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Article
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Abstract: In the fields of marine exploration and other domains, precise identification of underwater
targets is crucial for environmental monitoring. To address the growing demands for underwater
surveillance, this study introduces an advanced detection framework named YOLOv8-MU, developed
leveraging the cutting-edge YOLOv8 technology, specifically engineered to enhance the accuracy of
underwater target recognition. The YOLOv8-MU framework incorporates the innovative Large
Kernel Blocks (LarK Block) from UniRepLKNet, augmenting the model’s foundation without
increasing its complexity, thereby expanding its receptive field. Moreover, the integration of
the C2fSTR method, a sophisticated approach that merges Swin transformers with C2f units, is
aimed at boosting the model’s adaptability. Furthermore, the introduction of the SPPFCSPC_EMA
module, which combines Cross-Stage Partial Fast Spatial Pyramid Pooling (SPPFCSPC) with attention
mechanisms, significantly enhances the precision and robustness of underwater biological target
detection. Additionally, the model is equipped with a Fusion Block based on DAMO-YOLO, further
enhancing the efficiency of multi-scale feature extraction. The employment of the MPDIoU loss
function offers a viable solution to the challenges of localization accuracy and boundary clarity
in underwater target detection. Experimental results on the URPC2019 dataset demonstrate that
YOLOv8-MU achieved a mAP@0.5 accuracy rate of 78.4%, showing a performance increase of
5.6%, 1.1%, and 4.0% over the previous YOLOv5s, YOLOv7, and YOLOv8n models, respectively,
indicating its leading performance. Further evaluation of the URPC2020 dataset also confirms
the good generalization ability of the YOLOv8-MU architecture, with a mAP@0.5 reaching 80.4%,
surpassing other models including YOLOv5x and YOLOv8n, validating the widespread applicability
and superiority of this enhanced architecture.

Keywords: object detection; deep learning; YOLOv8; UniRepLKNet; Swin Transformer; SPPFCSPC

1. Introduction

In the exploration and management of marine resources, accurate detection and localization
of underwater resources are essential for their sustainable utilization. This area of application is
extensive, encompassing, but not limited to, monitoring marine ecosystems [1], exploring underwater
historical sites [2], and assessing the health of aquaculture [2]. To address the challenges posed by
the limitations of traditional detection methods and the complexity of marine environments, this
study investigates the use of intelligent sensors and automation technologies, such as Autonomous
Underwater Vehicles (AUVs), underwater positioning and navigation systems, wireless underwater
communication systems, and Remotely Operated Vehicles (ROVs), for efficient underwater exploration.
These advanced technological approaches not only enable direct observation of the deep sea but also
facilitate the precise mapping of seafloor topography and the accurate identification of various marine
organisms through integrated smart sensors, including sonar systems and high-resolution cameras.
Faced with the phenomena of light absorption and scattering in underwater environments, as well
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as the diversity of marine life forms, this research adopts an improved YOLOv8 [4] deep learning
architecture to further enhance the model’s feature extraction and recognition capabilities, especially
by incorporating intelligent algorithms to bolster the model’s adaptability and perceptual range in
complex underwater settings. Moreover, considering the importance of clear target boundaries for
accurate localization, we also focus on improving image boundary clarity through deep learning
techniques, thereby increasing the accuracy of detection.

In the field of computer vision, selecting an appropriate receptive field size is crucial for enhancing
the performance of neural networks. This is because only the image content falling within the receptive
field of a neuron can activate that neuron, thus influencing the final processing outcome. Therefore,
when designing networks, it is imperative to ensure that their receptive fields are sufficiently broad to
encompass all important regions of the image. Deep Convolutional Neural Networks (CNNs) have
demonstrated outstanding capabilities in handling complex visual tasks, where adjusting parameters
such as network depth and convolutional kernel size to modulate the network’s receptive field
has become a common strategy for improving prediction accuracy. This is particularly crucial in
applications requiring dense predictions such as semantic image segmentation [5][6], stereo vision
analysis [7], and optical flow estimation [8], as these tasks rely on a comprehensive understanding
of the extensive context surrounding each pixel to ensure no critical information is overlooked. In
this study, we adopted the innovative LarK Block from UniRepLKNet [9], which extends the model’s
receptive field by leveraging large kernel blocks without the need to increase network layers, effectively
enhancing the network’s ability to capture details. This approach enables the network to gain a
broader context without adding computational complexity, thereby improving its recognition and
understanding capabilities in complex scenes.

The intricate diversity of marine ecosystems and the morphological variations among organisms
pose significant challenges to underwater detection technologies. In the ever-changing marine
environment, the visual characteristics of aquatic organisms undergo varying degrees of change,
complicating the task of accurate detection. While traditional Transformer models [10] can partially
address these challenges, their complex structures demand substantial computational resources
and extensive training data, making model optimization quite challenging. In contrast, the
Swin Transformer [11] introduces a hierarchical attention mechanism to improve upon traditional
transformer architectures. By limiting attention computations within individual windows, it effectively
reduces processing overhead while enhancing the model’s ability to handle distant information,
thereby improving the quality of feature capture. This is particularly beneficial for enhancing the
accuracy and robustness of detecting various types and sizes of underwater organisms.

Furthermore, the newly developed Cross-Stage Partial Fast Spatial Pyramid Pooling (SPPFCSPC)
module [12] offers new possibilities for feature extraction and integration in object detection tasks.
This technology enables effective feature fusion across multiple scales, thereby optimizing detection
performance. In conjunction with this technology, we introduce an innovative non-dimensional
multi-scale attention mechanism—Efficient Multi-scale Attention (EMA) [13]. This mechanism further
optimizes feature processing within the SPPFCSPC framework, referred to as SPPFCSPC_EMA,
enabling the model to flexibly handle and integrate information from different levels, significantly
enhancing the overall performance of the model in handling complex underwater biological
detection tasks. Through the application of this approach, we aim to enhance the performance
of underwater biological detection technology to better address the diversity and challenges of the
marine environment.

To enhance the performance of the network in handling highly complex detection tasks,
we introduce an improved Fusion Block based on the DAMO-YOLO model, which incorporates
reparameterization and dense connection strategies [14]. This design optimizes the information flow
between layers of the network, endowing it with the capability to identify and localize targets through
richer feature representations. The innovation in this architecture addresses the challenges posed by
complex detection environments, particularly in maintaining the accuracy and stability of the network
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amidst the diversity and complexity of features. With the design of the Fusion Block, the YOLOv8
network can more effectively extract and integrate multi-scale features, significantly improving the
performance of object detection. The integration of techniques within the Fusion block provides a
comprehensive means of reinforcement for the YOLOv8 network, enabling it to handle and parse
complex detection scenes more accurately. This improvement not only directly enhances the accuracy
of detection but also fosters the development of more efficient and scalable object detection models.

One common challenge encountered during image acquisition in underwater environments is the
blurring caused by motion, resulting in loss of clarity in object contours and texture details [15]. When
dealing with such images, traditional loss functions often struggle to achieve the desired accuracy in
object localization and boundary recognition, leading to blurred boundaries and positioning errors. To
overcome this issue, the MPDIoU loss function based on vertex distance is employed to strengthen
the limitations of IoU loss [16]. This method enhances the adaptability to underwater targets with
indistinct boundaries, thereby improving the accuracy of object detection and the overall robustness of
the system. Through this improvement, the common challenges of positioning accuracy and boundary
clarity in underwater biological detection tasks are effectively addressed.

