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Abstract

In this work, we investigate the behaviour of a relativistic scalar
particle in the background of the Lorentz symmetry violation deter-
mined by a tensor (KF )µναβ out of the Standard Model Extension.
A linear electric field and a uniform magnetic can be induced by the
violation of the Lorentz symmetry breaking effects, and analyze the
behaviour of the scalar particle. We see that the analytical solution to
the KG-equation can be achieved, and a quantum effect characterized
by the dependence of the magnetic field on the quantum numbers is
observed.
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1 Introduction

Recent studies have investigated the possibility of Lorentz-symmetry viola-

tion from the generalization of the usual standard model called the standard-

model extension(SME), that has all the conventional properties but breaks

the Lorentz-symmetry [1, 2, 3, 4]. This framework provides a quantitative

description of Lorentz-symmetry violation, controlled by a set of coefficients
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whose values are to be determined or constrained by experiments [5, 6, 7, 8].

In this model, the CPT- and Lorentz-breakdown take place as a sponta-

neous violation [9, 10, 11] in the context of more fundamental theory, valid

at the Planck scale. The parameters representing Lorentz violation are ob-

tained as vacuum expectation values of some tensor operators belonging to

the underlying theory. The gauge sector of the SME model has been ex-

tensively studied in several works both in (1 + 3) and (1 + 2)-dimensions

[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], with

many interesting results.

We study the relativistic quantum dynamics of a scalar particle Refs.

[31, 32, 33] by solving the Klein-Gordon equation under the effects of violation

of the Lorentz symmetry defined by the tensor (KF )µναβ out of the Standard

Model Extension which hasn’t studied earlier. We investigate the effects of

linear central potential induced by Lorentz symmetry violation and obtain

the solution of the bound state.

2 Relativistic scalar particle under the effects

of Lorentz Symmetry Violation

The gauge sector of the Standard Model Extension consists two violating

terms that modifies the transport properties of space-time since these terms

break the Lorentz symmetry. These two terms are called the CPT-odd sector

[1, 2] and the CPT-even sector [34, 35]. The relativistic quantum dynamics

of a scalar particle under the effects of the Lorentz symmetry violation [1, 2,

3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]

pµ pµ Ψ +
α

4
(KF )µναβ F

µν(x)Fαβ(x) Ψ = M2 Ψ, (1)

where α is a constant, Fµν(x) = ∂µAν − ∂ν Aµ is the electromagnetic ten-

sor, (KF )µναβ corresponds to a tensor that governs the Lorentz symmetry

violation out of the Standard Model Extension. One of the properties of
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the tensor (KF )µναβ is that it can be written in terms of 3 × 3 matri-

ces: (κDE)jk = −2 (KF )0j0k and (κHB)jk = 1
2
εjpq εklm (KF )pqlm represent-

ing the parity-even sector, and others are represented by 3 × 3 matrices

as : (κDB)jk = −(κHE)kj = εkpq (KF )0jpq representing parity-odd sector.

Note that the matrices (κDE)jk and (κHB)jk are symmetric and the matrices

(κDB)jk and (κHE)kj have no symmetry.

The KG-equation (1) under the effects of the Lorentz symmetry violation

in the Minkowski space-time background becomes[
− ∂2

∂t2
+

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+

1

r2
∂2

∂φ2

]
Ψ +

α

4
(KF )µναβ F

µν(x)Fαβ(x) Ψ

= M2 Ψ. (2)

Using the properties of the tensor field (KF )µναβ, we rewrite (2) in the

form : [
− ∂2

∂t2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2

]
Ψ

+
[
−α

2
(κDE)ij E

iEj +
α

2
(κHB)jk B

iBj − α (κDB)jk E
iBj

]
Ψ

= M2 Ψ. (3)

Let us consider a possible scenario of the Lorentz symmetry violation

determined by (κDE)11 = const, (κHB)33 = const and (κDB)13 = const and

the field configuration given by [30, 39, 40, 28, 29, 46]:

~B = B0 ẑ , ~E =
λ

2
r r̂ (4)

where B0 > 0, ẑ is a unit vector in the z-direction, λ is a constant associated

with a linear distribution of electric charge along the axial direction, and r̂

is the unit vectors in the radial direction.

