new era in predictive modeling. The Liu Regression 
Model introduces novel techniques that address the limitations of traditional regression methods. 
Unlike conventional approaches that rely solely on linear relationships between variables, Liu 
Regression leverages advanced algorithms to capture non-linear patterns and intricate interactions 
within the data. Karlsson et al. [5] introduced a Liu estimator tailored for the beta regression model 
with a fixed dispersion parameter, applicable in various practical scenarios where the correlation 
level among the regressors varies. 

Liu Regression [6] involves selecting a Liu estimator to balance the bias-variance trade-off. The 
optimal value of the Liu estimator is typically chosen through techniques such as cross-validation. 
The Liu estimator, named after its developer, is essential in managing multicollinearity. It is 
particularly associated with methodologies like Ridge Regression with Orthogonalization, often 
abbreviated as Liu Regression. Liu [7] enhanced the Liu estimator within the linear regression model 
by considering the biasing parameter under the prediction sum of squares criterion. Yang and Xu [8] 
proposed an alternative stochastic restricted Liu estimator for the parameter vector in a linear 
regression model, incorporating additional stochastic linear restrictions. Hubert and Wijekoon [9] 
investigated a novel Liu-type biased estimator, termed the stochastic restricted Liu estimator, and 
examined its efficiency. 

The improvement of the Liu estimator transformed the multiple regression model to canonical 
form [10] to select the biasing parameter called the Liu parameter. The appropriate Liu parameters 
have been developed to make minimum mean squares error in the estimation. Liu [6,7] applied the 
iterative method to estimate the Liu parameter as the minimum mean square error in the smallest of 
the Liu estimator. Özkale and Kaçiranlar [11] proposed the new restricted Liu parameter by 
computing the predicted residual error sum of squares to determine the biasing parameter. Dawoud 
et al.[12] proposed a new Liu estimator using the known mean squares error criterion to handle the 
multicollinearity problem. Suhail et al. [13] developed a new method of biasing parameters to 
mitigate the multicollinearity data. Lukman et al. [14] introduced a modified Liu estimator to address 
multicollinearity issues within the linear regression model. 

In this paper, we propose two competing Liu parameters, following mean squares error and R-
squared, to estimate the Liu estimator via multiple regression model with the multicollinearity 
problem. We measure this performance in terms of minimum average of mean absolute percentage 
errors for the simulation and real dataset. We also consider the scale option of independent variables 
as the center, correlation form, and standardizes. 

The paper is structured as follows: Section 2 presents the multiple regression estimators and 
discusses the Liu estimator through the reparameterization of Liu regression into canonical form, 
then compared with the OLS estimator. Section 3 generates the independent and dependent variables 
to evaluate the performance estimators. Section 4 applies a real dataset to validate the simulation 
results. Section 5 discusses the findings, followed by the conclusion in Section 6. 

2. The Liu Regression 

The multiple regression model is expressed in matrix form as: 
,y X β ε= +      (1) 
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where y  is the 1n× column vector of dependent variable, and X  is the ( 1)n p× +
independent variable matrix, β  is the ( 1) 1p + × multiple regression parameter vector, andε  

is the 1n× error vector. The following assumptions of error are made: ( ) 0E ε = , 2( ') nE Iεε σ=
, and 2( ) .nVar Iε σ=  The efficient parameters ( β ) in (1) are common estimated to obtain the 
ordinary least squares (OLS) estimator in (2) as follows: 

1ˆ ( ' ) ' .OLS X X X yβ −=        (2) 

The estimation error of ˆ
OLSβ is evaluated by computing 

1

1

1

ˆ ( ' ) '
( ' ) '( )
( ' ) ' .

OLS X X X y
X X X X
X X X

β β β

β ε β
ε

−

−

−

− = −

= + −

=

 (3) 

The bias, variance (Var), and mean squares error (MSE) of the OLS estimator are computed from 
(3) as follows: 

1ˆ ˆ( ) ( ) ( ' ) ' 0,OLS OLSBias E E X X Xβ β β ε− = − = =   
1 1

2 1

ˆ ˆ ˆ( ) ( )( ) ' ( ' ) ' ' ( ' )

( ' ) ,
OLS OLS OLSVar E E X X X X X X

X X

β β β β β εε

σ

− −

−

 = − − =  
=  

2

2 1

ˆ ˆ ˆ( ) ( ) ( )

( ' ) .

OLS OLS OLSMSE Var Bias

X X

β β β

σ −

 = +  
=  

From the above computation, the OLS estimator presents the unbiased estimator, which reduces 
the performance in estimating parameters on the multicollinearity of independent variables.The 
diagonal matrix of 1( ' )X X − is caused the multicollinearity and inflated, increasing the estimated 
variance and mean squares error. To overcome this problems, Liu [6] proposed the Liu esitimator 
which provides the better performance than the OLS estimator [11,15]. The Liu estimator based on 
the ˆ

OLSβ is defined by 
1ˆ ˆ( ' ) ( ' ) , 0 1,Liu Liu OLS LiuX X I X X d I dβ β−= + + < <    (4) 

where Liud is the Liu parameter in term of the biasing parameter and I is the identity matrix. The 
OLS form (1) and Liu estimators from (4) are related to the independent variables that are affected to 
the multicollinearity problem because they depend on the OLS estimator. 

