Pre prints.org

Article Not peer-reviewed version

Real-Time Document Collaboration
System Using Orchestrated Containers

. [*
Daniel lovescu and Catalin Tudose

Posted Date: 19 August 2024
doi: 10.20944/preprints202408.1228.v1

Keywords: collaborative work; design document collaboration software; dependable systems; microservices
pattern; cloud computing; orchestrated cloud environment; independent containers; collaborative
technologies; distributed system architecture

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

https://sciprofiles.com/profile/3772920
https://sciprofiles.com/profile/3362756

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Real-Time Document Collaboration System Using

Orchestrated Containers

Daniel Iovescu ! and Catalin Tudose 12*

! Faculty of Automatic Control and Computers, National University of Science and Technology
POLITEHNICA Bucharest, 060042 Bucharest, Romania; iovescu.dani@gmail.com

2 Luxoft Romania, 060042 Bucharest, Romania

* Correspondence: catalin.tudose@gmail.com

Abstract: In modern times, technology has become more than just a tool; it is a vital component of our lives,
driving society and humanity towards new horizons, better living standards, and solutions for complex, global
challenges. This article explores the world of dependable systems, specifically focusing on system design,
software solutions, and architectural decisions that facilitate collaborative work. It aims to dive into the
intricacies of designing robust and effective document collaboration software. Throughout this paper, readers
will gain insights into the proposed design process, enabling them to understand, learn from, and critically
evaluate the examined methodologies and outcomes. Like everything else in the software technology field,
there are multiple solutions to any given problem, and this work is no exception to this rule. The objective of
this study is to provide a detailed architectural overview of the microservices pattern in an orchestrated cloud
environment based on independent containers. To examine the pros and cons of such a system, the paper will
detail how a real-time document collaboration system can benefit from such an architecture regarding
availability, elasticity, scaling, and disaster recovery. Moreover, the paper will analyze how cloud-native
technologies can be used to create a scalable platform solution, capable of handling traffic, dynamic resource
storage, asynchronous communication, and application scaling. The intricate nature of this system renders this
paper a valuable resource for prospective investigations within the domain of dependable systems, cloud
computing, and distributed systems. This paper not only showcases the design and implementation process
but also sets a foundation for future research and innovation in dependable systems, collaborative technologies,
sustainable solutions, and distributed system architecture.

Keywords: collaborative work; design document collaboration software; dependable systems;
microservices pattern; cloud computing; orchestrated cloud environment; independent containers;
collaborative technologies; distributed system architecture

1. Introduction

In the previous decade, humanity faced one of the greatest periods in its existence in terms of
technological evolution in all its forms and fields where is applied.

Software engineering is one of the major pillars of evolution that made possible such a tight
linkage between humankind and technology. The estimates were that, at the beginning of the decade,
approximately 50 billion devices have access to the Internet [1] and through them, the users utilize
digital products and services that help them work, learn, grow, invest, evolve, consume, and
communicate with others.

Humans, by their nature, worked collaboratively from the beginning of their existence. In
technology, the concept of collaborative work stays the same as in the real world and represents the
ability to gather a series of users together to work towards a common goal. This one can be anything
from education, investment, and healthcare to industrial engineering or science.

Document collaboration represents such a goal: having a series of users that work together on
the same text document in a near-real-time way, just like the process occurs naturally in the physical
world. A well-known example of such an implementation is Google Docs [2].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202408.1228.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

The concept of collaborative work is a core component in other fields that utilize the Internet
and various technology solutions to achieve their goal. To name a few: medicine (a series of surgeons
using a robot’s controller over the network to perform surgeries [3,4]), construction site machinery
operators (technicians working on sites around the world using collaborative technologies [5,6]),
various corporate processes (planning tasks, project management, HR [7,8]) and many others.

Regardless of the final goal, all those activities share the same core concept: having a series of
individuals working together in near-real time on a common goal. This capability raises a lot of
technical challenges that need to be overcome to deliver a stable, available, and scalable user
experience. This paper will treat the aspect of availability as critical because the core concept of a
collaborative system can be used in applications where failure is not an option. (e.g. the medical field).

This paper intends to comprehensively analyze the design and implementation processes of a
microservices-based application in the context of a real-time collaborative text document scenario.
Besides the actual application design and implementation, the paper aims to examine the major
pillars a modern software system should deliver in terms of availability, scalability, elasticity, and
disaster recovery. For the context proposed, those pillars have the following definitions:

e Availability: being able to deliver the promised document collaboration experience to users,
when it is required [9-11].

e Scalability: having the option to scale the system to accommodate more users [9,10,12].

e Elasticity: the system can automatically scale up/down or in/out to utilize the available resources
in the optimal way possible [9,10,13].

e Disaster recovery: the system architecture must be able to handle exceptional cases or major
disasters reliably [9,10,14].

Those pillars represent the main quality rules a modern software product should follow. The
complex nature of the system was deliberately chosen to provide a high degree of technical
complexity and to present a series of architectural challenges that need to be overcome to deliver the
application functionality.

This research will focus on these individual critical aspects and implementations:

e Application description and requirements: we’ll examine the overall application features and
the functional requirements of the system. We'll describe some of the functional challenges the
system needs to overcome to satisfy the fundamental pillars of modern software development.

e System design: the system design must be capable of delivering the needed functionality
showcasing the required building blocks, the reasoning behind the choice, the individual block
role and behavior, and the connections to the other parts of the system. We'll outline the building
process of the system architecture, beginning with a simple foundational structure and
progressively adding complexity as various technical challenges are introduced.

e Technology background: having a complex end goal, the used technology stack shares the same
level of complexity. We'll investigate the used technologies for each building block, the general
infrastructure, and the technology principles used in the design and development of the
collaborative system.

e System development: we'll detail the actual development of the application, covering topics
such as conflict resolution, storage handling, application code, services configuration, tooling
usage, and microservices interactions.

s Cloud integration: we’ll detail the platform and cloud-native technologies [15] used to move the
system from an on-premise infrastructure to the global network of the public cloud providers.

e Architecture validation: we’ll validate the proposed application architecture in terms of
scalability, availability, throughput, and resource consumption [16]. Individual components of
the system were subject to a series of challenges, disaster scenarios, and tests, to showcase their
contribution towards a modern available and scalable application. To further emphasize the
validity of the work, performance metrics, and test results were provided.

Given the complexity of the system and the level of detail necessary to comprehensively present
all the integration steps, challenges, and benefits, as well as the testing and validation results, this
work will primarily focus on analyzing the application features, both functional and technical

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

requirements, the selection of the technology stack, as well as the high-level and low-level system
design, along with the challenges encountered throughout the development process.

The migration to the cloud and associated development will be the topic of future research. The
focus of that paper will be on migrating individual software components and their dependencies to
cloud-native containers, devising a container orchestration management strategy to effectively
handle increasing workloads, and highlighting the pillars of well-architected cloud development,
such as availability, fault-tolerant storage solution, disaster recovery functionality, operational
excellence, and cost-efficiency at scale. Additionally, it will cover container orchestration using
Kubernetes within the context of a high-traffic system, the process of migrating to a public cloud
environment (specifically Amazon Web Services), integration with third-party services, and, finally,
the testing and validation of the benefits associated with transitioning to a cloud-native system.

2. Application Description and Requirements

2.1. Core Entity

A text document, from an engineering point of view, represents a stream of various characters
(letters, numbers, symbols) arranged in a specific way by the author. The size of a text document can
vary a lot based on the technical implementation and storage limitations.

Besides the actual content, a document may have extra metadata attached to it: title, author
information, users that have access to the document, rich text document information, and even other
text-encoded resources (e.g. images, charts), etc.

Based on this description, it is possible to identify the core entity of the proposed system: the
text document. When it comes to crowd collaboration on a resource, the usage of a system will have
a chaotic nature: a small number of users may use a resource, but the number can grow very fast in
a short amount of time.

Sharing documents is a common task encountered in many large organizations. There are
instances where a resource is shared among all employees, e.g.: sharing a report with an entire
department, sending a company-wide attachment, sharing an assignment with a class of students,
etc. All those events imply a spike in the number of peers using the entity simultaneously.

2.2. Core Features

It is imperative to develop a system that empowers users to effortlessly create and store text-
based documents. Users must have the flexibility to share these documents with peers and to easily
manage access rights, including the ability to revoke access if necessary. Collaboration within the
system should mimic real-life interactions, enabling one or more users to engage with document
content in near real-time.

To ensure a seamless experience, the system should notify users of any changes as they naturally
occur in a physical collaboration setting. Furthermore, the system must prioritize safety and security,
providing robust measures for handling sensitive data.

To accommodate varying user demands, the system must be scalable and capable of adapting
to high usage volumes. All functionalities described should be accessible through a user interface that
optimally utilizes real-time collaboration features, enhancing user experience and productivity. As
reference numbers, this work aims to have a final product capable of supporting 1000 concurrent user
interactions.

To better understand the application requirements, a list of the main system features is provided.

Authentication

Users must be able to create individual accounts seamlessly. These user credentials will be used
to create and interact with text documents and other data. Credentials should be securely stored and
properly formatted to avoid exposing sensitive information.

Document resource management

Users will have the ability to create, delete, and rename their own documents. Users will also
have the option to share the document with other users, based on a unique identifier that can be

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

shared. Moreover, the owner of a text document can restrict access to the resource by revoking the
rights to view and interact with the document of specific users.

Document collaboration

Multiple users will have the ability to collaborate in a real-time fashion on a shared resource in
a text editing interface where they are aware of each other's contributions. A peer will be able to see
the other peer's actions applied in real-time. Example of actions visible to a user in a collaboration

session:
1. seeing added/deleted characters in a specific part of the document
2. seeing the cursor indicator of a user while navigating through the document
3. seeing actual logs of all the events received during a session
Notifications

A user should be able to receive real-time push notifications regarding the entities he is linked
to. Whenever a user joins a document via an invitation, his access rights are changed by the owner of
the document. When the shared document is deleted, the peer should be notified in real time, if
possible. If real-time notification delivery is not possible, the notification should be stored for later
delivery.

The features deliver a series of various complexity issues and have a diverse range of entities
that need to be managed. In the future chapter, the functional requirements will be transformed into
technical specifications, and more complex issues and solutions will be examined.

2.3. Performance Metrics

The efficiency of the mentioned system requires quantitative assessment through numerical
metrics. Central to the validation of this research are key performance metrics tailored to the outlined
scenario, which include:

¢ Uptime and availability: the time when the system can deliver the intended behavior, and more
importantly the time needed to recover from an unexpected series of events with various degrees
of disturbance (e.g. partial service failure, multiple services failure) [9-11,17].

e Concurrency: the number of users supported at the same time in a collaboration session. Being
a matter of resource management and sharing, this metric aims to provide insights about the
number of users able to join a session based on the system’s available resources [18].