Hence, the equation (3) using the configuration (4) becomes[
− ∂2

∂t2
+

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2

]
Ψ

+

[
−αλ

2

8
(κDE)11 r

2 +
α

2
(κHB)33B

2
0 −

αλB0

2
(κDB)13 r

]
Ψ = M2 Ψ.(5)
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Since the metric is independent of time and symmetrical by translations

along the z-axis, as well by rotations. It is reasonable to write the solution

to Eq. (6) as

Ψ(t, r, φ, z) = ei (−E t+l φ+k z) ψ(r), (6)

where E is the energy of the particle, l = 0,±1,±2, .... are the eigenvalues of

the z-component of the angular momentum operator, and k is a constant.

Substituting the solution (6) into the Eq. (7), we obtain the following

radial wave-equation for ψ(r):

ψ′′(r) +
1

r
ψ′(r) +

[
Λ− ω2 r2 − l2

r2
− b r

]
ψ(r) = 0, (7)

where

Λ = E2 −M2 − k2 +
1

2
αB2

0 (κHB)33,

ω =

√
1

8
αλ2 (κDE)11 > 0,

b =
1

2
αλB0 (κDB)13. (8)

Let us perform a change of variables given by x =
√
ω r. Then, we have

ψ′′(x) +
1

x
ψ′(x) +

[
ζ − x2 − l2

x2
− θ x

]
ψ(x) = 0, (9)

where

ζ =
Λ

ω
, θ =

b

ω
3
2

. (10)

By analysing the asymptotic behaviour of Eq. (9) at x→ 0 and x→∞,

we have a solution to Eq. (9) that can be written in terms of an unknown

function F (x) as

ψ(x) = x|l| e−
1
2
(x+θ)xH(x) (11)

Thereby, substituting Eq. (11) into Eq. (9), we obtain

H ′′(x) +

[
1 + 2 |l|

x
− 2x− θ

]
H ′(x) +

[
−

θ
2

(1 + 2 |l|)
x

+ Θ

]
H(x) = 0, (12)
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where Θ = ζ + θ2

4
− 2 (1 + |l|).

The equation (12) is the biconfluent Heun’s differential equation [31, 32,

33, 47, 48, 49] with H(x) is the Heun polynomials function.

The above equation (12) can be solved by the Frobenius method. Writing

the solution as a power series expansion around the origin [50]:

H(x) =
∞∑
i=0

di x
i. (13)

Substituting the power series solution into the Eq. (12), we obtain the fol-

lowing recurrence relation

dn+2 =
1

(n+ 2)(n+ 2 + 2 |l|)

[
θ

(
n+ |l|+ 3

2

)
dn+1 − (Θ− 2n) dn

]
. (14)

With few coefficients are

d1 =
θ

2
d0,

d2 =
1

4 (1 + |l|)

[
θ

(
|l|+ 3

2

)
d1 −Θ d0

]
. (15)

The power series expansion H(x) becomes a polynomial of degree n by

imposing the following two conditions [31, 32, 33, 30, 39, 28, 29, 47]

Θ = 2n, (n = 1, 2, ...)

dn+1 = 0. (16)

By analysing the first condition Θ = 2n, we have

En,l = ±

√
M2 + k2 + (n+ 1 + |l|)λ

√
α

2
(κDE)11 −

αχB2
0

2
, (17)

where χ =
[
(κHB)33 + {(κDB)13}2

(κDE)11

]
.

The equation (17) gives the allowed values of the energy eigenvalue of a

relativistic scalar particle under the effects of a linear central potential in-

duced by Lorentz symmetry breaking out of the Standard Model Extension.
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In the present situation, Lorentz symmetry breaking effects defined by a ten-

sor that governs the Lorentz symmetry violation have non-null components

(κDB)13 = const, (κDE)11 = const and (κHB)33 = const, a linear radial elec-

tric field produced by linear distribution of electric charges, and a uniform

magnetic along the z-direction. Note that Eq. (17) is not the general expres-

sion of the energy eigenvalues. One can obtain the individual energy levels

E1,l, E2,l, E3,l, .... and the wave-function ψ1,l, ψ2,l, ...... for each radial mode

n = 1, 2, 3, ... by imposing the additional recurrence condition dn+1 = 0 on

the eigenvalue problem as done in Refs. [31, 32, 33, 47].