In this study, we have conducted crucial optimizations on the YOLOv8 object detection framework
to enhance the detection accuracy of underwater targets. The innovations of this paper mainly focus
on the following aspects:

• Firstly, we introduced the LarK Block from UniRepLKNet into the backbone network, replacing
some C2f modules, aiming to achieve higher detection performance and a more lightweight
network structure. Furthermore, we proposed the C2fSTR module, inspired by the Swin
Transformer, to enhance the accuracy and robustness of detecting different types and scales
of biological targets. Simultaneously, in the neck network of YOLOv8, we replaced the C2f
module with Fusion Block to strengthen the network’s feature representation and perception
abilities.

• Additionally, We have also introduced the EMA attention mechanism based on the SPPFCSPC
module, forming the SPPFCSPC_EMA module. This module can effectively extract and integrate
features from different scales, significantly improving the recognition capability of multi-scale
targets.

• Finally, to enhance the model’s localization accuracy and boundary recognition capability in
underwater object detection, we have adopted the MPDIOU loss function. This novel loss
function greatly enhances the detection accuracy of the model, enabling our improved version of
the YOLOv8 model to demonstrate excellent performance in underwater target detection tasks.

Experimental results on the URPC2019 and URPC2020 datasets demonstrate that the proposed
YOLOv8-MU model achieves higher detection accuracy, with mAP@0.5 scores of 78.4% and 80.4%,
respectively. These scores represent an improvement of 4.0% and 0.4% over the original YOLOv8.

The remainder of this paper is organized as follows: Section 2 reviews related work, while the
proposed YOLOv8-MU and experimental analysis are presented in Sections 3 and 4, respectively.
Section 5 concludes our contributions to this paper and discusses future work.

2. Related Work

2.1. Object Detection

Object detection technology is mainly divided into two types: one-stage and two-stage object
detection. Two-stage object detection first generates candidate region boxes and then classifies and
regresses these boxes to determine the location, size, and category of the target. Common two-stage
object detection algorithms include the R-CNN family, such as R-CNN[17] and Faster R-CNN[18].
Current research is focused on improving models in the R-CNN family to make them more efficient
and accurate. For example, Zeng et al.[19] proposed an underwater object detection algorithm
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based on Faster R-CNN and adversarial networks, enhancing the robustness and rapid detection
capability of the detector. Song et al.[20] proposed an underwater object detection method based
on an enhanced R-CNN detection framework to address challenges such as uneven illumination,
low contrast, occlusion, and camouflage of aquatic organisms in underwater environments. Hsia
et al.[21]combined Mask R-CNN, data augmentation (DA), and discrete wavelet transform (DWT)
to propose an intelligent retail product detection algorithm, improving the detection of overlooked
objects.

One-stage object detection directly processes the entire image and simultaneously predicts the
location, size, and category of the target through regression methods to improve detection efficiency.
Common one-stage object detection algorithms include the YOLO family, SSD, and RetinaNet. For
example, the YOLO series of algorithms achieve rapid detection by dividing the image into grids
and predicting bounding boxes and classification confidences for each grid. The YOLO series
has undergone multiple iterations and improvements: YOLOv1[22] addressed the shortcomings of
two-stage detection networks. YOLOv2[23] added batch normalization layers after each convolutional
layer and eliminated the use of dropout. YOLOv3[24] introduced the residual module Darknet-53
and the feature pyramid network FPN, resulting in significant improvements. The backbone network
of YOLOv4[25] is based on CSPDarknet53, using cross-stage partial connections (CSP) to facilitate
information flow between different layers. YOLOv5[26] introduced multi-scale prediction, automated
hyperparameter optimization, and a more efficient model structure, leading to improvements in both
speed and accuracy. YOLOv6[27], YOLOv7[28], and YOLOv8[4] added many technologies on the
basis of previous versions. There are also many improvements to the YOLO series to achieve more
efficient detection performance. For example, Li et al.[29] proposed an improved YOLOv8 algorithm
that integrates innovative modules from the real-time detection transformer (RT-DETR) to address the
occlusion problem in underwater fish target detection. The algorithm, trained on an occlusion dataset
using an exclusion loss function specifically designed for occlusion scenarios, significantly improved
detection accuracy. Additionally, SSD[30] uses a pyramid structure to classify and regress locations on
multiple feature maps, making it more suitable for handling objects of different sizes. RetinaNet[31]
introduces focal loss and a feature pyramid network to address the disparity between foreground and
background classes, achieving higher accuracy.

In summary, two-stage object detection performs better in terms of accuracy but is slower in
speed; whereas one-stage object detection has an advantage in speed but may lack in accuracy. In
practical applications, the choice between these methods depends on the specific requirements for
detection speed and accuracy.

2.2. Transformer

In the field of Natural Language Processing (NLP), the Transformer model has become a
mainstream technology, widely recognized for its capabilities in understanding and generating text.
Over time, researchers have begun to explore the application of Transformer architectures in the field
of Computer Vision (CV), aiming to enhance the efficiency and accuracy of image-related tasks. In
early attempts, Transformers were employed as enhanced decoders to optimize model performance.
For instance, Yang et al. [32] developed the TransPose model, which directly processed features
extracted by Convolutional Neural Networks (CNNs) to model global relationships in images and
effectively capture dependencies between key points. On the other hand, Mao et al. [33] designed the
Poseur method, utilizing lightweight Transformer decoders to achieve higher detection accuracy and
computational efficiency.

Furthermore, Transformers have also been successfully applied to a broader range of image
processing tasks. For example, the Vision Transformer (ViT) is a groundbreaking example that directly
applies Transformer architectures to tasks such as image classification. Xu et al. [34] demonstrated
the transferability of knowledge between different models and the flexibility of models through
the ViTPose project. Recent research advances indicate that combining attention mechanisms from
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Transformers with object detection networks can lead to significant performance improvements. For
instance, Wang et al. [35] integrated the SimAM attention module into the YOLO-BS network to
improve the accuracy of detecting large coal blocks, helping to reduce congestion in underground
conveyor systems. Similarly, BoTNet [35] introduced the BoT module with a self-attention mechanism,
which optimizes and accelerates the training process of small networks by simulating the behavior of
large networks, thereby effectively extracting and integrating features at different scales.

Based on these advanced observations and innovations, this study plans to integrate attention
mechanisms and Transformer modules into the YOLOv8 network architecture to further enhance the
model’s performance in various object detection tasks. This introduction aims to leverage the powerful
global information modeling capabilities of Transformers to pave the way for improving the efficiency
and accuracy of image recognition and processing tasks.

