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Abstract: The statistical technique, the multiple regression model, is employed to analyze the
relationship between the dependent variable and several independent variables. The
multicollinearity problem is one of the assumptions in the multiple regression model that occurred
in the relationship among independent variables. The ordinal least square is the standard method
to evaluate parameters in the regression model, but the multicollinearity problem affects the
unstable estimator. The Liu regression is proposed to approximate the Liu estimators based on the
Liu parameter to overcome multicollinearity. For this paper, we have proposed the modified Liu
parameter to estimate the biasing parameter in scaling options to compare the ordinal least square
estimator with two modified Liu parameters and six standard Liu parameters. The performance of
the modified Liu parameter is considered with the generating independent variables from the
multivariate normal distribution in the Toeplitz correlation pattern as the multicollinearity data,
where the dependent variable is obtained from the independent variable multiplied with a
coefficient of regression and with the error from the normal distribution. The mean absolute
percentage error is computed as an evaluation criterion of estimation. For application, the Hepatitis
C patients dataset is a real dataset to investigate the benefit of the modified Liu parameter. Through
the simulation and real dataset, it can be seen from the results that the modified Liu parameter
outperforms the other Liu parameters and the ordinal least square estimator. It can recommend the
user for estimating parameters by using the modified Liu parameter when the independent variable
exits the multicollinearity problem.

Keywords: Liu parameter; multicollinearity; multiple regression; Toeplitz correlation

1. Introduction

Regression analysis is a potent statistical tool that illuminates the connection between one or
more independent variables and a dependent variable. Essential in data analysis and predictive
modeling, it finds broad application across fields such as economics, finance, healthcare, and social
sciences. However, regression models must meet certain assumptions to provide reliable and valid
results. These assumptions form the foundation of regression analysis and guide researchers in
interpreting the results accurately. One problematic assumption to avoid is the linear relationship
among the independent variables called multicollinearity, which occurs when two or more
independent variables are correlated, increasing the standard error of the coefficients. This escalation
in standard errors can render the coefficients of certain independent variables statistically
insignificant despite their potential significance. In essence, multicollinearity distorts the
interpretation of variables by inflating their standard errors [1]. Shrestha [2] discussed the primary
techniques for investigating multicollinearity using questionnaires for survey data to support
customer satisfaction.

Traditional regression techniques often struggle to handle multicollinearity effectively, leading
to biased results and unreliable predictions. Researchers have developed various methods to mitigate
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these challenges, including Liu Regression. Liu Regression is a technique developed to address
multicollinearity in regression analysis. It combines the principles of Ridge Regression with
orthogonalization to effectively mitigate the effects of multicollinearity. Dawoud et al. [3] devised a
novel modified Liu estimator to employ multicollinearity in a regression model with a single
parameter, incorporating two biasing parameters, with at least one designed to mitigate this issue.
Jahufer [4], on the other hand, employed the Liu estimator to alleviate the impact of multicollinearity
and the influence of specific observations, devising approximate deletion formulas for identifying
influential points.

Searching for accurate models that can efficiently handle complex datasets while offering robust
predictions is perpetual in predictive analytics. Among the array of methodologies, the Liu
Regression Model is a game-changer, heralding a new era in predictive modeling. The Liu Regression
Model introduces novel techniques that address the limitations of traditional regression methods.
Unlike conventional approaches that rely solely on linear relationships between variables, Liu
Regression leverages advanced algorithms to capture non-linear patterns and intricate interactions
within the data. Karlsson et al. [5] introduced a Liu estimator tailored for the beta regression model
with a fixed dispersion parameter, applicable in various practical scenarios where the correlation
level among the regressors varies.

Liu Regression [6] involves selecting a Liu estimator to balance the bias-variance trade-off. The
optimal value of the Liu estimator is typically chosen through techniques such as cross-validation.
The Liu estimator, named after its developer, is essential in managing multicollinearity. It is
particularly associated with methodologies like Ridge Regression with Orthogonalization, often
abbreviated as Liu Regression. Liu [7] enhanced the Liu estimator within the linear regression model
by considering the biasing parameter under the prediction sum of squares criterion. Yang and Xu [8]
proposed an alternative stochastic restricted Liu estimator for the parameter vector in a linear
regression model, incorporating additional stochastic linear restrictions. Hubert and Wijekoon [9]
investigated a novel Liu-type biased estimator, termed the stochastic restricted Liu estimator, and
examined its efficiency.

The improvement of the Liu estimator transformed the multiple regression model to canonical
form [10] to select the biasing parameter called the Liu parameter. The appropriate Liu parameters
have been developed to make minimum mean squares error in the estimation. Liu [6,7] applied the
iterative method to estimate the Liu parameter as the minimum mean square error in the smallest of
the Liu estimator. Ozkale and Kagiranlar [11] proposed the new restricted Liu parameter by
computing the predicted residual error sum of squares to determine the biasing parameter. Dawoud
et al.[12] proposed a new Liu estimator using the known mean squares error criterion to handle the
multicollinearity problem. Suhail et al. [13] developed a new method of biasing parameters to
mitigate the multicollinearity data. Lukman et al. [14] introduced a modified Liu estimator to address
multicollinearity issues within the linear regression model.