¢ Data resolution time: the amount of time required to propagate changes in a collaboration
session between all users [9,10].

e Scalability: the ability of the system to adapt to higher workloads [9,10,12].

* Resource utilization: the resources used to provide a working service [9,10].

All these requirements are technically detailed in the next chapters. Working with complex
scenarios, all the mentioned features will raise various technical challenges.

3. System Design

3.1. Technical Requirements

Based on the described application functional requirements, a technical solution can be planned,
and several technical capabilities can be extracted:

1. Users can create accounts and their credentials are stored securely in a persistent manner. With
the same credentials, users can authorize actions and interact with the application resources

2. In a session, users can create the base document resource and act upon it with CRUD (Create
Read Update Delete) operations [19]. All the described operations must be persisted on the final
resource. Only the appropriate document owner can interact with the resource at this level.

3. Being a real-time application, users should be informed about various events in a near real-time
manner (notification system). When a live update is not possible, users should receive the
missing updates in an alternative manner.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

4. The system must provide a real-time document editing experience to all the involved peers.
Users should be able to dispatch events resembling the natural interactions a human would do
normally on a text resource. The system must handle a considerable number of users
simultaneously. As magnitude, the system must be able to support concurrent users in the order
of thousands.

5. The system must use the appropriate communication technologies to deliver the promised
functionality. Data should be delivered in such a way that 95% of the users receive a response in
an appropriate time frame with the designated action they executed.

6. The persistent solution must provide a robust and reliable storage layer where all the relevant
generated user content is going to be stored.

3.2. Application Structure

The described technical and functional requirements require a client-server application. The
client-server application pattern [20,21] is the most common way of dividing a complex task into
well-segregated components responsible for very specific tasks [22].

This application pattern is composed of:

e C(lient-side applications: generally, web applications (usually created with technologies like
HTML, CSS, and JavaScript) [21,23], mobile applications (created with technologies like
Objective-C, Kotlin, Swift, Dart, Flutter, etc.) [24], and desktop applications [25]. This piece of
the product aims to deliver a consistent and streamlined experience to the user, handling
scenarios like optimum data handling, providing user experience and interactions, animations
and transitions, basic client-side security, and low-effort user interface interactions.

e Server-side applications (commonly known as the backend) [26,27] represent the main code that
handles the actual data and business logic of the application. Those applications run primarily
on servers to which the client-side applications send requests for data or actions to be executed.

The server-side application oversees many other tasks like handling the connections with the
data storage solutions, imposing security, and handling architecture and authorization.

In modern development, there is always a constant need for scaling. Systems tend to have a high
degree of complexity and generally aim to deliver the promised functionality to a large number of
users. To facilitate this behavior, any application needs a proper infrastructure that provides the
flexibility and resources required to address a large number of users. This component is generically
called cloud infrastructure.

Cloud infrastructure refers to a series of hardware and software tools that a developer can use to
provide the processing power needed by an application in a reusable and economical way [28,29].
There are multiple types of cloud infrastructure providers in the industry, ranging from custom cloud
solutions developed in-house by companies for their own needs to Global Cloud Providers that offer
a range solution of products to individual users and businesses.

With the previously enumerated building blocks, functionality can be divided into two
applications: client-side and server-side.

Client-side

The client-side application will handle any aspect linked to a graphical user interface, data input
from the user, input validation, providing visual representation for any action that should impact the
user, and handling any possible misbehavior of the system.

Server-side

The server-side application will handle features linked to providing an interface usable by the
client, handling data storage and manipulation, handling document editing logic, provide
security/integrity checks on all the used resources.

3.3. System Organization

Most of the functionality of the system will rely on the server implementation while the client
will act mostly as a presentation layer for the end-user. Both sides of the system can be delivered in

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

multiple ways. The next decision to make is how the entities should be organized. Such a system can
be delivered using two main ways:

e Monolithic

e Distributed microservices

A monolithic system usually represents a system where all the building blocks are delivered
under the same process [30,31]. From a development point of view, it is the easiest way to build and
deliver software since all the resources are accessible by all the application blocks. To evaluate if a
monolithic architecture is the proper solution for collaborative document editing software, there are
two fundamental questions to be addressed: What are the scaling needs of the system? and What are
the scaling capabilities of the architecture?

3.4. Scaling

The system might need to serve a considerable number of users but this must not be confused
with the actual needed functionality at scale. Undoubtedly, certain functionalities do not need the
same amount of scaling capabilities. Features like login/register won’t be as largely used as the actual
document read/write operations. With these simple details, we can answer the first question: The
system needs some parts of it to be more suitable for scaling than others.

To answer the second question, we need to properly evaluate how system scaling works.
Scaling, in simple terms, means the process of allocating more resources to better handle a task.
Scaling can be of two types [32]:

e Vertical: where more hardware resources are provided to keep up with the load.
e Horizontal: where more instances of the running process are provided to split the work among

other workers.

Vertical scaling is more expensive because it implies hardware changes. Moreover, it also
imposes downtime since the system must be physically upgraded. Another drawback of vertical
scaling is the price and hardware limitation.

Horizontal scaling is more complex to achieve based on the tooling, it raises a series of issues on
its own in terms of application architecture, but in the end, is the most efficient way of scaling for our
system.

3.5. Microservices

Scaling the system as an individual process is not particularly necessary, since it is possible to
isolate and scale the functionality. This pattern is known as microservices and implies dividing a
single application into multiple smaller stand-alone individual applications that communicate with
each other over the network [30,31]. This type of architecture has several benefits:

e Scalability: Independent services can be scaled individually, optimizing resource allocation.

e Flexibility: Enables faster development and deployment cycles with each service developed,
deployed, and scaled independently.

e Fault isolation: Failures in one microservice instance do not affect the entire system, enhancing
reliability.

o Technology diversity: Allows the use of different technologies for different services, optimizing
for specific needs.

o Easy maintenance: Easier to maintain and update as changes to one service do not necessarily
impact others.

e Continuous delivery and integration: Supports continuous integration and delivery practices,
facilitating a more streamlined development process.

e Resilience: Improved fault tolerance and resilience due to the distributed nature of services.

e Autonomy: Teams can work independently on different services, fostering autonomy and
speeding up development.

e Better resource utilization: Efficient use of resources as each microservice can be optimized for its
specific task.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

The microservices pattern is more suitable because it allows independent scaling and control
over the pieces of functionality that produce higher traffic and computing overhead [33]. As an
organization rule, the overall server-side functionality will be divided into multiple independent
smaller and self-contained services. Each application will expose a specific set of functionalities (API
— Application Programming Interface — a series of exposed calls to the system).

Based on the known requirements, we can identify the following microservices:

e Documents API: a module for handling the actual document creation and basic manipulation of
all the resources besides the document content.

e Document Manipulation API: an API designated for handling collaboration sessions in real-time
between the users and responsible for storing the data generated in the sessions.

e Notifications API: the application will have a channel for delivering notifications to users in real-
time mode whenever possible and offline capabilities for storage and late-delivery.

Any system requires a series of utility modules/microservices. Certain functionalities will
naturally require child services that will solve very specific tasks. For example: the real-time
document manipulation API will handle document content editing. Serving a considerable number
of peers over the network imposes another challenge: supporting multiple consumers.

To respect the microservices pattern, complex or specific pieces of work should be delegated to
individual microservices for better scaling and reusability. By this rule, a real-time client
communication API can be introduced. This module will be dedicated to handling the open
connections between the server and clients. This microservice will serve to produce events based on
user interaction.

Naturally, when having a series of smaller self-container applications that need to work together
to achieve a final goal, a question occurs: How will a client interact with those applications? In such
instances, where a client needs to interact with various external services, the easiest approach is to
introduce a single point of entry. It presents the following advantages:

e The client implementation doesn’t need to know about the specifics of the services providing
the functionality. A single point of entry can “hide” all the building blocks from the client and
provide only what is necessary.

e A single point of entry facilitates global operations like monitoring, logging, authorization, etc.

e Provides routing to the needed functionality.

Such an application entry-point is called API Gateway [34]. With all those components
described, a first application diagram can be introduced (Figure 1):

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

DocumentsDB NotificationsDB

A

A

(Document Manipulation

Documents CRUD API 1 AP

‘ Users API J ‘ Notifications API ’

l y
:I API Gateway }1—

Figure 1. Initial application diagram.

3.6. Cross-Service Communications

In the distributed system world, the individual building blocks will need to communicate with
each other. Microservices can establish two types of communication channels:

e Synchronous communication between services refers to a communication pattern when a service
sends a request and waits for the response before continuing its execution.

e Asynchronous communication between services is a pattern where a service sends a message or
request without waiting for an immediate response. In contrast to synchronous communication,
which involves a request and an immediate waiting period for a response, asynchronous
communication allows services to operate independently and asynchronously process messages
over time.

Event-driven architecture (EDA) (Figure 2) is a design paradigm where systems respond to and
communicate through events, allowing for real-time responsiveness and flexibility [35]. Events
representing meaningful occurrences, trigger actions in a decoupled manner, enhancing scalability
and modularity. Synchronous communication in EDA involves immediate and direct interactions
between components, where a sender expects an immediate response from a receiver.

There are multiple software implementations available in the field for implementing an EDA.
Most of them gravitate around the idea of message queues.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

Producer

_\-—-*\ —

i

o
T pull M

E “i rg;;:’;:er

Consumer

Figure 2. Example of an Event-driven messaging system.

The EDA has also a major drawback: it requires a change of paradigm in terms of how the actual
application code is designed to run. The synergy of event-driven architecture and synchronous
communication addresses diverse requirements, offering a versatile solution for dynamic and
responsive systems in various technological landscapes.

3.7. Client-Server Communication

The inner communication between the microservices is not the only important communication
channel. Having a client-server application, it is important to choose the appropriate communication
methodologies for client interaction. In a client-server architecture, it is quite common to use a
synchronous protocol for data transfer such as HTTP, and the REST architecture. REST
(Representational State Transfer) is an architectural style for network applications [36]. It uses the
HTTP methods (GET, POST, PUT, DELETE) for communication, emphasizing simplicity, scalability,
and statelessness.