The estimation error of ˆ
OLSβ is evaluated as the OLS estimator by comparing the Liu estimator 

and the parameter of the multiple regression model 
1ˆ ˆ( ' ) ( ' ) .Liu Liu OLSX X I X X d Iβ β β β−− = + + −      (5) 

The bias [16], variance (Var), and mean square error (MSE) of the Liu estimator from (5) are 
proposed in following: 

1ˆ( ) ( ' ) ( ) ,Liu LiuBias X X I d Iβ β−= + −  
1 2 1 1ˆ( ) ( ' ) ( ' ) ( ' ) ( ' )( ' ) ,Liu p Liu p Liu p pVar X X I X X d I X X X X d I X X Iβ σ− − −= + + + +  

2

1 2 1 1

21

ˆ ˆ ˆ( ) ( ) ( )

( ' ) ( ' ) ( ' ) ( ' )( ' )

( ' ) ( ) .

Liu Liu Liu

p Liu p Liu p p

Liu

MSE Var Bias

X X I X X d I X X X X d I X X I

X X I d I

β β β

σ

β

− − −

−

 = +  
= + + + +

 + + − 

 

The Liu estimator is shown as the bias estimator, and its varaince is greater than that of the OLS 
estimator when Liud lies on the range of zero to one. Then, Liu [7] developed the shrinkage factor 
[17] to create the Liu parameter that may lie outside the range between zero and one. In the following 
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subsection, the multiple regression model can be transformed into a canonical form to estimate the 
OLS and Liu estimators. 

2.1. The Reparameterization of Liu Regression 

The reparameterization of Liu Regression transforms a multiple regression model into a 
canonical form, offering valuable insights into variable relationships and enhancing predictive 
accuracy [17]. The optimal Liu parameter is determined by minimizing the mean squares error. 
Akdeniz and Kacįranlar [18] introduced a new biased estimator and assessed its performance against 
a restricted least squares estimator regarding mean squares error. The comparison of the Liu 
estimator’s performance in canonical form is expressed as follows: 

,y Zα ε= +          (6) 
where Z XG= , 'Gα β= , ' ' 'Z Z G X XG= = Λ , and Λ is a diagonal matrix such that

1 2( , ,..., )pλ λ λ . The OLS estimator of canonical form can be difined as 
1ˆ ' .OLS Z yα −= Λ         (7) 

Similarly, the Liu estimator [19] can be written as 
1

.

1
.

1
.

ˆ ˆ( ) ( ' )

ˆ( ) ( )

ˆ(1 )( ) .

Liu p R Liu OLS

p R Liu OLS

R Liu p OLS

I Z y d

I d I

I d I

α α

α

α

−

−

−

= Λ + +

= Λ + Λ +

 = − − Λ + 

       (8) 

The bias, variance (Var), and mean square error (MSE) of the reparameterization of OLS 
estimator from (7) are expresses as: 

1ˆ ˆ( ) ( ) ( ' ) ' 0,OLS OLSBias E E Z Z Zα α α ε− = − = =   
1 1

2 1 2 1

ˆ ˆ ˆ( ) ( )( ) ' ( ' ) ' ' ( ' )

( ' ) ,
OLS OLS OLSVar E E Z Z Z Z Z Z

Z Z

α α α α α εε

σ σ

− −

− −

 = − − =  
= = Λ  

[ ]2

2 1

ˆ ˆ ˆ( ) ( ) ( )

.
OLS OLS OLSMSE Var Biasα α α

σ −

= +

= Λ  
The bias, variance (Var), and mean square error (MSE) of the reparameterization of Liu estimator 

from (8) are proposed in following: 
1

. .ˆ( ) ( 1)( ) ,R Liu R Liu pBias d Iα α−= − Λ +  
1 2 1 1

. . .ˆ( ) ( ) ( ) ( ) ( )( ) ,R Liu p R Liu p R Liu p pVar I d I d I Iα σ− − −= Λ + Λ + Λ Λ + Λ +  
1 2 1 1

. . .

2 1 ' 1
.

ˆ( ) ( ) ( ) ( ) ( )( )

ˆ ˆ(1 ) ( ) ( ) .
R Liu p R Liu p R Liu p p

R Liu p OLS OLS p

MSE I d I d I I

d I I

α σ

α α

− − −

− −

= Λ + Λ + Λ Λ + Λ +

+ + Λ + Λ +
 

The comparison among the OLS and Liu estimator of canonical form by considering of the 
variance and MSE. 

Given the ˆOLSα  and .ˆR Liuα , if the .ˆR Liuα  is the better estimator than ˆOLSα  that is 

.ˆ ˆ( ) ( ) 0OLS R LiuMSE MSEα α− >  if and only if, .ˆ ˆ( ) ( ) 0.OLS R LiuVar Varα α− >  
Recall that 

2 1ˆ( )OLSVar α σ −= Λ  and 
1 2 1 1

. . .ˆ( ) ( ) ( ) ( ) ( )( ) .R Liu p R Liu p R Liu p pVar I d I d I Iα σ− − −= Λ + Λ + Λ Λ + Λ +  

Then, 
2 1 1 2 1 1

. . .

2
.2

2

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )( )

( )1 0 , 1,..., .
( 1)

OLS R Liu p R Liu p R Liu p p

j R Liu

j j j

Var Var I d I d I I

d
diag j p

α α σ σ

λ
σ

λ λ λ

− − − −− = Λ − Λ + Λ + Λ Λ + Λ +

 +
= − > = 

+    
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It can observe 
2

.
2

( )1
( 1)

j R Liu

j j j

dλ
λ λ λ

+
>

+
 when .0 1R Liud< < .It can conclude that 

.ˆ ˆ( ) ( ) 0,OLS R LiuVar Varα α− > and the Liu estimator outperforms the OLS estimator. 