For the radial mode n = 1, we have Θ = 2 and d1 = 0 which implies from

(15)

θ

2
d0 =

2

θ
(
|l|+ 3

2

) d0
⇒ b2

4
=

ω3(
3
2

+ |l|
) ⇒ λ1,l =

(
3

2
+ |l|

)
(κDB)13B

2
0

√
2α

{(κDE)11}3
(18)

a constraint on the linear charge density λ1,l for the radial mode n = 1.

We can see that for the different quantum numbers of the system, there

is a different relation of the linear charge density λ, so we have labelled

λ → λn,l. Note that its values depends on the Lorentz symmetry violation

parameters {(κDB)13, (κDE)11} as well as on the quantum numbers {n, l} of

the relativistic system which shows a quantum effect.

Therefore, the lowest state energy level for the radial mode n = 1 is

E1,l = ±

√
M2 + k2 + (2 + |l|)λ1,l

√
α

2
(κDE)11 −

αχB2
0

2

=

√
M2 + k2 +

1

2
αB2

0

{
(2 + |l|) (3 + 2 |l|) {(κDB)13}2

(κDE)11
− χ

}
.(19)

The corresponding ground state wave-function is

ψ1,l(x) = x|l| e−(x2+d1)x (1 + d1 x), (20)
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where we have chosen d0 = 1 and

d1 =
1√

3
2

+ |l|
. (21)

We can see that the presence of Lorentz symmetry breaking parameters mod-

ified the energy level and the wave-function of a relativistic scalar particle in

the quantum system.

Special case corresponds to (κDB)13 = 0

Here we shall discuss the above relativistic quantum system corresponds

to the non-null components (κDE)11 = const and (κHB)33 = const of the

tensor that governs the Lorentz symmetry breaking effects and other is zero.

In that case, the radial wave-equation (7) becomes

ψ′′(r) +
1

r
ψ′(r) +

(
Λ− ω2 r2 − l2

r2

)
ψ(r) = 0, (22)

Transforming ρ = ω r2 into the Eq. (22), we have

ψ′′(ρ) +
1

ρ
ψ′(ρ) +

1

4 ρ

(
Λ

ω
− ρ− l2

ρ

)
ψ(ρ) = 0, (23)

The above equation can be transform to the following differential equation

[51, 52, 53]

ψ′′(ρ) +
1

ρ
ψ′(ρ) +

1

ρ2
(
−ξ1 ρ2 + ξ2 ρ− ξ3

)
ψ(ρ) = 0, (24)

where

ξ1 =
1

4
, ξ2 =

Λ

4ω
, ξ3 =

l2

4
. (25)

Comparing Eq. (24) with Eq. (A.1) in Ref. [53]

α1 = 1 , α2 = 0 , α3 = 0 , α4 = 0 , α5 = 0,

α6 = ξ1 , α7 = −ξ2 , α8 = ξ3 , α9 = ξ1 , α10 = 1 + 2
√
ξ3,

α11 = 2
√
ξ1 , α12 =

√
ξ3 , α13 = −

√
ξ1. (26)
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The eigenvalues equation using Eqs. (25)–(26) into the Eq. (A.8) in Ref.

[53]

En′,l = ±
√
M2 + k2 + 2ω (2n′ + 1 + |l|)− 1

2
αB0 (κHB)33

= ±

√
M2 + k2 + λ (2n′ + 1 + |l|)

√
α

2
(κDE)11 −

1

2
αB0 (κHB)33, (27)

where n′ = 0, 1, 2, 3......

The normalized radial wave function is given by

ψn′,l = |N |n′,l ρ
|l|
2 e−

ρ
2 L

(|l|)
n′ (ρ), (28)

where |N |n′,l =
(

n′!
(n′+|l|)!

) 1
2

is the normalization constant and L
(|l|)
n′ (ρ) is the

generalized Laguerre polynomials and are orthogonal over (0,∞] with respect

to the measure with weighting function ρ|l| e−ρ as∫ ∞
0

ρ|l| e−ρ L
(|l|)
n′ (ρ)L

(|l|)
m′ (ρ) dρ =

(
(n′ + |l|)!

n′!

)
δn′m′ . (29)

We see from Eqs. (27)–(30) that the energy eigenvalue and the normalized

eigenfunction which depend on the Lorentz symmetry breaking parameters

get modified.

For zero Lorentz symmetry parameter (κHB)33 = 0, the energy eigenval-

ues (27) becomes

En′,l = ±

√
M2 + k2 + λ (2n′ + 1 + |l|)

√
α

2
(κDE)11. (30)

with the same normalized radial wave-function (28).