The asynchronous communication can be further detailed based on the direction of
communication:

e full-duplex — used for bidirectional client-server communication. This type of communication
channel is more expensive in comparison with the HTTP protocol but also provides more
flexibility for live data streaming. The protocol of choice for this communication type is
WebSocket [37]. The protocol provides a persistent, bidirectional communication channel over
a single, long-lived connection between a client and server. This enables real-time, low-latency
data exchange, making it suitable for interactive applications. Unlike traditional HTTP,
WebSocket facilitates full-duplex communication, allowing both sides to send messages
independently. The WebSocket protocol operates over the standard ports 80 (HTTP) and 443
(HTTPS) and is supported by most modern web browsers, servers, and frameworks, fostering
efficient, real-time communication in web applications.

e half duplex — used for unidirectional data streaming. This type of communication can be
achieved using SSE (Server Sent Events). It's a web technology that enables servers to push real-
time updates to web clients over a single HTTP connection [38].

Unlike traditional request-response models, SSE establishes a long-lived connection, allowing
servers to send periodic updates to clients (Figure 3). This type of communication is particularly
useful for applications requiring real-time data, such as live feeds, notifications, or financial market
updates, without the need for constant client polling.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

10

/ \—Connection established—>/ \

€--------- Event----------
€------n- Event----------
Client €--mmmn s Event--------- Server
- Event----------
\ «—Closed session L /

Figure 3. SSE interaction between the client and server

The application diagram is updated so that the messaging layer is now introduced (Figure 4).

Kafka

/ \
Document | >
-

Figure 4. Application diagram with a messaging layer.

The system requires a storage layer for persisting various data entities the application is handling:
user accounts, document metadata, document content, and notifications. In the microservices pattern,
a microservice is tied to its own data source to maintain the integrity and the self-contained attribute
of the architecture. The architecture diagram of the system can be extended with the representation

of the storage levels (Figure 5).

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

11

WebSocket
/[\ . —
| Clent &) £)
“ " (l— " Kafka
\ \ Auth
N L—»| | Gateway |
A —
| Document |
\ content | L —
\ /
AN o
AT Documents
,r/ h \ ContentDB
| Document |

— N
| manipulation /
\\\ , V4

Figure 5. Application diagram with storage layer.

4. Technologies Stack

This section will provide a comprehensive overview of all major technologies used for each
building block of the collaborative system design. No software technology is perfect; all major
software products have certain drawbacks, and the selected technology stack for this system is no
exception. This chapter is designed as a linear roadmap, starting with the initial technologies used,
discussing the drawbacks encountered, and continuing with the additional tools, technologies, or
implementations required to overcome these issues.

Going from the client to the server, we encounter the following layers:

4.1. Client-Side

Vue.js is a JavaScript framework for user interfaces. With a declarative syntax, it enables the
creation of dynamic and responsive applications [39]. Vue,js's component-based architecture
promotes code reuse and maintainability. Its reactivity system ensures automatic UI updates when
data changes.

The client, in this case, the user browser, will be responsible for running its own code, thus
making a clear separation from the server side. It is possible to make the client-side application part
of the server but for the sake of scaling and decoupling this practice was discouraged for this research.
The client will consist of a Single Page Application (SPA) Vue.js that will provide all the required
forms and user-interface components the user will need to collaborate on a text document.

4.2. Server-Side

One advantage of the microservices architecture is the flexibility it offers. Each microservice can
be developed using various technologies to accommodate different development teams or to reuse
microservices from other applications. For consistency, all the microservices of the system were
developed with the Spring Boot framework [40] backed by the Java programming language [41].

Java features automatic memory management, strong type-checking, and a vast ecosystem of
libraries. The Java programming language is an industry-standard when it comes to API and server-
side application development [42]. A very popular library used for the implementation of the
microservices described previously is Spring Boot.

Spring Boot is an open-source framework designed to simplify the development of Java
applications. It streamlines the setup and configuration, promoting convention over configuration.
With embedded servers, it eliminates the need for external deployment. Spring Boot provides a rich

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

12

set of pre-built components for common tasks, enabling rapid development and reducing boilerplate
code. Its modularity allows developers to choose only the required features, enhancing efficiency.

4.3. Infrastructure

Having the client-side and server-side application code is not enough to maintain a system,
especially when scaling and handling considerable user traffic. While it is important to have
performant and highly available application code, it is crucial to have the necessary architecture to
support and manage that code.

In real-world applications, especially in microservices architecture, individual system
components can fail, data storage solutions can be compromised, and systems may experience
downtime for maintenance and reconfiguration. Managing these issues manually can be highly
challenging and becomes impossible when scaling to support hundreds of users. Therefore, an
automatic and declarative approach is necessary for system administration. Several tools can manage
application failures, scaling, restarting, and initialization to ensure system reliability. In this research,
Kubernetes was selected for these tasks.

Kubernetes

Kubernetes (often abbreviated as K8s) is the leading open-source platform for container
orchestration, allowing organizations to efficiently manage and deploy containerized applications at
scale [43]. Kubernetes abstracts the underlying infrastructure, providing a unified API for managing
diverse workloads. It enables seamless scaling, rolling updates, and efficient resource allocation,
ensuring high availability and fault tolerance. Kubernetes simplifies the complexities of containerized
deployments, fostering portability across diverse environments.

With features like declarative configuration and service discovery, Kubernetes has become the
cornerstone of modern, scalable, and resilient container-based application architectures. K8s is
responsible for handling in a cluster the running applications (called Pods), as presented in Figure 6,
by following a series of user-defined rules:

1. how a certain application should be executed

2. how many running instances should an application have

3. what should happen when an application instance is subject to increased or decreased user
demand

Kubernetes Cluster

Control Plane

kube-pros —~
ube-proxy e
kube-controller- [|
manager

i
Y — .

kube-api-server | J—
W N om

kubaelet

{

container runtime 4" container runtime &5 |, cloud-cantroller- I|r
—_ B |r|1r1d_|rr
,:

container container container container

container container container container 1|
kube-scheduler l@

b um,
container container container container

Figure 6. Kubernetes cluster diagram

The central orchestrated resource is called Pod and represents a running instance of an
application inside the cluster. Kubernetes can handle far more complex infrastructure setups,
including handling environment variables, storing and delivering keys, tokens, and secret keys, and
interacting with the Cloud Infrastructure for handling hardware or other software services.

Kubernetes requires an agnostic way of running application code because the platform is not
designed to provide the required software dependencies (e.g. runtimes or Standard Development

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

13

Kits). Kubernetes is designed to run containerized applications. Containers-based development
represents the pattern of encapsulating the application code and the required execution dependencies
in a single executable that can be deployed on any Operating System without the need to configure
anything besides the container runtime. By default, K8s uses Docker for executing the application
containers.

Docker

Docker is an open-source platform that facilitates the development, deployment, and scaling of
applications by using containerization [44]. Containers encapsulate an application and its
dependencies into a single, lightweight unit, ensuring consistency across different environments. The
Docker platform provides a standardized approach to packaging applications, allowing developers
to create, share, and deploy applications seamlessly across diverse computing environments.

Docker works by utilizing containerization to package applications and their dependencies into
isolated units called containers. These containers encapsulate the entire runtime environment,
ensuring consistency across different systems. Docker's client-server architecture enables users to
build, share, and deploy applications seamlessly. Docker and virtual machines (VMs) differ in their
virtualization approaches. Docker uses containerization, sharing the host OS kernel for lightweight,
portable, and efficient application deployment.

Containers offer fast startup times and process-level isolation. In contrast, VMs rely on
hypervisor-based virtualization, creating complete OS instances with higher resource overhead. VMs
provide stronger isolation but are heavier and less portable due to separate OS instances. Docker
emphasizes agility and efficiency, ideal for microservices, while VMs prioritize stronger isolation and
are suited for scenarios requiring complete OS independence and security [45]. The choice depends
on specific use cases and performance requirements. At this point, the initial architectural overview
of the system will suffer a design change: all the microservices code will be wrapped in individual
Docker containers and handled by Kubernetes.

GraalVM

Regardless of its popularity, Spring Boot has a series of drawbacks that could affect the
performance of a real-time document collaboration system [46]. Spring Boot by default runs a series
of tasks before starting an application, e.g.:

o Auto-Configuration: Spring Boot scans the classpath for libraries and automatically configures
beans based on the detected dependencies. This can lead to longer startup times, especially in
large applications with numerous dependencies.

e Annotation Processing: Spring Boot heavily relies on annotations for configuration. The process
of scanning and processing annotations can contribute to increased startup times, particularly
in applications with extensive use of annotations.

e Reflection: Spring Boot uses reflection to dynamically inspect and instantiate classes. This
introspection can impact startup performance, especially in applications with deep class
hierarchies [47].

e Initialization Overhead: Spring Boot applications may have initialization overhead as they set up
various components, such as the Spring Application Context, which contributes to the overall
startup time.

In the context of a real-time document collaboration application, due to the nature of the system,
high spikes of traffic are expected. Waiting for a few seconds before a new microservice instance is
up and running can affect the availability of the system. Part of the problem is the way Spring Boot
is handled through the Java Virtual Machine (JVM).

To speed up the start-up process of a microservice, the decision was to switch the compilation
target from Java artifacts to native binaries. Native binaries represent a more resource-efficient
compilation target that does not require the presence of a runtime environment to be executed.
Compiling a Spring Boot application to native binaries can be achieved with GraalVM [45].

GraalVM is a high-performance runtime that provides support for various programming
languages and execution modes. Developed by Oracle Labs, GraalVM is designed to improve the
performance and interoperability of applications. Regarding the performance boost, GraalVM offers

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

14

significantly lower (even up to 90%) start-up times of Spring Boot applications and lower CPU and
memory consumption.

Inter-service communication — Apache Kafka

By now, the described system design offered a detailed overview of the communication layers
available in the cluster. There is an obvious need for a decoupled asynchronous messaging service
simply because the core functionality can’t be provided in a near-real-time fashion using blocking or
synchronous communication methods.

To supply this need, Apache Kafka was used as a messaging service. Apache Kafka is a
messaging system that allows scaling and distribution of work to facilitate the flow of data from
producers to consumers. Essentially, Kafka is a very sophisticated and distributed queue-like
structure where messages are pushed [46].

There are a series of functionalities that will generate events that need to travel in a near real-
time fashion between the client and the service. It is common for microservices to interact with one
another. In the designed system, the document content manipulation API might produce an event
that needs to be transported toward the client via a real-time child service [48]. Kafka can facilitate
this low-latency communication [49].

Besides the fast processing of data, Kafka has another major advantage: its distributed nature.
The messaging service can run on multiple systems over the network thus being able to deliver
messages even when one or more systems go offline.

Storage

Storage is the backbone of every software system that generates data. The proposed system
design contains various entities that must be stored to provide a continuously available system:

e User accounts
¢ Notifications data
e Document content and metadata

In a microservices architecture, it is recommended that the databases be segregated into
multiple, smaller, and independent databases to serve only one function. This approach simplifies
the structure of data but creates other problems

By dividing the application data schema into smaller independent applications, the possible
relationships between data are impossible to maintain at the database level. Those constraints need
to be maintained at runtime with application code. The advantage of this pattern is the diversity of
options in terms of storage solutions. In some cases, a relational model might be necessary, while in
other use cases, a non-relational model might provide more flexibility. In this system, two main
storage solutions were used: MongoDB and PostgreSQL.