2.3. SPP

In the research of machine vision and object recognition, the Spatial Pyramid Pooling (SPP)
module and its improved versions, such as Spatial Pyramid Pooling - Fast (SPPF), Simplified SPPF
(SimSPPF), Atrous Spatial Pyramid Pooling (ASPP), Spatial Pyramid Pooling, Cross Stage Partial
Channel (SPPCSPC), and SPPFCSPC, have been widely utilized to improve the accuracy of object
detection. These modules effectively address the problem caused by differences in input image sizes,
avoiding image distortion. The initial concept of the SPP module was proposed by He et al. [37],
aiming to overcome the challenge of inconsistent sizes. Subsequently, to further improve processing
speed, the SPPF [26] and SimSPPF [27] modules were developed successively. Additionally, Chen et al.
introduced the ASPP module [38] in the DeepLabv2 semantic segmentation model, which enhances the
recognition capability of multiscale objects by capturing information at different scales through parallel
dilated convolutions. The SPPCSPC module [28] achieves performance improvement by optimizing
parameters and reducing computational complexity without expanding the receptive field.

In recent years, attention mechanisms have been introduced into object detection networks to
enhance the model’s ability to detect small objects in complex scenes. For example, Wu et al. [39]
proposed an Effective Multiscale Attention (EMA) mechanism based on multiscale feature fusion,
which automatically adjusts the weight distribution in feature maps to focus more on key areas of the
image. This is particularly effective for accurately identifying small objects in complex environments.
Given this, this study plans to integrate these improved SPP modules and attention mechanisms into
the YOLOv8 network architecture, aiming to further optimize the performance of the network in
various object detection tasks.

2.4. IoU Loss

In the research field of object detection, localization, and tracking, precise regression of bounding
boxes is crucial. In recent years, localization loss functions, represented by Intersection over Union
(IoU) loss [40] and its derivative versions [41–44], have played a central role in improving the accuracy
of bounding box regression. These types of loss functions optimize the model by evaluating the
overlap between predicted bounding boxes and actual bounding boxes, effectively mitigating the
impact of aspect ratio variations on detection performance. However, IoU loss has certain limitations.
For instance, when the predicted box and the ground truth box do not overlap, the IoU value remains
zero, failing to reflect the actual distance between them. Additionally, in cases where the IoU is the
same, it cannot distinguish between positional differences.

To address these challenges, several studies have proposed various improvements to IoU loss,
including Generalized IoU (GIoU), Distance-IoU (DIoU), CIoU, Efficient IoU (EIoU), and Wise-IoU
(WIoU). GIoU loss overcomes the issue of traditional IoU calculation resulting in zero by introducing
the concept of the minimum enclosing rectangle, although it may lead to smaller gradients and
slower convergence in some scenarios [41] . DIoU loss enhances the model’s sensitivity to position
by considering the distance between the center points of predicted and ground truth boxes, but it

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2024                   doi:10.20944/preprints202404.0779.v1

https://doi.org/10.20944/preprints202404.0779.v1


6 of 26

does not involve shape matching [42]. CIoU loss builds upon this by incorporating the difference in
aspect ratios, although it may cause training instability in certain circumstances despite improving
shape matching accuracy. EIoU loss balances the relationship between simple and hard samples by
introducing separate consistency and focal losses, thereby enhancing the stability and efficiency of the
model [43]. WIoU loss further enhances the model’s performance and robustness through a dynamic
non-monotonic static focus mechanism (FM) [44].

In general, these variants of IoU loss effectively improves the accuracy of bounding box regression
and the robustness of models by introducing mechanisms in loss calculation that consider the distance
between predicted and ground truth boxes, differences in position center points, consistency of aspect
ratios, and handling of samples with varying difficulty levels. In practice, selecting the appropriate
variant of the loss function tailored to specific object detection tasks is a key strategy for optimizing
detection performance.

3. Methodology

Although the YOLOv8 model has achieved significant results in the field of object detection, there
are still some limitations. Firstly, the model’s receptive field during the detection process is relatively
limited. At the same time, the feature representation and perception capabilities of the YOLOv8
network need enhancement. Secondly, the diversity of marine life, along with its myriad forms and
shapes, poses challenges to the accuracy and robustness of target detection. Lastly, the common
absorption and scattering effects of water on light often result in inadequate clarity of target boundary
information, hindering precise localization. To address these issues, we designed YOLOv8-MU, as
shown in Figure 1.

Figure 1. The structure of YOLOv8-MU. It consists of Backbone, Neck, and Head, including detailed
structures of C2f and Detect.
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3.1. LarK Block

The Convolutional Neural Network (ConvNet) with large kernels has shown remarkable
performance in capturing sparse patterns and generating high-quality features, but there is still
considerable room for exploration in its architectural design. While the Transformer model
has demonstrated powerful versatility across multiple domains, it still faces some challenges
and limitations in terms of computational efficiency, memory requirements, interpretability, and
optimization. To address these limitations, we introduce the LarK Block from UniRepLKNet into our
model [9], as depicted in Figure 2. It leverages the advantages of large-kernel convolution, allowing
us to achieve a larger receptive field without increasing model depth. This implies that by using
larger convolutional kernels, the Large Kernel Block can capture more contextual information without
the need to add more network layers. This represents a key advantage of large-kernel convolution,
enabling the network to capture richer features.

Figure 2. The structural design of UniRepLKNet. The LarK Block consists of a Dilated Reparam
Block, SE Block [45], Feed-Forward Network (FFN), and Batch Normalization (BN) [46] layers. The
only difference between the SmaK block and the LarK Block is that the former uses a depth-wise 3×3
convolutional layer to replace the Dilated Reparam layer of the latter. The stages are connected by
downsampling blocks, which are implemented by stride-2 dense 3×3 convolutional layers.

As illustrated in Figure 2, the block utilizing Dilated Reparam Block is referred to as a Large
Kernel Block (LarK Block), while those employing DWconv are termed Small Kernel Block (SmaK
Block). The Dilated Reparam Block is proposed based on equivalent transformation, aiming to enhance
feature extraction by combining a non-sparse large-kernel convolutional layer with multiple sparse
small-kernel convolutional layers. The key hyperparameters of this method include the size of the
large kernel K, the size of parallel convolutional layers k, and the sparsity rate r. Assuming there
are four parallel layers with K=9, r=(1,2,3,4), and k=(5,3,3,3). To utilize a larger K, more layers can
be enhanced by increasing the kernel size or expanding the sparsity rate. For instance, when K=13,
five layers are employed with k=(5,7,3,3,3) and r=(1,2,3,4,5), resulting in equivalent kernel sizes of
(5,13,7,9,11) respectively. During the inference stage, to transform the Dilated Reparam Block into a
large-kernel transformation layer, each batch normalization (BN) layer is first merged into the preceding
transformation layer. Then, each layer with dilation rate r > 1 is transformed into Equation(1), and
all generated kernels are added together with appropriate zero-padding. The Dilated Reparam Block
utilizes dilated small-kernel convolutional layers to enhance the non-dilated large-kernel layers. From
a parameter perspective, these dilated layers are equivalent to non-dilated convolutional layers with
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larger sparse kernels, enabling the entire block to be effectively transformed into a single large-kernel
convolutional layer.