In this paper, we propose two competing Liu parameters, following mean squares error and R-
squared, to estimate the Liu estimator via multiple regression model with the multicollinearity
problem. We measure this performance in terms of minimum average of mean absolute percentage
errors for the simulation and real dataset. We also consider the scale option of independent variables
as the center, correlation form, and standardizes.

The paper is structured as follows: Section 2 presents the multiple regression estimators and
discusses the Liu estimator through the reparameterization of Liu regression into canonical form,
then compared with the OLS estimator. Section 3 generates the independent and dependent variables
to evaluate the performance estimators. Section 4 applies a real dataset to validate the simulation
results. Section 5 discusses the findings, followed by the conclusion in Section 6.

2. The Liu Regression

The multiple regression model is expressed in matrix form as:

y=Xp+e, @
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where y is the 721 column vector of dependent variable, and X is the 72X ( p+ 1)
independent variable matrix, L isthe (p+1)x1 multiple regression parameter vector, and &
isthe 72 > 1 error vector. The following assumptions of error are made: E(e)=0, E(ee " =o'l ;

,and Var(e)= o’l .- The efficient parameters ( ,8 ) in (1) are common estimated to obtain the
ordinary least squares (OLS) estimator in (2) as follows:

Bows = (X' X)X "y 2)
The estimation error of ﬁOL s is evaluated by computing
BOLS -f=X'X)"'X'y-p
=(X'X)'X'XB+e)-p )
=(X'X)'X'e.
The bias, variance (Var), and mean squares error (MSE) of the OLS estimator are computed from
(3) as follows:

Bias(Bos) = E(Bos—B) = E[ (X' X) ' X' | =0,
Var(Boys) = E(Boys = B)Bows = B)' = E[ (X' X)X 'ee' X (X' X) ]

= 0-2 (X'X)_la
MSE(ﬂAOLS) = Val’(,BOLS) + [Bias(ﬁom)]z
=o' (X' X)™".

From the above computation, the OLS estimator presents the unbiased estimator, which reduces
the performance in estimating parameters on the multicollinearity of independent variables.The

diagonal matrix of (X 'X )71 is caused the multicollinearity and inflated, increasing the estimated

variance and mean squares error. To overcome this problems, Liu [6] proposed the Liu esitimator
which provides the better performance than the OLS estimator [11,15]. The Liu estimator based on

the f3,,is defined by

ﬁLiu :(X'X+I)_1(X'X+dLiu1)ﬂOLS’O<dLiu<1’ (4)

where d,,, is the Liu parameter in term of the biasing parameter and 7 is the identity matrix. The

OLS form (1) and Liu estimators from (4) are related to the independent variables that are affected to
the multicollinearity problem because they depend on the OLS estimator.

The estimation error of BOL s is evaluated as the OLS estimator by comparing the Liu estimator
and the parameter of the multiple regression model

ﬂLiu_ﬂ = (X'X+1)71(X'X+dLiu1)ﬂOLS_ﬂ’ ®)

The bias [16], variance (Var), and mean square error (MSE) of the Liu estimator from (5) are
proposed in following:

Bias(f3,,) = (X' X + 1) (d,,, — D},
Var(f,,) = (X' X + 1)V (X' X+d,, )0’ (X' X)) (X' X +d, I )X'X+1)",
A A A 2
MSE(B,,,) = Var(B,) + | Bias(B,,,) ]
=(X'X+1)' (X' X+d, 1) (X' X)' (X' X+d, I )X'X+1)"
+[(X'X+D)(d, -DB] .
The Liu estimator is shown as the bias estimator, and its varaince is greater than that of the OLS

estimator when d,, lies on the range of zero to one. Then, Liu [7] developed the shrinkage factor

[17] to create the Liu parameter that may lie outside the range between zero and one. In the following

d0i:10.20944/preprints202407.0067.v1
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subsection, the multiple regression model can be transformed into a canonical form to estimate the
OLS and Liu estimators.

2.1. The Reparameterization of Liu Regression

The reparameterization of Liu Regression transforms a multiple regression model into a
canonical form, offering valuable insights into variable relationships and enhancing predictive
accuracy [17]. The optimal Liu parameter is determined by minimizing the mean squares error.
Akdeniz and Kacjranlar [18] introduced a new biased estimator and assessed its performance against
a restricted least squares estimator regarding mean squares error. The comparison of the Liu
estimator’s performance in canonical form is expressed as follows:

y = Za+e, (6)
where Z=XG, a=G'f, Z'Z=G'X'XG=A, and A is a diagonal matrix such that
(A4>4,,-.»4,) . The OLS estimator of canonical form can be difined as
Qs = N'Z'y. 7)
Similarly, the Liu estimator [19] can be written as
dLiu =(A+ Ip )71 (Z'y+ dR.LmeLS)
= (A+Ip)7l(A+dR,LiuI)aAOLS (8)

-1 A
=[1=(1=dy , JA+T,)" |Gy
The bias, variance (Var), and mean square error (MSE) of the reparameterization of OLS
estimator from (7) are expresses as:

Bias(Gy,5) = E(Gyys—) = E[(2'2)'Z'e | =0,
Var(Gpys) = E(Qpys —a) o5 — ) = E[(2'2)" 226" 2(2'2) " |
=0’ (Z'Z)" =0’
MSE(dOLS) = Va’”(dom) + [Bl‘aS(OA‘om)]2
=oc’A".