MongoDB

MongoDB is a highly flexible and scalable NoSQL database. It stores data in flexible, JSON-like
BSON documents, allowing for dynamic schema design [50]. MongoDB's powerful querying and
indexing capabilities make it suitable for diverse applications, ranging from small projects to large-
scale, data-intensive solutions [51].

This database storage solution is suitable for an entity that might suffer multiple changes in its
structure and require a higher degree of flexibility [52]. The actual document content storage will
benefit from the higher degree of flexibility because the schema of a document content may contain
big amounts of data in a tree-like structure that’s more suitable for resembling the structure of the
document the user will need to visualize. The flexible format also benefits the integration of
additional metadata that a rich text-document might use: definition of specific text color/highlight in
the document, in-line styles (bold, italic), and different font-family text sections. All those examples
can be reduced to a simple map-like structure where the keys define the text selection position, and
the values define the metadata applied to that text selection.

With a traditional relational model, maintaining a big entity over multiple tables can create
bottlenecks in terms of read/write speeds.

PostgreSQL

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

15

PostgreSQL is an open-source relational database system. Known for its reliability and
extensibility, it supports complex queries, indexing, and transactions. PostgreSQL adheres to SQL
standards and provides advanced features like JSON support, full-text search, and spatial data
capabilities [53].

This database storage solution was used for entities that do not require a flexible data format:
notifications, users, and basic document information [54]. Those entities might suffer fewer
migrations in terms of their data structures because their intended use does not require schema
transformations as in the case of document content storage. Most of the resources stored in a standard
relational database are primarily used as look-up tables for checking data constraints (e.g., if a user
has access to a document, retrieving all read notifications, getting the base document title, creation
date, or shared users). In the few instances when a record gets updated (e.g., a document title update,
a last-edit timestamp update, a user is added as a shared collaborator to a document, a notification is
marked as read), the structure of the data model does not change, so no flexibility of the data is
required. Relational database indexes can be used to facilitate faster data retrieval without adding
another complexity layer, such as a caching system [E2].

As already emphasized, the technology stack is as complex as the application requirements. This
chapter offered a brief description of the needed technologies to solve the main challenges of the
project. Each step invested in the development of the proposed application raised a significant
number of challenges that are going to be detailed as the actual development is presented.

5. System Development

This chapter will examine the microservices interfaces and the functionality they expose, the
Kafka setup and the necessary event-driven architecture setup, the algorithm used to process the
concurrent document editing events, and server bridging to distribute the workload. We’ll also
investigate the scaling process and the technical challenges encountered in the process.

5.1. Apache Kafka Application Setup

Kafka is an essential part of the document collaboration system. It powers the communication
between the microservices and helps in a series of scalability aspects.

[E1] As previously stated, designing event-driven architectures involves a series of changes in
how software components are planned and implemented. Applications utilizing such architectures
are susceptible to inconsistent workloads. Therefore, it is important to:

- Design components to be as stateless as possible. The software components of a system should
serve their purpose without needing an initial setup or pre-preparation of data (e.g., loading
information from look-up tables, or building an in-memory cache). Workloads are ephemeral,
and the components of a system should be able to be added or removed elastically without
producing any side effects.

- Build with redundancy in mind. A system is only as strong as its weakest component. Each core
feature should be highly available, meaning that all business logic can't be delegated to a single
instance of a worker. Core functionality should have backup instances that can handle additional
load or replace an unhealthy worker instance.

- Create reactive workflows. In high-traffic applications, especially in real-time systems, every
millisecond of delay can impact the outcome of an operation. Communication between software
components must be done asynchronously whenever possible. Software components must be
able to listen to a common stream of events and react whenever work is delegated. When a result
is available, it should be queued in a stream and distributed among the available workers, thus
avoiding bottlenecks and the creation of a single-point of failure.

Kafka initial setup

In simpler terms, Apache Kafka represents a queue structure into which producers (in this case
users or other microservices) can push events. Consumers will subscribe to the stream of data and
react to the received events (Figure 7).

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

16

Poducer P1 P2 Pn

Figure 7. Producer-consumer queue.

The messages are consumed in the order they are emitted in the queue. Having a single queue
structure can drastically impact the availability of the system because it creates a single point of
failure. Apache Kafka can be configured to run multiple queues distributed across a network, even
across multiple running servers (Figure 8). In this setup, if a messaging stream becomes unavailable,
the other queues can pick up and distribute the data. Kafka can set up a distribution strategy on how
the streamed events are linked to consumers.

~
>

= P1 P2 Pn
. J
e ™

Poducer » P3 P4 Pm
_ J
-~ ™

P5 Po
\ J

Figure 8. Distributed queue system.

Kafka topics

Usually, the queues are distributed among multiple servers called partitions. Partitions are
responsible for the distribution of events, also called records. “Apache Kafka uses partitions to scale
a topic across many brokers for producers to write data in parallel, and to further enable parallel
reading of consumers. Every partition can be replicated across the Apache Kafka brokers for purposes
of fault tolerance.” [55]

In the document collaboration system, a specific action in a microservice might need to trigger
an event in another microservice via the Kafka stream (e.g. a document deletion should inform the
shared users about the missing access to the resource.). The scenarios where the events can be
grouped by purpose are called topics. The document editing topic may contain events such as title
updates, content updates, style changes, user invites, etc.

Based on the same idea, other topics specific to the described system could be extracted (Figure

9):
= Kafka Cluster
Notifications topic Docurpent . I?ocurpent 8
collaboration topic manipulation topic

Figure 9. Sample of Kafka topics for a collaborative system design

Consumer Complexity at Scale
In the System Design chapter, horizontal scaling was nominated as the preferred solution for
scaling parts of the application features. Kafka provides powerful configurations in terms of

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

17

consumption strategy by utilizing consumer groups. It is ideal to keep each microservice as simple
as possible and as stateless as possible.

Stateless microservices are small software applications that process an input to obtain a desired
output without needing to store the state in their internal memory. This design choice has its source
in the horizontal scaling approach where multiple instances of an application are running at the same
time and share a bigger load of work.

Consumer Grouping

Apache Kafka offers a specific way of delivering messages to consumers. A consumer represents
an application instance that subscribes to a Kafka topic to receive messages. Upon subscribing, the
consumer will be assigned to a consumer group, indicated at runtime as a consumer group identifier.
Multiple consumers can have the same consumer group ID, thus creating a consumer group. In this
case, when a message is emitted on a topic, only the first available consumer in that group will receive
the message (Figure 10).

- — I, ™~
i S - _L /// @ @ \ \\
[\
\ |
\

p S— \ p Consumer Group 1

/
Poducer P3 P4 | L Pm

| \ "/.
\ / . /
. L // . @) S

Ps | .. Po

Figure 10. Group consumer

If consumer C1 becomes unavailable, the other consumers are going to pick up the incoming
messages because they are part of the same consumer group. This behavior is used in places where
multiple backup running instances for a microservice exist. If multiple instances are required to run
in parallel, multiple partitions will be required. Each partition can be thought of as a separate "stream"
of messages within the same topic.

In the proposed application setup, there are instances where all the consumers need to receive
the same message (broadcasting information to all subscribers). To achieve that behavior, each
consumer needs to be assigned to a different consumer group (Figure 11).

| Poducer ! P3 P4 | L Pm

P5 Po \
L5 Consumer Group2 |
\ |

A J/
N - _ e

Figure 11. Multiple group consumer

In the context of the real-time document collaboration system, Apache Kafka was used as a
message broker to distribute events across the microservices. Besides distributing messages, Kafka
was also used for grouping microservices as follows:

Consumer groups: In this setup, multiple document content manipulation instances were
grouped to provide a highly available set of workers ready to handle incoming editing messages

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

18

from subscribed clients. This broadcasting strategy ensures that there is always a microservice
instance ready to intercept a message from the Kafka stream.

Broadcasting groups: For the RTC (Real-Time Collaboration) microservices, it is crucial that
each instance receives the broadcasted document editing messages emitted by a user. This ensures
that all subscribed users can receive updates regarding a document. A consumer group allows only
one instance to consume a message at a time. By creating multiple consumer groups, each with a
uniquely identifiable consumer, it can be guaranteed that all subscribers will receive a message. The
downside of this approach is the higher resource consumption of the Kafka cluster [E3].

5.2. Microservices Interface

Each microservice exposes a REST API interface to the outside world, focuses on a single well-
defined purpose, and contains its own data layer which is not shared with any other application
service. Moreover, the microservices are responsible for maintaining their own data relationship rules
and integrity checks. We’ll investigate the working principle of each microservice.

Auth

This microservice exposes a series of POST methods for user authentication (/login and /register)
and user authorization (/check-token).

JavaScript Web (JWT) tokens are a common pattern used for providing stateless authorization
based on a cryptographic token attached to each request. When the server detects a valid token
attached to a request that needs an authorization check, it will serve that request. Otherwise, it will
block any further interaction.

A JWT token (Figure 12) is generated with the help of a one-way hash cryptographic function
like SHA256 that uses a secret key to sign the token and an expiration date to invalidate it in the
future. A JWT includes three parts: a header, a payload, and a signature. The header typically
specifies the type of the token and the signing algorithm.

= JWT Token
Header {"alg": "H264", "typ": "JWT" }
g
Payload {"name": "Test user", "id": 1}
.
4
Signature HMACSHA256(header, payload, secret key)

Figure 12. The structure of a JWT token

The payload contains claims or statements about the subject, and the signature is created using
a secret key, ensuring the integrity of the token. Together, these components form a base64-encoded
string that can be used for secure information exchange and authentication between parties. The main
benefit of JWT is the stateless approach. The security of the system relies on the cryptographic nature
of the encoded information. Being stateless simplifies the application code needed to maintain the
microservice because no records about the user auth state need to be maintained.

Auth microservice has access only to the user’s database and all the traffic to other domains
records from the network is blocked. Exposing only the needed inputs and outputs is a common
practice in microservices development ensuring the traffic flowing in the appropriate direction.

Notifications

This microservice exposes the following functionality:

e /subscribe — The user will subscribe to an events stream to receive notifications in real-time while
the user has active sessions.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

19

e /unread - API endpoint for receiving notifications stored while the user was offline.
e /read-all — API endpoint for marking all the notifications as “read”.
° /read — API endpoint for receiving the older notifications.

As previously mentioned, there are multiple places from where a notification can be triggered.
The notification microservice holds a live subscription to the notification’s topic. Besides delivering
notifications, it will also store the logs of the delivered/not-delivered notifications in persistence
storage.