2.2. Liu Parameter 

From the above subsection, we compare the two estimators. The reparameterization of Liu 
regression provides the performance estimator. However, the existing Liu estimator is to select the 
appropriate Liu parameter that has been started by Liu [6] and developed into another model by 
Suhail et al. [13], Lukman et al. [14], Abdelwahab et al. [20], and Babar et al. [21]. The optimal Liu 
parameter is one reason to make the minimum of mean squares error (MSE) that is excessed to affect 
the estimation of the Liu estimator of collinearity on independent variables. However, the trace of a 
diagonal matrix of transformation is useful for calculating the optimal Liu parameter. For this article, 
we suggest the original Liu parameter, which is proposed by Liu [6], which is defined as the 
minimum MSE (mm), optimum (opt), and Cl criterion (cl), respectively following: 

12
2

2
1

1
( 1)

ˆ(1 )
ˆ

( 1)

p

j j j
mm p

j

j j j

d
λ λ

σ
α

λ λ

=

=

  
  +   = −      +   

∑

∑
,

2 2

2
1

2 2

2
1

ˆ
( 1)

ˆˆ
( 1)

p
j

j j
opt p

j j

j j j

d

α σ
λ

σ λ α
λ λ

=

=

  −
  +   =   +   +   

∑

∑
 

, and

12
2

2
1

1
( 1)

ˆ(1 )
ˆ

( 1)

p

j j
cl p

j j

j j j

d
λ

σ
λ α

λ λ

=

=

  
  +   = −      +   

∑

∑
. 

Furthermore, Liu [7] improved the Liu parameter in the multiple linear regression under the 
approximation of the predicted residual error sum of squares criterion by calling improved Liu 
estimator (ILE) as 

1 1

1

ˆ
1 1 1

,
ˆ

1 1

n
i i i

i ii ii ii
ILE p

i i

j ii ii

e e e
g h h

d
e e
g h

= −

=

  
−  − − −  =

 
− − − 

∑

∑

 



 
where 

' ' ' '

1 1

ˆ ( ' ) ( ' ), ( ' ) ( ' ),

( ' ) ', ( ' ) '.
i i i i i i i i p i i i i

p

e y x X X x x X y x y e y x X X I x x X y x y

G X X X I X H X X X X− −

= − − − = − + − −

= + ≅



 
Özkale and Kaçiranlar [11] introduced a new two-parameter approach by incorporating the 

contraction estimator, encompassing well-known methods such as restricted least squares, restricted 
ridge, restricted contraction estimators, and a novel modified, restricted Liu estimator (RLE). It can 
be written by 

( )
2

1
1 1 1

ˆ
1 (1 )(1 )

n
di i

RLE ii d ii
i ii ii ii

e ed h H
h h h − −

= − −

 
= − − − − − 
∑ 

 
where 1

1 1( ' ) ', ( ' ) 'ii iih X X X X h X X X I X−
− −= = + , 
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d iiH −
 is the diagonal elements from Liu hat matrix, and ˆdie is the ith residual at specific value 

of d . 
Mallows [22] discussed the interpretation of Cp-plots by using the display as a basis for formally 

selecting a subset-regression model and extending to estimate the Liu estimator. The Liu parameter 
is defined to be 

2 2 trace ( ) ( 2),
ˆCp d ii

SSRd H n
σ −= + − −

 

where 
( )

2

1
1 1 1

ˆ
.

1 (1 )(1 )

n
di i

ii d ii
i ii ii ii

e eSSR h H
h h h − −

= − −

 
= − − − − − 
∑ 

 
In this paper, we modify the Liu parameter from Mallows [22] to introduce the mean squares 

error, which is obtained by the mean of sum squares residual (SSR) in the range between zero and 
one as follows: 

( )
2

1
1 1 1

ˆ
1 (1 )(1 )

.

n
di i

ii d ii
i ii ii ii

MSE

e e h H
h h h

d
p

− −
= − −

 
− − − − − =

∑ 

 
Furthermore, the correlation coefficient often denoted as R-squared (

2R  ), is a critical metric in 
regression analysis. It quantifies the proportion of the variance in the dependent variable that can be 
predicted from the independent variables. From the significance of R-squared, we propose the new 

Liu parameter by computing the correlation coefficient as 1- 2 1 /R SSR SST= − which is rewritten by 

( )

( )

2

1
1 1 1

2 2

1
1 1 1

ˆ
1 (1 )(1 )

1 .
ˆ

1 (1 )(1 )

n
di i

ii d ii
i ii ii ii

R
n

di i
ii d ii

i ii ii ii

e e h H
h h h

d
e e g G
g g g

− −
= − −

− −
= − −

 
− − − − − = −

 
− − − − − 

∑

∑





 
Scaling options are utilized to standardize the independent variables and assess their 

performance via the Liu estimator. The initial method, introduced by Liu [6], is centered, 
standardizing independent variables to have zero mean and unit variance. The scaled option further 
standardizes independent variables. Lastly, the sc option scales independent variables in correlation 
form, a concept explored by Belsley [23].  

