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Abstract

In this work, we investigate the behaviour of a relativistic scalar
particle in the background of the Lorentz symmetry violation deter-
mined by a tensor (Kp),vqs out of the Standard Model Extension.
A linear electric field and a uniform magnetic can be induced by the
violation of the Lorentz symmetry breaking effects, and analyze the
behaviour of the scalar particle. We see that the analytical solution to
the KG-equation can be achieved, and a quantum effect characterized
by the dependence of the magnetic field on the quantum numbers is
observed.
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1 Introduction

Recent studies have investigated the possibility of Lorentz-symmetry viola-
tion from the generalization of the usual standard model called the standard-
model extension(SME), that has all the conventional properties but breaks
the Lorentz-symmetry [1, 2, 3, 4]. This framework provides a quantitative

description of Lorentz-symmetry violation, controlled by a set of coefficients
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whose values are to be determined or constrained by experiments [5, 6, 7, 8].
In this model, the CPT- and Lorentz-breakdown take place as a sponta-
neous violation [9, 10, 11] in the context of more fundamental theory, valid
at the Planck scale. The parameters representing Lorentz violation are ob-
tained as vacuum expectation values of some tensor operators belonging to
the underlying theory. The gauge sector of the SME model has been ex-
tensively studied in several works both in (1 + 3) and (1 + 2)-dimensions
(12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30|, with
many interesting results.

We study the relativistic quantum dynamics of a scalar particle Refs.
131, 32, 33| by solving the Klein-Gordon equation under the effects of violation
of the Lorentz symmetry defined by the tensor (Kp),was out of the Standard
Model Extension which hasn’t studied earlier. We investigate the effects of
linear central potential induced by Lorentz symmetry violation and obtain

the solution of the bound state.

2 Relativistic scalar particle under the effects
of Lorentz Symmetry Violation

The gauge sector of the Standard Model Extension consists two violating
terms that modifies the transport properties of space-time since these terms
break the Lorentz symmetry. These two terms are called the CPT-odd sector
[1, 2] and the CPT-even sector [34, 35]. The relativistic quantum dynamics
of a scalar particle under the effects of the Lorentz symmetry violation [1, 2,
3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]

!
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where « is a constant, F),,(z) = 0, A, — 0, A, is the electromagnetic ten-
sor, (Kr)uwap corresponds to a tensor that governs the Lorentz symmetry

violation out of the Standard Model Extension. One of the properties of
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the tensor (Kp)uuap is that it can be written in terms of 3 x 3 matri-

ces: (kpp)ik = —2(Kp)ojor and (kus)jk = 3 €jpg €rim (Kr)”

ing the parity-even sector, and others are represented by 3 x 3 matrices

4m represent-

as : (kpp)jx = —(KkuE)kj = €kpq (Kr)¥P4 representing parity-odd sector.
Note that the matrices (kpg);r and (kgp)jx are symmetric and the matrices
(kpB)jk and (kpg)k; have no symmetry.

The KG-equation (1) under the effects of the Lorentz symmetry violation

in the Minkowski space-time background becomes

0? 0 10 0? 1 0? Q
_ - 4L 2 4= _ - v ap
|: 6752 + 87"2 + r 87“ + 822 + 7'2 8¢2:| \I/ + 4 (KF)/“,QBF (l‘)F (LL‘)\I/

= M. (2)

Using the properties of the tensor field (Kr)ua3, We rewrite (2) in the
form :
o 9 190 1 00 &
[‘@+w+m+ﬁaﬁ+@]
a

. o . .
+ [—5 (kpp)ij B B + 5 (kip)jx B' B — a(kpp)u B' B | ¥

= M*V. (3)
Let us consider a possible scenario of the Lorentz symmetry violation
determined by (kpg)11 = const, (kgp)s3 = const and (kpp)13 = const and

the field configuration given by [30, 39, 40, 28, 29, 46]:

— — )\
B = BQ 2 y E= 5 rr (4)
where By > 0, 2 is a unit vector in the z-direction, A is a constant associated
with a linear distribution of electric charge along the axial direction, and 7
is the unit vectors in the radial direction.