The bias, variance (Var), and mean square error (MSE) of the reparameterization of Liu estimator
from (8) are proposed in following:

Bias(Qy ;) = (dy ., —DA+1,) ',

Var(ég ;) = (A + Ip )_1 (A+ dRALiqu)o-z (A)_l (A+ dRALiqu A+ Ip)_l’

MSE (G ;) = (A+1,) (A+dy 1) (N (A+dy A+

+(+dy ) (A1) Ay Ao (A+1,)7

The comparison among the OLS and Liu estimator of canonical form by considering of the
variance and MSE.
ey o+ if the @, is the better estimator than ¢, that is
MSE(a,,;)—MSE(¢, ,,,) >0 ifand onlyif, Var(a,,)—Var(a,,,)>0.
Recall that

Given the @, and @

Var(d,s) = oA and
Var(éy,,,) = (A+1, Y (A + dprid, Yo 2 (A) (A + dp i JA+T, ).
Then,

Var(dOLs) - Var(dR.Liu) =o’A" - (A+ []7)_1 (A+ dR.Liqu )0'2 (A)_l (A+ dRALiqu YA+ Ip )_1

1 (/1/ + dR.Liu )2

- o'diag| ——-Z kNS0 it p.
gL. /1j(,1j+1)2} J7hek

J

d0i:10.20944/preprints202407.0067.v1
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i (/1 +dRLm)
A A4, +1)

J

It can observe when 0<d R Liv Jt can conclude that

Var(a,,;)—Var(ay,,,) >0, and the Liu estimator outperforms the OLS estimator.

2.2. Liu Parameter

From the above subsection, we compare the two estimators. The reparameterization of Liu
regression provides the performance estimator. However, the existing Liu estimator is to select the
appropriate Liu parameter that has been started by Liu [6] and developed into another model by
Suhail et al. [13], Lukman et al. [14], Abdelwahab et al. [20], and Babar et al. [21]. The optimal Liu
parameter is one reason to make the minimum of mean squares error (MSE) that is excessed to affect
the estimation of the Liu estimator of collinearity on independent variables. However, the trace of a
diagonal matrix of transformation is useful for calculating the optimal Liu parameter. For this article,
we suggest the original Liu parameter, which is proposed by Liu [6], which is defined as the
minimum MSE (mm), optimum (opt), and Cl criterion (cl) respectively following:

P 1 P &2
ZP: a; ZP: o +/1a
S AG S A0+
- i | -
= (4, +1
d, = (1-6%)| ¢ (/1022)
o Z] 2,4, +1)

Furthermore, Liu [7] 1mproved the Liu parameter in the multiple linear regression under the
approximation of the predicted residual error sum of squares criterion by calling improved Liu
estimator (ILE) as

- @ g 4

:Z—I: l_gii[l_hlii_l_hii]
b 6 ’
;[l_gii_l_hit:|

where

6 = yl.—x;(X'X—xl.x;.) (X'y-xy)e = yl.—x;(X'X+Ip—xl.x;.) (X'y=xy),
G=XX'X+1)'X'H=XXX)"X"

Ozkale and Kagiranlar [11] introduced a new two-parameter approach by incorporating the
contraction estimator, encompassing well-known methods such as restricted least squares, restricted
ridge, restricted contraction estimators, and a novel modified, restricted Liu estimator (RLE). It can
be written by

dILE =

2

< e, e ~
dyp = — \ hi—H,,
e zZ=1: l_hl—ii (l_hl—ii)(l_hii)( I ‘ )
h = X(X'X)'X', h, = X(X'X+I)'X'

where %
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H 4_;: 1s the diagonal elements from Liu hat matrix, and €,; is the ith residual at specific value
of d.

Mallows [22] discussed the interpretation of Cp-plots by using the display as a basis for formally
selecting a subset-regression model and extending to estimate the Liu estimator. The Liu parameter
is defined to be

SSR 5
dcp - ? +2trace(H, ;) —(n-2),

2
_ Y édi _ & O
P z L - hl—ii (1 - hl—ii )(1 - hii) (hl_ii Hd_ﬁ )} .

i=1

where

In this paper, we modify the Liu parameter from Mallows [22] to introduce the mean squares
error, which is obtained by the mean of sum squares residual (SSR) in the range between zero and
one as follows:

2
| - € 7
;[ - hl—ii (1 - hl—ii )(1 - hii) (hl‘if Hd_ii ):|
p .