W ′ = conv_transpose2d(W, I, stride = r) (1)

The Large Kernel Block is primarily integrated into the middle and upper layers of the model
to enhance the depth and expressive capability of the model when using large kernel convolutional
layers. This enhancement is achieved by stacking multiple SE Block (Squeeze-and-Excitation Block)
to deepen the model and utilize 3x3 convolutional layers to extract more complex spatial patterns.
Conversely, the Small Kernel Block is used when adding more layers to the model, aiming to increase
the depth of the model and extract more complex spatial patterns. We note that besides capturing
small-scale patterns, enhancing the ability of large kernel blocks to capture sparse patterns may result
in higher-quality features. The demand for capturing this pattern aligns perfectly with the mechanism
of dilated convolution [9]. From the perspective of a sliding window, a dilated convolutional layer with
a dilation rate of r will scan the input channels to capture spatial patterns, where the distance between
each interested pixel and its neighboring pixels is r - 1. Therefore, we adopt dilated convolutional
layers parallel to the large kernel and sum their outputs.

3.2. C2fSTR

The proposed C2fSTR in this paper modifies the original YOLOv8 architecture’s C2f module
using the Swin Transformer Block[11]. Compared to the original C2f module, the modified C2fSTR
module facilitates better interaction between strong feature maps and fully utilizes target background
information, thereby enhancing the accuracy and robustness of object detection under complex
background conditions. Figure 3.(a) illustrates the structure of the C2fSTR.

Figure 3. (a) The structure of C2fSTR; (b) Two consecutive Swin Transformer Blocks (represented by
Equation (1)). W-MSA and SW-MSA are multi-head self-attention modules, employing regular and
shifted window configurations, respectively.

The C2fSTR consists of two modules. One is the Conv module, which consists of a Conv2d
with a kernel size of 1×1 and a stride of 1, followed by batch normalization and the Silu activation
function. The role of the convolution module is to reduce the length and width of the feature map while
expanding the dimensionality. The other module is the Swin Transformer Block, which comprises a
linear layer (LN), shifted window multi-head self-attention (SW-MSA), and feedforward MLP (MLP).
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The structure includes n Swin Transformer modules. The function of the Swin Transformer Block is to
reduce the computational complexity of the multi-head attention mechanism and expand the range of
information interaction. Its structure is illustrated in Figure 3.(b).

Traditional Transformers typically compute attention globally, leading to high computational
complexity. The computational complexity of the multi-head attention mechanism is proportional to
the square of the size of the feature map. To reduce the computational complexity of the multi-head
attention mechanism and expand the range of information interaction, in the Swin Transformer,
the feature map is divided into windows. Each window undergoes window-based multi-head
self-attention computation followed by shifted window-based multi-head self-attention computation,
enabling mutual communication between windows [47]. The computation of consecutive Swin
Transformer blocks is as Equation(2):

ẑl = W − MSA
(

LN
(

zl−1
))

+ zl−1,

zl = MLP
(

LN
(

ẑl
))

+ ẑl ,

ẑl+1 = SW-MSA
(

LN
(

zl
))

+ zl ,

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1. (2)

where ẑl and zl represent the output features of the (S)W-MSA and MLP modules of block l, respectively;
W-MSA and SW-MSA represent window-based multi-head self-attention using regular and shifted
window partitioning configurations, respectively.

In this way, Swin Transformer effectively reduces the computational burden by confining attention
computation within each window. However, object recognition and localization in images depend on
the feature information of the global background. The information interaction in Swin Transformer
is limited to individual windows and shifted windows, capturing only local details of the target,
while global background information is difficult to obtain[48]. To achieve more extensive information
interaction and simultaneously obtain both global background and local detail information, we apply
the Swin Transformer Block to C2f, replacing the Darknetbottleneck and forming the C2fSTR feature
backbone system. This combined strategy enables comprehensive information interaction, effectively
capturing rich spatial details, and significantly improving the model’s accuracy in object detection in
complex backgrounds.

3.3. SPPFCSPC_EMA

As shown in Figure 4, YOLOv8-MU replaces the SPPF module in YOLOv8 with the SPPFCSPC
module and introduces multiple convolutions and concatenation techniques to extract and fuse features
at different scales, expanding the receptive field of the model and thereby improving model accuracy.
Additionally, we have introduced the EMA module, whose parallel processing and self-attention
strategy significantly improve the model’s performance and optimize feature representation. By
combining the SPPFCSPC and EMA modules to form the SPPFCSPC_EMA module, not only are
the model’s accuracy, efficiency, and robustness enhanced, but the model’s performance is further
improved while maintaining efficiency.

Figure 4. The structure of SPPFCSPC_EMA. SPPFCSPC performs a series of convolutions on the feature
map, followed by max-pooling and fusion over four receptive fields (one 3 × 3 and three 7 × 7). After
further convolution, it is fused with the original feature map, and finally combined with EMA to form
the SPPFCSPC_EMA module. (Conv: convolution; MaxPool2d: max pooling).
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The SPPFCSPC module integrates two submodules: SPP and fully connected spatial pyramid
convolution (FCSPC)[49]. SPP, as a pooling layer, can handle input feature maps of different scales,
effectively detecting both small and large targets. FCSPC is an improved convolutional layer aimed
at optimizing the representation of feature maps to enhance detection performance. By performing
multi-scale spatial pyramid pooling on the input feature map, the SPP module captures information
about targets and scenes at different scales[37]. Subsequently, the FCSPC module convolves the
different scale feature maps output by the SPP module and divides the input feature map into
blocks. These blocks are pooled and concatenated, followed by convolution operations, to enhance the
model’s receptive field and retain key feature information, thereby improving the model’s accuracy[49].
The SPPFCSPC module is an optimization of SPPCSPC based on the SPPF concept, reducing the
computational requirements for the pooling layer’s output by connecting three independent pooling
operations, and improving the speed and detection accuracy of dense targets without changing the
receptive field[50]. The results produced by this pooling method are comparable to those obtained
using larger pooling kernels, thus optimizing the training and inference speed of the model. The
calculation formula for the pooling part is as Equation (3):

S1(R) = MaxPoolp=2
k=5 (R)

S2 (S1) = MaxPoolp=2
k=5 (S1)

S3 (S2) = MaxPoolp=2
k=5 (S2)

S4 = S1 ⊛ S2 ⊛ S3 (3)

Where R represents the input feature layer, S1 represents the pooling layer result of the smallest
pooling kernel, S2 represents the pooling layer result of the medium-sized pooling kernel, S3 represents
the pooling layer result of the largest pooling kernel, S4 represents the final output result, and
⊛ represents tensor concatenation.

The EMA[13] mechanism employs three parallel pathways, including two 1×1 branches and one
3×3 branch, to enhance the processing capability of spatial information. In the 1×1 branches, global
spatial information is extracted through two-dimensional global average pooling, and the Softmax
function is utilized to ensure computational efficiency. The output of the 3×3 branch is directly adjusted
to align with the corresponding dimensional structure before the joint activation mechanism, which
combines channel features as shown in Equation(4). An initial spatial attention map is generated
through matrix dot product operations, integrating spatial information of different scales within the
same processing stage. Furthermore, 2D global average pooling embeds global spatial information
into the 3×3 branch, producing a second spatial attention map that preserves precise spatial location
information. Finally, the output feature maps within each group are further processed through the
Sigmoid function [51]. As illustrated in Figure 5., the design of EMA aims to assist the model in
capturing the interactions between features at different scales, thereby enhancing the performance of
the model.

zc =
1

H × W ∑
j

∑
i

xc(i, j) (4)

Here, zc represents the output related to the c-th channel. The primary purpose of this output is
to encode global information, thereby capturing and modeling long-range dependencies.

