Pre prints.org

Concept Paper Not peer-reviewed version

Toward Intuitive and Accessible
Machine Learning Education: A
Structured Pythonic Pseudocode
Approach

Hadrian Lazic
Posted Date: 29 April 2025
doi: 10.20944/preprints202504.2484 v1

Keywords: Machine Learning education; Pythonic pseudocode; accessible machine learning;
optimization algorithms; gradient descent; computational thinking; conceptual understanding

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.



https://sciprofiles.com/profile/4416052

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2484.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Concept Paper

Toward Intuitive and Accessible Machine
Learning Education: A Structured Pythonic
Pseudocode Approach

Hadrian Lazic

Affiliation 1 ; hadrian.lazic@gmail.com

Abstract: The traditional reliance on compressed mathematical notation in machine learning, particu-
larly in calculus-intensive domains such as optimization, presents significant cognitive barriers for both
practitioners and students. Core methodologies, such as the Adam optimizer, are widely used in ap-
plied settings but are often introduced through dense symbolic expressions that obscure foundational
intuitions and hinder practical comprehension. This work proposes a rearticulation of foundational
machine learning concepts—including derivatives, gradients, and optimization algorithms, using an
intuitive, Pythonic pseudocode paradigm, supported by annotated visual exemplars. By replacing
abstract mathematical formalism with code-oriented, formula, inspired explanations, the proposed
framework enhances conceptual transparency, operational clarity, and pedagogical accessibility. The
overarching goal is to empower developers—particularly those without formal training in advanced
mathematics—to internalize, implement, and extend key machine learning constructs with confidence
and rigor. In democratizing theoretical understanding, this work seeks to broaden participation in
machine learning research and development, fostering a more diverse and interdisciplinary technical

community.

Keywords: Machine Learning education; Pythonic pseudocode; accessible machine learning; optimiza-

tion algorithms; gradient descent; computational thinking; conceptual understanding

1. Introduction

Mathematics, at its core, constitutes a formal language, an abstract system developed to represent,
generalize, and communicate universal patterns and phenomena. Within the field of machine learning,
this language is predominantly instantiated through the framework of calculus. Foundational machine
learning algorithms are frequently expressed as calculus-based formulations, reflecting a mathematical
tradition originating in the 17th century to model continuous and dynamic systems.

In contemporary practice, however, machine learning is primarily instantiated through program-
ming. This evolution has introduced a pronounced disjunction: while many practitioners possess
substantial expertise in software engineering and systems design, comparatively few have received
formal instruction in the calculus underpinning the algorithms they implement. As a result, the
mathematical logic foundational to machine learning often remains opaque, inhibiting developers,
even those with advanced technical proficiency, from meaningfully engaging with, modifying, or
innovating upon algorithmic structures.

More broadly, this disconnect exacerbates systemic inequities in technical education. A substantial
cohort of students, particularly those from under, resourced educational environments, may develop
exceptional programming skills yet lack exposure to advanced mathematics. Consequently, access
to the deeper strata of machine learning research and development remains uneven, constraining
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individual opportunity and diminishing the diversity of perspectives essential to innovation in the
field.

While calculus remains indispensable for theoretical advancements in machine learning, there is a
critical need to construct more inclusive and operationally transparent bridges between mathematical
theory and computational practice. To this end, this paper introduces Formulaic Pythonic Pseudocode: a
structured notation system designed to translate complex calculus, based formulations into accessible,
code-oriented representations. This approach preserves mathematical rigor while mitigating the
cognitive overhead associated with simultaneously navigating distinct formal systems.

Importantly, the proposed framework is grounded not in ephemeral syntactic conventions, which
vary across programming languages, but rather in enduring computational paradigms, such as itera-
tive loops, that mirror fundamental mathematical constructs, including the summation operator (X).
As such, Formulaic Pythonic Pseudocode constitutes a robust, durable bridge between mathemati-
cal abstraction and practical implementation, rendering machine learning theory more transparent,

intuitive, and accessible to a broader and more diverse community of developers.

2. Motivation and Background

The development of a machine learning framework in the Rust programming language constituted
a significant undertaking in my trajectory as a student researcher. This project necessitated not only the
construction of computationally efficient algorithms but also sustained engagement with the advanced
mathematical formalism underpinning contemporary machine learning methodologies. The process
of translating theoretical formulations into executable systems revealed a series of critical challenges,
particularly in navigating the dense and abstract notation prevalent throughout the existing literature.

A focal point of this experience was the implementation of foundational optimization algorithms,
such as Adam. The canonical formulations of such algorithms often employ compact symbolic
representations that, while mathematically elegant, present formidable barriers to interpretation, even
among students with considerable mathematical training. In particular, the standard expression of the
Adam optimizer exemplifies this opacity, with many constituent symbols, assumptions, and implied
computational steps remaining inaccessible without extensive auxiliary investigation. Through a
methodical process of independent research, critical analysis, and iterative refinement, I ultimately
derived a fully operational implementation of Adam in Rust, comprising approximately thirty-five
lines of source code. The choice of Rust was deliberate, given its capacity to deliver performance
comparable to C-based environments while preserving memory safety guarantees and offering a
robust ecosystem for build and dependency management.

This experience illuminated a broader structural phenomenon: the persistent disconnect between
theoretical macdetailshine learning research and practical software engineering. Although pseudocode
is frequently included in academic publications, such representations often approximate condensed
calculus more than they resemble executable algorithmic specifications. Essential details, explicit
control flow structures, data handling strategies, and operational semantics, are frequently omitted or
under-specified, rendering direct translation into code nontrivial and error-prone.

Motivated by these observations, this work seeks to contribute toward narrowing the gap be-
tween theoretical exposition and practical implementation. By offering rigorously validated yet
accessible algorithmic translations, the project aspires to facilitate deeper engagement with machine
learning methodologies among students, software developers, and early-career researchers. It is hoped
that these contributions will foster a more integrative understanding of machine learning as both a
mathematical discipline and an engineering practice.

The overarching goal is to construct a more inclusive and operationally transparent pathway into the field,
beginning with my own contributions.
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3. Core Principles

In the development of this work, several core principles were adopted to ensure the accessibility,
transparency, and pedagogical rigor of complex Machine Learning concepts. These guiding method-
ologies are intended to promote a deeper and more intuitive understanding before engaging with

formal mathematical expressions.

*  Precise Definitions of Foundational Terms: All critical terminology (e.g., weights, gradients) is
clearly and systematically defined to establish a consistent conceptual framework.

*  Graphical and Diagrammatic Representation: Visual aids, including graphs and diagrams, are
utilized extensively to illustrate data flow, transformations, and algorithmic processes, thereby
enhancing conceptual clarity.

e  Formulaic Pseudocode as a Bridging Mechanism: Pseudocode formulations are employed
to systematically bridge abstract mathematical expressions and practical programming logic,
facilitating a more intuitive transition from theory to implementation.

*  Prioritization of Intuitive Explanations: Initial emphasis is placed on cultivating intuitive
understanding before introducing formal mathematical structures, with the goal of reducing
cognitive barriers and promoting more effective knowledge transfer.

These principles collectively inform the structure of the paper and reflect a commitment to making
Machine Learning education more accessible, particularly for students and practitioners without an

extensive background in advanced mathematics.

4. Target Audience

This work is intended for a diverse audience committed to advancing their understanding of
Machine Learning, regardless of prior formal exposure to advanced mathematics. The target readership

includes:

*  High school students embarking on the study of Machine Learning, particularly those seeking
accessible and intuitive learning resources.

e  Coding bootcamp graduates aiming to deepen their conceptual and practical grasp of Machine
Learning beyond standard curricula.

*  Software developers and practitioners who possess limited exposure to calculus or higher-level
mathematics, yet aspire to implement and innovate within Machine Learning systems.

e Individuals who have encountered challenges with traditional Machine Learning literature, often
characterized by excessive formalism and limited pedagogical accessibility.

¢  Current and future educators interested in re-envisioning Machine Learning instruction mod-
els, with an emphasis on enhancing accessibility, transparency, and engagement for emerging

generations of developers and researchers.

By explicitly addressing the needs of these groups, this work seeks to bridge existing educational
gaps and promote a more inclusive and effective approach to Machine Learning education.

It is not intended for those already fluent in math-heavy Machine Learning theory, rather, it fills
the gap for coders who want to go deeper without waiting for university-level math.

5. Vision for the Future of Machine Learning Education

The traditional paradigm for teaching machine learning has historically privileged abstract
mathematical formalism, often at the expense of accessibility and inclusivity. While mathematical rigor
remains indispensable for the theoretical advancement of the field, an overreliance on abstraction risks
alienating a substantial cohort of capable students, practitioners, and developers who might otherwise

contribute meaningfully to the discipline.
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This work advocates for an alternative educational framework: prioritizing intuition-driven,
structured pseudocode alongside annotated visual representations to convey complex machine learn-
ing concepts. Such an approach seeks to preserve theoretical depth while significantly enhancing
accessibility and conceptual clarity.

I envision a future in which educators, curriculum designers, and self-directed learners adopt
intuition-first pedagogical models that lower barriers to entry without sacrificing mathematical in-
tegrity. By explicitly bridging the domains of computational logic and mathematical abstraction, it
becomes possible to cultivate educational environments wherein intuitive understanding and formal
reasoning reinforce one another rather than stand in opposition.

This paper aspires to serve both as a practical resource for learners and as a call to action for
educators committed to reimagining the future of machine learning education. A shift toward more
inclusive, intuitively structured pedagogy promises not only to democratize access to machine learning
expertise but also to accelerate innovation and diversify contributions across the field.

6. Contribution Summary

This paper presents a novel approach to enhancing machine learning accessibility by system-
atically translating complex, calculus-based concepts into code-oriented pseudocode, designed to
mirror real-world programming logic. Central to this contribution is the introduction of Formulaic
Pythonic Pseudocode, a notation system specifically engineered to render traditional mathematical for-
mulations accessible to developers without advanced calculus backgrounds by leveraging conventions
recognizable across modern programming languages.

Unlike prevailing practices, where pseudocode often mirrors mathematical formalism rather than
executable logic, this approach emphasizes programmer-readable structures, enabling comprehension
and practical implementation. By facilitating earlier engagement among high school students, coding
bootcamp graduates, and early-career developers, the framework aims to expand participation in
machine learning model development and foster a more inclusive talent pipeline.

Additionally, this work seeks to establish a new pedagogical standard for machine learning
education resources. The proposed framework systematically organizes core machine learning con-
cepts, providing simplified linguistic descriptions, visual representations (such as graphs), detailed
breakdowns of constants and hyperparameters, and corresponding Formulaic Pseudocode exemplars.
The practical viability of the framework has been demonstrated through its successful application
within an independently developed Rust-based machine learning library.

Through these contributions, this paper endeavors to bridge the gap between theoretical expo-
sition and practical engineering, thereby broadening the accessibility, transparency, and operational

clarity of machine learning education.

7. Fundations to Machine Learning

Machine Learning is a subfield of artificial intelligence (AI) that focuses on enabling computational
systems to automatically identify patterns and structures within large datasets. The core principle
of machine learning involves the development of algorithms that allow machines to learn from data,
adapt to new information, and make predictions or decisions without being explicitly programmed for
every task. In this context, the patterns discovered by the machine are considered a form of intelligence,
wherein the system demonstrates the ability to infer relationships, make generalizations, and apply
learned knowledge to novel situations.

Machine learning models, often referred to as networks, are typically structured as complex
systems of interconnected components. These components, such as neurons and layers, are arranged
in various architectures, depending on the specific learning task and algorithm used. The learning
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process involves a sequence of computational steps, where the system iteratively adjusts internal
parameters based on the input data to minimize errors in its predictions or classifications. This process,
commonly referred to as training, is essential for the model’s ability to generalize from the training

data to unseen data, ensuring its applicability in real-world scenarios.

*  Gradient: Refers to a tensor or scalar value that represents the rate of change of a function
with respect to its inputs, typically used in optimization algorithms to adjust parameters during
training.

®  Scalar: A scalar is a tensor with a single parameter or value, often representing a simple quantity
such as a real number or a single element within a dataset.

®  Vector: A vector is a one-dimensional tensor, typically represented as an array or list of numbers,
each corresponding to a distinct quantity within a multi-dimensional space.

* Tensor: A tensor is a multi-dimensional array that generalizes the concept of scalars (zero-
dimensional tensors) and vectors (one-dimensional tensors) to higher dimensions, used to repre-
sent and store multi-dimensional data structures.

*  Target: The target refers to the desired gradient or output value that the model aims to approxi-
mate or predict, typically specified in the output layer of a neural network during the training
process.

¢ Output: The output refers to the gradient or value that is produced by the network’s final layer,
commonly referred to as the output layer. This value represents the model’s prediction after
processing the input through all preceding layers

*  Weights, and Bias: Weights and biases are the parameters of each layer within a neural network.
Weights represent the strength of the connections between neurons, while biases provide addi-
tional offsets to the activation functions. Together, these parameters define the transformation
applied to input data as it propagates through the network. Analogous to synapses in the human
brain, they control the flow of information within the model.

¢  Underfitting and Overfitting: Underfitting occurs when a model fails to capture the underlying
patterns within the training data, often due to insufficient complexity or inadequate training. Con-
versely, overfitting arises when a model excessively memorizes the training data, capturing noise
and irrelevant details instead of generalizable patterns. This often results in poor performance on
unseen data.

e Further sections of this paper provide a more in-depth exploration of these concepts and their implications
in the context of neural network training and optimization.

Machine Learning Pipeline
PREPROCESSING

Data
preparation

Figure 1. Neural networks follow the standard Machine Learning pipeline:starting with data collection and
preprocessing, followed by model training, validation, and testing, in order to iteratively learn patterns and
improve performance over time.

7.1. What can a Tensor store

Tensors can be conceptualized as multi-dimensional arrays that generalize matrices to higher

dimensions. Specifically, in the case of two-dimensional tensors, they can be represented as matrices
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defined by an X and Y axis, effectively forming a grid structure composed of values. In the context
of machine learning, it is common to utilize 32-bit floating point representations (float32 or £32) for
tensor storage. In certain cases, even lower-precision formats such as half-precision (e.g., float16)
may be employed, as the increased precision provided by 64-bit floating point formats (float64 or
f64) is often deemed unnecessary for the majority of tasks. The adoption of lower-precision formats
offers a significant advantage in reducing memory consumption and computational overhead, while
maintaining the performance of the model in most practical applications. This trade-off between
precision and efficiency is a critical consideration in the design and implementation of machine
learning models, especially when scaling to large datasets or complex architectures.

7.2. Layer in a Machine Learning Context

A neural network is inherently composed of multiple layers, each playing a critical role in
the transformation and processing of input data. Within each layer, there exist two fundamental
components: the weight tensor and the bias tensor. The weight tensor governs the scaling of input
signals, determining the strength and direction of the connections between neurons. Conversely, the
bias tensor facilitates the network’s ability to model complex, non-linear relationships, enabling the
network to capture patterns that cannot be represented through weighted inputs alone. Together, these
components allow the network to approximate highly intricate functions, making it capable of learning
from data in a manner that transcends simple linear transformations.

7.3. Neural Network

Input Layer Tensor/Gradient

Each connection, between each neuron
Represents a value a your Tensor, a
connection strength.

Output Tensor

Scalar in this case, but could also be a Gradient

Figure 2. Basic structure of a fully connected neural network, comprising the Input, Hidden, and Output layers.
Each layer is represented as a set of neurons, with each neuron in one layer being connected to every neuron in
the subsequent layer.

7.3.1. Understanding the Neural Network

Notice how each weight/neuron within the network is connected to nearby neurons in the
adjacent top and bottom layers.

Input: Accepts raw data, which can be normalized to prevent gradient issues.
2.  Hidden: Applies matrix multiplication to propagate signal strengths throughout the network.
3. Output: Produces the final prediction, which can be compared to the target to compute the
network error.

Training Steps Overview: The training of neural networks involves a systematic procedure that
ensures the model learns effectively from the data. The steps outlined below describe the critical stages

in this process:
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1.  Data Collection and Preprocessing: A fundamental prerequisite for training a neural network is
the acquisition of a clean, well-prepared dataset. This involves identifying and removing signifi-
cant outliers and ensuring that the input features are correctly paired with their corresponding
target values. The integrity of the data must be preserved to avoid introducing noise that could
impair model performance.

2. Model Architecture Definition: The next step is to design the architecture of the neural network.
This includes the selection of layer types (such as Dense, Convolutional, or Recurrent layers),
determining the number of layers, and specifying the number of units within each layer. Addi-
tionally, appropriate activation functions must be chosen for each layer to enable the model to
learn complex relationships within the data.

3. Loss Function Selection: The choice of a loss function is crucial for quantifying the error between
the predicted outputs and the actual target values. Common loss functions include Mean Squared
Error (MSE) for regression tasks and Mean Absolute Error (MAE), among others. The loss
function serves as the objective that the network aims to minimize during training.

4. Optimizer Selection: To optimize the learning process, an optimizer must be chosen to adjust the
network’s weights. Algorithms such as Adam are commonly used due to their adaptive learning
rates and effective convergence properties. The optimizer adjusts the learning rate dynamically
to ensure efficient convergence based on the gradients computed during backpropagation.

5. Foward Pass: During the forward pass, input data is propagated through the network. Each
layer computes an activation function, transforming the input data at each stage. The final layer
produces the predicted output, which is compared to the true labels or target values.

6. Loss Computation: Once the forward pass is complete, the predicted output is evaluated against
the true target values using the selected loss function. This step quantifies the difference between
the predicted and actual values, providing a measure of the model’s performance.

7.  Backward Pass (Backpropagation): The backward pass involves calculating the gradients of the
loss function with respect to the network’s weights. This is achieved by applying the Chain Rule
of calculus to propagate the error backward through the network, layer by layer, to compute the
necessary gradients.

8.  Weight Update: The optimizer is then used to update the network’s weights and biases based
on the gradients computed during the backward pass. This iterative process continues until the
model converges to a solution that minimizes the loss function.

This work provides dedicated sections that systematically examine each of these processes in
greater detail. The Forward Pass, Loss Computation, and Backward Pass are presented as essential phases
within the broader Backpropagation framework, which constitutes the core mechanism enabling neural

networks to iteratively refine their parameters and thereby learn from data.