3. Simulation Study 

As the previous section’s theoretical comparison among the Liu estimator, a simulation study 
covers the Monte Carlo simulation using the R 4.2.1 programming languages. The objective of the 
simulation study is to estimate and compare the Liu parameter to grasp the better performance of the 
Liu parameter on the multiple regression model. The independent variables ( ix



) are generated from 
the multivariate normal distribution in five, ten, and fifteen independent variables based on Toeplitz 
correlation ( ρ ) values of 0.1 and 0.9. The multivariate normal distribution based on parameter 
means ( µ



 ) and covariance matrix ( ∑  ) is simulated as multicollinearity between independent 

variables. The probability distribution is defined by 

( )
( ) ( )

( )

11exp
2,

2

T

i i

i p

x x
f x

µ µ
µ

π

− − − Σ − 
 Σ =

Σ

 

 





 (7) 
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, where 

1

2

...

i

i
i

ip

x
x

x

x

 
 
 =  
 
  



, 

1

2 , 1, 2,..., .
...

p

i n

µ
µ

µ

µ

 
 
 = =
 
 
  



 
The type of covariance matrix is mentioned in the Toeplitz correlation model, which implies that 

closely located independent variables have a high correlation, and the correlation decreases as 
independent variables are farther apart. A matrix with the following pattern characterizes the 
relationship: 

2 1

2

2 3

1 2 3

1
1

1

1

p

p

p

p p p

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

−

−

−

− − −

 
 
 
 Σ =
 
 
  







    

  
where the correlation coefficient or level of multicollinearity is given by 0.1 and 0.9. 

The observations on the dependent variable are obtained from the multiple regression model as 

0 1 1 2 2 ... 1, 2,..., ,,i i i ip p i iy x x x nβ β β β ε= + + + + =+    (8) 
where ε is generated from the normal distribution to be mean zero and variance one, the regression 
coefficients ( 0 1, ,..., pβ β β ) are defined the constant values. 

The performance criterion is used to judge the performance of different Liu parameters in 
estimating the Liu estimator. Evaluated mean absolute percentage error (MAPE) is defined as: 

1

ˆ1Mean Absolute Percentage Error 100,
n

i i

i i

y y
n y=

−
= ×∑

   (9) 
where iy is the real dataset and ˆiy  is the estimated dataset. The average of mean absolute 
percentage error of the OLS and eight Liu parameters for five, ten, and fifteen variables are presented 
in Tables 1–3 according to their correlation coefficient (0.1 and 0.9). Table 4 presents the Liu parameter 
values to estimate the Liu estimator. The average of over 1,000 replications is employed to 
approximate the average of mean absolute percentage error. The minimum average of mean absolute 
percentage error is shown in bold letters. 

Table 1. The average of mean absolute percentage error of Liu estimators for Toeplitz correlation of 
center option. 

p Methods 
0.1ρ =  0.9ρ =  

50n =  100n =  150n =  200n =  50n =  100n =  150n =  200n =  

5 

OLS  0.810   0.722  0.758  0.747  0.815 0.766  0.760   0.752 
dmm  0.600  0.671  0.694  0.700 1.470   1.370  1.190  1.040 

dcl  0.596   0.671  0.694  0.700  0.737  0.725  0.726  0.718 
dopt 0.599 0.671 0.694 0.700 0.650 0.700 0.720 0.719 
dILE 5.970 2.360 2.090 5.980 1.490 1.440 1.260 4.720 

dPRESS 5.810 5.240 4.870 4.860 4.910 4.250 3.930 3.650 
dCp 1.150 0.823 0.761 0.737 0.901 0.753 0.733 0.721 

dMSE 0.611 0.674 0.696 0.700 0.599 0.672 0.697 0.704 
dR2 0.593 0.670 0.694 0.700 0.596 0.671 0.696 0.703 

 
10 

OLS   0.842  0.740  0.713  0.698 0.859   0.753 0.726  0.715  
dmm 0.465   0.570  0.604  0.619 1.130   0.938  0.864  0.862 

dcl   0.450  0.569  0.604  0.619  0.766  0.713  0.688  0.684 
dopt 0.461 0.570 0.604 0.619 0.520 0.617 0.641 0.656 
dILE 13.90 3.270 2.210 1.550 4.000 3.090 2.460 6.730 

dPRESS 10.80 7.830 7.030 6.680 8.010 6.470 5.510 4.970 
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dCp 2.580 1.320 0.969 0.833 1.630 1.020 0.811 0.737 
dMSE 0.460 0.575 0.607 0.620 0.572 0.577 0.614 0.631 
dR2 0.439 0.567 0.604 0.619 0.448 0.576 0.614 0.631 

15 

OLS   0.884 0.722  0.685   0.665  0.910  0.746 0.707  0.687  
dmm  0.337  0.478  0.530  0.552  0.905  0.804 0.801  0.798 

dcl   0.286  0.476  0.529  0.552  0.706  0.681 0.688   0.657 
dopt 0.315 0.478 0.530 0.552 0.375 0.535 0.582 0.599 
dILE 19.30 4.300 2.880 1.890 5.040 5.340 3.670 4.460 

dPRESS 18.20 10.50 8.900 8.200 11.20 8.570 7.230 6.170 
dCp 4.690 2.130 1.410 1.100 2.790 1.520 1.090 0.861 

dMSE 0.288 0.483 0.533 0.554 1.150 0.505 0.546 0.570 
dR2 0.255 0.474 0.528 0.551 0.262 0.488 0.545 0.570 