2
Furthermore, the correlation coefficient often denoted as R-squared (R ), is a critical metric in
regression analysis. It quantifies the proportion of the variance in the dependent variable that can be
predicted from the independent variables. From the significance of R-squared, we propose the new

dMSE =

Liu parameter by computing the correlation coefficient as 1- R’ =1-SSR/ SST which is rewritten by

ol e, A 2
'Z_:‘|:1_h (A=h_)(1-h,) (hl_ii Hd"ii):|

1-ii

7
) P G,
;|:l_glii (l_glii)(l_gii)(glu d—ii ):|

Scaling options are utilized to standardize the independent variables and assess their
performance via the Liu estimator. The initial method, introduced by Liu [6], is centered,
standardizing independent variables to have zero mean and unit variance. The scaled option further
standardizes independent variables. Lastly, the sc option scales independent variables in correlation
form, a concept explored by Belsley [23].

dRZ =1-

3. Simulation Study

As the previous section’s theoretical comparison among the Liu estimator, a simulation study
covers the Monte Carlo simulation using the R 4.2.1 programming languages. The objective of the
simulation study is to estimate and compare the Liu parameter to grasp the better performance of the

Liu parameter on the multiple regression model. The independent variables ( X; ) are generated from

the multivariate normal distribution in five, ten, and fifteen independent variables based on Toeplitz
correlation (o) values of 0.1 and 0.9. The multivariate normal distribution based on parameter

means and covariance matrix ( Y ) is simulated as multicollinearity between independent
y7; y p

variables. The probability distribution is defined by

1 T
exp——(x—x) =" (x - 1)
) o o
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X,
i H
— Xz H,
X u= ,i=12,..,n
X.
, where L= Hy

The type of covariance matrix is mentioned in the Toeplitz correlation model, which implies that
closely located independent variables have a high correlation, and the correlation decreases as
independent variables are farther apart. A matrix with the following pattern characterizes the

relationship:
1 p p2 cee p1771
P 1 p P’
=l p 1 P’
_ppfl ppf2 pP*3 et 1]

where the correlation coefficient or level of multicollinearity is given by 0.1 and 0.9.
The observations on the dependent variable are obtained from the multiple regression model as

Vi = Botxafi+x b+ +x,pB,+e, i=12,..n, ®)
where ¢ is generated from the normal distribution to be mean zero and variance one, the regression
coefficients ( S, B,,..., B, ) are defined the constant values.

The performance criterion is used to judge the performance of different Liu parameters in
estimating the Liu estimator. Evaluated mean absolute percentage error (MAPE) is defined as:
1
n i=1 y i

Mean Absolute Percentage Error = %100,

©)

where ), is the real dataset and J, is the estimated dataset. The average of mean absolute
percentage error of the OLS and eight Liu parameters for five, ten, and fifteen variables are presented
in Tables 1-3 according to their correlation coefficient (0.1 and 0.9). Table 4 presents the Liu parameter
values to estimate the Liu estimator. The average of over 1,000 replications is employed to
approximate the average of mean absolute percentage error. The minimum average of mean absolute
percentage error is shown in bold letters.

Table 1. The average of mean absolute percentage error of Liu estimators for Toeplitz correlation of

center option.

p Methods p=0.1 p=09
n=50 n=100n=150n=200 n=50 n=100 n=15Cn =200
OLS 0.810 0.722 0.758 0.747 0.815 0.766 0.760 0.752
dmm 0.600 0.671 0.694 0.700 1.470 1.370 1.190 1.040
dcl 0.596 0.671 0.694 0.700 0.737 0.725 0.726 0.718
dopt 0.599 0.671 0.694 0.700 0.650 0.700 0.720 0.719
5 dILE 5.970 2.360 2.090 5.980 1.490 1.440 1.260 4.720
dPRESS 5.810 5.240 4.870 4.860 4910 4.250 3.930 3.650
dCp 1.150 0.823 0.761 0.737 0.901 0.753 0.733 0.721
dMSE 0.611 0.674 0.696 0.700 0.599 0.672 0.697 0.704
dR2 0.593 0.670 0.694 0.700 0.596 0.671 0.696 0.703
OLS 0.842 0.740 0.713 0.698 0.859 0.753 0.726 0.715
dmm 0.465 0.570 0.604 0.619 1.130 0.938 0.864 0.862
dcl 0.450 0.569 0.604 0.619 0.766 0.713 0.688 0.684
10 dopt 0.461 0.570 0.604 0.619 0.520 0.617 0.641 0.656
dILE 13.90 3.270 2.210 1.550 4.000 3.090 2.460 6.730
dPRESS 10.80 7.830 7.030 6.680 8.010 6.470 5.510 4.970
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dCp 2.580 1.320 0.969 0.833 1.630 1.020 0.811 0.737
dMSE 0.460 0.575 0.607 0.620 0.572 0.577 0.614 0.631
dR2 0.439 0.567 0.604 0.619 0.448 0.576 0.614 0.631
OLS 0.884 0.722 0.685 0.665 0.910 0.746 0.707 0.687
dmm 0.337 0.478 0.530 0.552 0.905 0.804 0.801 0.798
dcl 0.286 0.476 0.529 0.552 0.706 0.681 0.688 0.657
dopt 0.315 0.478 0.530 0.552 0.375 0.535 0.582 0.599
15 dILE 19.30 4.300 2.880 1.890 5.040 5.340 3.670 4.460
dPRESS 18.20 10.50 8.900 8.200 11.20 8.570 7.230 6.170
dCp 4.690 2.130 1.410 1.100 2.790 1.520 1.090 0.861
dMSE 0.288 0.483 0.533 0.554 1.150 0.505 0.546 0.570
dR2 0.255 0.474 0.528 0.551 0.262 0.488 0.545 0.570

Table 2. The average of mean absolute percentage error of Liu estimators for Toeplitz correlation of

scaled option.