8. Tensors

In the context of Machine Learning, tensors serve as a foundational mathematical structure for
representing and manipulating data across multiple dimensions. Although tensors are frequently
utilized to encode gradients the derivatives of functions with respect to their parameters their util-
ity extends far beyond this application. More generally, tensors provide a unified and systematic
framework for modeling multi-dimensional data arrays, irrespective of dimensional complexity.

This intrinsic versatility enables tensors to facilitate the efficient storage, transformation, and
computation of complex datasets within modern computational models. As such, tensors are in-
dispensable not only for the theoretical formulation of Machine Learning algorithms but also for

their practical implementation across a wide range of applications. Their role as a bridge between
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abstract mathematical formalism and applied algorithmic processes underscores their centrality in

contemporary Machine Learning research and practice.

1.  Constituent Components of Tensors: Tensors are composed of several interrelated structural
elements that define their behavior and application within computational frameworks.

2.  Dimension: In most Machine Learning contexts, tensors are utilized in their two-dimensional
(2D) form. This paper primarily focuses on two-dimensional tensors; however, the conceptual
principles discussed are extensible to tensors of higher dimensions.

3. Shape: The shape of a two-dimensional tensor (matrix) is characterized by two parameters: the
number of rows (X-axis) and the number of columns (Y-axis). This structure determines the
organizational layout of the data within the tensor.

4.  Parameters: The total number of parameters within a tensor is defined as the product of its
dimensions, calculated as rows x columns. This quantity corresponds to the total number of
individual elements or connections represented.

5. Weights: In neural network architectures, the primary tensor associated with each layer is referred
to as the weights tensor. These tensors encode the learnable parameters that are updated during
the training process.

6. Bias: Complementing the weights tensor, the bias tensor is introduced at each layer to enable
additional model complexity and flexibility, allowing the network to better capture patterns in
the data.

7. Scalar vs. Gradient: A tensor consisting of a single element with a shape of (1,1) is classified as
a scalar. In contrast, gradients tensors representing derivatives with respect to model parameters
generally possess higher-dimensional shapes and necessitate iteration mechanisms (e.g., loops)
for computation across their elements.

8. Logits: Logits refer to the raw, unnormalized output values produced by a neural network
layer, typically represented within tensors prior to the application of activation functions such as
softmax or sigmoid.

9.  Element: An element denotes a single numerical value contained within a tensor, identified by

its unique position according to the tensor’s dimensional structure.

Certain tensor operations necessitate the use of broadcasting, a process by which tensor shapes
are automatically expanded to ensure compatibility for element-wise computations. Broadcasting is
particularly critical for operations such as matrix multiplication, where the participating tensors must
conform to specific dimensional requirements to permit valid arithmetic operations.

The type and complexity of tensor operations applied— ranging from scalar interactions to vector
and matrix (two-dimensional tensor) manipulations are determined by both the architectural design of
the network and the underlying computational objectives. Careful management of tensor shapes and
operations is therefore essential to maintaining the mathematical integrity and efficiency of Machine

Learning models.
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1.0, 2.1, 3.0],
4.0, 5.0, 6.9],
7.4, 8.2, 9.6]]

Figure 3. Example: Tensor/Matrix/Gradient, with shape: (3,3), Parameters: 9, Sum: 47.2

8.1. Key Gradient Pathologies

During the Machine Learning training pipeline, gradients are subjected to repeated multiplication
across multiple layers and operations. As a consequence, their magnitudes can either grow uncontrol-
lably or diminish to near-zero values, leading to severe numerical instabilities. Two primary types of

gradient pathologies are typically observed:

1.  Exploding Gradients: This phenomenon occurs when the magnitudes of tensor elements increase
exponentially during backpropagation, potentially exceeding the representational limits of the
specified data type and causing numerical overflow or instability.

2. Vanishing Gradients: Conversely, vanishing gradients arise when the magnitudes of tensor
elements diminish exponentially, approaching zero and resulting in numerical underflow. This
leads to stagnation in learning, as weight updates become negligibly small.

Mitigating these issues is crucial for ensuring stable and effective neural network training, and
various architectural and optimization strategies have been developed to address them.

8.2. Tensor Rank Versus Tensor Shape

Although often colloquially interchanged, the concepts of rank and shape possess distinct meanings

within the context of Machine Learning and tensor operations:

1.  Rank (Order): The rank of a tensor refers to the number of dimensions it possesses. For example,
a scalar has rank 0, a vector has rank 1, and a matrix has rank 2.

2. Shape: The shape of a tensor specifies the explicit size of each dimension. For instance, a tensor
with a shape of (3,5) has three rows and five columns in its two-dimensional representation.

A clear understanding of the distinction between rank and shape is essential for designing
and debugging Machine Learning models, as errors in dimensional reasoning frequently underlie

operational failures.

8.3. Axis Operations

In tensor algebra, operations along Axis 0 are performed row-wise, whereas operations along
Axis 1 are performed column-wise. For tensors of higher dimensionality (i.e., rank greater than
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two), subsequent axes correspond to progressively deeper structural layers, following the same
organizational pattern. A clear understanding of axis conventions is critical for correctly implementing

tensor manipulations and avoiding shape-related computational errors.

8.4. Dot Product

The dot product is a fundamental operation in linear algebra, particularly relevant to Machine
Learning applications involving vector and matrix computations. It is defined as the sum of the

element-wise products of two vectors occupying parallel positions within their respective structures.

Listing 1: Formulaic Pythonic Pseudocode for Dot Product Computation

Function DotProduct (VectorA, VectorB) -> ScalarResult:

// Verify that both input vectors have identical lengths.
if VectorA.len() != VectorB.len():

return Error ("Input vectors must be of the same length.")

// Initialize the accumulator for the dot product result.
ScalarResult = 0

// Perform element-wise multiplication and accumulate the sum.
for i in range(VectorA.len()):
ScalarResult = ScalarResult + (VectorA[i] * VectorB[il)

return ScalarResult

Use Cases of the Dot Product

1.  Aggregating features within neural network architectures, particularly in fully connected (dense)
layers.

2. Computing the angle between two vectors, which provides insights into their directional align-
ment.

3. Serving as the basis for cosine similarity, a common metric for comparing vector representations

in tasks such as information retrieval and recommendation systems.
Interpreting the Results

1. A large positive result indicates strong agreement between the vectors (i.e., vectors oriented in
similar directions).

2. A negative result reflects opposing directions, suggesting that the vectors are substantially
misaligned.

3. Aresult close to zero indicates orthogonality (perpendicularity) between the vectors, implying
the absence of linear correlation.

A thorough understanding of the dot product is foundational for operations such as fully con-
nected layers, similarity-based retrieval methods, and various forms of vector space modeling within
Machine Learning.


https://doi.org/10.20944/preprints202504.2484.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2484.v1

11 of 65

0:0:130 1,1,1,1 1,1,2,1
0,2,34 |1 0,1,31 |-o,3,64
i,2,4,5 ,2,4’0 8,4,8,5

Figure 4. Tensor Addition.

8.5. Tensor Addition

Tensor addition is a fundamental operation wherein two tensors are combined through element-
wise summation. Given two tensors of compatible shapes, the addition operation is performed by
adding corresponding elements from each tensor.

Unlike tensor multiplication and division, which impose stricter constraints on dimensional
compatibility, tensor addition can be applied between tensors of different shapes through broadcasting,
provided that the shapes align according to broadcasting rules. This flexibility makes tensor addi-
tion particularly useful for constructing and manipulating complex computational structures within

Machine Learning models.

Listing 2: Formulaic Pythonic Pseudocode for Tensor Addition

Function Add(Tensorl, Tensor2) -> ResultTensor:

4 // Initialize an empty tensor with the same shape as Tensorl.

ResultTensor = CreateEmptyTensor (shape=Tensorl.shape)

7 // Perform element-wise addition.
8 For rowIndex in range(Tensorl.rowCount()):

9 For colIndex in range(Tensorl.colCount()):

11 valuel = Tensorl[rowIndex][colIndex]
12 value2 = Tensor2[rowIndex][colIndex]
13 ResultTensor [rowIndex] [colIndex] = valuel + value2

15 Return ResultTensor

Tensor addition is widely utilized in Machine Learning workflows for a variety of purposes. It can
be employed to merge gradients or feature representations during training, as well as to incorporate
bias vectors into the outputs of neural network layers.

Additionally, tensor addition plays a critical role in broadcasting operations, enabling tensors
of differing shapes to be expanded to a common shape. This alignment is essential for performing

matrix-wise operations that require shape compatibility between operands.

8.6. Tensor Subtraction

Tensor subtraction constitutes an element-wise operation wherein corresponding elements from
two tensors are subtracted. Structurally, it mirrors the process of tensor addition, differing only in the
arithmetic operation applied.

Given two tensors of compatible shapes, subtraction is performed by subtracting each element
of the second tensor from the corresponding element of the first tensor. This operation maintains
dimensional consistency and is fundamental in a variety of Machine Learning contexts, such as

calculating residuals, adjusting feature maps, or implementing optimization updates.
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Listing 3: Formulaic Pythonic Code for Tensor Subtraction

1 Function Subtract(Tensorl, Tensor2) -> Tensor:
ResultTensor = create empty tensor with same shape as Tensorl

For row in Tensorl:

6 For col in row:

8 valuel = Tensorl[rowIndex][colIndex]

9 value2 = Tensor2[rowIndex][colIndex]

10 ResultTensor [rowIndex] [colIndex] = valuel - value?2
11

12 Return ResultTensor

8.7. Scalar Addition

Scalar addition in the context of tensors typically involves an element-wise operation, where a
scalar value is added individually to each element of the tensor. This approach results in a uniform
transformation across all entries, preserving the relative structure of the original tensor while uniformly
shifting its values.

Alternatively, scalar addition can be implemented via tensor broadcasting, wherein the scalar
is implicitly expanded to match the shape of the tensor. While broadcasting enables computational
efficiency, the scalar’s impact may be perceived as minimal, particularly at specific coordinates (e.g.,
(x1,12)), where its relative contribution may be diminished by the broader dimensional context.

Listing 4: Formulaic Pythonic Code for Scalar Addition

1 Function Add_Scalar (Tensor, Scalar) -> Tensor:
2 For row in Tensor:
For col in row:

4 col += Scalar

8.8. Scalar Subtraction

One common way to perform Scalar Subtraction is through element-wise operations across an
entire tensor, with the result updating the element. In this approach, the scalar value is substracted
individually to each element of the tensor. This ensures a uniform transformation throughout the
tensor. Alternatively, a scalar can be subtracted using tensor broadcasting during tensor subtraction,
but this often results in the scalar having minimal impact, especially at specific coordinates like (x1,

y2), where its effect may be diluted by the dimensional context.

Listing 5: Formulaic Pythonic Code for Scalar Subtraction

Function Sub_Scalar (Tensor, Scalar) -> Tensor:

2 For row in Tensor:
For col in row:

4 col -= Scalar

8.9. Scalar Multiplication

Scalar multiplication constitutes an element-wise operation in which a scalar value is multiplied
with each individual element of a tensor. Structurally, it mirrors tensor addition and subtraction in
that the operation is applied uniformly across all tensor indices; however, the arithmetic operation

performed is multiplication.
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This technique enables uniform scaling of tensor values and is fundamental in a variety of Machine
Learning applications, including feature normalization, gradient scaling, and adjusting activation

outputs.

Listing 6: Formulaic Pythonic Pseudocode for Scalar Multiplication

2 Function MultiplyScalar (Tensor, Scalar) -> ResultTensor:

4 // Initialize an empty tensor with the same shape as the input tensor.

ResultTensor = CreateEmptyTensor (shape=Tensor.shape)

7 // Perform element-wise scalar multiplication.
8 For rowIndex in range(Tensor.rowCount ()):

9 For colIndex in range(Tensor.colCount ()):
1 ResultTensor [rowIndex] [colIndex] = Tensor [rowIndex][colIndex] * Scalar

13 Return ResultTensor

8.10. Scalar Division
Scalar division constitutes an element-wise operation analogous to scalar multiplication, differing
only in the arithmetic operation applied. Instead of multiplying each element of a tensor by a scalar,

each element is divided by the scalar value.
This operation is commonly employed for normalization tasks, scaling tensor values to a desired

range, and adjusting model parameters during optimization procedures.

Listing 7: Formulaic Pythonic Pseudocode for Scalar Division

2 Function DivideScalar (Tensor, Scalar) -> ResultTensor:

4 // Initialize an empty tensor with the same shape as the input tensor.

ResultTensor = CreateEmptyTensor (shape=Tensor.shape)

7 // Perform element-wise scalar division.
8 For rowIndex in range(Tensor.rowCount ()):

9 For colIndex in range(Tensor.colCount()):
1 ResultTensor [rowIndex] [colIndex] = Tensor [rowIndex][colIndex] / Scalar

13 Return ResultTensor

8.11. Use Cases of Tensor-Scalar Operations
Tensor-scalar operations are critical components in Machine Learning workflows, serving to re-
duce complex multi-dimensional structures into singular, interpretable scalar values. These operations

underpin several fundamental aspects of modern computational models, including:

¢ Loss Functions: Quantifying prediction errors by aggregating differences between predicted and
actual outputs into a single optimization target.

e  Evaluation Metrics: Assessing model performance through scalar scores such as accuracy, preci-
sion, recall, or F1 score.

* Regularization Terms: Penalizing model complexity by incorporating scalar-valued norms
(regularization) into the loss function to encourage simpler models.

e  Gradient Aggregation: Summarizing parameter updates across batches or layers to stabilize and

guide the optimization process.
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Matrix A (3x2) Matrix B (2x3) Matrix C = AxB (3x3)

5 6 10 11 12 95 106 117
» =

Figure 5. Example of Matrix Multiplication.

. State Monitoring: Tracking statistical properties of tensors, such as mean, variance, or norm, to
facilitate model diagnostics and performance tuning.

The ability to seamlessly transition between tensorial representations and scalar summaries
is foundational for both the theoretical formulation and the practical implementation of Machine

Learning systems.

8.12. Matrix Multiplication

Matrix multiplication constitutes one of the more computationally intricate operations performed
on tensors. In biological systems, such as the human brain, neurons operate in parallel, dynamically
adjusting the strengths of their connections to facilitate learning and adaptation. This dynamic behavior
can be abstractly modeled in Machine Learning through matrix multiplication (MatMul), enabling the
simulation of neural activity in a form amenable to the linear and deterministic processing style of
digital computing hardware.

In formal terms, matrix multiplication involves the systematic combination of two matrices by
multiplying corresponding elements and summing the results across aligned dimensions. Crucially,
for matrix multiplication to be well-defined, the number of columns in the first matrix must equal the
number of rows in the second matrix. Furthermore, efficient computation of matrix multiplication
relies on optimized access patterns to large, contiguous sections of memory, underscoring its centrality

to both the mathematical formulation and the hardware acceleration of Machine Learning algorithms.

Listing 8: Formulaic Pythonic Pseudocode for Matrix Multiplication

1 Function MatMul (TensorA, TensorB) -> TensorC:

3 // Retrieve matrix dimensions.
4 rowsA = TensorA.rowCount ()
colsA = TensorA.colCount ()

6 colsB = TensorB.colCount ()

8 // Initialize the output tensor with zeros, shaped (rowsA, colsB).

9 TensorC = CreateEmptyTensor (shape=(rowsA, colsB))

1 // Perform matrix multiplication.
12 For rowIndex in range(rowsA):
13 For colIndex in range(colsB):

14 sum = 0
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15 For k in range(colsA):
16 sum += TensorA[rowIndex][k] * TensorB[k][colIndex]

17 TensorC[rowIndex][colIndex] = sum

19 Return TensorC

It is important to note that the index k represents the shared dimension between the two matrices
being multiplied. During the matrix multiplication process, k iterates over the corresponding elements
of the first matrix’s row and the second matrix’s column, accumulating their products to compute
each element of the resulting matrix. This structure constitutes the fundamental dot product operation
underlying matrix multiplication and is critical for enabling efficient linear parallelization in modern

computational implementations.

8.12.1. Misconception: Matrix Division?

There is no Matrix Division, while Scalars could apply division to a whole Tensor, a Matrix
applyig division, is not a defined general operation. As reverse transformations is too computational

expansive.

8.13. Broadcasting

Broadcasting is a fundamental mechanism that enables element-wise operations between tensors
of differing shapes by automatically expanding their dimensions to achieve compatibility. The Ten-
sor Broadcasting Rules formally define the conditions under which such expansions are permissible,
ensuring that operations can be applied without explicit replication of data.

By adhering to these rules, Machine Learning frameworks can efficiently perform arithmetic
operations across tensors of varying ranks and shapes, facilitating flexible model design and reducing
computational overhead.

1.  Broadcasting Rules for Two-Dimensional Tensors:

2. Let Tensor A and Tensor B be the two tensors involved in the operation.

3.  Broadcasting is permissible along the row dimension if the number of rows in A equals the
number of rows in B, or if one of the tensors has exactly one row.

4.  Broadcasting is permissible along the column dimension if the number of columns in A equals
the number of columns in B, or if one of the tensors has exactly one column.

5. If either the row or column dimension is 1 in one tensor, it is virtually expanded (broadcast) to

match the corresponding dimension of the other tensor.

In basic terms, if a tensor dimension equals one, it can be broadcast by expanding that dimension
to match the corresponding dimension of the other tensor. However, if the dimensions are neither equal
nor one, additional techniques must be employed to achieve shape compatibility. These techniques
include zero-padding, reshaping, unsqueezing, and transposition, each of which modifies the tensor’s
structure to enable valid operations.

Listing 9: Formulaic Pythonic Code for Tensor Subtraction

1 Function broadcastable(TensorA, TensorB) -> Tensor:

3 if TensorA.rows == TensorB.rows or TensorA.rows == 1 or TensorB.rows == 1:

4 if TensorA.cols == TensorB.cols or TensorA.cols == 1 or TensorB.cols == 1:
//broadcast is valid

6 else:

7 //broadcast is invalid
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Tensor A Tensor B Result
Shape (3,4) Shape (1.4) Shape (3.4)

A A A A B B B B R R R R
A A A A R R R R
A A A A R R R R

Figure 6. Example of correct broadcasting.