Therefore, the overall formula for the SPPFCSPC_EMA module is as shown in Equation(5):

zc =
1

H × W ∑
j

∑
i

S4(i, j) (5)
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Figure 5. Schematic diagram of EMA. Here, ’g’ denotes grouping, ’X Avg Pool’ represents 1D horizontal
global pooling, and ’Y Avg Pool’ represents 1D vertical global pooling.

3.4. Fusion Block

DAMO-YOLO has improved the efficiency of node stacking operations and optimized feature
fusion by introducing a specially designed Fusion Block. Inspired by this, we replaced the C2f module
in the neck network with the Fusion Block to enhance the fusion capability of multi-scale features. As
illustrated in Figure 6, the architecture of Fusion Block commences with channel number adjustment
on two parallel branches through 1 × 1 CBS, followed by the incorporation of the concept of feature
aggregation from the Efficient Layer Aggregation Network (ELAN) [52] into the subsequent branch,
comprised of multiple RepBlocks and 3 × 3 CBS. This design leverages strategies such as CSPNet [53],
reparameterization mechanism, and multi-layer aggregation to effectively promote rich gradient flow
information at various levels. Furthermore, the introduction of the reparameterized convolutional
module has significantly enhanced performance.

Figure 6. Structure diagram of the Fusion Block, which includes a schematic diagram of the RepBlock.
(a) represents the model structure used during training, (b) represents the model structure used during
inference

In the model, four gradient path fusion blocks are utilized, each splitting the input feature map
into two streams. One stream is directly connected to the output, while the other undergoes channel
reduction, cross-level edge processing, and convolutional reparameterization before further dividing
into three gradient paths from this stream. Ultimately, all paths are merged into the output feature
map. This design segments the gradient flow paths, introducing variability in the gradient information
as it moves through the network, effectively facilitating a richer flow of gradient information.

As for Figure 6, RepBlock is designed to employ different network structures during the training
and inference phases through the use of reparameterization techniques, thereby achieving efficient
model training and rapid inference speed [54]. Following the recommendations of RepVGG, we
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optimized the parameter structure, clearly segregating the multi-branch used during the training
phase from the single-branch used during the inference phase. During the training process, RepBlock
adopts a complex structure containing multiple parallel branches, which extract features through 3x3
convolutions, 1x1 convolutions, and Batch Normalization (BN). This design is intended to enhance the
representational capacity of the model. During inference, these multi-branch structures are converted
into a single, more streamlined 3x3 convolutional layer through structural reparameterization,
eliminating the branch structure to increase inference speed and reduce memory consumption of the
model.

The conversion from a multi-branch to a single-branch architecture is primarily motivated by
three considerations. Firstly, from the perspective of speed, models reparameterized for inference
demonstrate a significant acceleration in inference speed. This not only expedites the model inference
process but also enhances the practicality of model deployment. Secondly, regarding memory
consumption, the multi-branch model necessitates allocating memory individually for each branch to
store its computational results, leading to substantial memory usage. Adopting a single-path model
significantly reduces the demand for memory. Lastly, in terms of model flexibility, the multi-branch
model is constrained by the requirement that the input and output channels for each branch remain
consistent, posing challenges to model modifications and optimizations. In contrast, the single-path
model is not subject to such limitations, thereby increasing the flexibility of model adjustments.

3.5. MPDIOU

Existing boundary box regression loss functions, such as CIoU, although considering multiple
factors, may still encounter inaccurate localization and blurred boundary issues when dealing
with complex scenarios where target boundary information is unclear, affecting the regression
accuracy. Given the intricate underwater environment and limited lighting conditions, the boundary
information of target objects is often inadequate, posing challenges for traditional loss functions to
adapt effectively. Inspired by the geometric properties of a horizontal rectangle, Ma et al. [16] designed
a novel boundary box regression loss function based on the minimum point distance LMPDIoU . We
incorporated this function, referred to as MPDIoU, into our model to evaluate the similarity between
predicted and ground-truth boundary boxes. Compared to existing loss functions, MPDIoU not only
better accommodates blurred boundary scenarios and enhances object detection accuracy but also
accelerates model convergence and reduces redundant computational overhead, thereby improving
the localization and boundary precision for underwater organism detection.

The calculation process of MPDIoU is as follows: Assume (xgt
1 , ygt

1 ) and (xgt
2 , ygt

2 ) represent the

coordinates of the top-left and bottom-right points of the ground truth box, respectively; (xpd
2 , ypd

2 )

and (xpd
1 , ypd

1 ) represent the coordinates of the top-left and bottom-right points of the predicted box,
respectively. Parameters w and h represent the width and height of the input image, respectively. The

formulas for the ground truth box and the predicted box are: d2
1 =

(
xpd

1 − xgt
1

)2
+

(
ypd

1 − ygt
1

)2
and

d2
2 =

(
xpd

2 − xgt
2

)2
+

(
ypd

2 − ygt
2

)2
.

Subsequently, the final LMPDIoU can be calculated using Equations (6) and (7) based on d1 and d2.

MPDIoU =
A ∩ B
A ∪ B

−
d2

1
w2 + h2 −

d2
2

w2 + h2 (6)

LMPDIoU = 1 − MPDIoU (7)

The MPDIoU loss function optimizes the similarity measurement between two bounding boxes,
enabling it to adapt to scenarios involving both overlapping and non-overlapping bounding box
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regression. Moreover, all components of the existing bounding box regression loss functions can be
represented using four-point coordinates, as shown in Equations (8)-(10).

|C| =
(

max(xgt
2 , xpd

2 )− min(xgt
1 , xpd

1 )
)
×

(
max(ygt

2 , ypd
2 )− min(ygt

1 , ypd
1 )

)
(8)

xgt
c =

xgt
1 + xgt

2
2

, ygt
c =

ygt
1 + ygt

2
2

, xpd
c =

xpd
1 + xpd

2
2

, ypd
c =

ypd
1 + ypd

2
2

(9)

wgt =
∣∣∣xgt

2 − xgt
1

∣∣∣ , hgt =
∣∣∣ygt

2 − ygt
1

∣∣∣ , wpd =
∣∣∣xpd

2 − xpd
1

∣∣∣ , hpd =
∣∣∣ypd

2 − ypd
1

∣∣∣ (10)

where |C| represents the area of the smallest bounding rectangle encompassing both the ground
truth and predicted boxes. The center coordinates of the ground truth and predicted boxes are
denoted by (xgt

c , ygt
c ) and (xpd

c , ypd
c ), respectively, while their widths and heights are represented

by and , respectively. Through Equations (8)-(10), we can calculate the non-overlapping area, the
distance between center points, and the deviation in width and height. This method not only ensures
comprehensiveness but also simplifies the computational process. Therefore, in the localization loss
part of the YOLOv8-MU model, we choose to use the MPDIoU function to calculate the loss, to enhance
the model’s localization accuracy and efficiency.