P Methods

p=0.1

p=0.9

n=50 n=100n=1507n=200 n=50 n=100n=15Cn =200

OLS 0.810 0.722 0.758 0.747 0.815 0.766 0.760 0.752
dmm 0.599 0.671 0.694 0.700 1.440 1.350 1.180 1.050
dcl 0.595 0.671 0.694 0.700 0.728 0.724 0.726 0.718
dopt 0.599 0.671 0.694 0.700 0.645 0.699 0.720 0.719
5 dILE 5.500 2.310 2.030 6.360 1.450 1.420 1.260 5.040
dPRESS 5.470 5.110 4.790 4.800 4.670 4.150 3.900 3.640
dCp 1.100 0.816 0.758 0.736 0.878 0.749 0.732 0.721
dMSE 0.609 0.674 0.696 0.700 0.599 0.672 0.697 0.704
dR2 0.593 0.670 0.694 0.699 0.596 0.671 0.696 0.703
OLS 0.842 0.740 0.713 0.698 0.859 0.753 0.726 0.715
dmm 0.463 0.570 0.604 0.619 1.100 0.913 0.864 0.861
dcl 0.449 0.569 0.604 0.619 0.754 0.705 0.689 0.684
dopt 0.459 0.570 0.604 0.619 0.516 0.615 0.641 0.656
10 dILE 14.20 3.220 2.190 1.520 3.930 3.140 2.460 6.890
dPRESS 10.40 7.600 6.900 6.570 7.800 6.320 5.500 4.990
dCp 2.480 1.290 0.959 0.827 1.590 1.000 0.812 0.739
dMSE 0.458 0.574 0.607 0.620 0.570 0.577 0.614 0.631
dR2 0.439 0.567 0.604 0.619 0.448 0.576 0.614 0.631
OLS 0.884 0.722 0.685 0.665 0.910 0.746  0.707 0.687
dmm 0.335 0.478 0.530 0.552 0.880 0.799 0.794 0.799
dcl 0.285 0.476 0.529 0.552 0.695 0.677  0.666 0.658
dopt 0.313 0.477 0.530 0.552 0.373 0.534 0.581 0.600
15 dILE 18.50 4.170 2.790 1.870 4.840 5.370 3.420 4.660
dPRESS 17.80 10.30 8.730 8.090 10.90 8.470 7.130 6.200
dCp 4.570 2.080 1.390 1.090 2.730 1.510 1.080 0.865
dMSE 0.287 0.482 0.532 0.554 1.130 0.505 0.546 0.570
dR2 0.255 0.474 0.528 0.551 0.262 0.488 0.545 0.570

Table 3. The average of mean absolute percentage error of Liu estimators for Toeplitz correlation of

SC option.

P Methods

OLS
dmm
5 dcl
dopt
dILE

0.810
0.955
0.784
0.931
45.10

0.752
28.70
6.150
6.330
256.0

p=0.1 p=0.9
n=50 n=100n=150n=200 n=50 n=100 n=15Cn =200
0.722 0.758 0.747 0.815 0.766 0.760
0.950 0.929 0.944 10.30 19.30 24.80
0.840 0.847 0.858 3.220 4.720 5.710
0.944 0.927 0.942 1.960 3.540 5.160
40.30 50.10 272.0 10.70 20.80 24.60
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dRLE 51.80 102.0 147.0 200.0 40.00 80.70 120.0 160.0

dCp 8.770 9.300 9.470 9.560 5.470 6.420 6.830 7.070
dMSE 1.380 1.590 1.670 1.690 0.726 0.937 1.090 1.170
dR2 0.596 0.673 0.697 0.702 0.596 0.671 0.696 0.703
OLS 0.842 0.740 0.713 0.698 0.859 0.753 0.726 0.715
dmm 1.060 1.030 1.030 1.050 6.440 9.680 13.50 18.70
dcl 0.785 0.856 0.882 0.900 3.800 5.650 7.260 8.910
dopt 0.997 1.020 1.020 1.040 1.670 3.030 4.400 6.060
10 dILE 115.0 57.90 56.50 49.00 23.60 37.00 56.10 194.0
dRLE 83.10 142.0 205.0 268.0 51.90 95.50 141.0 183.0
dCp 19.60 21.70 22.20 22.40 10.20 12.30 13.40 13.90
dMSE 1.060 1.720 1.900 1.980 2.090 0.695 0.691 0.829
dR2 0.441 0.569 0.605 0.620 0.448 0.576 0.614 0.631
OLS 0.884 0.722 0.685 0.665 0.910 0.746 0.707 0.687
dmm 1.220 1.060 1.090 1.110 4.440 7.550 1140 16.40
dcl 0.763 0.858 0.901 0.924 3.350 5.730 7.780  10.10
dopt 1.040 1.050 1.080 1.100 1.350 2.680 4.150 5.810
15 dILE 121.0 69.50 71.50 63.90 26.30 73.30 74.20 140.0
dRLE 116.0 176.0 245.0 317.0 59.10 110.0 156.0 204.0
dCp 29.80 34.70 36.10 36.70 14.60 18.60 20.20 21.30
dMSE 0.737 1.570 1.920 2.070 5.810 1.540 0.772 0.613
dR2 0.256 0.475 0.529 0.552 0.262 0.488 0.545 0.570