Document Manipulation

This API provides basic manipulation capabilities for the document entity like:
e Creating the actual document
e Getting user-owned and shared documents
e Getting individual document details
e Deleting a document
e Adding a user as a shared user to the document access list
e Removing a user as a shared user

The decision to split the document metadata from the actual document content was made based
on the scaling needs of the two functionalities. The basic CRUD actions done on the document entity
will be less frequent than the updates done on the content level. Thus, better usage of a resource can
be achieved since the manipulation API won’t need as many running instances as the content APL.

Document Content

This microservice will handle the update operations and organization of the actual document
content in a work session between users. This microservice will receive update events from the users
and will handle them accordingly alongside the saving strategy imposed on the document content.
The algorithm powering the collaboration work and decision-making will be discussed in its own
section.

RTC

As previously discussed, the document editing sessions will be handled over a WebSocket
connection based on the need for a direct asynchronous connection. The number of live established
connections may be considered a sensitive point in the architecture of the system, as any server has a
physical limit on live connections. Thus, due to scalability concerns, a designated microservice for
handling live connections was created.

The RTC (Real Time Communications) microservice is responsible for handling the connections
with the clients and propagating changes between the RTC instances.

Having a horizontal scaling approach on live-maintained connections introduces the problem of
unpredictable connection location. This scaling issue is described in its own section due to the
increased complexity and required messaging service modifications.

If the client-server connection fails, the server cannot re-initiate it. The task of reconnecting and
synchronizing must be initiated by the client.

API Gateway

The API Gateway is the last building block of the system interface for the client, and it serves
three main purposes in this setup:

1. provide routing to the designated microservice of a request
2. provide a security layer with the help of the Auth microservice
3. provide CORS protection

Cross-Origin Resource Sharing (CORS) is a security feature for web browsers. It permits or
restricts web applications running at one origin (domain) to request resources from a different origin,
mitigating potential security risks associated with cross-origin HTTP requests.

The API Gateway integrates the security measures using the Spring Security package for adding
the necessary JWT token checks upon a private route request. The Gateway relies on a Security Filter
Bean to ensure that the appropriate JWT token metadata exists and that it is valid. If an invalid request
is intercepted, the gateway will isolate the request and return the appropriate error code for the client

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

20

to handle. If a request has a valid token, the API Gateway will validate the token with the help of the
Auth microservice and extract the data contained in the JWT token.

The JWT payload will be attached to the original request before routing it back to the appropriate
microservice. In this case, basic information about the user (id, email, nickname) was attached to the
request with the help of HTTP Headers. This step will save further database reads at the microservice
layer for retrieving user data.

If the databases are segregated between multiple microservices, no relationship between data
can be maintained. The main reason behind this drawback is the fact that the databases can be
physically distributed across nodes and thus maintaining relationships between entities cannot be
achieved. The constraints between entities are moved to the application layer and the integrity of
data must be maintained with the help of application business logic. In most implementations, there
is a constant need to interrogate databases or check resource permissions based on user credentials.
Fetching the user resources at every action can potentially induce bottlenecks in terms of
performance.

Besides the CORS and Authorization state checks, the APl Gateway layer handles application
routing. To define the routing strategy, the API Gateway will require two main pieces of information:
the prefix of the incoming request and the destination address to which the service should be
redirected.

5.3. CRDT

Document collaboration is a complex task because it imposes challenges such as ensuring
document consistency and conflict resolution, handling read/write intensive tasks in a low latency
environment, and multi-peer data transfer between clients in a low latency way. Those issues are a
big concern in terms of functionality and are isolated from the problem of the system architecture
that can sustain such an application at scale.

Initial Analysis

Let’s consider a series of users accessing the same text resource. Each user can apply locally one
of the following basic operations:

Insertion: The user can insert a character at a given position. The operation will be denoted
INSERT(C, Index) where C represents the inserted character and Index is the position where it was
inserted. The state of the string will be denoted with S.

S =Test. INSERT('I’, 4) — Testl

Deletion: A user can delete the character on a specific position. The operation will be denoted as
DELETE(Index) where Index represents the removed position.

S =Test. DELETE(0) — est

Every other classic text manipulation operation (group delete, group insertion, etc.) can be
reduced to either a delete or insert operation applied to a range (individual characters selected) or a
selection of indexes (a sequential block of text selected).

S =Test. REPLACE(0, "A’) — DELETE(0) -> INSERT("A’, 0) -> Aest

Starting from the same resource, users will apply a series of insertion/deletion operations that
will modify the shared resource. Each change made by a user needs to be broadcast to all the users
that participate in the collaboration session. There is a chance that users can introduce different
changes at the same index.

Figure 13 demonstrates a scenario where two users apply changes to the same resource and, due
to the nature of the changes, they obtain different states of the same resource. The system will not
converge to a single result in certain scenarios, which is a fundamental requirement for a collaborative
system design.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

21
Client A Client B
ETDI
DELETE(2) INSERT(T'.1)

¥ k.

Ealiiss

Figure 13. Executing a transaction between clients

The problem of convergence can be handled on either the client side or on the server side.

Server-side Conflict Resolution

In this case, the server will be the authority (also called the leader) to decide how the conflicts
are resolved, thus the server-side application running the code that handles the document changes
needs to be stateful. This is a major issue for a dependable system since it requires a way to handle
the application state in case of a system disaster. It also makes the server side a key component for
the minimum functionality of the system.

All the clients need to talk directly to the specific server that holds the state of the document,

creating a problem in terms of scalability and cloud agnosticism (Figure 14).
Client A

Test

Client B
Test * > Server

Client C

-

Test

.

Figure 14. Multi-client consumers on a single server.

The server application needs to have an in-memory state and custom application logic that needs
to be continuously saved and restored in the case of a disaster. The operation consumption and
server-side processing may affect the availability of the system in big collaboration groups where
multiple changes could be applied in a short time. Since the server obtains from the client only the
operations that the user generates, it must deal with and adapt the operations to converge the state
of each user.

For example, when a user deletes from a position where previously a character was inserted, the
deletion index needs to be updated to delete the initial designated value.

S ="Test”

Client A: INSERT('A’, 1) -> “TAest”

Client B: DELETE(1) -> “Tst”

In this example, the second client intended to delete the character “e” but due to the previous
insertion of the first client, it will delete the character “A”. To achieve convergence, the Delete
operation emitted by the second client needs to be updated to delete the initial character on the

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

22

indicated position (“e”). In other words, the Delete operation needs to be applied on index 2. To
converge to a final state, each client’s operations must be broadcast to all the other clients.

S="Test”

Client A: INSERT(‘A’, 1) && DELETE(2) -> “TAst”

Client B: DELETE(2) && INSERT('A’, 1) > “TAst”

Based on this example, a key aspect of this operations handling can be extracted: each applied
operation must be commutative to obtain convergence. This methodology of handling and altering
incoming operations applied to a resource is called Operational Transformation (OT). OT was created
in 1989 and was designed to offer a way of handling concurrent resource editing in a non-blocking
way without utilizing data locks [56]. It is a technique used in collaborative editing systems to ensure
consistency and convergence of shared documents. The algorithms are complex and require
dedicated stateful management of the resource that’'s edited making the server side, not only a
communication layer but also a coupling part of the overall architecture [57,58].

For the proposed architecture, to achieve scalability, the microservices should ideally be only an
agnostic communication layer and a way to interact with the database persistence layer. Thus, in case
of a service failure, it can spawn back and resume work without the need for data recovery and a
dedicated mechanism for periodic backups.

The conflict resolution step can be moved to the client side and the server can become only a
communication channel and can independently produce side effects such as saving the document
state based on a strategy and collecting execution logs. To implement this approach a special datatype
is required: CRDT.

Client-side Conflict Resolution

CRDT (Conflict-free Replicated Data Type) is a type of data structure that allows multiple copies
of a data object to be modified concurrently without the need for coordination between the copies,
while still guaranteeing eventual consistency [59].

CRDTs are designed to handle distributed systems and enable collaborative editing in scenarios
where multiple users can make changes to a shared document or resource simultaneously. CRDT can
be applied also on the server side, but it also implies the same scalability issues as the Operational
Transformations approach.

Implementing CRDT in a simplified manner represents defining a special data structure that can
hold all the data and metadata of interest while being able to apply a conflict resolution strategy.
Based on the application type, CRDT can be configured to treat conflicts in various ways. There are
multiple strategies to solve conflicts and select winners: last write wins, first write wins, majority
vote, minority vote, etc. Each one of those strategies has a purpose and the main decision factor is the
dimension over which the changes are propagated. In a document editing scenario, the dimension
over which the changes are dispatched is the time: the last write of a resource section (the Last Write
Win strategy) will outperform the previously dispatched changes. CRDT can function in two ways:
Operation-based CRDT [60] and State-based CRDT [61].

Operation-based CRDT is built around the idea that peers will exchange with each other the
operations applied to the text resource. This approach is still dependable on a centralized service that
should replicate the common resources the user interacts with.

State-based CRDT does not require a centralized system since the peers will exchange their state
and each local CRDT datatype will be able to decide how to adapt the incoming changes to the local
copy of the state. The biggest advantage of the state transaction is the server that becomes just a
communication and side-effects layer that will not need an application state to deliver the base
functionality. Furthermore, the communication layer can be replaced by any transportation channel
that can move data from one system to another, even a local network.

On the other hand, it creates another complex problem on its own: state modeling. The
communication channel (WebSocket) has limitations in terms of the frame size transportable over the
network and it is very sensitive to the network speeds. To maintain a consistent rate of transfer, the
payload exchanged over the network must not exceed a certain size. This can be achieved by

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

23

modeling how the document content will look from a point of view of content organization. This
degree of flexibility was the main reason for choosing a non-relational database system.
CRDT Implementation
The base CRDT structure used for implementing a document-like structure is called a register.
A register is a base structure that holds a series of information and functionality for the data structure
that is changing:
e value: the value synchronized between the pears
e state: the metadata required by the peers to agree on the same incoming update
e merge functionality: offers a customizable way of handling the state mutation based on the
remote state of the peer

Additionally, a register can require extra information like peer identification or a local identifier
of the collaboration session. The merge function will have to define how the merging of states
happens and on what terms between the peers.

For the document collaboration scenario, the main acceptance criteria are the last emitted state
by a user. This works on the assumption that regardless of the number of users and the order of the
operations, the changes happen linearly. The nature of the event makes it unlikely for multiple users
to work on the same document position while they introduce completely new content.

The approach is called Last Write Wins (LWW). Depending on the scenario, the merge
functionality can be customized to accommodate more logic like content differences check and timing
checks.