4. Experimental Details

4.1. Benchmark Testing and Implementation Details

4.1.1. Dataset

In this study, the dataset used to validate the effectiveness of our optimized model is URPC20191,
a publicly available dataset for underwater object detection. It includes five different categories of
aquatic life: sea cucumbers, sea urchins, scallops, starfish, and seaweed, with a total of 3765 training
samples and 942 validation samples. Examples of dataset images are shown in the first row of Figure 7.
Additionally, we conducted detection experiments on the URPC20202 dataset. Similar to URPC2019,
URPC2020 is also an underwater dataset, but it differs in that it contains only four different categories:
sea cucumbers, sea urchins, scallops, and starfish, with a total of 4200 training samples and 800
validation samples. Examples of dataset images are shown in the second row of Figure 7. We will
validate the feasibility of our model on these two datasets.

Figure 7. Example images from the URPC2019 and URPC2020 datasets.

1 http://www.urpc.org.cn/index.html
2 http://www.urpc.org.cn/index.html
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4.1.2. Environment Configuration and Parameter Settings

The experiments in this study were conducted on the Ubuntu operating system, utilizing the
PyTorch deep learning framework. The experimental setup includes the parallel computing platform
and programming model developed by NVIDIA, the Python programming language, and server
processors released by Intel. The performance of different GPUs and the size of RAM significantly
impact our experimental results. Therefore, we maintained a consistent experimental environment
throughout our entire experiment process. The specific configuration is shown in Table 1.

Table 1. Experimental Environment Configuration.

Parameters Setup

Ubuntu 20.04
PyTorch 1.11.0
Python3 3.8
CUDA 11.3
CPU 12 vCPU Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz
GPU RTX 3090(24GB) × 1
RAM 43GB

To enhance the persuasiveness of the experiments, we conducted experiments based on the
original YOLOv8 model, during which a series of parameter adjustments were made and multiple
experimental tests were conducted. Ultimately, we determined that some of the main hyperparameters
for all experiments would adopt the settings consistent with Table 1 . A larger batch size can speed up
training, so we set it to 16. In terms of loss calculation, we continue YOLOv8’s approach of combining
Classification Loss, Bounding Box Regression Loss, and Distribution Focal Loss, with the weights of
the three losses being 7.5, 0.5, and 1.5, respectively, to optimize the model. In addition, momentum
and weight decay are important hyperparameters for optimizing the model, with detailed settings
available in Table 2.

Table 2. Settings of Some Hyperparameters During Training.

Parameters Setup

Epoch 100
Batch size 16
NMS IoU 0.7

Image Size 640×640
Initial Learning Rate 1 × 10−2

Final Learning Rate 1 × 10−2

Momentum 0.937
Weight Decay 0.005

4.1.3. Evaluation Criteria

Evaluating the quality of YOLO models requires a comprehensive consideration of speed, accuracy,
applicability, robustness, and cost, among other factors, with varying focus points in different use
scenarios. For the URPC series datasets, this study primarily focuses on the accuracy of the improved
YOLOv8 model. We assess the model’s accuracy by calculating and comparing the Average Precision
(AP) for each class and the Mean Average Precision (mAP). Additionally, we examine the impact of
Floating Point Operations(FLOPs) and the number of Parameters (Para) on model accuracy to verify
the superiority of our improved YOLOv8 model.

The calculation of the AP value is related to the calculation and integration of the Precision-Recall
curve. First, it is necessary to calculate the Precision and Recall values using Equations (11) and (12),
where TP, FP, and FN represent True Positive, False Positive, and False Negative. True Positive is
the number of positive samples predicted as positive by the model; False Positive is the number of
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negative samples predicted as positive by the model; False Negative is the number of positive samples
predicted as negative by the model. Subsequently, the Average Precision for each category is calculated
according to Equation (13). To reflect the performance of the model on the entire dataset, the mAP’s
value is calculated according to Equation (14). In the calculation of mAP, we take the value at IOU
of 0.5 and write it as mAP@0.5, which means that detection is considered successful only when the
intersection part of the true box and our predicted box is greater than 50%.

Precision =
TP

(TP + FP)
(11)

Recall =
TP

(TP + FN)
(12)

AP =
∫ 1

0
P(R) dR (13)

mAP =
1
N

n

∑
i=1

APi (14)

4.2. Comparative Experiments

4.2.1. Experiments on URPC2019

We first conducted a literature search or experiments on the performance of various models on the
URPC2019 dataset, including the Boosting R-CNN model, which introduces the idea of reinforcement
learning to improve Faster R-CNN, the YOLOv3 model, YOLOv5 series models, YOLOv7 model,
YOLOv8 series models, and our optimized YOLOv8 model. The experimental data is shown in Table
3. We also plotted two bar graphs with different horizontal axes, Figures 8. and 9. to provide a more
intuitive comparison of the performance of each model.

Table 3. Performance comparison of the YOLOv8-MU model with other models on the URPC2019
dataset.

Model AP(%) mAP@0.5 (%) Para (M) FLOPs(G)
Echinus Starfish Holothurian Scallop Waterweeds

Boosting RCNN[20] 89.2 86.7 72.2 76.4 26.6 70.2 45.9 77.6
YOLOv3 89.6 86.8 73.6 82.6 57.8 78.1 61.5 155.3
YOLOv5s 92.0 88.1 75.2 84.5 24.2 72.8 20.9 47.9
YOLOv5m 91.9 86.3 58.4 71.8 17.6 62.5 1.8 4.2
YOLOv5ł 92.4 89.1 73.6 82.8 36.6 74.6 46.2 108.3
YOLOv5n 92.4 89.3 74.7 83.8 28.4 73.7 7.0 16.0
YOLOv7 92.6 90.0 78.5 85.6 39.6 77.3 37.2 105.2
YOLOv8s 91.3 89.0 75.2 84.9 32.1 74.5 11.1 28.4
YOLOv8m 90.9 89.5 76.9 85.7 28.1 74.2 25.9 79.1
YOLOv8l 90.9 90.4 77.1 84.8 27.0 74.0 43.6 165.4
YOLOv8n 91.7 89.2 76.1 82.8 32.3 74.4 3.0 8.2

YOLOv8-MU 91.9 89.3 75.8 83.5 51.5 78.4 5.7 28.7

After our observation and analysis, we can find that the optimized model performs better than
the other models, especially since the optimization on the AP values of each category is more obvious.
Particularly in the detection of the Waterweeds category, the data performance is quite prominent,
with an AP value increase of 25.2% compared to the traditional Boosting RCNN model. The AP value
is also only slightly lower than that of the YOLOv3 model when compared to the YOLO series models,
and there is an increase of nearly 20% compared to the baseline model YOLOv8n. This indicates that
the improved YOLOv8 model has overcome the difficulties faced by other models in detecting the
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Waterweeds category, demonstrating a unique advantage in enhancing the AP value for the individual
category of Waterweeds.