3 Conclusions

In this work, we have studied the effects of central potential induced by

the violation of the Lorentz symmetry on a relativistic scalar particle. The
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central potential is chosen by a linear radial electric field produced by a

linear distribution of electric charges, a uniform magnetic field along the z-

direction, and the tensor field (KF )µναβ that governs the Lorentz symmetry

violation out of the SME that possesses the non-null components (κDB)13 =

const, (κDE)11 = const and (κHB)33 = const. We have derived the radial

wave equation and for a suitable function, the biconfluent Heun differential

equation for is arrived. Using a power series solution in this Heun equation

and finally truncating the series solution of H(x) to a finite degree polynomial

such that the wave function ψ(x) must be well-behaved in the limit x → 0

and x → ∞. By analysing the truncating conditions, one can obtained

the energy eigenvalues Eq. (13) and the radial wave function Eq. (14) of a

relativistic scalar particle. Since the energy eigenvalues (13) is not the general

expression, by imposing the recurrence condition dn+1 = 0, one can obtain the

individual energy level E1, E2, E3, .. and the wave function ψ1,l, ψ2,l, ψ3,l, ... for

the radial mode n = 1, 2, 3, .... As for example, the lowest state energy level

Eq. (19) and the wave function Eqs. (20)–(21) with the restriction on the

linear charge density λ1,l Eq. (18) for the radial mode n = 1 is obtained.

We have seen a quantum effect due to the dependence of the linear charge

density on the quantum numbers {n, l} of the relativistic system as well

as on the Lorentz symmetry parameters. We also see that the presence of

the Lorentz symmetry breaking parameters modified the energy spectrum

and wave function. Further, we have discussed a special case corresponding

to zero Lorentz symmetry parameter (κDB)13 = 0 and others are non-null,

and arrived the second order differential radial wave equation. Using the

Nikiforov-Uvarov method, we have obtained the energy eigenvalues Eq. (27)

and the normalized wave function (28).
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A. Nogueira, Phys. Rev. D 68, 065030 (2003).

[25] H. Belich, M. M. Ferreira Jr, and J. A. Helayel-Neto, Eur. Phys. J. C

38, 511 (2005).

[26] H. Belich Jr., T. Costa-Soares, M. M. Ferreira Jr. and J. A. Helayel-Neto,

Eur. Phys. J. C 42, 127 (2005).

[27] H. Belich Jr., T. Costa-Soares, M. M. Ferreira Jr. and J. A. Helayel-Neto,

Eur. Phys. J. C 41, 421 (2005).

[28] M. Ericsson and E. Sjoqvist, Phys. Rev. A 65, 013607 (2001).

11

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 May 2021                   doi:10.20944/preprints202105.0782.v1

https://doi.org/10.20944/preprints202105.0782.v1


[29] I. C. Fonseca and K. Bakke, J. Math. Phys. 56, 062107 (2015).

[30] K. Bakke and H. Belich, Ann. Phys. (N. Y) 354, 1 (2015).

[31] F. Ahmed, Eur. Phys. J. C 78, 598 (2018).

[32] E. R. F. Medeiros and E. R. Bezerra de Mello, Eur. Phys. J. C 72, 2051

(2012).

[33] H. Sobhani, H. Hassanabadi and W. S. Chung, Int. J. Geom. Meths

Mod. Phys. 15 (03), 1850037 (2018).

[34] S. Carroll, G. Field, R. Jackiw, Phys. Rev. D 41, 1231 (1990).

[35] A. P. Baeta Scarpelli, H. Belich, J. L. Boldo, L. P. Colatto, J. A. Helayel-

Neto, A. L. M. A. Nogueira, Nucl. Phys. (Proc. Suppl.) 127, 105 (2004).

[36] V. A. Kostelecky and M. Mewes, Phys. Rev. Lett. 87, 251304 (2001).

[37] V. A. Kostelecky and M. Mewes, Phys. Rev. D 66, 056005 (2002).

[38] H. Belich, F. J. L. Leal, H. L. C. Louzada and M. T. D. Orlando, Phys.

Rev. D 86, 125037 (2012).

[39] K. Bakke and H. Belich, Ann. Phys. (N. Y.) 373, 115 (2016).
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