A Last-Writer-Wins Register (LWW-Register) generates a total order of assignments, associating
a timestamp to each update. Timestamps are unique, totally ordered, and consistent with causal order
[62].

This register can hold and merge states of any datatype. A complex document can hold more
data and metadata especially if the document contains rich formatted text. In this register example,
the merge strategy will check the timestamp of the event and the peer dispatching that event to decide
which state should be merged. For example, the document resource can contain the title entity and
the actual text content. In that case, handling more document characteristics becomes expensive in
terms of merging strategy and logic. The same issue applies when the state grows to a considerable
size. In that case, a date modeling logic will minimize the object sizes transported over the network.
Furthermore, it makes transportation more expensive because pieces of data that are not changed
will get transported and included in the merge strategy evaluation process.

To solve those issues regarding state organization, another conflict-free replication data type can
be introduced: CRDT Map. A CRDT Map is a structure meant to combine multiple registers and
control the merging strategies of each register [63].

For a proposed design for a Last Write Wins Map structure, a register is composed of a series of
Registers identifiable by a unique key. It is like a JSON-like object because it offers the flexibility of
composing multiple convergent structures. The structure can be extended at runtime with other
components or levels of CRDT structures.

A CRDT Map can be extended to add a register on the fly, a behavior like adding sections of
content in a text document dynamically. When a Map requires a specific registry to merge and
converge to a new state, the Map will pass the remote state to the corresponding registry.

The presented structure has another advantage: it provides the flexibility to compose various
Registry or Map entities to achieve big state objects. The Map and Registry structures agree to the
same entity structure: value, state, and merge functionality, thus they are interchangeable.

The document is composed of two changeable strings: title and content. Upon the start of a
collaboration system, the user receives the document content snapshot from the server and creates a
local CRDT copy of the document. On each local update of the content, the registers will update the
local copy of the client, and at each peer update received it will merge the received state with the
local copy.

The local update is a core component of the state-based CRDT since it reflects the state of the
current user. When a user joins a collaboration session, a subscription to the RTC microservice is

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

24

initialized using the WebSocket’'s communication technology. Each peer will listen for the document
updates broadcasted on the designated document channel and will send back change events
regarding what part of the document was updated.

The content registry can be further modeled into multiple Maps that can represent paragraphs
or other units of text, to maintain a small package size when propagating the changes. The server side
acts only as a communication channel and is stateless.

The only functionality that the server holds is the side-effect of saving intermediate
representations of the document. If a node that holds the WebSocket connections with the clients gets
destroyed, the client holds the state locally and it has the option to sync it back later when the service
gets respawned by the cloud orchestrator.

As previously examined, in the system design of this application a dedicated microservice will
handle the connection while other microservices will handle the storage and processing of the
document changes. Each WebSocket handler forwards any editing event to the document-editing
Kafka topic that later forwards the event to the microservices handling the database writes.

WebSocket Scaling — Server Bridge

With the current implementation based on the WebSocket, there is one major problem visible
upon running multiple instances of servers capable of handling the WebSocket connection.

When two users, A and B, wish to exchange messages regarding a document editing session,
they will require a direct connection between their clients. When the system has a single instance
running of the microservice that handles the WebSocket connections, the two users will have a direct
way of exchanging messages.

When the load to the service increases, multiple instances of real-time services might be
required. A server cannot have an endless number of clients connected due to physical constraints.

Although the server hosting the application code responsible for managing connections may
have sufficient resources to accommodate many connections, there is always a risk of exceeding its
capacity during periods of high demand. The variability of user activity can lead to unexpected spikes
in load, potentially overwhelming a single server and causing service disruptions. Additionally,
reliance on a single server represents a single point of failure, raising concerns about reliability and
resilience.

Beyond hardware constraints, cost is a significant consideration. Operating a high-capacity
server incurs substantial ongoing expenses, which can become prohibitive over time. Moreover, this
setup offers limited flexibility for scaling in response to changing demands. As a result, organizations
may face challenges in adapting to evolving workloads and ensuring optimal resource utilization.

The solution to this problem is to provide multiple instances to serve multiple clients. Due to the
unpredictable nature of the system, the system has no control over which replica of the system the
client will connect to. There is always a probability that the two clients are connected to different
services, thus they do not share any physical connection.

To solve this issue, another component needs to be introduced: a bridge. It represents a
decoupled message broker responsible for forwarding any incoming editing events from a service to
all the other available services (Figure 15).

:/UserA\ € » RTC Service 1

N4

| UserB < »| RTC Service 1

Figure 15. Forwarding events between services.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

25

Kafka can act as a middleware providing a layer where the connection state between the
microservices has persisted. In such a way, the multiple instances running the code responsible for
message propagation can exchange messages without holding a state in their memory. Upon an event
being emitted, Kafka will forward the received message to all listening instances of the microservice
(Figure 16). When a Kafka message is received, the real-time microservice will broadcast the event to
the appropriate WebSocket connections. The bridge approach might solve the scalability issue but
will introduce other issues on its own: message broadcasting and idempotency.

Ve '7‘\‘
@‘ > RTC Service 1
@< »| RTC Service 1

Figure 16. Introducing a bridge for physically isolated services.

Kafka

Message broadcasting

Kafka offers a highly efficient and distributed mechanism for disseminating messages among
consumers. When consumers are organized within the same consumer group, Kafka ensures that
only one instance within that group receives a particular stream of data. This approach has
advantages in microservices architectures, as Kafka's cluster can manage message delivery, ensuring
fault tolerance. In cases where a message is not consumed by one instance due to, for instance, a
failure, Kafka seamlessly redirects the message to the next available consumer, maintaining the
continuity of processing.

However, in certain scenarios, such as when broadcasting messages across multiple consumers,
this default behavior may not be suitable. In such cases, all consumers must receive the same message
simultaneously. To achieve this objective, a solution entails assigning each consumer to a distinct
consumer group, thereby ensuring uniqueness at the Kafka cluster level.

Consequently, each running instance subscribed to a topic, albeit with different group IDs, will
be capable of receiving the stream of data independently, facilitating the desired behavior of
simultaneous message consumption across all consumers. Providing a unique group ID to all
consumers can be achieved by subscribing in each running instance of the RTC microservice to the
same topic but with a randomly generated consumer group ID.

Randomly generated UUIDs as consumer group identifiers will solve the broadcasting issue, but
they have some drawbacks. This method ensures unique consumer groups, but it also creates more
groups, requiring more resources from the Kafka cluster to manage message delivery. More
consumer groups can strain cluster resources and affect performance. However, this strategy allows
better distribution of messages among microservices, improving fault tolerance and scalability.
Aligning the number of microservices Pods with the Kafka partitions is important. By experimenting
with different setups, organizations can find the best balance between resource use and message
distribution.

Idempotency

Idempotency is the property that describes the characteristic of a system to not change its state
whenever the same operation gets applied multiple times. In simpler terms, a system is idempotent
whenever we receive the same outcome from an action applied multiple times over a resource. To
examine the idempotency problem in the context of a real-time document editing application, we
break down the sequence of operations performed by the microservices in this scenario:

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

26

1. A client generates a change event after editing a document.

2. A real-time microservice, depending on its availability, receives the change event and forwards

it to the Document Content microservice for persistent storage.

Once the data is successfully stored, the editing event is broadcast to all active instances.

4. All recipient instances then push the relevant data to their connected clients through open
WebSocket connections.

@

The challenge with this setup is that the instance responsible for broadcasting the change also
receives the broadcasted message, leading to unintended updates on the subscribed clients. This
behavior creates an idempotency issue, where redundant operations are triggered, potentially
causing data inconsistencies and unnecessary processing.

Snowflakes keys

A potential fix for the idempotency issue is to introduce some unique identifier that can be used
to decide if a certain operation needs to be performed or not. There are multiple approaches to
generate unique keys for data entries (UUIDs, global key providers, randomly composed keys, etc.)
but many of them require a look-up table of some sort to extract various other information about the
entity they represent, e.g.: checking timing aspects, creation dates, identifying the node handling the
request, etc.

In the context of the proposed system design, doing look-up operations might be expensive in
terms of resources and can introduce delays in the propagation of results to the end user.

Snowflake identifiers are a special kind of uniquely generated IDs that incorporate the
functionality of query support, are unique across the system, and are capable of ordering. In general,
in a modern distributed application there is a designated service that handles the creation of IDs
based on various business requirements. In the context of removing the duplicate events emitted
upon a document interaction, the Snowflake ID should contain:

e atimestamp for further time-based operations and checks on past events
e away toidentify the original creator of the message
e an ordinal to keep track of incremental messages

As a representation, a Snowflake ID can be encoded in any format: binary, base64, basel0, etc.
The simplest approach is to start from a binary representation and assign several bits for each
component of the ID. Once the ID structure is complete, the binary data can be encoded in another
format to obtain a smaller-size identifier.

To fix the idempotency issue on document event propagation, the common Twitter (X)
Snowflake ID structure was used [64]:

e 1reserved bit set as 0.

e 41 bits used for UNIX epoch representation. With 41 bits, the maximum usable epoch is 24! which
is suitable for 136 years from the starting date.

e 10 bits for the running instance count. The system can support 21%=1024 running nodes
dispatching document editing-related messages.

e 12 bits for ordinal, allowing 4096 items to be generated on each epoch for each running instance.

The total length of the snowflake ID will be 64 bits. While the ordinal and epoch values can be
generated, the worker ID must be extracted from the running Pod hosting the application. To provide
a more contained and predictable system, each RTC microservice Pod will receive an incremental
worker ID. Alternatively, the task of assigning worker IDs can be abstracted in a standalone
microservice.

The newly created idempotency safe ID, an RTC instance can decide if the message originated
from the same instance and thus avoid re-broadcasting it to all the consumers.

5.4. Client-Side Implementation

A Single-Page Client Application has the well-defined purpose of handling Ul updates,
managing the client-side state of the application, and handling the long-lived connections.

It is worth mentioning the implemented local-state organization paradigm. By analyzing the
flow of data in the application, it is easy to grasp the unidirectional nature of the user interaction e.g.:

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

27

a user edits a resource, the event gets broadcasted and, in the end, results are received and applied
to the local state. This type of predictable local application state is easy to maintain test and handle.
For this work, Pinia, an open-source library was used to handle the state changes [65].

Pinia works on the so-called Redux model, where a piece of data is updated using actions [66].
Actions are small atomic events that trigger the creation of a new state starting from the previous one
and altering the data based on the desired business rules.

Based on this model, the client-side state was defined in multiple low-level stores (entities of
data): auth, documents, notifications, and document session stores. The most complex piece of the
client-side state is the document session storage because it handles actions emitted by the current
user and the peers joined in the communication session. Generally, it should act as a domain layer,
combining multiple data sources and object types into a single model required by the user interface.