Furthermore, upon analyzing the mAP@0.5 values, we found that the YOLOv8-MU model also
demonstrates superior performance in terms of overall dataset detection accuracy. The mAP@0.5 of
YOLOv8-MU is the highest in Table 3, reaching 78.4%, which is an improvement of 8.2% compared to
the traditional Boosting RCNN model and an increase of 4% compared to the baseline model YOLOv8n.
It is closest to the YOLOv3 model but shows an improvement. The main reason is that although the
AP value of YOLOv8-MU in the Waterweeds category is lower than that of YOLOv3, YOLOv8-MU has
higher detection accuracy in the remaining four categories compared to YOLOv3. This also verifies the
effectiveness of YOLOv8-MU in improving the overall detection accuracy of the URPC2019 dataset.

In deep learning models, a relatively lower number of parameters and FLOPs can reduce the
model’s computational complexity and size, enhancing its performance and applicability in practical
applications. For this reason, we specifically plotted the bar graphs shown in Figures 10. and 11.
based on Table 3. to compare the number of parameters and FLOPs among various models. It can be
seen that although the number of parameters and FLOPs of our optimized model, YOLOv8-MU, has
increased compared to the baseline model YOLOv8n, they are still reduced compared to other models.
This proves that our model achieves the effect of making the model lightweight.

To more intuitively demonstrate the advantages of our optimized YOLOv8 model’s detection
performance, we extracted and compared the detection results of different models on the URPC2019
dataset, as shown in Figure 12. Our model outperforms other models in both precision and recall.
As can be seen clearly in rows 1 to 4, our optimized model did not detect any targets beyond
the Ground_Truth, indicating our model has high precision. In the result, images of rows 5 to 8,
both YOLOv5s and YOLOv8n have the same issue, failing to detect all targets in the Ground_Truth
and missing some targets, while our model exhibits high recall. This sufficiently demonstrates the
effectiveness of our optimized YOLOv8 model in detecting the URPC2019 dataset.

Figure 8. Performance comparison of various models on the URPC2019 dataset.

Figure 9. Performance comparison of various models on the URPC2019 dataset.
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Figure 10. Bar graph comparison of FLOPs for various models on the URPC2019 dataset.

Figure 11. Bar graph comparison of the number of parameters for various models on the URPC2019
dataset.
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Figure 12. Comparison of target detection results between different models.
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4.2.2. Experiments on URPC2020

On the URPC2020 dataset, which is part of the same series as URPC2019, we also conducted a
series of experiments. The results are presented in Table 4, and based on these results, we plotted bar
graphs with different horizontal axes, Figures 13. and 14. We observed that on the URPC2020 dataset,
compared to URPC2019, there are only 4 biological categories, missing the Waterweeds category
which performs well in AP values for a single category, resulting in a small improvement in detection
performance relative to other models, but enough to reflect the advantages of our model. We compared
the experimental results of Faster-RCNN, Literature, YOLOv5x, and YOLOv8n with our model Our_n
and found that the mAP@0.5 score of our improved model is higher than that of the other models.
Additionally, we compared YOLOv8s with Ours to demonstrate the high efficiency of our improved
model in terms of detection accuracy.

Table 4. Performance comparison of the YOLOv8-MU model with other models on the URPC2020
dataset.

Model AP(%) mAP@0.5 (%)
Echinus Starfish Holothurian Scallop

Faster-RCNN[55] 57.5 77.7 51.4 74.5 65.3
Literature[56] - - - - 69.4
YOLOv5x[55] 67.5 87.9 75.1 81.4 78.0

YOLOv8s 72.0 89.4 78.7 83.9 81.0
Ours 73.4 89.9 79.4 84.5 81.7

YOLOv8n 77.1 89.8 75.7 83.6 80.0
Ourn 71.7 89.9 76.2 84.0 80.4

Figure 13. Performance comparison of various models on the URPC2020 dataset.

Figure 14. Performance comparison of various models on the URPC2020 dataset.
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4.3. Ablation Study

4.3.1. Comparison of the Effectiveness of LarK Block at Different Positions

Table 5. compares the impact of using the LarK Block to replace different positions of C2f in the
backbone on the accuracy, the number of parameters, and computational complexity of the model on
the URPC2019 dataset for various marine life categories. Among them, the model with the middle
two C2f in the backbone replaced by LarK Block performed the best, achieving an mAP@0.5 of 75.5%,
with the smallest number of parameters, similar to the model that modifies only the last C2f, and with
FLOPs at a medium level. In contrast, the model that modifies only the last C2f, although having
the least number of parameters and the lowest computational complexity, experienced a decrease in
accuracy compared to the original YOLOv8n. The accuracy of other models with different modification
positions was also lower than that of the original YOLOv8n. Therefore, in subsequent research, we
adopted the model that replaces the middle two C2f with LarK Block, as it ensures higher accuracy
while improving the speed of the object detection model with a smaller modification to the network.

Table 5. Parameter comparison of replacing C2f with LarK Block at different positions in the backbone.

Location of LarK Block AP(%) mAP@0.5 (%) Para (M) FLOPs(G)
Echinus Starfish Holothurian Scallop Waterweeds

All 91.5 88.0 73.5 82.1 35.8 74.2 3.4 9.7
The last three 91.8 88.8 73.0 82.6 30.1 73.3 3.4 9.3
The last two 90.7 88.8 75.2 82.8 29.4 73.4 3.4 8.7
The last one 91.7 89.5 75.6 83.6 28.9 73.9 3.2 8.2

The middle two 92.2 89.4 76.4 84.6 34.7 75.5 3.2 9.2

4.3.2. Comparison of the effectiveness of C2fSTR at different positions

Table 6. compares the impact of using C2fSTR to replace different positions of C2f in the backbone
on the accuracy, the number of parameters, and computational complexity of the model on the
URPC2019 dataset for various marine life categories. Among them, the model with the last C2f in the
backbone replaced by C2fSTR performed the best, achieving an mAP@0.5 of 75.2%, with the smallest
computational load and the fastest speed. In contrast, the model that replaces all C2f had a decrease
in accuracy, with an mAP@0.5 of only 73.8%. Other models with different modification positions,
although all having an mAP@0.5 higher than YOLOv8n, did not perform as well as the model that
modifies only the last C2f in terms of computational load and speed. Therefore, in subsequent research,
we adopted the model that replaces the last C2f with C2fSTR, as it ensures the highest accuracy while
also achieving the best computational efficiency and speed.

Table 6. Parameter comparison of replacing C2f with C2fSTR at different positions in the backbone.

Location of LarK Block AP(%) mAP@0.5 (%) Para (M) FLOPs(G)
Echinus Starfish Holothurian Scallop Waterweeds

All 90.5 89.1 73.6 82.1 33.8 73.8 3.0 30.9
The last three 90.9 88.6 75.5 82.3 36.2 74.7 3.0 29.9
The last two 90.4 88.9 75.4 82.8 35.0 74.5 3.0 27.8
The last one 91.4 88.9 75.7 82.4 37.6 75.2 2.9 18.1

The middle two 91.6 89.0 73.2 81.9 38.4 74.8 3.1 20.0

4.3.3. Comparison of the effectiveness of Fusion Block at different positions

Table 7. shows the impact of using Fusion Block to replace different positions of C2f in the neck on
the accuracy, the number of parameters, and computational complexity of the model on the URPC2019
dataset for various marine life categories. Among them, the model with all C2f in the neck replaced by
Fusion Block performed the best, achieving an mAP@0.5 of 74.7%, although its number of parameters
and computational complexity are not the lowest, its accuracy is the highest. In comparison, the models
that modify the last three C2f and the middle two C2f, although having smaller parameter counts and
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lower computational complexity, have mAP@0.5 values of only 74.1% and 73.5% respectively, which
are 0.3% and 0.9% lower than YOLOv8n. Modifications at other positions also failed to surpass the
accuracy of the model that modifies all C2f. Therefore, in subsequent research, we adopted the model
that replaces all C2f with Fusion Block, as it achieves higher target detection accuracy.