Table 2. The average of mean absolute percentage error of Liu estimators for Toeplitz correlation of 
scaled option. 

p Methods 
0.1ρ =  0.9ρ =  

50n =  100n =  150n =  200n =  50n =  100n =  150n =  200n =  

5 

OLS  0.810   0.722  0.758  0.747  0.815 0.766  0.760   0.752 
dmm 0.599   0.671 0.694  0.700  1.440  1.350   1.180  1.050 

dcl   0.595  0.671  0.694  0.700 0.728   0.724  0.726  0.718 
dopt 0.599 0.671 0.694 0.700 0.645 0.699 0.720 0.719 
dILE 5.500 2.310 2.030 6.360 1.450 1.420 1.260 5.040 

dPRESS 5.470 5.110 4.790 4.800 4.670 4.150 3.900 3.640 
dCp 1.100 0.816 0.758 0.736 0.878 0.749 0.732 0.721 

dMSE 0.609 0.674 0.696 0.700 0.599 0.672 0.697 0.704 
dR2 0.593 0.670 0.694 0.699 0.596 0.671 0.696 0.703 

 
10 

OLS   0.842  0.740  0.713  0.698 0.859   0.753 0.726  0.715  
dmm 0.463   0.570 0.604  0.619   1.100 0.913  0.864   0.861 

dcl   0.449  0.569  0.604  0.619 0.754   0.705  0.689  0.684 
dopt 0.459 0.570 0.604 0.619 0.516 0.615 0.641 0.656 
dILE 14.20 3.220 2.190 1.520 3.930 3.140 2.460 6.890 

dPRESS 10.40 7.600 6.900 6.570 7.800 6.320 5.500 4.990 
dCp 2.480 1.290 0.959 0.827 1.590 1.000 0.812 0.739 

dMSE 0.458 0.574 0.607 0.620 0.570 0.577 0.614 0.631 
dR2 0.439 0.567 0.604 0.619 0.448 0.576 0.614 0.631 

15 

OLS   0.884 0.722  0.685   0.665  0.910  0.746 0.707  0.687  
dmm 0.335  0.478   0.530  0.552 0.880  0.799  0.794   0.799 

dcl  0.285  0.476  0.529  0.552  0.695  0.677 0.666   0.658 
dopt 0.313 0.477 0.530 0.552 0.373 0.534 0.581 0.600 
dILE 18.50 4.170 2.790 1.870 4.840 5.370 3.420 4.660 

dPRESS 17.80 10.30 8.730 8.090 10.90 8.470 7.130 6.200 
dCp 4.570 2.080 1.390 1.090 2.730 1.510 1.080 0.865 

dMSE 0.287 0.482 0.532 0.554 1.130 0.505 0.546 0.570 
dR2 0.255 0.474 0.528 0.551 0.262 0.488 0.545 0.570 

Table 3. The average of mean absolute percentage error of Liu estimators for Toeplitz correlation of 
SC option. 

p Methods 
0.1ρ =  0.9ρ =  

50n =  100n =  150n =  200n =  50n =  100n =  150n =  200n =  

5 

OLS  0.810   0.722  0.758  0.747  0.815 0.766  0.760   0.752 
dmm 0.955   0.950 0.929  0.944   10.30 19.30  24.80  28.70  

dcl   0.784  0.840  0.847  0.858 3.220   4.720  5.710  6.150 
dopt 0.931 0.944 0.927 0.942 1.960 3.540 5.160 6.330 
dILE 45.10 40.30 50.10 272.0 10.70 20.80 24.60 256.0 
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dRLE 51.80 102.0 147.0 200.0 40.00 80.70 120.0 160.0 
dCp 8.770 9.300 9.470 9.560 5.470 6.420 6.830 7.070 

dMSE 1.380 1.590 1.670 1.690 0.726 0.937 1.090 1.170 
dR2 0.596 0.673 0.697 0.702 0.596 0.671 0.696 0.703 

 
10 

OLS   0.842  0.740  0.713  0.698 0.859   0.753 0.726  0.715  
dmm  1.060  1.030 1.030  1.050  6.440   9.680  13.50 18.70  

dcl   0.785  0.856  0.882  0.900  3.800  5.650  7.260  8.910 
dopt 0.997 1.020 1.020 1.040 1.670 3.030 4.400 6.060 
dILE 115.0 57.90 56.50 49.00 23.60 37.00 56.10 194.0 
dRLE 83.10 142.0 205.0 268.0 51.90 95.50 141.0 183.0 
dCp 19.60 21.70 22.20 22.40 10.20 12.30 13.40 13.90 

dMSE 1.060 1.720 1.900 1.980 2.090 0.695 0.691 0.829 
dR2 0.441 0.569 0.605 0.620 0.448 0.576 0.614 0.631 

15 

OLS   0.884 0.722  0.685   0.665  0.910  0.746 0.707  0.687  
dmm  1.220 1.060   1.090  1.110 4.440  7.550   11.40 16.40  

dcl   0.763  0.858  0.901  0.924  3.350  5.730  7.780 10.10  
dopt 1.040 1.050  1.080 1.100 1.350 2.680 4.150 5.810 
dILE 121.0 69.50 71.50 63.90 26.30 73.30 74.20 140.0 
dRLE 116.0 176.0 245.0 317.0 59.10 110.0 156.0 204.0 
dCp 29.80 34.70 36.10 36.70 14.60 18.60 20.20 21.30 

dMSE 0.737 1.570 1.920 2.070 5.810 1.540 0.772 0.613 
dR2 0.256 0.475 0.529 0.552 0.262 0.488 0.545 0.570 