Due to the strategy of having backup Pods available and the stateless capability of the server-
side system, a connection can be re-established without a long waiting time. The stateless nature of
the system enables a “zero” latency in terms of message processing time because the Pod that picks
up the new connection does not need to load any in-memory state. To further increase availability, a
message queue can be added to store the un-delivered events, and a processing logic that will re-send
the messages when a connection is available. This step was not included in this work due to the fast
enough recovery time but certainly represents a valuable addition in the area of redundancy and
disaster recovery.

The client-side application created for this work acts mainly as a presentation layer for the
server-side exposed interfaces, but it also has the task of handling the in-application user state as
notifications, user sessions, document collaboration sessions, disaster-recovery, and CRDT state.

6. Architecture Validation

One of the most crucial attributes of a software application is its availability, which indicates
whether the system can perform as expected. Complex systems consist of multiple interconnected
sub-systems, each producing a specific output. Some sub-systems may act as dependencies for others,
while some may be fundamental building blocks. The performance of a system represents a metric
that’s very specific from one application to another. To validate the created architecture and system
the following critical areas were analyzed:

e Storage - disaster protection
e Resource consumption
e Throughput

The architecture validation imposes a series of tests to prove the ability of the created application

to adapt and deliver an available service even under harsh conditions.

6.1. Storage— Disaster Protection

To ensure a constant backup of the stored content, the data is distributed across multiple systems.
At any given time, one of the nodes acts as a primary node, also called a leader. This node will handle
the read-write operations, while also propagating the changes to the other MongoDB instances, called
secondary nodes. Kubernetes automatically re-creates a Pod if it goes missing, ensuring that the
correct number of Pods is always running.

In a MongoDB cluster, if one Pod is lost, the cluster will elect a new leader among the remaining
nodes. Once the destroyed instance is re-created and recognized by the cluster, it will join as a
secondary node, synchronizing with the data from the other nodes.

After the simulated disaster scenario, the MongoDB cluster will name another Pod as the leader
of the cluster, routing the requests to this instance. Additionally, the Kubernetes cluster will re-create
the terminated Pod to maintain the desired number of running Pods.

The same behavior is expected when multiple instances experience the same catastrophic failure,
like a data center breach or a power outage affecting the servers running the instances. To simulate
such a disaster, a simple experiment of stopping two of the three processes representing the

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

28

MongoDB replicas can be conducted. Deleting two out of the three running cluster Pods, including
the leader will lead the remaining Pod to be named as the leader of the cluster.

Even when losing 66% (detail here that this was experimented on this system) of the running
instances containing the application's data, the cluster can still handle the workload and restore its
state after Kubernetes re-creates the missing instances. This resilience demonstrates the robustness of
the cluster design and its ability to recover from significant disruptions.

6.2. Resource Consumption

Kubernetes-orchestrated applications require an extensive number of resources to provide
scaling capabilities and high availability. It is important to provision the right number of resources
for the cluster while maintaining the number and size of the running Pods low enough to conserve
resources and be able to sustain increased amounts of load.

In the cloud-native world, benchmarking and decision-making for scaling actions are based on
the recorded CPU and RAM consumption of each software component in the system. The
measurement units used are mCPU for CPU and MB for memory.

The term "mCPU" stands for milliCPU, representing one-thousandth (1/1000) of a CPU core.
Essentially, 1000 mCPU equals one full CPU core. This unit is preferred because, in a cloud
environment, there can be a highly dynamic set of hardware CPUs, making it complicated to
determine the exact amount of CPU to reserve due to differences in hardware configurations,
whether virtual or physical CPUs. Using mCPU standardizes CPU resource allocation regardless of
the underlying hardware variations.

This sub-section details the resource consumption of the proposed system inside the cluster in
various testing scenarios. Obtaining a baseline is mandatory for proper data analysis and
performance testing. The baseline was made by averaging the CPU and memory consumption across
all Pods belonging to the same feature over an observation period of 3 hours while the system was in
an idle state. A measurement was made at 30-minute intervals. All the metrics are in correlation with
the imposed Pod CPU/Memory requested limits of 250m CPU units and 250 MBs of memory.

Testing strategy

To measure the memory and CPU consumption under load, a series of test cases were
conducted. The tests aim to mimic the behavior of several users performing tasks on the system over
a period as follows:

1. 10 minutes of interactions between 20 users
2. 30 minutes of interactions between 50 users
3. 1 hour of interactions between 100 users

The first test case will be further referenced as a “normal testing scenario” due to the balanced
proportion between timing and the number of users doing continuous interactions with the system.
As testing scenarios, the capabilities of the system are divided in two, based on the
communication means:
e synchronously representing the read, create, update, and delete operations
e asynchronously representing the long-lived connections exchanging actions between the client
and the server

The synchronous testing mimics real-world user interactions like creating accounts, logging in,
receiving document data and content (the testing document content has 50.000 characters, equivalent
to 20 single-spaced pages), and receiving and deleting notifications. To have a realistic scenario, the
databases are populated with records simulating a real-world quantity of entities stored. Since the
system does not involve caching, it will keep under load the database pods. Each test was conducted
3 times, and the values were averaged out among all the pods of the same feature.

In terms of system scaling capabilities, 2 test runs are conducted: one with a fixed number of Pods
for each feature and one with horizontal scaling capabilities enabled. The scaled versions of the
system were subject to the most intensive test case only. The target was to observe the evolution of
running instances over time.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024

d0i:10.20944/preprints202408.1228.v1

29

Apache JMeter was used as a testing tool for generating the synthetic load tests for the
synchronous and asynchronous cases. As tooling for monitoring and extracting microservice
resource consumption data Prometheus was used. Prometheus is an open-source plug-and-play
monitoring system that facilitates the extraction of process-related performance metrics. To visualize
the extracted data, Grafana was utilized due to its native compatibility with Prometheus. Grafana can
use Prometheus as a real-time data source, facilitating real-time observation of the resources

consumed by each microservice.
JVM

Using the JVM-based container images for the system microservices, the following idle CPU

(Table 1) and memory consumption were measured (Table 2):

Table 1. JVM idle CPU consumption

Feature mCPU
api-gateway 5.1
auth 16.26
document-manipulation 10.13
document-content-handler 10.39
RTC 13.64
notifications 22.28
Table 2. JVM RAM consumption
Feature RAM MB
api-gateway 126.74
auth 162.84
document-manipulation 144.53
document-content-handler 145.5
RTC 152.48
notifications 180.2

Fixed pods number

In the fixed number of Pods scenario, under normal testing conditions, the application consumes
the resources from Figures 17-19, while delivering an average of 730 requests per second, serving a

total of 440,000 requests.

documents-content

notifications

documents-manipulation

api-gateway

~t

{1

0 100 200 300

mBaseline Memory m Baseline mCPU

400

= Memory (MB)

Figure 17. JVM Test 1 - resource comparison.

500 600

mmCPU

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

30

API Gateway CPU
—— Documents Content CPU
—— Documents CPU

0.4 — Notifications CPU
o 0.3f
o
©
w
S
@
£
8021
[
51
o
0.1
0.0
® .QQ &
ol S
N7 N7 N7
% v %
Time
Figure 18. JVM Test 1 - CPU consumption evolution.
200
180
L
o
I}
> 160}
o
£
8
5
O 140
1201 APl Gateway RAM
—— Documents Content RAM
—— Documents RAM
— Naotifications RAM
100k L L
o D O O S
."55'0 .'b""g .bfsg .0?59 .<—§5<'>
> > W > >

Time

Figure 19. JVM Test 1 - RAM consumption evolution.

In the second test case, the system managed to deliver a total of 1.3 million requests while
utilizing resources as follows (Figure 20):

documents-content

notifications

documents-manipulation

api-gateway

rﬂﬂﬂ

0 100 200 300 400 500 600 700

m Baseline Memory ~ mBaseline mCPU m Memory (MB) mmCPU

Figure 20. JVM Test 2 - resource comparison.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

31

In terms of CPU utilization, the maximum recorded consumption reached is close to 60% of the
imposed requested Pod limit (Figure 21). The memory consumption remains mostly constant due to
the stateless nature of the system (Figure 22).

0.6 API Gateway CPU

—— Documents content CPU
= Documents CPU
—— Notifications CPU

0.5

CPU Usage
]
[

e
¥

0.1

0.0

£ O D £ £ D wl
& 5 < 5 S < o

2
2 |
3

»
Time (MM:S5)

Figure 21. JVM Test 2 - CPU consumption evolution.

200
180

160

Container Usage

140

120

API Gateway RAM.csv
~— Documents content RAM.csv
—— Documents RAM.csv
—— Notifications RAM.csv

100 L . &
0 50 100 150 200 250 300

Index

Figure 22. JVM Test 2 - RAM consumption evolution.

The final test managed to deliver 3.8 million API requests in 1 hour (Figure 23) while consuming
a comparable number of resources as in the previous tests (Figures 24 and 25).

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

32

documents-content

documents-manipulation

api-gateway

—

0 100 200 300 400 500 600

m Baseline Memory m BaselinemCPU m Memory (MB) mmCPU

Figure 23. JVM Test 3 - resource comparison.

0.5

0.4

API Gateway CPU
—— Documents Content CPU
—— Documents CPU

~—— Notifications CPU

CPU Usage
o
w

0.2
0.1
0.0k ; . i : : J
22:57 23:07 23:17 23:27 23:37 23:47 23:57
Timestamp (HH:MM)
Figure 24. JVM Test 3 - CPU consumption evolution.
200 N
150
&
g API Gateway CPU
= ~—— Documents Content RAM
2 —— Documents RAM
£ 100 —— Notifications RAM
8
50
0
23:10 23:20 23:30 23:40 23:50 00:00
Time
Figure 25. JVM Test 3 - RAM consumption evolution.
GraalVM

Missing the Java Virtual Machine, GraalVM requires low CPU and memory resources at runtime in
idle. As a baseline, the instances consume the following CPU (Table 3) and memory (Table 4):

https://doi.org/10.20944/preprints202408.1228.v1

Fixed pods number

In the normal usage scenario, the unscaled Pods obtained the following max CPU and Memory

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024

Table 3. GraalVM idle CPU consumption.

d0i:10.20944/preprints202408.1228.v1

Feature mCPU
api-gateway 3.08
auth 10.14
document-manipulation 1.62
document-content-handler 5.05
RTC 6.83
notifications 6.23

Table 4. GraalVM RAM consumption.

Feature RAM MB
api-gateway 155.02
auth 77.61
document-manipulation 47.30
document-content-handler 84.31
RTC 29.56
notifications 49.31

consumption values (Figure 26):

The CPU usage over the testing period has an uprising trend (Figure 27) while the memory
consumption remains mostly constant without significant spikes (Figure 28).