Table 7. Parameter comparison of replacing C2f with Fusion Block at different positions in the neck.

Location of LarK Block AP(%) mAP@0.5 (%) Para (M) FLOPs(G)
Echinus Starfish Holothurian Scallop Waterweeds

All 91.5 89.7 75.7 84.0 32.6 74.7 3.95 16.5
The last three 92.2 89.6 75.6 83.8 29.1 74.1 3.8 15.8
The last two 91.8 89.1 75.7 83.1 32.9 74.5 2.9 8.4
The last one 92.0 88.8 75.3 83.3 33.5 74.6 2.7 7.8

The middle two 92.1 89.9 75.3 83.2 26.9 73.5 2.9 8.4

4.3.4. Analysis of the effectiveness of other modules

In this section, we take the original YOLOv8 as the base and gradually add or remove components
included in our model to explore the contribution of each component to the overall performance of
the system model, thereby demonstrating their effectiveness in improving YOLOv8. We conducted
multiple ablation experiments, and by analyzing Table 8. , we can see that different combinations of
modules have varying effects on the performance of the YOLOv8 model.

Table 8. Demonstration of the effectiveness of each module in
YOLOv8-MU;“√” indicates that we used this module.

Module mAP@0.5 (%)
Lark Block C2fSTR SPPFCSPC_EMA Fusion Block MPDIOU

74.4√ 75.5
√ 75.2

√ 75.3
√ 74.7

√ 74.6
√ √ 75.6
√ √ 75.7

√ √ 75.6
√ √ 75.6
√ √ 75.7

√ √ 75.4
√ √ 75.6

√ √ 75.5
√ √ √ 75.8

√ √ √ 76.3
√ √ √ 75.8

√ √ √ 75.8
√ √ √ 75.9

√ √ √ 76.0
√ √ √ √ 76.0
√ √ √ √ 76.5

√ √ √ √ 77.6
√ √ √ √ 76.4
√ √ √ √ √ 78.4

In the process of optimizing the YOLOv8 model, we first added five modules individually, and the
mAP@0.5 values obtained were all improved compared to the original YOLOv8, with the improvement
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effects ranked from largest to smallest as LarK Block, SPPFCSPC_EMA, C2fSTR, Fusion Block, and
MPDIoU. It can be seen that the use of the LarK Block module alone resulted in the highest increase in
mAP@0.5, which is 1.1%. This indicates that all five modules have a positive impact on optimizing the
detection accuracy of YOLOv8.

When these modules are used in combination, the mAP@0.5 also increases, and the increase
in mAP@0.5 is generally greater compared to when each module is used individually. The best
combination is when LarK Block, SPPFCSPC_EMA, C2fSTR, Fusion Block, and MPDIoU are used
simultaneously, achieving the highest mAP@0.5 of 78.4%, which is an increase of 4.0% compared to the
original YOLOv8. In summary, based on the experimental results, the simultaneous use of LarK Block,
SPPFCSPC_EMA, C2fSTR, Fusion Block, and MPDIoU can achieve the best performance improvement.
These results provide guidance for the design and configuration of optimized object detection systems.

4.4. Result Analysis

To verify the effectiveness of our improved YOLOv8-MU model, we analyzed the training result
plots on the URPC2020 dataset. As can be seen from Figures 15., in both the training and validation
sets, the real-time loss value of the YOLOv8-MU model smoothly decreases with the increase of
epochs and eventually converges. Especially in the validation set, the Classification Loss is more
stable compared to the Bounding Box Regression Loss and Distribution Focal Loss, indicating that the
YOLOv8-MU model has good performance in classifying target categories. At the same time, observing
the changes in accuracy, recall, mAP@0.5, and mAP@0.5:0.95 values, all show an upward trend and
good convergence, demonstrating that YOLOv8-MU has good performance in object detection.

Figure 16 shows the normalized confusion matrix for the experimental results of our model on the
URPC2020 dataset, from which the predictive effectiveness of the model can be visualized. Each row
of the matrix represents the actual category, and each column represents the predicted category. The
diagonal elements reflect the prediction accuracy of each category in the URPC2020 dataset, while the
off-diagonal elements show the prediction situation between different categories. The results indicate
that, the YOLOv8-MU model has high prediction accuracy for the categories in the URPC2020 dataset,
with a low error rate, fully demonstrating the effectiveness of YOLOv8-MU on this URPC2020 dataset.

The Precision-Recall (PR) curve is a common method for evaluating the performance of binary
classifiers. In this curve, the horizontal axis represents recall, and the vertical axis represents precision.
Precision and recall are two commonly used metrics for evaluating the performance of classifiers. The
PR curve shows the trade-off between precision and recall at different thresholds. Generally, we hope
that the classifier has both high precision and high recall, so the closer the PR curve is to the top-right
corner, the better the performance of the classifier. As can be seen in Figure 17. , our model performs
well on the URPC2020 dataset, with the overall PR curve being closer to the top-right corner, indicating
good performance of our model.

Figure 15. Results of the YOLOv8-MU model on the URPC2020 dataset.
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Figure 16. Confusion matrix of the YOLOv8-MU model on the URPC2020 datasets.

Figure 17. PR curve of the YOLOv8-MU model on the URPC2020 dataset.

5. Conclusions and Future Work

In this research, we have successfully developed and validated an advanced underwater organism
detection framework, YOLOv8-MU, which significantly enhances the model’s detection accuracy.
By substituting the original backbone network structure with the LarK Block from UniRepLKNet,
we achieved a larger receptive field without increasing the model’s depth. Integrating the Swin
Transformer block into the C2f module further strengthened the model’s capability for learning
and generalizing features of various underwater organisms. Combining the multi-scale attention
module EMA with SPPFCSPC significantly improved detection accuracy and robustness for multi-scale
targets. Introducing a Fusion Block into the neck network enhanced the model’s capability in feature
extraction and integration across different scales. The adoption of the MPDIoU loss function, optimized
through vertex distance design, effectively resolved issues related to target localization and boundary
precision, thereby improving detection accuracy. Validation on the URPC2019 and URPC2020 datasets
demonstrated that the YOLOv8-MU model achieved mAP@0.5 scores of 78.4% and 80.4%, respectively,
marking improvements of 4.0% and 0.4% over the YOLOv8n model. These achievements not only
prove the effectiveness of our proposed improvements but also provide new research directions and
practical foundations for the development of target detection technologies in complex environments.
Future work will focus on strengthening interdisciplinary collaboration with marine biology and
ecological conservation fields. Through ongoing research and innovation, we anticipate further
enhancements in the performance of underwater organism detection technology, contributing to the
research and protection of marine ecosystems.
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