Tables 1–3 describe the simulated average of mean absolute percentage error for two levels of 
Toeplitz correlation. In Tables 1–3, the smallest value of the MAPE is highlighted in bold letters. The 
simulation results show that the modified Liu parameter in terms of R-squared (dR2) has the smallest 
values of MAPE, so it outperforms the other methods, especially in the SC option in Table 3. 
However, the dILE, dRLE, and dCp have the weakest performance in all cases. Furthermore, the 
MAPE of dmm, dcl, and dopt equals the dR2 in the center and scaled options in Tables 1 and 2. The 
behavior of sample sizes can be observed in the sample impact on estimation since the MAPE 
decreases when sampling sizes decrease. The MAPE of independent variables is reduced when the 
independent variables increase. The Liu parameter of the estimate Liu estimator is presented in Table 
4 and is varied by sample sizes, independent variables, and the level of correlation. 

Table 4. The mean of Liu parameters for Toeplitz correlation in multiple regression model. 

p Methods 
0.1ρ =  0.9ρ =  

50n =  100n =  150n =  200n =  50n =  100n =  150n =  200n =  

5 

dmm  0.577 0.598   0.633 0.616   -6.730 -13.90   -18.10  -20.80 
dcl  0.690  0.692  0.707  0.695  -1.430  -2.600  -3.370  -3.690 

dopt  0.574  0.602  0.635  0.618  -0.432  -1.680  -2.940  -3.820 
dILE -0.297 5.660 0.240 106.0 1.450 7.810 -1.300 -161.0 
dRLE 34.10 65.20 92.70 125.0 32.00 63.50 93.50 124.0 
dCp 6.590 6.810 6.880 6.910 5.220 5.940 6.250 6.410 

dMSE 0.206 0.094 0.059 0.044 0.906 0.500 0.356 0.281 
dR2 0.964 0.961 0.960 0.960 0.990 0.989 0.989 0.989 

 
10 

dmm 0.529  0.593   0.606 0.599  -3.220  -5.760  -8.340   -12.00 
dcl   0.680  0.692  0.693  0.689  -1.540  -2.920  -4.010  -5.170 

dopt  0.562  0.599  0.609  0.601  -0.079  -1.070  -2.020  -3.180 
dILE 30.70 -1.720 3.520 -2.090 3.510 -13.70 20.60 67.40 
dRLE 43.40 70.50 100.0 130.0 36.20 67.30 98.40 128.0 
dCp 11.00 11.60 11.70 11.80 7.940 9.560 10.30 10.70 

dMSE 0.520 0.205 0.129 0.093 2.370 1.160 0.821 0.637 
dR2 0.984 0.982 0.981 0.981 0.997 0.997 0.997 0.997 

15 dmm  0.451  0.591  0.596 0.595  -1.860  -3.900  -6.490  -9.660  
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dcl   0.669  0.690  0.688  0.686 -1.150   -2.700  -4.080  -5.540 
dopt  0.536  0.599  0.600 0.598  0.153  -0.701  -1.690  -2.760 
dILE -0.136 7.580 1.560 -2.120 -5.300 29.40 16.10 -28.60 
dRLE 55.80 78.40 107.0  137.0 38.90 72.10 103.0 134.0 
dCp 15.10 16.30 16.60 16.70 10.40 13.00 14.20 14.90 

dMSE 1.020 0.343 0.205 0.147 4.720 1.940 1.320 1.020 
dR2 0.991 0.989 0.988 0.988 0.999 0.999 0.999 0.998 

From Table 4, the level of the correlation coefficient has a significant effect in computing the Liu 
parameter. The dmm, dcl, and adopt are shown a positive, small correlation, but the large correlation 
has exhibited a negative. The dMSE is stanned from zero to one for small correlation, but the dMSE 
is more significant than one for large correlation. The excellent performance in Liu estimation, dR2, 
is approximated in the range of zero to one in all cases. Furthermore, the dILE, dRLE, and dCp have 
large Liu parameters and show the lowest performance in Tables 1–3. For a better understanding, we 
have plotted the Liu parameter just dmm, dcl, dopt, dMSE, dR2 for multicollinearity 0.1 and 0.9 in 
Figures 1 and 2, respectively. 

   
Figure 1. Estimated Liu parameter values for p = 5, 10, and 15; and the level correlation at 0.1. 

   
Figure 2. Estimated Liu parameter values for p = 5, 10, and 15; and the level correlation at 0.9. 

4. Application in Actual data 

We employed Liu regression to distinguish between blood donors’ laboratory values and 
patients’ age using the Hepatitis C patients dataset sourced from the UCI Machine Learning. This 
dataset was retrieved from the https://archive.ics.uci.edu/ml/datasets/HCV+data. The dependent 
variable was the age of patients and independent variables included Albumin (ALB), Total Protein 
(PROT), Cholinesterase (CHE), Cholesterol (CHOL), Alkaline Phosphatase (ALP), Alanine 
Aminotransferase (ALT), Creatinine (CREA), Bilirubin (BIL), Aspartate Aminotransferase (AST), and 
Gamma-Glutamyl Transferase (GGT). The dataset comprised 589 records displayed the descriptive 
statistics about the Hepatitis C dataset in Table 5. 
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Table 5. Descriptive statistics of the Hepatitis C dataset. 