Hence, the equation (3) using the configuration (4) becomes

_8_2+8_2+12+l8_2+8_2 \\/J
otz or?2  ror  r?og? 022
A2 AB
+ [_QT (kpp)u 7’ + % (kup)ss BS — - 2 : (kpB)izr| W= M?W.(5)
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Since the metric is independent of time and symmetrical by translations
along the z-axis, as well by rotations. It is reasonable to write the solution
to Eq. (6) as

U(t,r,d,2) = ol (CEtH gtk 2) W(r), (6)
where F is the energy of the particle, [ = 0,+1,£2, .... are the eigenvalues of
the z-component of the angular momentum operator, and k is a constant.

Substituting the solution (6) into the Eq. (7), we obtain the following

radial wave-equation for v (r):

R L A LG R NG

72

where

1
A=E2— M?2— 1%+ §aB§ (Krp)ss,

1
W= \/ga)\z (kpe)1 >0,

1
b= 50[)\30 (IiDB>13. (8)

Let us perform a change of variables given by = = y/wr. Then, we have

2

)+ 20+ oo - -] wi) = )

where N
(=— , 0=—. (10)
w w2
By analysing the asymptotic behaviour of Eq. (9) at z — 0 and = — oo,
we have a solution to Eq. (9) that can be written in terms of an unknown

function F'(x) as
(x) =zl e 2 @07 [ (g) (11)

Thereby, substituting Eq. (11) into Eq. (9), we obtain

12
A

BUEEIIN
X

H"(z) + 2x—9] H'(z) + [ ©| H(z) =0, (12)
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where © = ¢ + % —2(14 ).

The equation (12) is the biconfluent Heun’s differential equation [31, 32,
33, 47, 48, 49] with H(x) is the Heun polynomials function.

The above equation (12) can be solved by the Frobenius method. Writing

the solution as a power series expansion around the origin [50]:

H@):§:¢xé (13)

=0

Substituting the power series solution into the Eq. (12), we obtain the fol-

lowing recurrence relation

dmgz(n+2xn12+2”D[9<n+ﬂﬁ+;)dm4—(@—2nﬁu] (14)

With few coeflicients are

0
dl = EdOa

@:ZH%WSP<M+;)Q—@%} (15)

The power series expansion H(x) becomes a polynomial of degree n by
imposing the following two conditions [31, 32, 33, 30, 39, 28, 29, 47]

© = 2n, (n=12,..)
dn+1 = 0 (16)

By analysing the first condition © = 2n, we have

ax B2
2 7

(17)

(RDE)H -

| o

Em=:t¢M2+W+%n+l+UDA
2
where y = [(RHB)33 + —{(&[;i))lf’l} ]
The equation (17) gives the allowed values of the energy eigenvalue of a
relativistic scalar particle under the effects of a linear central potential in-

duced by Lorentz symmetry breaking out of the Standard Model Extension.
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In the present situation, Lorentz symmetry breaking effects defined by a ten-
sor that governs the Lorentz symmetry violation have non-null components
(kpp)13 = const, (kpg)11 = const and (kyp)s3 = const, a linear radial elec-
tric field produced by linear distribution of electric charges, and a uniform
magnetic along the z-direction. Note that Eq. (17) is not the general expres-
sion of the energy eigenvalues. One can obtain the individual energy levels
Eyy, Eqy, By, ... and the wave-function v, 19, ...... for each radial mode
n = 1,2,3,... by imposing the additional recurrence condition d,,; = 0 on
the eigenvalue problem as done in Refs. [31, 32, 33, 47].

For the radial mode n = 1, we have © = 2 and d; = 0 which implies from

(15)
0 2
Zdy = ——dy
27 0 (l+3)
= E—”—S:A —(§+|l|> (kpp)13 B 20 (18)
4 Gy T2 PRI PN k)i )P

a constraint on the linear charge density \;; for the radial mode n = 1.
We can see that for the different quantum numbers of the system, there
is a different relation of the linear charge density A\, so we have labelled
A — An;. Note that its values depends on the Lorentz symmetry violation
parameters {(kpp)i13, (kpe)11} as well as on the quantum numbers {n, [} of
the relativistic system which shows a quantum effect.

Therefore, the lowest state energy level for the radial mode n =1 is

ax B?
2

(e
El,l = :t\/M2+l€2+(2+‘l|))\171 §</QDE)11 —

— 2 g, 1 2 {(kpB)13}?
— \/M +k +§ozB0 {(2+|l|)(3+2|l|)m—X}.(19)

The corresponding ground state wave-function is
dra(w) =2l e GF)* (14 dy ), (20)

6


https://doi.org/10.20944/preprints202105.0782.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021

where we have chosen dy = 1 and

b= 2 (21)

Vel
We can see that the presence of Lorentz symmetry breaking parameters mod-
ified the energy level and the wave-function of a relativistic scalar particle in

the quantum system.