This verification step is particularly critical for matrix multiplication, as the shapes of the input
tensors must either be inherently compatible or made compatible through broadcasting in order for
the operation to be correctly applied.

8.14. Tensor Raised to a Scalar Power

Raising a tensor to a scalar power constitutes an element-wise operation, wherein each individual
element of the tensor is exponentiated independently by the scalar value. Unlike matrix multiplication,
this operation does not involve any interaction between different elements or dimensions; each

computation is performed locally at the element level.

Listing 10: Formulaic Pythonic Pseudocode for Element-wise Tensor Exponentiation

I Function RaiseByScalar (Tensor, Scalar) -> ResultTensor:
3 // Initialize an empty tensor with the same shape as the input tensor.

4 ResultTensor = CreateEmptyTensor (shape=Tensor.shape)

6 // Perform element-wise exponentiation.

7 For rowIndex in range(Tensor.rowCount ()):

8 For colIndex in range(Tensor.colCount()):

9

10 ResultTensor [rowIndex] [colIndex] = Tensor [rowIndex][colIndex] ** Scalar
11

12 Return ResultTensor

8.14.1. Use Cases

1.  Activation Functions: Certain activation functions involve raising tensor elements to a scalar
power, particularly in custom or experimentally-derived non-linearities.

2. Regularization: Element-wise exponentiation can be employed as part of regularization strategies
to control model complexity and mitigate overfitting.

3. Normalization Techniques: Several normalization methods involve squaring tensor elements,
such as in variance normalization or RMS (Root Mean Square) computations.

4.  Probability Distributions: In probabilistic modeling, tensor elements are often raised to powers
when computing likelihoods, especially in formulations involving exponential families or in

certain Bayesian inference procedures.

8.14.2. Important Notes

1.  Element-wise Application: Exponentiation by a scalar applies strictly in an element-wise manner.
It does not constitute matrix multiplication, even if the tensor is two-dimensional.

2. Scalar Flexibility: The scalar exponent can be any real number, including negative values and
fractions, provided that the base tensor elements support the operation (e.g., non-negative bases

for real-valued outputs when using fractional exponents).
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3. Differentiability: Element-wise exponentiation is differentiable almost everywhere and is thus
suitable for use in gradient-based optimization algorithms.

4. Numerical Stability: The use of non-integer scalars in combination with zero or negative tensor
elements may lead to undefined or unstable results, depending on the specific computational
context.

5. Nonlinear Transformation: Raising tensor elements to a scalar power constitutes a nonlinear

transformation, significantly altering the data distribution and affecting downstream computa-

tions.
. How Scalar Powers Transform Tensor Values
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Figure 7. Illustration of how scalar exponentiation transforms tensor values in a non-linear fashion. The graph

1,05 ,.—1 —-0.5
7

plots several power operations—specifically x2, x!, x93, x~1, and x~0°— applied to an original input range

of [0,2]. While the linear function x! preserves proportionality, the other transformations introduce significant
non-linear distortions: quadratic (x?) expands larger magnitudes, square root (x°) compresses them, and negative
powers (x 1, x705) produce inverse relationships with rapid growth near zero. This behavior emphasizes that
scalar exponentiation inherently constitutes a non-linear operation, often introducing asymmetries, discontinuities,
or sensitivity to small inputs within tensor transformations.

9. Tensor Shaping and Broadcasting Operations

In Machine Learning, tensors frequently require structural transformations to ensure compatibility
with model architectures. This section presents key tensor shaping and broadcasting operations that
facilitate seamless data flow across different layers and model components, while preserving the

integrity of the underlying data representations.

9.1. Transpose

The transpose operation enables tensors of differing shapes to achieve matrix-wise compatibility,
particularly in contexts where broadcasting is insufficient. Transposition reorients a tensor by swapping
its dimensions, effectively rotating the structure to align with the dimensional requirements of another
tensor.

For example, a tensor with shape (5,1) can be transposed to shape (1,5), facilitating element-wise

or matrix operations with tensors of compatible shapes.
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Original Matrix (2x3) Transposed Matrix (3x2)

sum

Figure 8. Diagram of a Tensor with Transposed applied, demonstrating the rotation.

Listing 11: Formulaic Pythonic Pseudocode for Tensor Transposition
1 Function Transpose(Tensor) -> TransposedTensor:
3 // Retrieve original dimensions.

4 rows = Tensor.rowCount ()

5 cols = Tensor.colCount ()

7 // Initialize an empty tensor with swapped dimensions.

8 TransposedTensor = CreateEmptyTensor (shape=(cols, rows))

10 // Perform transposition by swapping rows and columns.

11 For rowIndex in range (rows):

12 For colIndex in range(cols):

13 TransposedTensor [colIndex] [rowIndex] = Tensor [rowIndex][colIndex]
14

15 Return TransposedTensor

This operation is particularly useful for aligning tensor shapes to enable compatibility in opera-

tions such as matrix multiplication.

9.2. Padding (Zero Padding)

When tensors do not possess the required dimensions for a given operation, padding can be
applied to adjust their shapes accordingly. Padding typically operates in two modes: either by
appending zero-valued elements to extend rows or columns, or by trimming excess elements to align
the tensor with the desired target shape.

Zero padding is particularly common in Machine Learning applications where maintaining spatial
or dimensional consistency across layers is critical, such as in convolutional neural networks (CNNs)

and structured input pipelines.

Listing 12: Formulaic Pythonic Pseudocode for Tensor Padding

1 Function PadTensor (Tensor , TargetShape, ZeroValue) -> PaddedTensor:

o

3 // Initialize a copy of the original tensor to modify.

4 PaddedTensor = CopyTensor (Tensor)
6 // Pad rows if necessary.
7 While PaddedTensor.rowCount () < TargetShape.rows:

8 PaddedTensor .appendRow (FillArray (length=TargetShape.columns, value=ZeroValue))

10 // Pad columns if necessary.
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11 For rowIndex in range(PaddedTensor.rowCount()):
12 While PaddedTensor [rowIndex].length() < TargetShape.columns:
13 PaddedTensor [rowIndex].append (ZeroValue)

15 Return PaddedTensor

9.3. Flatten

In Machine Learning, particularly within neural network architectures, the flatten operation is
used to convert multi-dimensional data structures (e.g., two-dimensional images or three-dimensional
feature maps) into a one-dimensional vector.

This transformation is essential because fully connected (dense) layers require one-dimensional
input for processing. Flattening serves as a critical bridge between feature extraction layers—such as
convolutional or pooling layers—and subsequent classification or output layers, enabling the network
to transition from complex spatial representations to scalar predictions or decisions.

Listing 13: Formulaic Pythonic Pseudocode for Tensor Flattening

| Function Flatten(Tensor) -> FlattenedTensor:

3 // Initialize an empty one-dimensional tensor.

4 FlattenedTensor = CreateEmptyTensor (shape=(1, 0))

6 // Append each element in row-major order.
7 For rowIndex in range(Tensor.rowCount ()):
8 For colIndex in range(Tensor.colCount()):

9 FlattenedTensor [0] . append (Tensor [rowIndex] [colIndex])

11 Return FlattenedTensor

Flattening preserves the original element order in a row-major sequence, which is essential for
maintaining the structural consistency of features within Machine Learning models.

9.4. Dimensional Products

In tensor analysis, the dimensional product corresponds to the total number of discrete elements
instantiated within a tensor structure. It is formally derived as the product of the cardinalities along
each axis of the tensor’s shape tuple. This invariant is paramount in validating reshape operations, as
the conservation of element cardinality is a necessary condition for the consistency and reversibility of

tensor transformations.

Listing 14: Concurrent Formulaic Pythonic Code for Dimensional Product Calculation

1 Function Product(Shape_Array) -> Integer:
2 If Shape_Array is empty:
3 Return 1
4
Partition Shape_Array into subsets for concurrent processing

6 Initialize partial_products as empty list

8 For each subset concurrently:
9 local_product = 1

10 For each dim in subset:

11 local_product *= dim

12 Append local_product to partial_products

14 Initialize final_result = 1
15 For each local_product in partial_products:

16 final_result *= local_product
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18 Return final_result

9.5. Reshape and Resize Operations

During the construction and execution of neural network architectures, it is often encountered
that a tensor’s intrinsic shape does not conform to the dimensional requirements of specific operations,
notably matrix multiplication and related algebraic transformations. In such instances, it becomes
necessary to perform reshape or resize operations, wherein the tensor’s structure is reconfigured
to align with the expected dimensionalities of subsequent computational stages. Crucially, these
transformations must preserve the total cardinality of the tensor elements, thereby maintaining data

integrity while ensuring compatibility across computational layers.

Listing 15: Concurrent Formulaic Pythonic Code for Tensor Reshape/Resize

| Function Reshape(Tensor, New_Shape) -> Tensor:
2 // Step 1: Flatten the original Tensor into a contiguous 1D array

flat_data = Flatten(Tensor)

// Step 2: Validate that reshaping is feasible
6 if Product(New_Shape) != Length(flat_data):

7 Throw Error("Shape mismatch: total element count inconsistent")

9 // Step 3: Initialize an empty Tensor structure with the target shape
10 Reshaped_Tensor = Empty_Tensor (New_Shape)

12 // Step 4: Concurrently populate the new Tensor structure
13 Parallel for index in Range (0, Length(flat_data)):
14 destination_indices = Compute_MultiDimensional_Indices(index, New_Shape)

15 Reshaped_Tensor [destination_indices] = flat_datal[index]

17 Return Reshaped_Tensor

Reshape operations reconfigure the memory layout of tensors while preserving the total cardinal-
ity of elements. Crucially, reshaping is a valid and safe transformation only when the product of the
target dimensions exactly equals the original tensor’s element count. Failure to satisfy this invariant re-
sults in structural inconsistency and must be guarded against to avoid runtime violations. Concurrent
reshape implementations utilize independent index mappings to facilitate parallel population of the

target tensor without contention.

10. Fundamental Mathematical Concepts for Machine Learning

A common misconception among aspiring practitioners is that effective engagement with Machine
Learning (ML) requires a comprehensive background in advanced calculus or higher mathematics.
While such knowledge may enrich one’s theoretical understanding, the foundational practices of ML
rely primarily on a small subset of core mathematical principles. This section delineates those essential

constructs, providing both conceptual clarity and pedagogical accessibility.

10.1. Calculus: A Descriptive Framework, Not a Barrier

Calculus serves as a formal mathematical framework for describing continuous change, and
historically underpins the derivation of many algorithmic foundations in Machine Learning, including
gradient descent, optimization, and activation dynamics. In essence, it provides the language in which
many core ML operations were originally formulated. However, for practical implementation, these
expressions are routinely translated into discrete algorithmic procedures—what we term *formulaic
pseudocode*—rendering deep calculus fluency unnecessary for initial engagement. Practitioners


https://doi.org/10.20944/preprints202504.2484.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2484.v1

21 of 65

can thus implement state-of-the-art models by understanding the intuition behind derivatives and

gradients, even without engaging in symbolic manipulation.

10.2. Non-Linearity: The Essential Break from Linearity

In the context of Machine Learning, non-linearity refers to transformations wherein the output is
not a direct proportional mapping of the input. Mathematically, this property manifests in functions
whose graphs are not straight lines—such as polynomials, exponentials, or activation functions like
ReLU and GELU. The introduction of non-linear transformations within models is critical, as it enables
neural networks to approximate complex, non-trivial patterns in high-dimensional data. Without
non-linearity, models would be restricted to learning only affine transformations, severely limiting
their expressive capacity.

10.3. Euler’s Number: A Fundamental Limit in Continuous Growth

Euler’s number, denoted as e ~ 2.71828, emerges as a foundational constant in both calculus
and Machine Learning. It characterizes the asymptotic behavior of processes involving continuous
exponential growth and decay, as well as the natural logarithmic base in optimization landscapes.
Formally, Euler’s number may be defined as the infinite limit of either a summation or a compounding
product. The most common series representation is given by:

1
n!

i
agk

n=0

This identity expresses ¢ as the sum of the reciprocals of factorials—a rapidly converging series
foundational to both exponential function approximations and gradient-based methods involving
activation functions such as softmax.

The following pseudocode outlines an iterative approach to approximate e using its factorial series
expansion:

Listing 16: Formulaic Pythonic Code for Euler’s Number Approximation

function calculate_e(terms):
2 e =0

factorial = 1

for n from O to terms - 1:
6 if n > O:
7 factorial = factorial * n

8 e = e + (1 / factorial)

10 return e

Most modern programming languages provide Euler’s number as a built-in constant within their
standard mathematical libraries (e.g., math.e in Python, std: :numbers::e in C++20). However,
explicit calculation via factorial expansion serves as a valuable pedagogical exercise for understanding
its convergence behavior and underlying mathematical structure.

10.4. Mean of a Tensor: A Measure of Central Tendency

In Machine Learning, the mean—or arithmetic average—of a tensor’s elements provides a fun-
damental measure of central tendency. This scalar value summarizes the overall distribution of the
data and is frequently employed in normalization schemes, statistical analyses, and loss function
diagnostics. For a tensor T € R%1*42% <41 _the mean is defined as:
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D T;

1 N
i=1
where N = [T}/_; dj denotes the total number of elements in the tensor, and T; represents the i-th
flattened element.
The operation is both commutative and associative, enabling safe concurrent or parallelized

computation. The following pseudocode illustrates a basic implementation:

Listing 17: Formulaic Pythonic Code for Tensor Mean

| function Tensor_Mean(Tensor) -> £f32:
2 data_sum = 0 // Initialize accumulator

data_points = Product(Tensor.Shape) // Compute total elements

for row in Tensor:
6 for col in row:

7 data_sum += col

9 return data_sum / data_points

In practice, most numerical computing libraries (e.g., NumPy, TensorFlow, PyTorch) provide
optimized implementations that support high-dimensional tensors and exploit vectorized opera-
tions or GPU acceleration. Nevertheless, the explicit formulation serves as an instructive model for

understanding the mechanics of aggregation in tensor algebra.

10.5. Median of a Tensor: A Robust Measure of Central Tendency

In statistical analysis of tensor data, the median serves as a robust estimator of central tendency,
particularly effective in scenarios involving skewed distributions or the presence of outliers. Unlike
the mean, which aggregates all values and may be influenced by extreme values, the median captures
the central value of the dataset after ordering the elements by magnitude.

Formally, given a tensor T of arbitrary rank with # total elements, the median is defined by first
flattening the tensor into a one-dimensional array and then sorting its entries in non-decreasing order.

The median value m is then determined as follows:

Xny1, if n is odd
m = 2
%(x% +x541), ifniseven
where x; denotes the i-th smallest element in the sorted array.
This procedure ensures that 50% of the data lies below and above the computed median. The
median is particularly advantageous in Machine Learning workflows for tasks such as feature scaling,

distributional normalization, and robust data imputation.

Listing 18: Formulaic Pythonic Code for Tensor Median

| function Tensor_Median(Tensor) -> £32:

2 flat = Flatten(Tensor)

sorted_data = Sort(flat)
4 n = Length(sorted_data)
6 if n % 2 ==

7 return sorted_datal[(n - 1) // 2]
8 else:

9 midl = sorted_datal[(n // 2) - 1]
10 mid2 = sorted_dataln // 2]

11 return (midl + mid2) / 2
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While computationally more expensive than the mean, the median offers resilience against noisy data
and extreme values, making it a preferred choice in adversarial or corrupted input environments.
Optimized implementations often leverage partial sorting or selection algorithms (e.g., QuickSelect) to
achieve linear-time complexity in practice.

10.6. Element-wise Absolute Value of a Tensor

The element-wise absolute value operation is a fundamental transformation in numerical com-
puting and Machine Learning, frequently employed in contexts such as error computation, signal
processing, and gradient stabilization. For a given tensor T € R%1*42%*du_the absolute value operator
abs(T) is defined as:

abs(T) =1T;

01,0200/ 14200/in |

where | - | denotes the scalar absolute value. This operation ensures that all resulting elements
are non-negative, as it transforms each negative entry into its positive counterpart while preserving
non-negative values.

In vectorized frameworks, this transformation is typically applied in a fully parallelized manner,
operating independently on each tensor element. Its utility spans across applications such as the
L1 norm, absolute error metrics (e.g., MAE), and robust loss functions that penalize deviations
symmetrically regardless of sign.

Listing 19: Formulaic Pythonic Code for Element-wise Tensor Absolute Value

function Tensor_Absolute(Tensor) -> Tensor:

2 result = Empty_Tensor (Shape = Tensor.Shape)

4 for i from O to Tensor.Shape.x - 1:
for j from O to Tensor.Shape.y - 1:
6 result[i]1[j] = abs(Tensor[i][j])

8 return result

Most high-performance libraries provide optimized implementations of this operation using SIMD
instructions or GPU kernels. Nonetheless, the conceptual clarity of the element-wise absolute function

makes it a foundational operation in both algorithm design and educational formulations.

10.7. Tensor Standard Deviation (std): A Measure of Dispersion

The standard deviation is a fundamental statistical metric used to quantify the dispersion or
spread of data relative to its mean. Within the context of Machine Learning, computing the standard
deviation of a tensor is essential for normalization techniques, statistical diagnostics, and sensitivity
analysis in gradient-based optimization.

Formally, given a tensor T of n elements, with mean y = % Y., T, the population standard

‘7:1/%%(7}—1‘)2
i=1

In practice, the sample standard deviation may be used instead, where the denominator is n — 1

deviation ¢ is defined as:

to provide an unbiased estimator of variance when working with sample data:

s= [ (T
n-145"
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The standard deviation thus captures the average magnitude of deviation from the mean and

provides insight into the distributional shape of tensor values.

The following pseudocode outlines a generalized computation of standard deviation for a flattened

tensor:
Listing 20: Formulaic Pythonic Code for Tensor Standard Deviation
1 function Tensor_Standard_Deviation(Tensor, sample = False) -> £32:
2 flattened = Tensor.flatten ()

n = Length(flattened)

if n ==

6 return O

8 mean = Sum(flattened) / n

9 sum_squared_diff = 0

11 for x in flattened:

12 sum_squared_diff += (x - mean) **x 2
13

14 if sample:

15 variance = sum_squared_diff / (n - 1)
16 else:

17 variance = sum_squared_diff / n

19 return sqrt(variance)

This operation is numerically stable and can be parallelized across elements, particularly when
computing in GPU-accelerated environments. Most tensor libraries (e.g., PyTorch, TensorFlow, NumPy)
offer optimized implementations that leverage fused operations to compute the mean and variance

with minimal passes over memory.