Variables Mean Median Std. Dev. Min Max 
ALB 41.62 41.90 5.76 14.90 82.20 

PROT 71.89 72.10 5.31 44.80 86.50 
CHE 8.20 8.26 2.19 1.42 16.41 

CHOL 5.39 5.31 1.12 1.43 9.67 
ALP 68.12 66.20 25.92 11.30 416.60 
ALT 26.58 22.70 20.86 0.90 325.3 

CREA 81.67 77.00 50.69 8.00 1079.10 
BIL 11.02 7.10 17.40 0.80 209.00 
AST 33.77 25.70 32.86 10.60 324.0 
GGT 38.20 22.80 54.30 4.50 650.90 

For checking multicollinearity data, Pearson’s correlation analysis was employed to ascertain 
any potential relationship among the ten continuous independent variables. The formula utilized for 
computing the correlation between two variables was: 

1 1 1

2 2

1 1 1 1

n n n

i i i i
i i i

n n n n

i i i i
i i i i

n x y x y
r

n x x n y y

= = =

= = = =

   −    
   =

      − −      
         

∑ ∑ ∑

∑ ∑ ∑ ∑
. 

From above formula, the correlation coefficients for the independent variables are outlined in 
Table 6. and Figure 3. The null hypothesis stated the no relationship between two variables and the 
alternative hypothesis assessed the significance of these relationships. The t-statistics were evaluated 

for hypothesis testing of Pearson’s correlation by 2

2
1
nt r

r
−

=
−

 with a degree of freedom (df) n-

2. Ultimately, a p-value below 0.05 for the t-statistics signified a rejected null hypothesis and mean 
significant relationship between the two variables as demonstrated in Table 6. 

Table 6. Pearson correlation matrix for the relationship between ten independent variables. 

Variables ABL PROT CHE CHOL ALP ALT CREA BIL AST GGT 
ABL 

p-value 
1.00 

 
0.57* 
<0.05 

0.36* 
<0.05 

0.21* 
<0.05 

-0.15* 
0.01 

0.04 
1.00 

0.00 
1.00 

-0.17* 
<0.05 

-0.18* 
<0.05 

-0.15* 
0.01 

PROT 
p-value 

- 
 

1.00 
 

0.31* 
<0.05 

0.25* 
<0.05 

-0.06 
1.00 

0.02 
1.00 

-0.03 
1.00 

-0.05 
1.00 

0.02 
1.00 

-0.04 
1.00 

CHE 
p-value 

- - 
1.000 

 
0.43* 
<0.05 

0.03 
1.00 

0.22* 
<0.05 

-0.01 
1.00 

-0.32* 
<0.05 

-0.20* 
<0.05 

-0.10 
0.36 

CHOL 
p-value 

- 
 

- 
 

- 
 

1.000 
 

0.13 
0.05 

0.15* 
0.01 

-0.05 
1.00 

-0.18* 
<0.05 

-0.20* 
<0.05 

0.01 
1.00 

ALP 
p-value 

- - - - 
1.000 

 
0.22* 
<0.05 

0.15* 
<0.05 

0.06 
1.00 

0.07 
1.00 

0.46* 
<0.05 

ALT 
p-value - - - - - 1.000 

-0.04 
1.00 

-0.11 
0.18 

0.20 
<0.05 

0.22 
<0.05 

CREA 
p-value 

- - - - - - 1.000 0.02 
1.00 

-0.02 
1.00 

0.13 
0.05 

BIL 
p-value - - - - - - - 

1.00 
  

0.31* 
<0.05 

0.21* 
<0.05 

AST 
p-value 

- - - - - - - -  
  

1.00 0.14* 
<0.05 

GGT 
p-value - - - - - - - - - 1.00 
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Note. *, The multicollinearity between two variables. 

Our findings showed that a moderately significant relationship, such as between 0.41-0.6, was 
observed in most cases. The weak level of significant relationship was evident in some instances, such 
as between 0.2 and 0.4. Most of the independent variables exhibited a significant relationship, with 
the exceptions being between Total Protein (PROT) and Alkaline Phosphatase (ALP), Alanine 
Aminotransferase (ALT), Creatinine (CREA), Bilirubin (BIL), Aspartate Aminotransferase (AST), and 
Gamma-Glutamyl Transferase (GGT). 

 

Figure 3. The correlation graph between ten independent variables. 

The computing Pearson correlation matrix displayed a different color in Figure 3, derived from 
Table 6, utilizes varying shades to enhance clarity. Light shading indicates moderate correlations, 
while dark shading represents strong correlations. Most independent variables are depicted with 
moderate and light shadings, suggesting inter-variable correlations or multicollinearity issues. The 
average of mean absolute percentage error Table 7was computed using OLS and eight Liu 
parameters with three scale options by generating 1,000 replications from all dataset. The selection of 
50, 100, 150, and 200 sample sizes mirrored those in the simulation data.   

Table 7. The estimated average of mean absolute percentage error on 50, 100, 150, and 200 sample 
sizes. 