Special case corresponds to (kpg)i3 =0

Here we shall discuss the above relativistic quantum system corresponds
to the non-null components (kpg)11 = const and (kgp)s3 = const of the
tensor that governs the Lorentz symmetry breaking effects and other is zero.

In that case, the radial wave-equation (7) becomes

1 2

)+ 100+ (A=t = 2 v =0 22)
Transforming p = wr? into the Eq. (22), we have
1 1 /A 12

S0+ 00+ 3 (S0 5) v =0, (23)

The above equation can be transform to the following differential equation

51, 52, 53]

)+ V) 4oy (<6 =) ) =0 (4
where . A 2
51 = Z ) 52 = E ) 53 = Z (25>
Comparing Eq. (24) with Eq. (A.1) in Ref. [53]

ap =1 s ay =10 s a3:0 s ay =0 5 065:0,
ag=6& , ar=—& , ag=& , ay=& 041021‘1"2\/@7
041122\/5_1 ) 0412:\/5_3 ) 0413:—\/5- (26)
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The eigenvalues equation using Eqgs. (25)—(26) into the Eq. (A.8) in Ref.

[53]
1
Ey, = i\/M2+k'2—|—2w(2n’+1+|l])—§OéBo(l<éHB)33
1
— i\/]\/_l2+k2+)\(2n’+1+|l|) %(HDE)H—EOéBO<’fHB)33a(27)

where n’ =0,1,2,3......

The normalized radial wave function is given by
o _p
g = INlwip? 78 LIV (p), (28)

1
where |N|,; = (#M) * is the normalization constant and L/ (p) is the
generalized Laguerre polynomials and are orthogonal over (0, co| with respect

to the measure with weighting function pl'l e=* as

e _ n + |I])!
[Tt ol @ao= (U b 9
O .

We see from Eqgs. (27)—(30) that the energy eigenvalue and the normalized
eigenfunction which depend on the Lorentz symmetry breaking parameters
get modified.

For zero Lorentz symmetry parameter (kgp)s3 = 0, the energy eigenval-

ues (27) becomes

En,yl:j;\/M2+k2+)\(2n’+1+]l\) %(KIDE)H- (30)

with the same normalized radial wave-function (28).

3 Conclusions

In this work, we have studied the effects of central potential induced by

the violation of the Lorentz symmetry on a relativistic scalar particle. The
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central potential is chosen by a linear radial electric field produced by a
linear distribution of electric charges, a uniform magnetic field along the z-
direction, and the tensor field (Kp)waps that governs the Lorentz symmetry
violation out of the SME that possesses the non-null components (kpg)i13 =
const, (kpg)11 = const and (kyp)ss = const. We have derived the radial
wave equation and for a suitable function, the biconfluent Heun differential
equation for is arrived. Using a power series solution in this Heun equation
and finally truncating the series solution of H(z) to a finite degree polynomial
such that the wave function ¢ (z) must be well-behaved in the limit z — 0
and x — oo. By analysing the truncating conditions, one can obtained
the energy eigenvalues Eq. (13) and the radial wave function Eq. (14) of a
relativistic scalar particle. Since the energy eigenvalues (13) is not the general
expression, by imposing the recurrence condition d,,+; = 0, one can obtain the
individual energy level E;, Ey, Ejs, .. and the wave function 9y ;, ¢, 93, ... for
the radial mode n = 1,2,3,.... As for example, the lowest state energy level
Eq. (19) and the wave function Egs. (20)—(21) with the restriction on the
linear charge density A1; Eq. (18) for the radial mode n = 1 is obtained.
We have seen a quantum effect due to the dependence of the linear charge
density on the quantum numbers {n,[} of the relativistic system as well
as on the Lorentz symmetry parameters. We also see that the presence of
the Lorentz symmetry breaking parameters modified the energy spectrum
and wave function. Further, we have discussed a special case corresponding
to zero Lorentz symmetry parameter (kpg)13 = 0 and others are non-null,
and arrived the second order differential radial wave equation. Using the
Nikiforov-Uvarov method, we have obtained the energy eigenvalues Eq. (27)

and the normalized wave function (28).
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