10.8. Hyperparameters: Configurable Variables in Model Design and Optimization

In the architecture and training of Machine Learning models, hyperparameters are external configu-
ration variables whose values are not learned from data but are instead set prior to the training process.
These values govern both the structural properties of the model and the dynamics of the optimization
procedure. Unlike parameters (e.g., weights and biases), which are optimized via backpropagation,
hyperparameters are tuned manually or through meta-optimization strategies.

Hyperparameters can be broadly classified into the following categories:

(1) Model Architecture Hyperparameters define the structural configuration of the neural network:

e Number of layers: The depth of the network, affecting its representational capacity.
¢ Neurons per layer: The dimensionality of each transformation, controlling expressive power.
*  Activation functions: Non-linear transformations (e.g., ReLU, Sigmoid, GELU) applied to neu-

rons, introducing model non-linearity.

(2) Optimization Hyperparameters govern how the model is trained using gradient descent:

*  Learning rate: The step size at each iteration of optimization; critical for convergence behavior.

*  Batch size: Number of training samples processed per update; affects memory usage and gradient
stability.

*  Epochs: The number of complete passes over the training dataset.

e  Optimizer: Algorithm used to update weights (e.g., SGD, Adam, RMSProp), each with its own

internal dynamics.
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(3) Regularization Hyperparameters mitigate overfitting and improve generalization:

*  Dropout rate: Fraction of neurons randomly deactivated during training to prevent co-adaptation.
e L1/L2 regularization coefficients: Penalize large weights to encourage sparsity or smoothness.
*  Non-linearity inclusion: The use of activation functions contributes indirectly to regularization

by introducing model flexibility.

(4) Hyperparameter Tuning Strategies determine how hyperparameters are selected:

*  Grid search: Exhaustive evaluation across a Cartesian product of predefined hyperparameter
values.

e Random search: Random sampling from defined distributions over hyperparameter values.

* Bayesian optimization: Model-based approach that builds a probabilistic surrogate function to
efficiently explore the search space.

*  Advanced methods: Includes algorithms like Hyperband, Optuna, and Population-Based Training
(PBT) for scalable and adaptive tuning.

Hyperparameter tuning remains a central component of model performance optimization and general-
ization. Automated hyperparameter search frameworks are increasingly integrated into modern ML
workflows to streamline this process while balancing exploration and computational cost.

10.9. Function Hyperparameters: Tunable Modifiers of Algorithmic Behavior

In the formulation of many mathematical functions used within Machine Learning algorithms,
certain parameters—termed function hyperparameters—are introduced to modulate the function’s
internal dynamics. These hyperparameters are not learned from data, but are manually specified or
tuned to adapt the function’s behavior to the characteristics of a given task.

Function hyperparameters often control properties such as smoothing, weighting, or curvature,
and are integral to operations including optimization, regularization, and activation. Although many
such functions provide empirically derived default values, adjusting these hyperparameters can

significantly impact model convergence, performance, and stability.

Example: Exponential Moving Averages in the Adam Optimizer
The Adam optimizer, widely used for stochastic gradient-based training, maintains exponential
moving averages of past gradients and squared gradients. It introduces two key hyperparameters:

e Beta; (B71) controls the decay rate of the moving average of the first moment (gradient). A typical
default is B1 = 0.9, meaning recent gradients are weighted more heavily than earlier ones.
e Beta, (f2) governs the second moment (squared gradients), often set to S = 0.999 to ensure

long-term memory of variance.

These hyperparameters effectively shape the optimizer’s sensitivity to recent versus historical
gradient information, influencing convergence speed and stability. Improper tuning can lead to
oscillation or stagnation, particularly in the presence of noisy gradients or sparse features.

Function hyperparameters appear across the Machine Learning pipeline, including:
¢  Dropout rate in regularization functions
¢ Alphainleaky ReLU or ELU activations
¢  Temperature in softmax-based sampling
e  Kernel width in Gaussian functions or RBF kernels
Understanding and tuning these hyperparameters is crucial for aligning theoretical function

behavior with empirical model dynamics.
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10.10. Derivatives: Quantifying Change in Continuous Functions

The derivative is a foundational concept in calculus that quantifies the instantaneous rate of
change of a function with respect to one of its input variables. In the context of Machine Learning,
derivatives are central to optimization procedures such as gradient descent, where model parameters
are iteratively updated based on the slope of the loss function.

Formally, the derivative of a scalar-valued function f(x) with respect to its input x is defined as
the limit:

. + Ax) — f(x)
! =1 f (x
fx) Ax 30 Ax
This expression captures the rate at which f(x) changes as x varies, and provides the tangent slope
of the function at a given point. For differentiable functions, this allows local linear approximations

and facilitates analytical optimization.

Example: Power Function Derivative
Consider the function:

fla) =22

Its derivative, computed using standard calculus rules, is:

f(x) =2x

This indicates that the rate of change of the function at any point x is proportional to x itself.
Evaluating the derivative at x = 3, we obtain:

f3)=2x3=6
Thus, at x = 3, the function is increasing at a rate of 6 units for every unit increase in x.

In Machine Learning, derivatives are used to compute gradients—vector-valued generalizations of
partial derivatives across multivariate functions—which are instrumental in parameter updates. The
efficient computation of such derivatives, often via automatic differentiation, is critical to the scalability

of modern deep learning frameworks.

10.11. Epsilon (¢): Thresholds for Numerical Stability and Convergence

In numerical analysis and Machine Learning algorithms, the symbol & (epsilon) conventionally
denotes a small positive quantity used as a threshold for precision, stability, or convergence criteria.
Unlike dynamic variables or learned parameters, epsilon is a manually specified hyperparameter
that defines tolerable bounds for terminating iterative procedures or preventing division-by-zero
instabilities.

Formally, in optimization algorithms such as gradient descent, an iteration may be halted once the
magnitude of the gradient norm falls below a predefined threshold ¢, indicating that further progress
is negligible:

IV <e

Similarly, in algorithms involving floating-point divisions, epsilon is often added to denominators

to avoid undefined behavior:

Adjusted division:
x+e
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Illustrative Example: Iterative Stopping Criterion
Consider an iterative optimization algorithm where updates continue until:

[f (k1) = fla)| <e

This ensures that the relative change between successive iterations is sufficiently small, implying
convergence to a (local) optimum within acceptable tolerance.

Important Clarification

Epsilon (g) should not be confused with Euler’s number (e = 2.71828), which is a mathematical
constant describing natural exponential growth. While ¢ is fundamental to continuous mathematical
modeling, € serves as a practical device for managing numerical precision and algorithmic termination.

10.12. Geometric Symbols and Mathematical Constants in Machine Learning

Mathematical constants and geometric symbols play critical yet often understated roles in the
formulation and analysis of Machine Learning algorithms. Although some constants, such as 7, are
more prominent in pure mathematics and physics, they appear in subtle yet essential ways within

statistical modeling, optimization theory, and loss function derivations.

(1) The Constant 7

The constant 77 ~ 3.14159 arises primarily in Machine Learning through its connections to
probability theory, particularly in the context of continuous probability distributions. For instance, the
probability density function of the normal (Gaussian) distribution involves 7t explicitly:

px) = eXp<—(xz;§l)2>

270

Here, 7t ensures proper normalization of the distribution such that the total probability integrates
to one. Applications of Gaussian distributions are ubiquitous in Machine Learning, including mod-
eling noise, regularization (e.g., Gaussian priors), and understanding loss landscapes in stochastic
optimization.

Moreover, 7t occasionally appears in more advanced operations involving Fourier analysis, kernel
methods, and information theory metrics, albeit less frequently than constants like e.

(2) The Constant e
Euler’s number e ~ 2.71828 is far more central to Machine Learning, underpinning exponential
functions, logarithmic transformations, and the softmax function. e governs the behavior of probability

distributions, learning rate decays, and loss formulations involving cross-entropy.

(3) The Symbol 6
The Greek letter 0 is widely used to denote model parameters, particularly in optimization and
learning contexts. Conceptually, § may represent:
e  The parameter vector in linear models (e.g., in logistic regression, 6 encapsulates weights and
biases).
¢  The orientation or slope of a function with respect to its gradient during optimization.
In gradient-based methods such as Adam, SGD, or RMSprop, 0 evolves iteratively via update
rules of the form:

9t+1 = Qt - D(V@ﬁ(@t)
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where « denotes the learning rate and £(6) the loss function. Here, the gradient VL provides
the direction and rate of steepest ascent, and updates to 6 occur in the opposite direction to minimize
loss.

While 6 originally symbolizes angular quantities in geometry and trigonometry, its usage in Ma-
chine Learning reflects a broader abstraction: the idea of navigating parameter spaces and controlling

optimization trajectories.

In summary, geometric constants and symbols, although sometimes subtle in appearance, are deeply
embedded within the theoretical infrastructure of modern Machine Learning. Their understand-
ing facilitates deeper insights into algorithmic behavior, statistical assumptions, and optimization

landscapes.

10.13. The Error Function (erf): A Fundamental Link to Gaussian Distributions

The error function, denoted as erf(x), is a special function of fundamental importance in proba-
bility theory, numerical analysis, and Machine Learning. It quantifies the probability that a random
variable from a standard normal distribution falls within a given symmetric interval around the mean.

Formally, the error function is defined as:

2 * e
erf(x) = ﬁ/@ e dt

This expression describes the normalized integral of the Gaussian function e~ from 0 to x, scaled

appropriately to map asymptotically to +1 as x tends toward £co.

Applications in Machine Learning
The erf function arises in several contexts within Machine Learning and related disciplines:

e  Activation functions: The Gaussian Error Linear Unit (GELU) activation function, used promi-
nently in Transformer architectures, incorporates erf for smooth non-linear transformations.

¢  Optimization algorithms: Some adaptive optimizers and smoothing functions leverage erf for
stabilizing updates or defining soft thresholds.

*  Probabilistic modeling: In Gaussian processes, diffusion models, and statistical physics-inspired
ML methods, erf naturally emerges due to its relation to cumulative Gaussian distributions.

Numerical Approximation
Given that the error function has no closed-form expression in terms of elementary functions,
numerical approximations are often employed. The following pseudocode illustrates a basic numerical

integration approach using the trapezoidal rule:

Listing 21: Formulaic Pythonic Code for Numerical Approximation of erf

1 function erf(x) -> £32:
2 // Constants

pi = std.pi
4 sqrt_pi = sqrt(pi)

6 // Numerical integration settings
7 N = 1000
8 dx = x / N

10 // Initialize integration result

11 result = 0

13 // Apply trapezoidal rule for numerical integration

14 for i from O to N - 1:
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15 tl = i *x dx
16 t2 = (i + 1) * dx

18 result += (exp(-t1*x%2) + exp(-t2x*2)) * (t2 - t1) / 2

20 // Scale according to erf definition

21 return (2 / sqrt_pi) * result

Most modern programming environments, such as Python (math.erf), C++ (std: :erf), and numerical
libraries (e.g., SciPy), provide highly optimized native implementations of the error function. When
available, these should be preferred for computational efficiency and numerical stability.

11. Activation Functions: Modeling Complex Neuronal Dynamics
11.1. Meaning of Activation

In the context of artificial neural networks, an activation refers to the output response of a neuron
given its input signal. Conceptually, it quantifies the extent to which a neuron "fires" based on the
strength and characteristics of incoming information. Mathematically, activation functions determine

whether a neuron transmits its signal onward within the network architecture.

11.2. Purpose and Biological Motivation

Biological neurons are interconnected through synapses—specialized junctions where chemical
and electrical signals determine whether the post-synaptic neuron becomes activated. The decision
to fire is influenced not only by the magnitude of incoming signals but also by complex, nonlinear
biochemical processes occurring within the synaptic cleft.

Simulating these intricate processes at a molecular level is computationally intractable for large-
scale models. Consequently, artificial neural networks approximate neuronal dynamics through the
use of mathematically defined activation functions. These functions capture the essence of biological
activation by introducing nonlinear transformations that allow networks to approximate complex,
high-dimensional mappings between inputs and outputs.

Mathematical Role of Activation Functions
Activation functions serve two primary roles:

*  Non-linearity introduction: Without non-linear activations, a network composed solely of affine
transformations (matrix multiplications and bias additions) would collapse into a single equiv-
alent linear transformation, severely limiting representational capacity. Non-linear activations
(e.g., ReLU, sigmoid, GELU) enable networks to approximate arbitrary continuous functions, a
property formally guaranteed by the Universal Approximation Theorem.

* Information shaping: Activations modulate the flow of information through the network lay-
ers, allowing selective amplification, suppression, or transformation of learned features. This
shaping mechanism is crucial for the emergence of hierarchical feature representations in deep
architectures.

Thus, activation functions are indispensable both biologically and computationally. They enable
artificial systems to mirror key principles of biological cognition while simultaneously expanding their
mathematical expressive power beyond that of simple linear models.
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Comparison of Activation Functions

RelU
61— Leaky RelU
—— GELU (erf)
—— GELU (tanh approx)
—— Swish
—— Tanh
—— Sigmoid
Softmax (3 inputs mock)

v

f(x)

Figure 9. Comparison of common activation functions (ReLU, Leaky ReLU, GELU, Swish, Tanh, Sigmoid,
Softmax).

11.3. Activation Function Progression and Comparative Analysis

The selection and ordering of activation functions in this section is designed to introduce in-
creasingly sophisticated transformations, beginning with foundational piecewise-linear functions
and progressing toward smooth, probabilistic activations optimized for modern deep learning archi-
tectures. The sequence culminates with the Gaussian Error Linear Unit (GELU), widely adopted in

Transformer-based models.

11.3.1. Comparative Overview of Activation Functions

Table 1. Summary Comparison of Activation Functions.

Activation Range Non-linearity | Key Notes

ReLU [0, 00) Sharp Simple, sparse activation; efficient for deep convolu-
tional networks.

Leaky ReLU | (—o0,00) | Sharp Introduces a small negative slope to address neuron
inactivity.

Swish (—o0,00) | Smooth Self-gating; improves performance, especially in
very deep networks.

GELU (erf) (—o0,00) | Smooth Probabilistic activation; superior performance in
Transformer architectures.

tanh (-1,1) Smooth Zero-centered; common in recurrent neural net-
works.

GELU (tanh) | (—o0,00) | Smooth Computationally efficient approximation of GELU.
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11.3.2. Expanded Insights on Activation Functions
Table 2. Detailed Observations on Activation Functions.
Activation Additional Insights
ReLU Prone to the "dying ReLU" phenomenon, where neurons output zero for all

inputs. Dominant in CNNs due to computational simplicity.

Leaky ReLU | Commonly uses a negative slope coefficient « = 0.01; mitigates dying neuron
problems without introducing significant complexity.

Swish Developed by Google researchers; exhibits non-monotonicity, enabling richer
feature representations.

GELU (erf) Softly gates inputs based on magnitude; combines ReLU’s sparsity with
smoothness near the origin.

tanh Saturates at the extremes, leading to vanishing gradients; more stable than
sigmoid for zero-centered outputs.

GELU (tanh) | Provides a near-equivalent functional behavior to GELU with reduced compu-
tational overhead.

11.3.3. Practical Tips and Cautions

Table 3. Practical Guidelines for Activation Function Selection.

Activation Usage Tips and Warnings

ReLU Recommended as a default; monitor for neuron death, especially under aggres-
sive learning rates.

Leaky ReLU | Useful when ReLU leads to stagnant training; helps maintain gradient flow
even for negative inputs.

Swish Yields marginally better performance in deep architectures at the cost of slightly
increased computational burden.

GELU (erf) Preferred for Transformer-based architectures (e.g., BERT, GPT) due to its
smooth probabilistic gating behavior.

tanh Best suited for recurrent architectures where centered activations improve
gradient dynamics.

GELU (tanh) | Ideal for hardware-constrained environments seeking GELU-like performance
with faster evaluation.

11.4. Rectified Linear Unit (ReLU): Definition, Properties, and Practical Considerations

11.4.1. Intuitive Overview

The Rectified Linear Unit (ReLU) activation function introduces non-linearity by transforming all
negative inputs to zero while preserving positive values. Conceptually, ReLU "filters" input signals,
suppressing negative activations and allowing positive signals to propagate. This operation enhances

the expressivity of neural networks without introducing significant computational overhead.
11.4.2. Mathematical Definition
Formally, ReLU is defined as an element-wise transformation:
ReLU(x) = max(0, x)

for each input x. This operation is applied independently to each element in the input tensor,

requiring no global context or inter-element dependencies.
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Formulaic Pseudocode Implementation:

Listing 22: Formulaic Pythonic Code for ReLU Activation

Function ReLU(Tensor) -> Tensor:

result = Empty_Tensor (Shape = Tensor.Shape)

for i from O to Tensor.Shape.x - 1:
for j from O to Tensor.Shape.y - 1:
if Tensor[il[j]l > O:
result[i][j] = Tensor[il[j]
else:

result[i1[j]

1]
o

return result

This element-wise independence allows efficient parallelization on modern hardware architectures,
such as GPUs and TPUs.

11.4.3. Advantages and Use Cases

ReLU activation is widely adopted in deep learning due to the following properties:

1.  Introduction of Non-linearity: ReLU introduces non-linear transformations while retaining
simplicity.

2. Computational Efficiency: It requires only a simple thresholding operation, making it extremely
fast to compute.

3. Alleviation of Vanishing Gradient Problem: Unlike saturating activations (e.g., sigmoid, tanh),
ReLU maintains stronger gradient magnitudes, improving optimization in deep networks.

4.  Sparsity Induction: ReLU naturally produces sparse activations by zeroing out negative values,
reducing the effective computational burden and promoting representational efficiency.

5.  Positive Constraint: By filtering out negative values, ReLU enforces non-negative activations,
which can be advantageous in certain architectures and regularization schemes.