OLS Scale Option Liu Parameters 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 July 2024                   doi:10.20944/preprints202407.0067.v1

https://doi.org/10.20944/preprints202407.0067.v1


 13 

 

Sample 
sizes 

dmm dcl dopt dILE dRLE dCp dMSE dR2 

 
n = 50 

 
 

24 

Liu 
parameter 

-155 -74.7 8.27 -12.3 4397 11.8 6.63 0.436 

Centered 89.3 43.8 12.30 313 2311 12.2 11 10.4 
Scaled 329 179 27.3 1609 10895 29.5 18.4 10.5 

SC 1219 598 78 4806 35798 88.6 47.5 11.8 

 
n= 100 

 
 

19.8 

Liu 
parameter 

-203 -122 -17.4 -118 7756 11.9 2.69 0.271 

Centered 37.9 28.3 14.6 101 1141 13.8 13.8 13.8 
Scaled 149 97.2 21.4 477 5567 16.3 13.8 13.8 

SC 1220 774 116 4187 46859 67.7 17.4 14.9 

 
n =150 

 
 

18.7 

Liu 
parameter 

-105 -101 -21.1 -81.7 10462 12 1.63 0.215 

Centered 22.5 21.7 15.3 57.6 815 14.9 15 15 
Scaled 45.4 42.8 18 20 6464 18 15 15 

SC 587 555 115 3176 52339 56.8 15.2 15.8 

 
n= 200 

 
 

18.2 

Liu 
parameter 

-175 -100 -25.9 588 13156 12 1.19 0.185 

Centered 26.3 20.1 15.8 53.6 692 15.4 15.4 15.5 
Scaled 45.6 32 17.5 229 2689 15.5 15.4 15.5 

SC 773 462 125 4743 58533 50.9 15.4 16.2 

Table 8 reveals that modified Liu parameters (dMSE and dR2) exhibited consistent and often 
superior accuracy prediction across all scenarios. The dCp, dMSE, and dR2 methods notably 
demonstrated commendable estimation in all sample sizes that better the original method as OLS. 
Consequently, the Liu parameter adjustment using the dCp, dMSE, and dR2 methods for ten 
independent variables consistently surpassed expectations and aligned closely with simulation 
outcomes. Although there were slight discrepancies in estimation when the sample sizes increased, 
substantial performance enhancements were evident with small sample sizes within the Hepatitis C 
dataset. 

5. Discussion 

The simulated results, presented in Tables 1–4, revealed that the mean of average percentage 
error was affected by the number of independent variables and sample sizes. The modified Liu 
estimator (dR2) exhibited superior performance with all independent variables and all sample sizes, 
whereas dMSE slightly differed from dR2. However, the average mean of average percentage error 
for significant independent variables was lower than that for small independent variables. The 
increase in the correlation coefficient was weak impact estimation in most methods, as indicated by 
the slight variation in the mean of average percentage error. Moreover, as the sample size increased, 
the performance estimation of all methods improved consistently. 

In the same direction, the real data results in Table 7 showcased that the proposed Liu 
parameters (dMSE and dR2) achieved the minor mean of average percentage error for datasets with 
eight independent variables. It was observed that the real data’s independent variables exhibited 
skewed distributions, as illustrated in Figure 4, confirmed by the Shapiro-Wilk test [24], indicating 
non-normality. So, the dCp effectively estimated large sample sizes using the center option. Notably, 
the discrepancy between the simulated and real data results emphasized the importance of 
considering the data source when selecting the Liu parameter. 

The proposed Liu parameters (dMSE and dR2) emerged as the most suitable for the Liu 
estimator. The medical dataset is widely used to predict medical diagnosis enhancement for 
classification patients. However, the Hepatitis C dataset is a medical dataset used to predict the 
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patient’s age in the multiple regression model with multicollinearity problem among the 
independent variables. Oladapo et al. [25] introduced a novel modified Liu Ridge-type estimator for 
estimating parameters in the general linear model, employing Portland cement data as a case study 
akin to medical data. Their proposed estimator demonstrates superior performance under certain 
conditions. Baber et al. [21] adapted Liu estimators to address multicollinearity issues in linear 
regression, utilizing tobacco data. They advocate for adopting these new estimators by practitioners 
facing high to severe multicollinearity among independent variables. Hammond et al. [26] employed 
a Liu estimator in inverse Gaussian regression, tackling multicollinearity in chemistry datasets. While 
considering the Liu estimator in multicollinearity based on multiple regression, the proposed Liu 
estimator outperforms the other. In summary, we always recommend that the Liu estimator user 
modify the Liu parameter in high multicollinearity. 

 

Figure 4. The histogram of ten independent variables. 

6. Conclusions 

This paper proposes a Liu parameter to estimate the Liu estimator in a multiple regression model 
correlated among independent variables, called multicollinearity. The selection of the Liu parameter 
is investigated and compared to the best performance. According to the simulation studies, the dR2 
is always superior in terms of the mean of average percentage error for all levels of correlation, 
sample sizes, and dependent variables. For application in real data, the dCp, dMSE, and dR2 show 
the best performance, especially dR2. Moreover, the modified Liu parameter performs better than the 
OLS method in simulation and real data. The Liu parameter can significantly improve the estimator 
in terms of the regression model when the independent variables have the multicollinearity problem 
in low and high correlation. Therefore, the recommendation is to use a Liu parameter in the zero 
range and one that gives the best estimation. 6. Patents 
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Supplementary Materials: The following supporting information can be downloaded at: 
https://archive.ics.uci.edu/ml/datasets/HCV+data. 
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