Tables 1-3 describe the simulated average of mean absolute percentage error for two levels of
Toeplitz correlation. In Tables 1-3, the smallest value of the MAPE is highlighted in bold letters. The
simulation results show that the modified Liu parameter in terms of R-squared (dR2) has the smallest
values of MAPE, so it outperforms the other methods, especially in the SC option in Table 3.
However, the dILE, dRLE, and dCp have the weakest performance in all cases. Furthermore, the
MAPE of dmm, dcl, and dopt equals the dR2 in the center and scaled options in Tables 1 and 2. The
behavior of sample sizes can be observed in the sample impact on estimation since the MAPE
decreases when sampling sizes decrease. The MAPE of independent variables is reduced when the
independent variables increase. The Liu parameter of the estimate Liu estimator is presented in Table
4 and is varied by sample sizes, independent variables, and the level of correlation.

Table 4. The mean of Liu parameters for Toeplitz correlation in multiple regression model.

p Methods p= 0.1 p= 0.9
n=50 n=100n=150n=200 n=50 n=100 n=15Cn =200
dmm 0.577 0.598 0.633 0.616 -6.730 -13.90 -18.10 -20.80
dcl 0.690 0.692 0.707 0.695 -1.430 -2.600 -3.370 -3.690
dopt 0.574 0.602 0.635 0.618 -0.432 -1.680 -2.940 -3.820
5 dILE -0.297 5.660 0.240 106.0 1.450 7.810 -1.300 -161.0
dRLE 34.10 65.20 92.70 125.0 32.00 63.50 93.50 124.0
dCp 6.590 6.810 6.880 6.910 5.220 5.940 6.250 6.410
dMSE 0.206 0.094 0.059 0.044 0.906 0.500 0.356 0.281
dR2 0.964 0.961 0.960 0.960 0.990 0.989 0.989 0.989
dmm 0.529 0.593 0.606 0.599 -3.220 -5.760 -8.340 -12.00
dcl 0.680 0.692 0.693 0.689 -1.540 -2.920 -4.010 -5.170
dopt 0.562 0.599 0.609 0.601 -0.079 -1.070 -2.020 -3.180
dILE 30.70 -1.720 3.520 -2.090 3.510 -13.70 20.60 67.40
10 dRLE 43.40 70.50 100.0 130.0 36.20 67.30 98.40 128.0
dCp 11.00 11.60 11.70 11.80 7.940 9.560 10.30 10.70
dMSE 0.520 0.205 0.129 0.093 2.370 1.160 0.821 0.637
dR2 0.984 0.982 0.981 0.981 0.997 0.997 0.997 0.997

15 dmm 0.451 0.591 0.596 0.595 -1.860 -3.900 -6.490  -9.660
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dcl 0.669 0.690 0.688 0.686 -1.150 -2.700 -4.080  -5.540
dopt 0.536 0.599 0.600 0.598 0.153 -0.701 -1.690  -2.760
dILE -0.136 7.580 1.560 -2.120 -5.300 29.40 16.10 -28.60
dRLE 55.80 78.40 107.0 137.0 38.90 72.10 103.0 134.0
dCp 15.10 16.30 16.60 16.70 10.40 13.00 14.20 14.90
dMSE 1.020 0.343 0.205 0.147 4.720 1.940 1.320 1.020

dR2 0.991 0.989 0.988 0.988 0.999 0.999 0.999 0.998

From Table 4, the level of the correlation coefficient has a significant effect in computing the Liu
parameter. The dmm, dcl, and adopt are shown a positive, small correlation, but the large correlation
has exhibited a negative. The dMSE is stanned from zero to one for small correlation, but the dMSE
is more significant than one for large correlation. The excellent performance in Liu estimation, dR2,
is approximated in the range of zero to one in all cases. Furthermore, the dILE, dRLE, and dCp have
large Liu parameters and show the lowest performance in Tables 1-3. For a better understanding, we
have plotted the Liu parameter just dmm, dcl, dopt, dMSE, dR2 for multicollinearity 0.1 and 0.9 in
Figures 1 and 2, respectively.
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Figure 1. Estimated Liu parameter values for p =5, 10, and 15; and the level correlation at 0.1.
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Figure 2. Estimated Liu parameter values for p =5, 10, and 15; and the level correlation at 0.9.