6. Faster Convergence: Empirically, networks employing ReLU converge faster during training
compared to those using traditional saturating activations.

11.4.4. Limitations and Cautions

Despite its advantages, ReLU presents certain limitations:

1. Limited Representational Scope: By entirely discarding negative activations, ReLU can hinder
the model’s ability to learn functions where negative outputs are semantically meaningful.

2.  Dying ReLU Phenomenon: Neurons can become permanently inactive if their inputs consistently
yield negative values during training, resulting in zero gradients and loss of learning capacity for
those neurons.

3. Suitability for Complex Relationships: For highly intricate or symmetric data patterns involving
negative domains, alternative activations such as Leaky ReLU, ELU, or GELU may offer superior

performance.

11.4.5. Why is it faster to train?

You're trying to capture a simpler relationship, with a very efficient computation formula.

11.4.6. Alternative for ReLU, Leaky ReLU

1. Solves the Negative relationship to keep neurons out of the inactive state.
2. Able to calculate a tiny bit more relationships.
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RelU Activation Function

10 RelLU(x) = max(0, x)

RelLU(x)

0_

-100 -75 -5.0 =25 0.0 2.5 5.0 1.5 10.0
X

Figure 10. ReLU graphed mainly to show the curve.

11.4.7. ReLU graph

Notice how the graph remains flat and then abruptly shifts at a sharp angle. This discontinuity
in slope is a hallmark of a non-smooth function. For example, ReLU exhibits this behavior with
a sharp kink at zero. In contrast, smooth activation functions like GELU produce a more gradual
polynomial-like curve with continuous derivatives. This smoothness allows the model to capture more
nuanced patterns and learn more complex relationships in data, whereas non-smooth functions may

limit expressiveness in certain cases.

1.  Slope, less than 0 region: Remain at 0
2. Slope, greater than 0 region: Regular linear increase

11.5. Leaky Rectified Linear Unit (Leaky ReLU, LReLU): Definition, Properties, and Applications
11.5.1. Intuitive Overview

The Leaky Rectified Linear Unit (Leaky ReLU or LReLU) extends the standard ReLU activation
by allowing a small, non-zero gradient when the input is negative. Instead of mapping all negative
values to zero, LReLU scales them by a small constant factor, thereby maintaining a minimal signal

flow even for negative activations.

11.5.2. Mathematical Definition
Formally, the Leaky ReLU function is defined as:
x, ifx>0

LReLU(x) =
ax, otherwise

where « is a small positive hyperparameter (commonly set to & = 0.01) that controls the slope for

negative inputs.
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11.5.3. Formulaic Pseudocode Implementation

Listing 23: Formulaic Pythonic Code for Leaky ReLU Activation

1 Function LRelLU(Tensor, negative_slope) -> Tensor:

2 result = Empty_Tensor (Shape = Tensor.Shape)

4 for i from O to Tensor.Shape.x - 1:

for j from O to Temnsor.Shape.y - 1:
6 if Temsor[i][j] > O:
7 result[i][j] = Tensor[i]l[j]
8 else:

9 result[i][j] = negative_slope * Tensor[i][j]

11 return result

Like ReLU, LReLU is an element-wise operation, enabling efficient parallelization on modern hardware
architectures.

11.5.4. Advantages and Use Cases
Leaky ReLU offers several practical benefits:

1.  Introduction of Non-linearity: Similar to ReLU, LReLU introduces essential non-linear transfor-
mations into the network.

2. Mitigation of Vanishing Gradients: By maintaining a non-zero gradient for negative inputs,
LReLU reduces the risk of gradient vanishing compared to saturating functions like sigmoid or
tanh.

3. Neuron Survival: Allows neurons to maintain small gradients even when weights initially result
in negative pre-activations, preventing complete neuron inactivity ("dying ReLU" problem).

4.  Efficient Computation: Simple to implement and computationally inexpensive, making it suitable
for real-time or resource-constrained applications.

5.  Improved Convergence Speed: Networks employing LReLU often converge faster than those
using pure ReLU in scenarios where data distributions produce many negative activations.

6.  Alternative to ReLU in Hidden Layers: Particularly beneficial in architectures where ReLU leads

to excessive neuron death or sparse representations become detrimental.

11.5.5. Limitations and Cautions
Despite its improvements over ReLU, LReLU presents specific limitations:

1.  Limited Expressivity for Complex Patterns: While suitable for basic feature extraction, LReLU
may not sufficiently capture highly intricate or symmetric relationships that require more sophis-
ticated activations.

2. Retention of Negative Values: Although small, the leakage of negative signals may not always
align with tasks that benefit from strict non-negative representations.

11.5.6. Training Efficiency Considerations

LReLU accelerates training primarily by preserving gradient flow throughout the network,
even when activations are negative. This ensures that learning signals are not entirely extinguished,
facilitating more stable and faster convergence compared to ReLU in challenging data regimes.

11.5.7. Graphical Interpretation of Leaky ReLU
As illustrated in Figure 11, the behavior of LReLU can be characterized as:
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* Negative Region: For inputs x < 0, the function exhibits a slight downward tilt determined by
the negative slope &, allowing a small gradient (leak) to persist.

¢ Positive Region: For inputs x > 0, the function behaves as a standard identity mapping
(LReLU(x) = x), identical to ReLU behavior.

Leaky RelU Activation Function
10 Leaky RelU (a=0.01)

Output

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
Input

Figure 11. Visualization of Leaky ReLU Activation Function.
11.6. Swish Activation Function: Definition, Properties, and Practical Considerations
11.6.1. Intuitive Overview

The Swish activation function introduces a smooth, non-monotonic transformation that enhances
the representational capacity of neural networks. Unlike ReLU, which abruptly zeroes out negative
inputs, Swish softly suppresses negative values without completely discarding them. This property
enables networks to learn more nuanced and complex patterns across the input domain.

11.6.2. Mathematical Definition

Formally, the Swish activation function is defined as:

Swish(x) = x - o(x)
where 0 (x) denotes the sigmoid function:

1
C 1te X
Thus, the Swish function smoothly gates input values based on their own magnitude, combining

o(x)

linear and non-linear behaviors adaptively.

11.6.3. Formulaic Pseudocode Implementation

Listing 24: Formulaic Pythonic Code for Swish Activation

I Function Swish(Tensor) -> Tensor:

2 result = Empty_Tensor (Shape = Tensor.Shape)

4 for i from O to Tensor.Shape.x - 1:
for j from O to Tensor.Shape.y - 1:
6 result[i][j] = Tensor[i][j] * Sigmoid(Tensor[i][jI1)

N

8 return result

The operation is element-wise and inherently parallelizable, making it suitable for large-scale tensor

computations.
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11.6.4. Advantages and Use Cases

Swish activation offers several compelling properties:

1.  Non-linearity Introduction: Provides a smooth, non-monotonic mapping that enhances feature
expressivity.

2. Preservation of Negative Information: Unlike ReLU, Swish retains small negative values,
facilitating richer learning dynamics.

3. Improved Gradient Flow: The continuous derivative of Swish helps mitigate both vanishing and
exploding gradient problems during backpropagation.

4. Superior Performance: Empirical studies show that Swish often outperforms ReLU on deep
convolutional networks (CNNs), Transformer architectures, and large-scale classification tasks.

5. Suitability for Deep Architectures: Particularly effective in very deep models where smooth
transitions improve optimization dynamics.

6.  Alternative to Sigmoid: Provides smoothness without suffering from the severe saturation issues
of pure sigmoid activations.

11.6.5. Limitations and Practical Considerations

Despite its advantages, Swish has certain drawbacks:

1.  Increased Computational Cost: Evaluation of the sigmoid function adds overhead compared to
simpler activations like ReLU.

2. Training Latency: Networks utilizing Swish may exhibit slower per-epoch training times relative
to ReLU.

3.  Compatibility Limitations: Some machine learning frameworks may not natively support Swish,
requiring custom implementation.

4.  Tradeoff with Simplicity: In some scenarios, the benefits of Swish may be marginal relative to its

additional complexity and computational burden.

11.6.6. Graphical Interpretation of Swish

As shown in Figure 12, the behavior of Swish can be characterized as follows:

¢ Negative Region (x < 0): For negative inputs, Swish exhibits a small positive slope, allowing
modest signal flow. Unlike ReLU, which zeroes negative inputs, Swish softly attenuates them,
preserving some gradient and information flow during training.

¢  Positive Region (x > 0): For positive inputs, Swish behaves increasingly like the identity function,
with the slope approaching 1 for large positive values. This ensures that strong activations pass
through with minimal distortion, similar to ReLU but with smoother transitions.

Swish Activation Function
10

Swish(x)

-10.0 -7.5 -5.0 -2.5 0.0 25 5.0 7.5 10.0

Figure 12. Graph of the Swish activation function illustrating its behavior across input domains.
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11.7. Sigmoid Activation Function: Definition, Properties, and Practical Considerations
11.7.1. Intuitive Overview

The Sigmoid activation function transforms input values into a bounded range between 0 and 1,
introducing smooth non-linearity into the network. This mapping is particularly useful for interpreting
outputs as probabilities or confidence scores in binary classification tasks. Sigmoid activation ensures
that the output is easily interpretable while compressing extreme input values toward asymptotic
limits.

11.7.2. Mathematical Definition

Formally, the Sigmoid function is defined as:

_ 1
T 14X

where e denotes Euler’s number (¢ ~ 2.71828). As x tends toward positive infinity, (x) ap-

o(x)

proaches 1; as x tends toward negative infinity, o(x) approaches 0. The function is continuous,
differentiable, and monotonic.

11.7.3. Formulaic Pseudocode Implementation

Listing 25: Formulaic Pythonic Code for Sigmoid Activation

Function Sigmoid(Tensor) -> Tensor:

result = Empty_Tensor (Shape = Tensor.Shape)

for i from O to Tensor.Shape.x - 1:
for j from O to Tensor.Shape.y - 1:
result[il[j]l = 1 / (1 + exp(-Tensor[il[jl1))

return result

The Sigmoid operation is element-wise and highly parallelizable, enabling efficient implementation on

modern computational hardware.

11.7.4. Advantages and Use Cases

Sigmoid activation provides several practical benefits:

1. Smooth Non-linearity: Introduces a continuous and differentiable mapping, essential for
gradient-based optimization methods.

2. Probabilistic Interpretation: Outputs can be directly interpreted as probabilities, facilitating
binary classification tasks.

3. Output Layer in Binary Classification: Commonly used in the final layer of binary classifiers to
squash raw model outputs into interpretable confidence scores.

4. Computer Vision and Signal Processing: Used when outputs need to represent bounded,
normalized measurements (e.g., pixel brightness).

11.7.5. Limitations and Practical Considerations

Despite its usefulness, Sigmoid presents several challenges:

1.  Vanishing Gradient Problem: Gradients diminish near the asymptotic regions (x > 0 or x < 0),
hindering learning in deep networks.

2. Computational Overhead: Evaluation of the exponential function incurs higher computational
cost relative to piecewise-linear activations like ReLU.
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3. Non-zero-centered Output: Since outputs are strictly positive, sigmoid activations can introduce
bias in gradient updates, slowing convergence.
4.  Poor Suitability for Hidden Layers: Using sigmoid in hidden layers can severely impair training

efficiency; modern practice favors ReLU, GELU, or tanh for intermediate layers.

11.7.6. Graphical Interpretation and Application in Binary Classification
As depicted in Figure 13, the Sigmoid function:

e Compresses input values into the (0,1) interval.
*  Exhibits near-linear behavior around x = 0, enhancing sensitivity to small input changes.

e  Flattens for large positive or negative inputs, where gradient magnitudes shrink dramatically.

Example Application:
When applied to the output layer of a neural network for binary classification:

*  Anoutput close to 1 indicates high confidence in the positive class.
*  An output close to 0 indicates high confidence in the negative class.

Sigmoid Activation Function
1.0f Sigmoid

0.8f

sigmoid(x)
IS}
[=)]

o
IS

0.2

0.0

—lb.O —7‘.5 —é.O —2I.5 010 2:5 5.0 7.5 10.0
X

Figure 13. Graph of the Sigmoid activation function. Although it visually appears to saturate at 0 and 1, these
values are approached asymptotically but never exactly attained.

11.8. Gaussian Error Linear Unit (GELU, erf-based): Definition, Properties, and Practical Applications
11.8.1. Intuitive Overview

The Gaussian Error Linear Unit (GELU) activation function introduces smooth, stochastic-like non-
linearity by blending input information based on a probabilistic model. Instead of deterministically
zeroing or scaling inputs, as in ReLU or Leaky ReLU, GELU softly gates them using the Gaussian
error function (erf). This property enables networks to learn more nuanced, expressive representations,
especially in large-scale architectures.

11.8.2. Mathematical Definition

The original GELU activation, based on the error function, is defined as:

GELU(x) = 0.5x (1 + erf(\%) )

where erf(-) is the Gauss error function:

2 [* _p
erf(x) = ﬁ/o e ' dt
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This formulation approximates the cumulative distribution function (CDF) of a standard normal
distribution, blending the input magnitude with its probability of being positive under Gaussian

assumptions.

11.8.3. Formulaic Pseudocode Implementation

Listing 26: Formulaic Pythonic Code for GELU (erf) Activation

Function GELU_erf (Tensor) -> Tensor:

result = Empty_Tensor (Shape = Tensor.Shape)

for i from O to Tensor.Shape.x - 1:
for j from O to Tensor.Shape.y - 1:
result[il[j]l = 0.5 * Tensor[il[j] * (1 + erf(Tensor[il[j]l / sqrt(2)))

return result

As with other activation functions, GELU is applied in an element-wise fashion, facilitating efficient

parallelization.

11.8.4. Advantages and Use Cases

GELU (erf-based) provides several critical advantages:

1. Smooth Non-linearity: Balances the sparsity introduced by ReLU with the smoothness of
sigmoid-like activations.

2. Superior Performance in Deep Networks: Empirically shown to improve training stability and
accuracy, particularly in Transformer-based architectures.

3.  Stable Gradient Flow: The smooth, differentiable structure ensures robust gradient propagation
even across very deep layers.

4. Model Expressiveness: Enables the capture of subtle relationships in high-dimensional data
spaces.

5. High Performance-to-Complexity Ratio: Especially effective in scaling models to billions of
parameters (e.g., BERT, GPT architectures).

11.8.5. Limitations and Practical Considerations

Despite its advantages, GELU (erf-based) introduces specific computational tradeoffs:

1. Increased Computational Complexity: Evaluation of the error function is significantly more
expensive than basic ReLU or even Swish activations.

2. Hardware Efficiency: Less suited for deployment on edge devices or real-time applications due
to the higher evaluation cost.

3.  Potential Overfitting Risk: Due to its ability to closely model complex data patterns, GELU may
overfit small or noisy datasets.

4.  Training Latency: Slower per-epoch training times compared to simpler activations.

5. Alternative Approximations: Faster approximations, such as GELU(tanh), are often preferred in

production environments to reduce inference time.

11.8.6. Graphical Interpretation of GELU (erf)
As illustrated in Figure 14, the behavior of GELU can be interpreted as:
* Negative Region (x < 0): For negative inputs, the output decays smoothly toward zero without

abrupt cutoffs. This soft suppression enables minor negative information to contribute to feature

learning, while preserving stable gradient flow.
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¢ Positive Region (x > 0): For positive inputs, the activation increases approximately linearly,
asymptotically approaching the identity line. This behavior maintains strong gradient magnitudes

for positive signals, supporting efficient learning.

GELU Activation Function (erf-based)
5t GELU (erf-based)

GELU(x)

Figure 14. Graph of the GELU (erf-based) activation function, illustrating its smooth gating behavior across input
domains.

11.9. Hyperbolic Tangent (tanh): Definition, Properties, and Practical Applications

11.9.1. Intuitive Overview

The hyperbolic tangent (tanh) activation function introduces smooth, zero-centered non-linearity
by mapping real-valued inputs into a bounded range between —1 and 1. Conceptually, tanh compresses
inputs while preserving their sign and relative magnitude, enabling neural networks to learn balanced

representations where both positive and negative activations are meaningful.

11.9.2. Mathematical Definition

Formally, the tanh function is defined as:

X _ ,—X
tanh(x) = &
ex + e—x

where e denotes Euler’s number (e &~ 2.71828). As x approaches positive infinity, tanh(x) — 1; as

x approaches negative infinity, tanh(x) — —1. The function is smooth, continuous, and differentiable

everywhere.

11.9.3. Formulaic Pseudocode Implementation

Listing 27: Formulaic Pythonic Code for tanh Activation

1 Function tanh(Tensor) -> Tensor:
2 result = Empty_Tensor (Shape = Tensor.Shape)
3

4 for i from O to Tensor.Shape.x - 1:
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for j from O to Temnsor.Shape.y - 1:

6 numerator = exp(Tensor[i][j]) - exp(-Temsor[il[j])
7 denominator = exp(Tensor[i]J[j]) + exp(-Temsor[i][j])
8 result[i][j] = numerator / denominator

10 return result

As with other activations discussed, tanh operates element-wise, enabling straightforward paralleliza-
tion in high-dimensional tensor computations.

11.9.4. Advantages and Use Cases

The tanh activation function remains relevant in various Machine Learning applications due to
the following properties:

1.  Zero-centered Output: Unlike sigmoid, tanh outputs are centered around zero, facilitating more
balanced gradient updates during optimization.

2. Smooth Non-linearity: Provides smooth, continuous gradients conducive to stable learning.

3.  Usein Recurrent Architectures: Commonly employed in Recurrent Neural Networks (RNNs)
where controlling positive and negative signal propagation is beneficial.

4. Legacy Neural Architectures: Historically favored in early neural networks for its ability to
handle both positive and negative data distributions.

11.9.5. Limitations and Practical Considerations
Despite its advantages, tanh presents certain challenges in deep learning applications:

1.  Vanishing Gradient Problem: Saturation at extreme input values leads to diminished gradients,
impairing learning in deep networks.

2. Slower Convergence: Networks using tanh may train slower compared to ReLU-based architec-
tures.

3. Limited Suitability for Deep CNNs and Transformers: In modern deep convolutional and
Transformer models, activations like ReLU, GELU, or Swish are preferred due to better scaling
properties.

4. Higher Computational Cost Compared to Piecewise Activations: Requires exponential opera-
tions per evaluation.

11.9.6. Graphical Interpretation of tanh

As illustrated in Figure 15, the behavior of tanh can be interpreted as:

*  Negative Region (x < 0): For negative inputs, tanh(x) smoothly approaches —1. As inputs
become more negative, the function flattens, resulting in smaller gradients and weaker sensitivity
to input variations.

e  Positive Region (x > 0): For positive inputs, tanh(x) increases toward 1 with a similar flattening
effect. Near the origin (x ~ 0), tanh behaves approximately linearly, providing strong sensitivity
to small changes.

This characteristic "S-shaped" curve enables neural networks to suppress extreme input values while

maintaining smooth, interpretable non-linearity, particularly valuable in recurrent learning settings.
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Hyperbolic Tangent (tanh) Function
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Figure 15. Graph of the tanh activation function, illustrating its smooth transition from —1 to 1.

11.10. Gaussian Error Linear Unit Approximation (GELU, tanh-based): Definition, Properties, and Practical
Applications

11.10.1. Intuitive Overview

The Gaussian Error Linear Unit (GELU) activation function, when approximated using the
hyperbolic tangent (tanh) function, provides a computationally efficient variant of the original GELU
formulation based on the error function (erf). The tanh-based approximation introduces smooth
non-linearity while maintaining a high-fidelity approximation of the probabilistic gating behavior of
GELU, enabling deep networks to model complex patterns effectively with reduced computational
overhead.

11.10.2. Mathematical Definition

The tanh-based approximation of GELU is defined as:

2
GELUgun(x) = 0.5x <1 + tanh <ﬂ / - <x + 0.044715x3>> )

Here, the cubic term inside the tanh introduces mild curvature, aligning the approximation closely
to the exact GELU curve while significantly accelerating computation.

11.10.3. Formulaic Pseudocode Implementation

Listing 28: Formulaic Pythonic Code for GELU (tanh) Approximation

1 Function GELU_tanh(Tensor) -> Tensor:

2 result = Empty_Tensor (Shape = Tensor.Shape)

4 for i from O to Tensor.Shape.x - 1:
for j from O to Tensor.Shape.y - 1:
6 x = Tensor[i][j]
7 inner = sqrt(2 / pi) * (x + 0.044715 * x*x3)
8 result[i]J[j] = 0.5 * x * (1 + tanh(inner))

10 return result

As with all activation functions discussed, GELU(tanh) is applied element-wise across the tensor.
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11.10.4. Advantages and Use Cases

GELU(tanh) retains many of the core advantages of GELU while offering additional practical
benefits:

1.  Smooth Non-linearity: Maintains smooth gradient flow critical for training deep networks.

2. Efficient Computation: Significantly faster to evaluate than the erf-based GELU, making it
suitable for large-scale deployments.

3.  High-Fidelity Approximation: Provides a close match to the probabilistic behavior of the original
GELU formulation.

4.  Transformer Architectures: Frequently employed in Transformer-based models such as BERT
and GPT to balance computational cost with model expressivity.

11.10.5. Limitations and Practical Considerations

Despite its efficiency, GELU(tanh) entails certain trade-offs:

1.  Approximation Error: Although close, GELU(tanh) is still an approximation and may introduce
minor deviations from true probabilistic behavior.

2. Higher Cost Compared to ReLU: Still computationally heavier than simple piecewise activations
like ReLU or Leaky ReLU.

3. Potential Overfitting Risk: As with the exact GELU, its fine-grained sensitivity to input variations
can lead to overfitting on small or noisy datasets.

11.10.6. Graphical Interpretation of GELU (tanh)
As illustrated in Figure 16, the behavior of GELU(tanh) can be interpreted as:

* Negative Region (x < 0): For negative inputs, the output softly decays toward zero without
abrupt cutoffs, preserving minor negative activations. This enables richer feature learning com-
pared to ReLU-like activations.

¢ Positive Region (x > 0): For positive inputs, the function behaves almost linearly for large

magnitudes, closely tracking the identity function while maintaining smooth differentiability.

The combination of these behaviors contributes to enhanced learning stability, improved optimization
dynamics, and superior generalization in deep architectures.

GELU (tanh approximation)

Figure 16. Graph of the GELU activation function using the tanh-based approximation.
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11.11. Softmax Activation: Definition, Properties, and Practical Applications
11.11.1. Intuitive Overview

The Softmax function transforms a vector of arbitrary real-valued scores into a probability dis-
tribution over mutually exclusive classes. By applying exponentiation and normalization, Softmax
ensures that each output value is non-negative and that the outputs collectively sum to one. This
allows raw model outputs (logits) to be interpreted as human-readable confidence scores, making

Softmax a crucial component in multi-class classification tasks.

11.11.2. Step-by-Step Breakdown

The Softmax transformation can be broken into the following conceptual stages, applied to each

row or vector independently:

1.  Stabilization (Optional): To avoid numerical overflow during exponentiation, subtract the
maximum value from each element in the vector.

2. Exponentiation: Apply the exponential function to each stabilized value, emphasizing larger
inputs.

3. Summation: Compute the sum of all exponentiated values within the vector.

4. Normalization: Divide each exponentiated value by the local sum to produce a normalized
probability distribution.

11.11.3. Mathematical Definition
Given an input vector x = (xq,xp,...,%,), the Softmax function outputs a vector p =

(p1,p2,--.,Pn) where:

pi = ?iiexf foreach i€ {1,2,...,n}
When stabilization is applied, the formula becomes:
pXi—max(x)
pi = W
which prevents overflow when x; values are large.

11.11.4. Formulaic Pseudocode Implementation

Listing 29: Formulaic Pythonic Code for Softmax Activation
1 Function Softmax(Tensor) -> Tensor:

2 Result = [] # Final normalized tensor

4 for row in Tensor:

# Step 0: Stabilize

6 max_val = max(row)
8 # Step 1: Exponentiation
9 exps = []

10 for x in row:

11 exps .append (exp(x - max_val))

13 # Step 2: Summation

14 sum_exps = sum(exps)

16 # Step 3: Normalization

17 softmax_row = []
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18 for value in exps:

19 softmax_row.append (value / sum_exps)
21 Result.append(softmax_row)

23 return Result

Unlike prior element-wise activations (e.g., ReLU, tanh), Softmax is a vector-wise operation — its
output for a given element depends on all elements within the same row or vector.

11.11.5. Advantages and Use Cases

Softmanx offers several crucial advantages:

1.  Probabilistic Interpretation: Outputs can be interpreted as class confidence scores.

2. Compatibility with Cross-Entropy Loss: When combined with cross-entropy loss, Softmax
enables efficient optimization for multi-class classification.

3. Human-Readable Outputs: Converts complex logits into easily interpretable probability distri-
butions.

4. Multi-Class Decision Making: Facilitates decisions between mutually exclusive outcomes.

11.11.6. Limitations and Practical Considerations

Despite its utility, Softmax is not universally applicable:

1.  Binary Classification: For binary problems, the sigmoid activation is typically preferred over
Softmax.

2. Regression Tasks: In regression problems predicting continuous values, Softmax is inappropriate.

3.  Hidden Layers: Softmax is rarely used in hidden layers, as it constrains activations unnecessarily
early in the network.

11.11.7. Application in Multi-Class Output Layers

When a model is tasked with choosing among multiple classes, applying Softmax at the output
layer enables probabilistic interpretation:

¢ Each class receives a probability score between 0 and 1.
*  All class scores collectively sum to 1.
*  The class with the highest probability is typically selected as the predicted label.

This behavior contrasts with sigmoid activations, which are best suited for independent binary
predictions rather than mutually exclusive classification tasks.

11.11.8. Graphical Interpretation of Softmax
As illustrated in Figure 17:

e  Each curve corresponds to a different class output.
* As one input becomes dominant, its associated probability sharply rises toward 1, while the
probabilities of competing classes decline toward 0.

e The resulting probability vectors remain normalized, ensuring interpretability and consistency.

Conceptually, Softmax generalizes the behavior of the sigmoid function to multi-class settings, offering
a smooth and differentiable mapping from real-valued scores to probabilistic decisions.
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Softmax Output as x Varies (other values fixed at 0 and 1)
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Figure 17. Graph of Softmax output distributions across three example classes.

12. Derivatives of Activation Functions for Backpropagation

In supervised learning with neural networks, the backpropagation algorithm relies fundamentally
on the derivatives of activation functions, applying the chain rule of calculus to compute gradients
with respect to model parameters. The derivative of an activation function quantifies the sensitivity of
a neuron’s output to infinitesimal changes in its input, directly influencing the flow of learning signals
during gradient descent optimization.

Note: In all cases presented, it is assumed that the variable x refers to the input to the activation

function during the forward pass, as required by the backpropagation procedure.

12.1. Derivative of the Rectified Linear Unit (ReLU)

The ReLU derivative is defined piecewise. During backpropagation:

e If the pre-activation input x > 0, the gradient flows unchanged (multiplied by 1).
e Ifx <0, the gradient is zeroed out (multiplied by 0).

Formally:

1, ifx>0
4 ReLU(x) =4 "

dx 0, otherwise

Formulaic Pseudocode for ReLU Derivative:

Listing 30: Formulaic Pythonic Code for ReLU Derivative

Function relu_derivative(x):
2 if x > 0:

return 1
4 else:

return O

The behavior of the ReLU derivative is a major contributor to the "dying ReLU" phenomenon in deep
networks, where neurons become permanently inactive.
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12.2. Derivative of the Leaky ReLU

The Leaky ReLU derivative modifies the ReLU behavior by allowing a small, non-zero gradient
when x < 0, controlled by a hyperparameter « (e.g., « = 0.01). During backpropagation:

e Ifx > 0, the derivative is 1.
e If x <0, the derivative is .

Formally:

1, ifx>0
iLeakyReLU(x) = o

dx «, otherwise

Formulaic Pseudocode for Leaky ReLU Derivative:

Listing 31: Formulaic Pythonic Code for Leaky ReLU Derivative

Function leaky_relu_derivative(x, alpha):
if x > 0:
return 1
! else:

return alpha

By preserving a small gradient for negative inputs, Leaky ReLU mitigates the vanishing gradient
issues associated with standard ReLU, improving the robustness of learning dynamics, particularly in
very deep or unbalanced networks.

12.3. Derivatives of Advanced Activation Functions

For effective training via backpropagation, the derivatives of activation functions are crucial. They
govern the flow of gradients across layers and directly influence optimization dynamics. Below, we
formalize the derivatives of Swish, Sigmoid, GELU (erf), and tanh activations.

Note: All derivatives assume x refers to the input to the activation function unless otherwise specified.

12.3.1. Derivative of Swish Activation

The Swish activation, defined as Swish(x) = x - ¢(x), has a derivative:

;—xSwish(x) — o (x) + xo(x) (1 — o(x))
where o (x) is the sigmoid function.

Formulaic Pseudocode for Swish Derivative:

Listing 32: Formulaic Pythonic Code for Swish Derivative

Function swish_derivative(x):
s = sigmoid (x)

return s + x * s *x (1 - s)

Alternatively, if only computing o(x) is desired for efficiency:

Listing 33: Sigmoid Helper Function for Swish Derivative

Function sigmoid(x):
return 1 / (1 + exp(-x))

12.3.2. Derivative of Sigmoid Activation

The derivative of the Sigmoid activation, o(x) = H%’ is:
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d
—o(x) = (1)1 - o(x))

where o (x) denotes the sigmoid output.

Formulaic Pseudocode for Sigmoid Derivative:

Listing 34: Formulaic Pythonic Code for Sigmoid Derivative

Function sigmoid_derivative_from_output (sigmoid_output):

return sigmoid_output * (1 - sigmoid_output)

This compact form allows reusing the forward-pass sigmoid result during backpropagation, improving

computational efficiency.

12.3.3. Derivative of GELU (erf-based)

The GELU activation, defined via the Gaussian error function, has a derivative:

N‘ 3o

S oo ) 22

where erf(-) is the error function.
Formulaic Pseudocode for GELU (erf) Derivative:

Listing 35: Formulaic Pythonic Code for GELU (erf) Derivative

Function gelu_derivative(x):
SQRT_2PI = sqrt(2 * pi) # or use a standard constant if available
erf_input = x / sqrt(2)

derivative = 0.5 * (1 + erf(erf_input)) + (x * exp(-0.5 * xx*%2)) / SQRT_2PI

6 return derivative

The derivative captures both the smoothness and the probabilistic gating effect inherent in GELU
activations.

12.3.4. Derivative of tanh Activation
The derivative of the hyperbolic tangent activation, tanh(x), is:

d _ 2
e tanh(x) = 1 — tanh”(x)

where tanh(x) is the forward activation output.
Formulaic Pseudocode for tanh Derivative:

Listing 36: Formulaic Pythonic Code for tanh Derivative

Function tanh_derivative(tanh_output):

return 1 - tanh_output**2

This structure, similar to the sigmoid derivative, facilitates efficient computation during backpropaga-

tion by leveraging cached forward-pass outputs.

12.4. Derivative of GELU (tanh-based Approximation)

The tanh-based approximation of the Gaussian Error Linear Unit (GELU) is computationally

efficient and widely used in Transformer-based architectures. Given the approximation:

GELUgnp (x) = 0.5x (1 + tanh <\/z (x+ 0.044715x3)> )
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its derivative with respect to x is:

%GELUtanh(x) = 0.5(1 + tanh(u)) + 0.5x(1 - tanhz(u)> : %u where u = \/Z (x + 0.044715x%)

This derivative smoothly modulates gradient flow and is more computationally tractable than the

exact erf-based form.

Formulaic Pseudocode for GELU(tanh) Derivative:

Listing 37: Formulaic Pythonic Code for GELU (tanh) Derivative

I Function gelu_tanh_derivative(x):
# GELU approximation uses a cubic term inside tanh
u = sqrt(2 / pi) * (x + 0.044715 * x**3)

4 tanh_u = tanh(u)
sech_sq = 1 - tanh_u*x2

6 du_dx = sqrt(2 / pi) * (1 + 3 * 0.044715 * x*%*2)

8 return 0.5 * (1 + tanh_u) + 0.5 * x * sech_sq * du_dx

This form ensures compatibility with auto-differentiation frameworks and provides smooth, stable

gradients during backpropagation.

12.5. Derivative of Softmax (and Its Practical Simplification)

The Softmax function is defined as:

et
Y€

Its derivative is formally given by the Jacobian matrix:

Softmax(x;)

dSoftmax(x;) _ Softmax(x;)(1 — Softmax(x;)), ifi=j

0x; a —Softmax(x;) - Softmax(x;), ifi#j

This results in a dense Jacobian matrix that is seldom computed directly in practice.

Practical Note: In modern machine learning pipelines, Softmax is almost exclusively paired with
cross-entropy loss. The gradient of their composition simplifies considerably:
oL

Fro Softmax(x;) — y;

where y; is the true label (one-hot encoded). This expression avoids computing the full Jacobian

and is numerically stable, making it standard in classification models.

Therefore, while the theoretical derivative of Softmax is well-defined, it is typically bypassed via this

simplification in the context of supervised learning.

13. Loss Functions: Formal Definitions and Computational Structure

In supervised learning, loss functions quantify the divergence between a model’s predictions
and the true target outputs. During training, the optimization algorithm—typically a gradient-based
method—uses these loss values to iteratively adjust the model’s parameters with the goal of minimizing

prediction error.
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Loss is not to be confused with error itself. While error often refers to the raw difference between
predicted and actual values, loss functions translate that discrepancy into a single scalar quantity

optimized during learning.

Note: Unless otherwise specified, all functions assume that input tensors are of equal shape and
appropriately batched.

13.1. Mean Absolute Error (MAE)
MAE computes the mean of the absolute differences between predicted and actual values:
1 n
MAE = — 3 ' |y; — il
nis
Formulaic Pseudocode for MAE:

Listing 38: Formulaic Pythonic Code for Mean Absolute Error (MAE)

function mae_loss(actual: Tensor, predicted: Temnsor) -> £32:

2 diff = actual - predicted
3 abs_diff = diff.abs ()
4 return abs_diff.mean ()

13.2. Mean Squared Error (MSE)

MSE penalizes larger deviations more strongly than MAE by squaring the errors:

1 & .
MSE = Y (i—9:)?
=

Formulaic Pseudocode for MSE:

Listing 39: Formulaic Pythonic Code for Mean Squared Error (MSE)

function mse_loss(actual: Tensor, predicted: Temnsor) -> £32:
squared_error = (actual - predicted).powered(2)

return squared_error.mean ()

13.3. Hinge Loss

Hinge loss is used primarily for binary classification with Support Vector Machines (SVMs). It

encourages a decision boundary with a margin:

HingeLoss = max(0,1 —y; - ;) wherey; € {—1,1}
Formulaic Pseudocode for Hinge Loss:

Listing 40: Formulaic Pythonic Code for Hinge Loss

1 Function HingeLoss(predicted, actual):

return max(0, 1 - predicted * actual)

13.4. Huber Loss

Huber loss combines the advantages of MAE and MSE. For small errors, it behaves quadratically
(like MSE), while for large errors, it behaves linearly (like MAE), thus improving robustness to outliers:

3y—9)72 ifly—g/<d
é

Huber;(y,9) = ) .
(ly — 9| — 50), otherwise
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Formulaic Pseudocode for Huber Loss:

Listing 41: Formulaic Pythonic Code for Huber Loss

I Function HuberLoss (predicted, actual, delta):
2 error = predicted - actual
3 if abs(error) <= delta:
4 return 0.5 * error * error
else:

6 return delta * (abs(error) - 0.5 *x delta)

13.5. Binary Cross-Entropy (BCE)

BCE is commonly used in binary classification. It quantifies the divergence between predicted
probabilities and actual binary labels:

BCE = —[y -log(7) + (1 —y) -log(1 — 9)]

To avoid logarithmic instability, predictions are typically clamped using a small constant e.
Formulaic Pseudocode for BCE:

Listing 42: Formulaic Pythonic Code for Binary Cross-Entropy (BCE)

| Function BinaryCrossEntropy(predicted, actual):
2 predicted = clamp(predicted, epsilon, 1 - epsilon)
return - (actual * log(predicted) + (1 - actual) * log(l - predicted))

13.6. Categorical Cross-Entropy (CCE)

CCE generalizes BCE to multi-class settings. It penalizes incorrect class probabilities based on a

one-hot encoded label:
CCE = —log(py) where p, is the predicted probability for the correct class

Formulaic Pseudocode for CCE:

Listing 43: Formulaic Pythonic Code for Categorical Cross-Entropy (CCE)

| Function CategoricalCrossEntropy(predicted_probs, actual_label):
2 predicted_probs = clamp_each(predicted_probs, epsilon, 1 - epsilon)

3 return -log(predicted_probs[actual_labell)

Table 4. Summary of Common Loss Functions and Their Behavior

Loss Function Key Behavior

Mean Absolute Error (MAE) Treats all errors equally by measuring the absolute differ-
ence between actual and predicted values.