4. Application in Actual data

We employed Liu regression to distinguish between blood donors’ laboratory values and
patients” age using the Hepatitis C patients dataset sourced from the UCI Machine Learning. This
dataset was retrieved from the https://archive.ics.uci.edu/ml/datasets/HCV+data. The dependent
variable was the age of patients and independent variables included Albumin (ALB), Total Protein
(PROT), Cholinesterase (CHE), Cholesterol (CHOL), Alkaline Phosphatase (ALP), Alanine
Aminotransferase (ALT), Creatinine (CREA), Bilirubin (BIL), Aspartate Aminotransferase (AST), and
Gamma-Glutamyl Transferase (GGT). The dataset comprised 589 records displayed the descriptive
statistics about the Hepatitis C dataset in Table 5.
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Table 5. Descriptive statistics of the Hepatitis C dataset.

Variables Mean Median Std. Dev. Min Max
ALB 41.62 41.90 5.76 14.90 82.20
PROT 71.89 72.10 5.31 44.80 86.50
CHE 8.20 8.26 2.19 1.42 16.41
CHOL 5.39 5.31 1.12 1.43 9.67
ALP 68.12 66.20 25.92 11.30 416.60
ALT 26.58 22.70 20.86 0.90 325.3
CREA 81.67 77.00 50.69 8.00 1079.10
BIL 11.02 7.10 17.40 0.80 209.00
AST 33.77 25.70 32.86 10.60 324.0
GGT 38.20 22.80 54.30 4.50 650.90

For checking multicollinearity data, Pearson’s correlation analysis was employed to ascertain
any potential relationship among the ten continuous independent variables. The formula utilized for
computing the correlation between two variables was:

To-{20)[2)
(5 {8

From above formula, the correlation coefficients for the independent variables are outlined in
Table 6. and Figure 3. The null hypothesis stated the no relationship between two variables and the
alternative hypothesis assessed the significance of these relationships. The t-statistics were evaluated

B

for hypothesis testing of Pearson’s correlation by ¢ = r with a degree of freedom (df) n-

2
—-r

2. Ultimately, a p-value below 0.05 for the t-statistics signified a rejected null hypothesis and mean
significant relationship between the two variables as demonstrated in Table 6.

Table 6. Pearson correlation matrix for the relationship between ten independent variables.

Variables ABL PROT CHE CHOL ALP ALT CREA BIL AST GGT

ABL 1.00 0.57*  0.36*  021*  -0.15* 0.04 0.00 -0.17*  -0.18*  -0.15%
p-value <0.05 <0.05 <0.05 0.01 1.00 1.00 <0.05  <0.05 0.01
PROT - 1.00 0.31*  0.25* -0.06 0.02 -0.03 -0.05 0.02 -0.04
p-value <0.05 <0.05 1.00 1.00 1.00 1.00 1.00 1.00
CHE 1.000  0.43* 0.03 0.22* -0.01 -0.32*  -0.20*  -0.10
p-value <0.05 1.00 <0.05 1.00 <0.05 <0.05 0.36
CHOL - - - 1.000 0.13 0.15* -0.05  -0.18* -0.20*  0.01
p-value 0.05 0.01 1.00 <0.05 <0.05 1.00
ALP 1.000 0.22* 0.15* 0.06 0.07 0.46*
p-value <0.05 <0.05 1.00 1.00 <0.05
ALT 1,000 -0.04 -0.11 0.20 0.22
p-value ) 1.00 018 <0.05 <0.05
CREA i i i i i i 1.000 0.02 -0.02 0.13
p-value 1.00 1.00 0.05
BIL 1.00 0.31*  0.21*
p-value <0.05 <0.05
AST - 0.14*
- - - - - - - 1.
p-value 00 <0.05
cGT - - - - - - - - - 1.00

p-value
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Note. *, The multicollinearity between two variables.

Our findings showed that a moderately significant relationship, such as between 0.41-0.6, was
observed in most cases. The weak level of significant relationship was evident in some instances, such
as between 0.2 and 0.4. Most of the independent variables exhibited a significant relationship, with
the exceptions being between Total Protein (PROT) and Alkaline Phosphatase (ALP), Alanine
Aminotransferase (ALT), Creatinine (CREA), Bilirubin (BIL), Aspartate Aminotransferase (AST), and
Gamma-Glutamyl Transferase (GGT).
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AST
GGT

BIL

|_
o)
o
o
0.75
PROT .
CHE Q 0.5
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F0.26
CREA . 02
AST .
-0.75

1

Figure 3. The correlation graph between ten independent variables.

The computing Pearson correlation matrix displayed a different color in Figure 3, derived from
Table 6, utilizes varying shades to enhance clarity. Light shading indicates moderate correlations,
while dark shading represents strong correlations. Most independent variables are depicted with
moderate and light shadings, suggesting inter-variable correlations or multicollinearity issues. The
average of mean absolute percentage error Table 7was computed using OLS and eight Liu
parameters with three scale options by generating 1,000 replications from all dataset. The selection of
50, 100, 150, and 200 sample sizes mirrored those in the simulation data.