Mean Squared Error (MSE) Penalizes larger errors more severely by squaring them,
making the model more sensitive to outliers.

Hinge Loss Builds a margin of safety around classes, encouraging confi-

dent classification boundaries (commonly used in Support
Vector Machines).

Huber Loss Smoothly combines MAE and MSE behavior: acts like MSE
for small errors and MAE for large errors, making it robust
to outliers.

Binary Cross Entropy (BCE) Measures the difference between two probability distribu-
tions in binary classification tasks (two classes: 0 or 1).
Categorical Cross Entropy (CCE) | Extends Cross Entropy to multi-class classification prob-
lems, comparing predicted probability distributions over
multiple categories.
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14. Optimizers: Theory and Role in Training Dynamics

In machine learning, particularly in gradient-based neural network training, an optimizer is an
algorithm that governs how a model’s parameters are updated during learning. At the core of this
process lies the concept of the learning rate—a hyperparameter that controls the size of the updates
applied to model weights in response to the loss gradient.

Optimizers aim to minimize the loss function by iteratively adjusting the model’s parameters
in the direction of steepest descent (or approximations thereof). While basic methods apply a fixed
learning rate and simple updates, more advanced optimizers adaptively modify the learning rate
over time, incorporate past gradients, and regularize the updates to improve convergence speed and
stability.

The choice of optimizer plays a critical role in determining;:

¢ The speed of convergence toward a solution.

e  The stability of training across varying data distributions.

¢  The model’s ability to escape local minima or saddle points.
*  Generalization performance on unseen data.

This section presents both classical and modern optimization algorithms, each accompanied by
its update rule, key characteristics, and usage considerations.

Table 5. Comparison of Adam and SGD Optimizers

Aspect

Adam Optimizer

SGD Optimizer

Learning Rate Adjustment

Adaptive learning rate for each
parameter

Fixed or manually decayed learn-
ing rate

Speed of Convergence

Faster convergence, especially
early on

Slower convergence without mo-
mentum

Memory Usage

Higher (stores moment esti-
mates)

Lower (only stores gradients)

Sensitivity to Learning Rate

Less sensitive to initial learning
rate choice

Highly sensitive to learning rate
choice

Use Case

Good for complex networks,
sparse gradients

Good for simple or very large
datasets

Mathematical Complexity

More complex (uses moving av-
erages of gradients)

Simpler (straightforward gradi-
ent update)

Traditional optimizers such as Stochastic Gradient Descent (SGD) update parameters by stepping
proportionally to the negative gradient. However, more sophisticated optimizers like Adam introduce

adaptive learning rates and momentum, greatly improving convergence speed and stability."

14.1. Adam Optimizer (Adaptive Moment Estimation)

The Adam optimizer is a first-order gradient-based optimization algorithm that adaptively adjusts
the learning rate for each parameter based on estimates of the first and second moments of the gradients.
Introduced by Kingma and Ba (2015), Adam merges the benefits of Momentum (smoothing using first
moments) and RMSProp (normalization using second moments) into a single, robust method.

Formally, Adam maintains two exponentially decaying averages:

e m; —the exponentially weighted moving average of past gradients (first moment estimate)

*  7v; —the exponentially weighted moving average of squared gradients (second moment estimate)

To correct bias introduced during initialization, bias-corrected estimates are computed:
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The parameter update rule becomes:

My
P =0 e
where:

® ;- current parameter value

® 7 —learning rate (default: 0.001)

e ¢-small constant for numerical stability (e.g., 10~8)

® 1, B2 —decay rates for the first and second moment estimates (typically 81 = 0.9, B2 = 0.999)

Formulaic Pythonic Pseudocode for Adam Optimizer:

Listing 44: Formulaic Pythonic Code for Adam Optimizer

1 Function adam_optimizer (Tensor, m, v, learning _rate, timestep):

2 betal = 0.9
beta2 = 0.999
4 epsilon = le-8

6 for i in range(Tensor.rows):
7 for j in range(Tensor.cols):

8 grad = Tensor[i][j]

10 # Update biased first moment estimate

11 m[iJ[j] = betal * m[i][j] + (1 - betal) * grad

13 # Update biased second raw moment estimate
14 v[i][j]l] = beta2 * v[i]J[j]l + (1 - beta2) * (grad **x 2)

16 # Compute bias-corrected moment estimates

17 m_hat = m[iJ[j] / (1 - betal #** timestep)

18 v_hat = v[i][j] / (1 - beta2 #** timestep)

19

20 # Update parameter

21 Tensor [i][j] -= learning_rate * m_hat / (sqrt(v_hat) + epsilon)
Advantages of Adam

*  Adaptive learning rate per parameter

*  Requires minimal tuning and is robust to sparse gradients

¢  Combines fast convergence with stability in non-stationary settings
*  Well-suited for large models and noisy objective functions

Limitations and Practical Notes

¢ Adam may sometimes lead to overfitting or poor generalization compared to SGD with momen-
tum in certain vision tasks.
*  Learning rate warm-up, weight decay (AdamW), or switching to SGD mid-training are often

employed for better results.

Commentary: While basic stochastic gradient descent (SGD) is inherently integrated into the back-
propagation update rule, optimizers like Adam offer substantial performance gains in training time
and convergence speed—particularly in deep and high-dimensional architectures.
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14.2. Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is the most fundamental optimization algorithm in machine
learning and serves as the theoretical basis for more advanced methods. SGD seeks to minimize a loss
function £(0) by iteratively updating model parameters 6 in the direction of the negative gradient.

Unlike full-batch gradient descent, which computes gradients over the entire training dataset at

each step, SGD performs updates using a single sample (or mini-batch), defined as:

01 =0r —1-VoL(01;x;,Y;)
where:

¢ 7 —learning rate
e (x;,y;) - the i'" training example or mini-batch
* VgL —gradient of the loss with respect to model parameters
By introducing stochasticity through random sampling, SGD helps models escape shallow local

minima and saddle points, particularly in high-dimensional, non-convex optimization landscapes.

Formulaic Pseudocode for SGD:

Listing 45: Formulaic Pythonic Code for SGD Optimizer

for param in parameters:

param.value -= learning_rate * param.gradient

Advantages of SGD

e  Simple to implement and computationally efficient.
¢ Well-suited for very large datasets (via mini-batch training).
* Can generalize well when combined with regularization and proper learning rate scheduling.

Limitations and Practical Notes

¢  Convergence may be slow and noisy without momentum or learning rate decay.
*  Requires careful tuning of the learning rate to avoid divergence or stagnation.
*  Prone to getting stuck in sharp local minima or saddle points in complex loss surfaces.

Note: SGD is essentially a direct implementation of the backpropagation update rule and is thus
already integrated into the core mechanics of neural network training. Its simplicity makes it a standard

benchmark and starting point for optimizer comparisons.

15. Normalization: Mitigating Gradient Instabilities in Deep Learning

One of the primary challenges in training deep neural networks is the instability of gradi-
ents—specifically, the phenomena of vanishing gradients and exploding gradients. These arise when the
magnitude of gradients becomes excessively small or large, causing either stalled learning or numerical
overflow, particularly in networks with many layers or poorly scaled inputs.

Normalization techniques are designed to mitigate these issues by rescaling data into numerically
manageable ranges. This preserves essential distributional characteristics while reducing the risk of
pathological gradients during backpropagation.

Two of the most common normalization strategies are:

*  Min-Max Normalization rescales input features to a predefined range, usually [0, 1], preserving

relative proportions.


https://doi.org/10.20944/preprints202504.2484.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2484.v1

55 of 65

®  Z-Score Standardization (Standard Scaling) centers the data around zero and scales it to unit

variance, promoting symmetry in gradient flow.

Comparison of Normalization Methods:

Table 6. Comparison of Min-Max Normalization and Z-Score Standardization

Feature Min-Max Normalization Z-Score Standardization
Range after scaling | Typically [0,1]; customizable | Centered around 0 with unit vari-
bounds ance
Sensitive to outliers? | Highly sensitive More robust due to variance scal-
ing
Use case examples Pixel intensities, bounded sensors | ML models assuming Gaussian
features

Effect on distribution | Linear rescaling; preserves origi- | Normalizes spread and location

nal shape
When to use? When known min/max bounds | When data is approximately nor-
exist mal

Practical Note: Normalization is not strictly required for all models, but it plays a pivotal role in
stabilizing gradient-based training processes. For networks prone to exploding/vanishing gradients,

appropriate normalization can dramatically improve convergence rates and model robustness.

15.1. Z-Score Normalization (Standardization)

Z-score normalization, also referred to as standardization, transforms data such that the resulting
distribution has zero mean and unit variance. This technique is particularly effective when the
underlying data distribution is approximately Gaussian.

Given a tensor X with elements x;, the standardized form is:

X — 1&
porm — 25 © Wwhere p==Y x, o=
v s

1 1 2
X Z(xi — 1)
i=1

n—1%=
Formulaic Pythonic Pseudocode for Standardization:

Listing 46: Formulaic Pythonic Code for Z-Score Normalization

function normalize(Tensor) -> Tensor:

2 mean = Tensor.mean ()
std = Tensor.std(sample=True) # Use sample std (n-1 denominator)
4 return (Tensor.clone() - mean) / std
Use Cases

¢  Effective when model assumptions include normally distributed features.

e  Common in linear regression, logistic regression, SVMs, and neural networks.

15.2. Min-Max Normalization

Min-Max normalization rescales each element in the dataset to a fixed range, typically [0, 1], by
subtracting the minimum and dividing by the range. It preserves the shape of the original distribution
and is highly interpretable but sensitive to outliers.

The transformation is defined as:


https://doi.org/10.20944/preprints202504.2484.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2484.v1

56 of 65

norm _ Xi— min(X)

YT max(X) — min(X)

Formulaic Pythonic Pseudocode for Min-Max Normalization:

Listing 47: Formulaic Pythonic Code for Min-Max Normalization

| function min_max_normalize(Tensor):
2 min_value = find_minimum(Tensor)

max_value = find_maximum(Tensor)

for i in range(Tensor.rows):
6 for j in range(Tensor.cols):

7 Tensor [i][j] = (Tensor[i]l[j] - min_value) / (max_value - min_value)

Use Cases

e Image pixel scaling (e.g., from [0, 255] to [0, 1]).
¢  Features with known and bounded value ranges.

Practical Note: Min-max normalization assumes a stable range. In the presence of outliers or shifting

distributions (e.g., in online learning), Z-score standardization or robust scaling may be preferred.

16. Tensor/Weights and Biases Initialization

Proper initialization of weights and biases plays a pivotal role in stabilizing training dynamics
and promoting efficient convergence in deep learning models. In particular, poor initialization can
cause gradients to vanish or explode as they are propagated through layers—issues that severely
hinder or prevent learning.

To address this, various initialization schemes have been developed to align the variance of
activations and gradients across layers, depending on the choice of activation function and model
architecture.

General Principles of Initialization

e  Variance Preservation: Maintaining activation variance across layers prevents gradient shrinkage
or amplification.

*  Activation Function Dependency: Initialization should match the non-linearity used (e.g., ReLU
vs. tanh).

e  Symmetry Breaking: All weights must be initialized independently to allow neurons to learn
distinct features. Biases may be initialized to zero.

The following table summarizes widely adopted initialization strategies:
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Table 7. Summary of Common Weight Initialization Methods and Their Core Characteristics

Initialization Method | Key Characteristics and Use Cases

Xavier (Glorot)

e Balances the variance of activations between input and output
layers.

*  Designed for use with tanh and sigmoid activations.

*  Helps mitigate vanishing/exploding gradients in shallow to mod-
erately deep networks.

*  Draws from a uniform or normal distribution with variance ;— ‘Enout .

* Not recommended for ReLU-family activations due to under-
scaling.

He (Kaiming)

¢  Tailored for ReLU and Leaky ReLU activations.

»  Preserves forward-pass variance with variance -2

Nin *

*  Enables stable training of very deep networks by avoiding vanish-
ing gradients.

e Can lead to exploding gradients if incorrectly scaled or used with
incompatible activations.

Zero Initialization

* Initializes all weights to zero, creating symmetry where all neurons
learn identical features.

e Disables gradient flow in hidden layers—rendering the network
non-functional.

®  Acceptable only for biases; strictly discouraged for weights.

¢ Often used as a baseline to demonstrate the necessity of variance.

Random Uniform

*  Weights are drawn from a uniform distribution without scale nor-
malization.

*  Simple and historically common, but problematic in deep architec-
tures.

¢  Offers baseline functionality in shallow networks or in reinforce-
ment learning policies.

* May lead to slow convergence or instability due to unregulated
variance.

Practical Note

Weight initialization should always be selected in tandem with the activation function and
network architecture. For deep networks using ReLU or GELU activations, He initialization is typically
preferred. For sigmoid or tanh-based networks, Xavier initialization is more appropriate.

Biases, unless specifically tuned (e.g., for LSTMs or BatchNorm), are typically initialized to zero.

16.1. Zero Initialization

Zero initialization sets all weights in a neural network layer to zero. While this method is
computationally efficient and trivial to implement, it introduces a fundamental flaw: all neurons in a
given layer receive identical gradients during backpropagation and thus learn the same features. This
symmetry prevents the network from effectively breaking degeneracy in weight space.

Key Drawbacks:

*  Fails to break symmetry between neurons.
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* Leads to vanishing gradients and stalled learning.
*  Only suitable for initializing biases.

16.2. Pseudo-Random Initialization (Uniform)

Random uniform initialization generates weights using a uniform distribution within a specified
range (e.g., [—0.5,0.5]). While it avoids the symmetry problem seen in zero initialization, it does not
scale based on network depth or activation function, and thus may lead to unstable training in deep
architectures.

Formulaic Pythonic Pseudocode:

Listing 48: Random Uniform Tensor Initialization

function Random_Tensor(shape, min_val, max_val) -> Tensor:

Tensor = []

)

for i in range(shape.x):
4 row = []
for j in range (shape.y):
6 row.append (Pseudo_Random_Range_float32(min_val, max_val))
7 Tensor .append (row)

8 return Tensor

Note: For uniform initialization, a common range is [—0.5,0.5]. This should be adjusted depending on

layer size and depth.

16.3. Xavier (Glorot) Initialization
Xavier (or Glorot) initialization is designed to preserve the variance of activations across layers
when using tanh or sigmoid activations. It draws weights from a uniform distribution with bounds
based on the number of input and output units.
bound = ¢ = W ~ U(—bound, +bound)
VMin + Nout ’

Formulaic Pythonic Pseudocode:

Listing 49: Formulaic Pythonic Code for Xavier Initialization

fan_in = number_of_input_units

fan_out = number_of_output_units

-

for weight in layer:
bound = sqrt(6) / sqrt(fan_in + fan_out)
6 weight = Pseudo_Random_Range_float32(-bound, +bound)

Best suited for: Activation functions such as sigmoid, tanh

16.4. He Initialization

He initialization (also called Kaiming initialization) is tailored for layers using ReLU or Leaky
ReLU activations. It initializes weights by sampling from a normal distribution with zero mean and a

standard deviation of:

std_dev = ni = W ~ N(0,std_dev?)
in

Formulaic Pythonic Pseudocode:

Listing 50: Formulaic Pythonic Code for He Initialization
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I number_of_inputs = number of input connections to this layer

3 for weight in layer:

4 weight = Random_Normal (mean=0.0, std_dev=sqrt(2 / number_of_inputs))

Best suited for: ReLU, Leaky ReLU, ELU, GELU
Advantages:

*  Helps avoid vanishing gradients.
¢  Promotes stable signal propagation in deep networks.
*  Generally converges faster in deep architectures with ReLU-based activations.

17. Backpropagation: The Core Learning Algorithm in Neural Networks

Backpropagation is the central algorithm responsible for training neural networks via supervised
learning. It refines a model’s internal parameters—namely, weights and biases—by propagating the
error signal backward through the network, layer by layer, and computing gradients that guide each
parameter update.

This process is built upon the chain rule of calculus, which allows the computation of how the
loss changes with respect to every parameter in the network, even deep within multiple layers. When
paired with gradient-based optimization algorithms such as Stochastic Gradient Descent (SGD) or
Adam, backpropagation enables neural networks to approximate complex, nonlinear functions from
data.

The training process typically consists of four key stages:

1.  Forward Pass — Computes activations layer by layer using current weights and biases.

2. Loss Function Evaluation — Measures the discrepancy between the model’s prediction and the
true target.

3. Backward Pass — Propagates the loss gradient backward through the network, computing
parameter-wise gradients.

4.  Gradient Descent Step — Updates weights and biases using gradients and a selected optimization

algorithm.

17.1. Key Computational Tools for Backpropagation
To implement backpropagation from first principles, the following computational primitives are

essential:

*  Matrix Multiplication — Enables dot products between weights and activations.

e  Transposition — Required for aligning gradients across layer interfaces.

¢  Element-wise Operations — Applied to activation outputs and error signals.

*  Activation Functions and Their Derivatives — Nonlinearities such as ReLU, tanh, or sigmoid

must support differentiation.

17.2. Forward Pass

The forward pass processes inputs sequentially through the network’s layers. Each layer com-

putes:

20 = W=D 0 40 — 50y

Where:

o z( is the pre-activation output of layer I,
o WU and b are the weight matrix and bias vector,
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e f(-)is the activation function (e.g., ReLU, tanh),
o 4l is the post-activation output, passed to the next layer.

This process continues through all hidden layers and concludes at the output layer.

17.3. Loss Function

The loss function quantifies prediction error. Common examples include:

n

1 R A
MSE = - Z(yi — yi)z, CrossEntropy = — Z]/i log(i)
i=1 i

The choice of loss function depends on the task (e.g., regression vs. classification) and impacts
gradient computation.

17.4. Backward Pass (Backpropagation)

The backward pass computes the gradient of the loss function with respect to each weight and

bias in the network by traversing layers in reverse. This relies on repeated application of the chain rule:

oL
ow ()

)
=50 @17 where 60 = (&16)) © f'(z1)

Steps:

1.  Compute error gradient at the output layer.

2. Propagate this error backwards through hidden layers.
3. Multiply by activation function derivative.
4

Use the gradients to update parameters.
Formulaic Pythonic Pseudocode:

Listing 51: Formulaic Pythonic Code for Backpropagation

for neuron in layer:

2 error_gradient = 2.0 * (outputs[neuron] - targets[neuron]) # NMSE derivative
activation_gradient = activation_derivative (neuron)
4 total_gradient = error_gradient * activation_gradient

6 for i in range(len(weights[neuron])):

7 weights [neuron] [i] -= learning_rate * total_gradient * inputs[i]

9 biases [neuron] -= learning_rate * total_gradient
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Repeat for each layer
(except input and output: ut)

.

for neuron in layer:
Each neuron (unit) is updated
individually

!

activation_gradient =
activation_derivative:(neuron)
Depends on activation used

!

total_gradient =
error_gradient * activation_gra-
Chain Rule applied

.

for i in range(len(weights[neuron))):
Update each input weight by
looping through every weight

manually
weights[neuron][i] -- learning_rate
* total_gradient = inputsli]
!

biases[neuron] -- learning_rate
= total_gradient Update bias

Figure 18. Breakdown of the backward pass in formulaic pseudocode.

17.5. Gradient Descent Step

Once gradients are computed, they are used to update model parameters:

o) o) —y.vL

This step may be implemented using SGD or more sophisticated optimizers (e.g., Adam, RM-
SProp) discussed earlier.

17.6. Batch Training and Epochs

Training is typically performed in mini-batches for computational efficiency and generalization.
A full dataset pass is called an epoch. The backpropagation cycle is repeated across batches and epochs
to progressively reduce the loss.

17.7. Summary: The Backpropagation Pipeline

Backpropagation is the engine that drives learning in neural networks. It enables the network
to systematically refine its parameters to minimize a loss function, translating gradient signals into
corrective updates. The algorithm’s structure, forward pass, loss computation, backward pass, and
parameter update, forms the training loop at the heart of nearly all modern deep learning architectures.

Mastering backpropagation offers both a practical and theoretical foundation for understanding
how complex models generalize, optimize, and ultimately learn to represent abstract patterns in data.

Recent Advances

In recent years, substantial progress has been made in machine learning techniques, optimization
methods, and model architectures. Innovations such as the Adam optimizer [1] and its improved
variant AdamW [2] have reshaped training dynamics. Transformer architectures [3] introduced
self-attention mechanisms that are now foundational across domains. Improvements in activation
functions, including GELU [4] and Swish [5], have enhanced non-linearity handling. Regularization
strategies like Cutout [6], Mixup [7], and RICAP [8] have strengthened model robustness.

New approaches to optimization such as RAdam [9], Lookahead [10], and AdaBelief [11] have
emerged, refining convergence stability. Advances in normalization techniques like LayerNorm [12],
GroupNorm [13], and EvoNorm [14] have further improved the training of deep models. Weight
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initialization strategies like He initialization [15] and Fixup initialization [16] addressed challenges in
very deep networks.

Recent network architectures, such as EfficientNet [17], ResNeSt [18], and ConvNeXt [19], have
pushed the frontier of computer vision benchmarks. Self-supervised learning techniques like SimCLR
[20] and BYOL [21] have unlocked new paradigms for representation learning without extensive labels.

These developments reflect an active and rapidly evolving field, providing a strong foundation

for further innovation and accessibility in machine learning education.

18. Conclusion

This work has aimed to demystify and recontextualize the mathematical foundations of Machine
Learning (ML) in order to reduce the barriers that often exclude highly capable developers, partic-
ularly those without formal training in calculus or theoretical mathematics. By translating core ML
concepts into formulaic pseudocode and structured algorithmic logic, we advocate for a more inclusive
framework, one that recognizes programming expertise as an equally valid and powerful entry point
into the field.

Many developers today possess extensive knowledge in low-level systems engineering, embedded
computing, Linux kernel development, and WebAssembly. These skillsets are often disconnected from
ML discourse due to the pervasive assumption that mastery in advanced calculus is a prerequisite
for meaningful participation. This dual requirement, proficiency in both abstract mathematics and
complex coding, creates what may be termed the double-genius barrier, which inhibits broader
innovation.

By reducing this barrier through pedagogical reform and accessible explanations, we can acceler-
ate cross-disciplinary collaboration and invite contributions from a much wider talent pool. In doing
so, the Machine Learning community stands to benefit from a more diverse, global influx of ideas,
tools, and methodologies.

18.1. Guidelines for Increasing Accessibility in Machine Learning Education

To support this vision, the following principles are proposed:

* Avoid exclusive reliance on calculus-based notation. While mathematically rigorous exposi-
tion remains vital for theoretical development, educational materials should accompany such
expressions with structured pseudocode or executable logic wherever possible.

*  Recognize programming fluency as foundational. ML is ultimately implemented through code.
Prioritizing algorithmic clarity ensures that practitioners from software engineering and systems
programming domains can meaningfully engage with and apply ML principles.

*  Promote hybrid explanations. Ideal instructional content should bridge formal mathematics and
operational intuition—using diagrams, modular code, and relatable metaphors.

Such approaches will empower self-taught programmers, bootcamp graduates, and systems
engineers alike, unlocking contributions from communities historically sidelined by overly theoretical
teaching methods.

18.2. Machine Learning Without Walls: A Vision for Global Innovation
Imagine a future in which:

*  Mathematicians focus exclusively on developing faster and more biologically realistic activation
functions, such as novel generalizations of the Hodgkin—-Huxley model.

e Systems engineers embed neural inference directly into operating system kernels to achieve
ultra-low-latency pattern recognition.
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*  Educators adopt accessible frameworks for teaching ML logic, allowing students to implement
and experiment before ever seeing formal integrals.

Such a future is only possible if we stop requiring every contributor to split their energy equally
between two orthogonal skill sets. Let mathematicians build better theory. Let programmers build
faster, safer systems. Let educators build bridges between them. In combination, not in isolation, these
communities can accelerate the future of Machine Learning far beyond what any single discipline
could accomplish alone.

To the mathematicians: You do not have to carry the future of Machine Learning alone.
To the programmers: Your intuition, structure, and systems thinking are just as vital.
Together, we can dismantle the barriers that no one discipline can overcome in isolation.

To mathematicians: you don’t have to carry the future of Machine Learning alone. To programmers: your
skills are just as vital. Together, we can break barriers that no single discipline could ever overcome.

18.3. A Complete Machine Learning Network Example

To demonstrate how the foundational principles discussed in this paper can be applied in practice,
Figure 19 presents a complete example of a machine learning pipeline. This network is intentionally
designed with transparency and educational clarity, enabling learners to follow each computational
step.

Figure 19. Overview of a complete image-based machine learning workflow. The process begins with preprocess-
ing and normalization of 100x100 pixel grayscale images, which are then converted into tensors for input into the
model. The network includes two hidden layers with Swish activations and Xavier weight initialization, followed
by a sigmoid output layer. Adam’s Optimizer guides training via backpropagation, iterating across epochs with
periodic logging and batch switching based on convergence thresholds.

Listing 52: Formulaic Pythonic Code for Example Complete machine learning network flow.

1 // 1. Preprocessing
> For each image:

3 Normalize pixel values to [0, 1]
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4

5 // 2. Initialization

o Initialize weights and biases for each layer with Xavier Initialization
s // 3. Training Loop

9 For each epoch:

10 For each image in batch:

11 // Forward Pass

12 Input = image tensor

13 Hiddenl = Swish(Weightsl x Input + Biasesl)

14 Hidden2 = Swish(Weights2 x Hiddenl + Biases2)
15 Output = Sigmoid(Weights3 x Hidden2 + Bias3)

17 // Loss Calculation
18 Loss = (Output - Target).raised2

20 // Backward Pass (Backpropagation)

21 Compute gradients of Loss w.r.t Weights and Biases
2 Update Weights and Biases using Adam Optimizer

23

2 // Logging

25 If epoch mod 10 ==

26 Log training metrics

28 // Stopping Condition

29 If Loss < Epsilon:

30 Break training loop

19. Final Reflection: The Power of Formulaic Thinking

To conclude, this example shows that the entire machine learning process can be captured cleanly
through formulaic pseudocode, without hiding behind walls of pure math. From image preprocessing
to network layer transitions, activations, optimization, and backpropagation, every step remains clear
and accessible.

While mathematical notation like:

hi = Swish(Wix+b;) and L= (§—y)?

is powerful, it often skips the operational thinking that real-world engineering demands.

Formulaic pseudocode, however, preserves the logic path step-by-step, making it easier to bridge
understanding between mathematics and practical implementation.

This bridge is crucial.

By empowering both mathematicians and programmers to see through each other’s worlds more
clearly, we can push forward a future where neural networks are not only more powerful but also

more understandable and accessible to all learners.

References

Diederik P. Kingma and Jimmy Ba, Adam: A Method for Stochastic Optimization, ICLR, 2015.

Ilya Loshchilov and Frank Hutter, Decoupled Weight Decay Regularization, ICLR, 2019.

Ashish Vaswani et al., Attention Is All You Need, NeurIPS, 2017.

Dan Hendrycks and Kevin Gimpel, Gaussian Error Linear Units (GELUs), arXiv:1606.08415, 2016.

Prajit Ramachandran et al., Searching for Activation Functions, arXiv:1710.05941, 2017.

Terrance DeVries and Graham W. Taylor, Improved Regularization of Convolutional Neural Networks with Cutout,
arXiv:1708.04552, 2017.

SRS


https://doi.org/10.20944/preprints202504.2484.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 April 2025 d0i:10.20944/preprints202504.2484.v1

65 of 65

Hongyi Zhang et al., mixup: Beyond Empirical Risk Minimization, ICLR, 2018.

8.  Ryo Takahashi, Takashi Matsubara, Koichiro Yoshino, RICAP: Random Image Cropping and Patching Data
Augmentation for Deep CNNs, ACML, 2018.

9.  Liyuan Liu et al., On the Variance of the Adaptive Learning Rate and Beyond, arXiv:1908.03265, 2019.

10. Michael R. Zhang et al., Lookahead Optimizer: k steps forward, 1 step back, NeurIPS, 2019.

11. Juntang Zhuang et al., AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients, NeurlPS,
2020.

12.  Jimmy Ba, Jamie Ryan Kiros, Geoffrey Hinton, Layer Normalization, arXiv:1607.06450, 2016.

13.  Yuxin Wu and Kaiming He, Group Normalization, ECCV, 2018.

14. Zhuang Liu et al., EvoNorm: Evolutionary Normalization for Deep Learning, arXiv:2004.02967, 2020.

15. Kaiming He et al., Delving Deep into Rectifiers: Surpassing Human-Level Performance, ICCV, 2015.

16. Hongyi Zhang et al., Fixup Initialization: Residual Learning Without Normalization, ICLR, 2019.

17. Mingxing Tan and Quoc V. Le, EfficientNet: Rethinking Model Scaling, ICML, 2019.

18. Hang Zhang et al., ResNeSt: Split-Attention Networks, arXiv:2004.08955, 2020.

19. Zhuang Liu et al., A ConvNet for the 2020s, CVPR, 2022.

20. Ting Chen et al., A Simple Framework for Contrastive Learning, ICML, 2020.

21. Jean-Bastien Grill et al., Bootstrap Your Own Latent (BYOL), NeurIPS, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.


https://doi.org/10.20944/preprints202504.2484.v1

	Introduction
	Motivation and Background
	Core Principles
	Target Audience
	Vision for the Future of Machine Learning Education
	Contribution Summary
	Fundations to Machine Learning
	What can a Tensor store
	Layer in a Machine Learning Context
	Neural Network
	Understanding the Neural Network


	Tensors
	Key Gradient Pathologies
	Tensor Rank Versus Tensor Shape
	Axis Operations
	Dot Product
	Tensor Addition
	Tensor Subtraction
	Scalar Addition
	Scalar Subtraction
	Scalar Multiplication
	Scalar Division
	Use Cases of Tensor-Scalar Operations
	Matrix Multiplication
	Misconception: Matrix Division?

	Broadcasting
	Tensor Raised to a Scalar Power
	Use Cases
	Important Notes


	Tensor Shaping and Broadcasting Operations
	Transpose
	Padding (Zero Padding)
	Flatten
	Dimensional Products
	Reshape and Resize Operations

	Fundamental Mathematical Concepts for Machine Learning
	Calculus: A Descriptive Framework, Not a Barrier
	Non-Linearity: The Essential Break from Linearity
	Euler’s Number: A Fundamental Limit in Continuous Growth
	Mean of a Tensor: A Measure of Central Tendency
	Median of a Tensor: A Robust Measure of Central Tendency
	Element-wise Absolute Value of a Tensor
	Tensor Standard Deviation (std): A Measure of Dispersion
	Hyperparameters: Configurable Variables in Model Design and Optimization
	Function Hyperparameters: Tunable Modifiers of Algorithmic Behavior
	Derivatives: Quantifying Change in Continuous Functions
	Epsilon (): Thresholds for Numerical Stability and Convergence
	Geometric Symbols and Mathematical Constants in Machine Learning
	The Error Function (erf): A Fundamental Link to Gaussian Distributions

	Activation Functions: Modeling Complex Neuronal Dynamics
	Meaning of Activation
	Purpose and Biological Motivation
	Activation Function Progression and Comparative Analysis
	Comparative Overview of Activation Functions
	Expanded Insights on Activation Functions
	Practical Tips and Cautions

	Rectified Linear Unit (ReLU): Definition, Properties, and Practical Considerations
	Intuitive Overview
	Mathematical Definition
	Advantages and Use Cases
	Limitations and Cautions
	Why is it faster to train?
	Alternative for ReLU, Leaky ReLU
	ReLU graph

	Leaky Rectified Linear Unit (Leaky ReLU, LReLU): Definition, Properties, and Applications
	Intuitive Overview
	Mathematical Definition
	Formulaic Pseudocode Implementation
	Advantages and Use Cases
	Limitations and Cautions
	Training Efficiency Considerations
	Graphical Interpretation of Leaky ReLU

	Swish Activation Function: Definition, Properties, and Practical Considerations
	Intuitive Overview
	Mathematical Definition
	Formulaic Pseudocode Implementation
	Advantages and Use Cases
	Limitations and Practical Considerations
	Graphical Interpretation of Swish

	Sigmoid Activation Function: Definition, Properties, and Practical Considerations
	Intuitive Overview
	Mathematical Definition
	Formulaic Pseudocode Implementation
	Advantages and Use Cases
	Limitations and Practical Considerations
	Graphical Interpretation and Application in Binary Classification

	Gaussian Error Linear Unit (GELU, erf-based): Definition, Properties, and Practical Applications
	Intuitive Overview
	Mathematical Definition
	Formulaic Pseudocode Implementation
	Advantages and Use Cases
	Limitations and Practical Considerations
	Graphical Interpretation of GELU (erf)

	Hyperbolic Tangent (tanh): Definition, Properties, and Practical Applications
	Intuitive Overview
	Mathematical Definition
	Formulaic Pseudocode Implementation
	Advantages and Use Cases
	Limitations and Practical Considerations
	Graphical Interpretation of tanh

	Gaussian Error Linear Unit Approximation (GELU, tanh-based): Definition, Properties, and Practical Applications
	Intuitive Overview
	Mathematical Definition
	Formulaic Pseudocode Implementation
	Advantages and Use Cases
	Limitations and Practical Considerations
	Graphical Interpretation of GELU (tanh)

	Softmax Activation: Definition, Properties, and Practical Applications
	Intuitive Overview
	Step-by-Step Breakdown
	Mathematical Definition
	Formulaic Pseudocode Implementation
	Advantages and Use Cases
	Limitations and Practical Considerations
	Application in Multi-Class Output Layers
	Graphical Interpretation of Softmax


	Derivatives of Activation Functions for Backpropagation
	Derivative of the Rectified Linear Unit (ReLU)
	Derivative of the Leaky ReLU
	Derivatives of Advanced Activation Functions
	Derivative of Swish Activation
	Derivative of Sigmoid Activation
	Derivative of GELU (erf-based)
	Derivative of tanh Activation

	Derivative of GELU (tanh-based Approximation)
	Derivative of Softmax (and Its Practical Simplification)

	Loss Functions: Formal Definitions and Computational Structure
	Mean Absolute Error (MAE)
	Mean Squared Error (MSE)
	Hinge Loss
	Huber Loss
	Binary Cross-Entropy (BCE)
	Categorical Cross-Entropy (CCE)

	Optimizers: Theory and Role in Training Dynamics
	Adam Optimizer (Adaptive Moment Estimation)
	Stochastic Gradient Descent (SGD)

	Normalization: Mitigating Gradient Instabilities in Deep Learning
	Z-Score Normalization (Standardization)
	Min-Max Normalization

	Tensor/Weights and Biases Initialization
	Zero Initialization
	Pseudo-Random Initialization (Uniform)
	Xavier (Glorot) Initialization
	He Initialization

	Backpropagation: The Core Learning Algorithm in Neural Networks
	Key Computational Tools for Backpropagation
	Forward Pass
	Loss Function
	Backward Pass (Backpropagation)
	Gradient Descent Step
	Batch Training and Epochs
	Summary: The Backpropagation Pipeline

	Conclusion
	Guidelines for Increasing Accessibility in Machine Learning Education
	Machine Learning Without Walls: A Vision for Global Innovation
	A Complete Machine Learning Network Example

	Final Reflection: The Power of Formulaic Thinking
	References