Table 7. The estimated average of mean absolute percentage error on 50, 100, 150, and 200 sample

sizes.

OLS Scale Option Liu Parameters
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Sampl
:::_’Se dmm dcl dopt dILE dRLE dCp dMSE dR2
Liu
1155 -747 827 -12.3 4397 118 663  0.436
parameter
s Centered  89.3 438 1230 313 2311 122 11 104
24 Scaled 329 179 273 1609 10895 295 184 105
sC 1219 598 78 4806 35798 88.6 475 118
Liu 203 -122 174 -118 7756 119  2.69 0271
parameter
100 Centered 379 283 146 101 1141 138 138  13.8
19.8  Scaled 149 972 214 477 5567 163 138  13.8
sC 1220 774 116 4187 46859 677 174  14.9
Liu 2105 -101 -21.1 -81.7 10462 12 1.63 0215
parameter
150 Centered 225 217 153 576 815 149 15 15
187  Scaled 454 428 18 20 6464 18 15 15
sC 587 555 115 3176 52339 568 152  15.8
o
u 4175 <100 -259 588 13156 12 119  0.185
parameter
Centered 263 201 158 536 692 154 154 155
n= 200

18.2 Scaled 45.6 32 17.5 229 2689 155 15.4 15.5
SC 773 462 125 4743 58533 50.9 15.4 16.2

Table 8 reveals that modified Liu parameters (AMSE and dR2) exhibited consistent and often
superior accuracy prediction across all scenarios. The dCp, dMSE, and dR2 methods notably
demonstrated commendable estimation in all sample sizes that better the original method as OLS.
Consequently, the Liu parameter adjustment using the dCp, dMSE, and dR2 methods for ten
independent variables consistently surpassed expectations and aligned closely with simulation
outcomes. Although there were slight discrepancies in estimation when the sample sizes increased,
substantial performance enhancements were evident with small sample sizes within the Hepatitis C
dataset.

5. Discussion

The simulated results, presented in Tables 1-4, revealed that the mean of average percentage
error was affected by the number of independent variables and sample sizes. The modified Liu
estimator (dR2) exhibited superior performance with all independent variables and all sample sizes,
whereas dMSE slightly differed from dR2. However, the average mean of average percentage error
for significant independent variables was lower than that for small independent variables. The
increase in the correlation coefficient was weak impact estimation in most methods, as indicated by
the slight variation in the mean of average percentage error. Moreover, as the sample size increased,
the performance estimation of all methods improved consistently.

In the same direction, the real data results in Table 7 showcased that the proposed Liu
parameters (AMSE and dR2) achieved the minor mean of average percentage error for datasets with
eight independent variables. It was observed that the real data’s independent variables exhibited
skewed distributions, as illustrated in Figure 4, confirmed by the Shapiro-Wilk test [24], indicating
non-normality. So, the dCp effectively estimated large sample sizes using the center option. Notably,
the discrepancy between the simulated and real data results emphasized the importance of
considering the data source when selecting the Liu parameter.

The proposed Liu parameters (AMSE and dR2) emerged as the most suitable for the Liu
estimator. The medical dataset is widely used to predict medical diagnosis enhancement for
classification patients. However, the Hepatitis C dataset is a medical dataset used to predict the
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patient’s age in the multiple regression model with multicollinearity problem among the
independent variables. Oladapo et al. [25] introduced a novel modified Liu Ridge-type estimator for
estimating parameters in the general linear model, employing Portland cement data as a case study
akin to medical data. Their proposed estimator demonstrates superior performance under certain
conditions. Baber et al. [21] adapted Liu estimators to address multicollinearity issues in linear
regression, utilizing tobacco data. They advocate for adopting these new estimators by practitioners
facing high to severe multicollinearity among independent variables. Hammond et al. [26] employed
a Liu estimator in inverse Gaussian regression, tackling multicollinearity in chemistry datasets. While
considering the Liu estimator in multicollinearity based on multiple regression, the proposed Liu
estimator outperforms the other. In summary, we always recommend that the Liu estimator user
modify the Liu parameter in high multicollinearity.
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Figure 4. The histogram of ten independent variables.

6. Conclusions

This paper proposes a Liu parameter to estimate the Liu estimator in a multiple regression model
correlated among independent variables, called multicollinearity. The selection of the Liu parameter
is investigated and compared to the best performance. According to the simulation studies, the dR2
is always superior in terms of the mean of average percentage error for all levels of correlation,
sample sizes, and dependent variables. For application in real data, the dCp, dMSE, and dR2 show
the best performance, especially dR2. Moreover, the modified Liu parameter performs better than the
OLS method in simulation and real data. The Liu parameter can significantly improve the estimator
in terms of the regression model when the independent variables have the multicollinearity problem
in low and high correlation. Therefore, the recommendation is to use a Liu parameter in the zero
range and one that gives the best estimation. 6. Patents


https://doi.org/10.20944/preprints202407.0067.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 July 2024 doi:10.20944/preprints202407.0067.v1

15

Supplementary Materials: The following supporting information can be downloaded at:
https://archive.ics.uci.edu/ml/datasets/HCV+data.
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