0.5

0.4

e
w

Container Usage (CPU)

e
N

-
=

—

] 50 100 150 200

250

300

m Baseline Memory mBaselinemCPU mMemory(MB) mmCPU

350

Figure 26. GraalVM Test 1 - resource comparison.

0.0

400 450 500

API Gateway CPU

—— Documents Content CPU
—— Documents CPU

—— Notifications CPU

31 14:50
Time

31 14:55

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

34

Figure 27. GraalVM Test 1 - CPU consumption evolution.

1601
140
1201
Q
T
g 100} API Gateway RAM
— = Documents Content RAM
E —— Documents RAM
& 80f —— Notifications RAM
c
(=]
o
60
40t
20t
_,,JQ _QQ _,,JQ AQQ 350
" - o 9° "
b-'\’ b-'\’ bi"» b-'» b-q’
~ N Y e Y
Time

Figure 28. GraalVM Test 1 - RAM consumption evolution.

A total of approximately 500,000 requests were executed by the system with an average
throughput of 880 requests delivered per second (Figure 29) while managing to stay below the
imposed Pod CPU (Figure 30) and memory limits (Figure 31).

For the second test case, due to the higher load on the system, there is a general increase in
resource consumption, especially in the used memory.

documents-content

notifications

documents-manipulation =
L L L L L

api-gateway

-0 100 200 300 400 500 600 700 800

m Baseline Memory mBaselinemCPU mMemory (MB) mmCPU

Figure 29. GraalVM Test 2 - resource comparison.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

35
API Gateway CPU.csv
osH— Documents content CPU.csv
| = Documents CPU.csv
—— Notifications CPU.csv
0.4
o 03
o
©
1]
=}
-]
a
]
0.2
0.1
0.0
16:05 16:10 16:15 16:20 16:25 16:30 16:35
Time

Figure 30. GraalVM Test 2 - CPU consumption evolution.

160

140

-
~
(=)

APl Gateway RAM.csv
= Documents content RAM.csv
—— Documents RAM.csv
—— Notifications RAM.csv

RAM Usage (MB)
=
o
o

80

60

16:15 16:20 16:25 16:30 16:35 16:40 16:45
Time

Figure 31. GraalVM Test 2 - RAM consumption evolution.

In this test case, the system managed to deliver approximately 1.6 million requests while
maintaining an average of 780 requests/second as throughput. The memory consumption and CPU
utilization present a slight increase over the longer test period. The last test provided the following
insights about resource consumption (Figures 32-34):

documents-content

notifications h

documents-manipulation

api-gateway =

100 200 300 400 500 600

o

m Baseline Memory mBaselinemCPU mMemory(MB) mmCPU

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

36

Figure 32. GraalVM Test 3 - resource comparison.

AP| Gateway CPU
—— Documents Content CPU
05 — Documents CPU

—— HNatifications CPU

o
w

Container Usage

e
[

01

0.0

L S L > P
Time (HH:MM)

Figure 33. GraalVM Test 3 - CPU consumption evolution.

180

160

=
=
S

]
=]

API Gateway RAM

—— Documents Contant RAM

—— Documents RAM
Notifications RAM

Container Usage

- n " |‘ 1 I’-" ‘I_I‘ ;
~ | Im | L a — |\
Y e W / L—r [~ |
60 J—’ L F L J | | W L=
40 ‘,__,_/—\ o A [___M i.—x‘__/_,—_f,,f_,——'—__._,_\ N e W
o o o)) o o
b} 3 & S > o~ =
o A B ¥ > > >

Time (HH:MM)

Figure 34. GraalVM Test 3 - RAM consumption evolution.

The system delivered 3.9 million requests to clients with an average throughput of 946
requests/second.

6.3. Throughput

Modern systems must be able to provide the needed data efficiently and in a fast and consistent
way. Measuring the average response time of an API might provide valuable data about the system’s
performance, but it is a metric that is easily affected by very high and very low values and does not
provide insights about the encountered user experience.

Throughput analysis offers a more realistic way of understanding metrics like request time. This
form of analysis focuses more on the distribution of data rather than the average value and aims to
examine what experience (good or bad) a percentage of users will have.

This analysis method begins by gathering a comprehensive dataset, which is then subject to a
data-cleansing process to remove or correct anomalies. Then, the data is organized and sorted in
ascending order. A histogram can be created to visualize the data distribution, which helps in
understanding the spread and central tendencies.

Percentiles are calculated as specific values that correspond to a given percentage of the data
falling below them. For example, the 50th percentile (median) is the value below which 50% of the
data points occur.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

37

Other valuable percentiles are the 90, 95, and 99th percentiles. Those percentiles can further be
translated into statements like “What response time will have 95% of the users?” or “What is the
worst-case scenario users can experience in terms of response time?” (Figure 35).

=== P50: 302.51ms
=== P390: 450.86ms
=== P95; 817.94ms

2001 -—- P99: 940.17ms

1501

Frequency

501

600 800 1000
Response Time (ms)

200
Figure 35. Example of Percentile on response time histogram.

Starting from the ordered histogram that showcases the frequency of each response time, the
percentile line can be computed as:

P, *(N+1)

100

where P represents the desired percentile (e.g. 50, 90, 95, 99) and N the number of samples in
the dataset. To analyze the throughput of the system, the previously obtained results of the 3¢ test
case (1-hour stress test with 100 active users) were subject to the described histogram analysis process.
The response time values were aggregated because this analysis is more suited for the general system
throughput distribution.

JVM

The JVM-based system managed to deliver 99% of the requests in under 1.1 seconds while 90%
of the total requests were delivered under 735ms. 1% of the users experience a longer waiting time
than 1.128 seconds. On average, a user received a response in under 250 ms (Figure 36).

00r -—- P50: 245.00 ms
~=- PA0: 734.00 ms
——- P95: 896.49 ms
——- P99: 1127.78 ms
2501

hJ
o
(=]

1001

50

I
i
1
|
I
1
1
1
|
1
1
I
i
|
1
1
1
1
i
|
1
1
1
i
i
|
1
1
1
1
i
|
1
1
i
|

Frequency (*1000)
—
w
o

L " " L i e |
0 200 400 600 800 1000 1200
Response Time (ms)

Figure 36. JVM Response Time Histogram.

GraalVM

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

38

Using the GraalVM-based microservices, 50% of the users received a response within 200
milliseconds while 90% of the users received it in approximately 650 milliseconds. 99% of the users
received a response in under 1.04 seconds (Figure 37).
=== P50: 180.50 ms
=== P90: 647.90 ms

=== P95: 923.55 ms
—-=- P99: 1041.94 ms

7 ey

Frequency (*1000)

l NOEE

4] 200 400 &00 200 1000
Response Time (ms)

Figure 37. GraalVM Response Time Histogram.

Using the JUnit 5 testing framework [67], a stress test aiming to test 100 users continuously
opening connections for 1 minute provided the results from Table 5:

Table 5. Opening connections stress-test JVM vs GraalVM

System type Opened connections
JVM 9540
GraalVM 13648

For this research, the number of possible connections is more than suitable for testing the
capabilities of the architecture. The resulting values are a rough estimate and the actual possible
number of connections might be higher or lower, depending on the available resources and available
network bandwidth.

So, after conducting a series of tests to validate the proposed system architecture, it was
demonstrated that the storage layer of the system can continue to function and preserve its state even
when one or more of its running instances suffer destruction. Moreover, functionality can be
delivered in a scalable and flexible way utilizing two runtimes: JVM and GraalVM.

The end architecture performance metrics and architectural attributes can be further improved
in various other ways: providing more resources, adding caching strategies, utilizing more
performant technologies, etc. Architectural performance, regardless of its complexity, represents the
end goal for many critical systems. No software system is perfect and the designed one makes no
exception to this rule. It serves the designated purpose under the agreed terms and conditions of the
functional requirements.

7. Conclusions

This paper aims to present the planning, functional features, working principles, technology
stack selection, and the actual development of both software and infrastructure for a collaborative
real-time document manipulation system. The focus was centered on stateless software development,
decoupled architectural components, and designing a scalable and highly available system. The
complexity of the final objective introduced several challenges (e.g., conflict-free document
replication, decoupled and stateless event-driven architecture, idempotency, and data consistency),
which were ultimately addressed through a combination of modern and conventional application
development principles.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

39

The broad range of topics covered in this work can serve as a foundation for further research in
areas such as cloud development, mission-critical application testing and benchmarking,
collaborative technologies, and dependable systems. To name a few suggestions:

Collaboration technologies on its a field powered by an active community researching,
developing, and testing algorithms specialized in various scenarios of crowd collaboration. The
presented paper focused on implementing state-based CRDT for achieving convergence of a shared
text resource. A valuable topic to approach would be to switch the collaboration technology from
state to operations-based CRDT. Another valuable approach in the direction of CRDT development
is the transition towards delta-CRDT. Delta-mutators are defined to return a delta-state: a value in
the same join-semilattice that represents the updates induced by the mutator on the current state.
This migration will require switching to a stateful system, redesigning the entire scalability strategy,
and more importantly, adding the functionality of state back-up, restore, and multi-region
synchronization.

The field of dependable systems is a natural direction for future work. Ideally, a collaborative
system must be able to handle individual faults at various component levels while protecting the
system from an application-wide failure. Adding “circuit breaking” strategies, back-up services, and
scheduled scaling capabilities. Moreover, switching to a dynamic and planned resource allocation
can provide interesting insights into how the availability of the system is changing based on the
available resources. A possible research path is the study of fault toleration in real-time mission-
critical systems where one fault might affect the consistency of data replicated among multiple users.

Finally, a key suggestion for future research is the data modeling of a rich text-document entity
at scale. While this work focused primarily on content, a logical next step would be to enhance the
text content with a platform-agnostic engine that supports real-time, conflict-free handling of text
metadata. This area of study would involve several critical aspects: developing flexible data models,
rethinking peer update broadcasting strategies, designing a GUI capable of mapping metadata to
meaningful visual elements, and optimizing network-efficient message packaging for large-scale
document collaboration.

Author Contributions: Conceptualization, D.I. and C.T.; formal analysis, D.I. and C.T.; investigation, D.I. and
C.T.; methodology, D.I. and C.T.; software, D.L; supervision, C.T.; validation, D.I. and C.T.; writing —original
draft, D.I; writing—review and editing, C.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.
Informed Consent Statement: Not Applicable.

Data Availability Statement: Data available in publicly accessible repository.The data presented in this study
are openly available in GitHub at https://github.com/roddev-v/spring-document-collaboration and
https://github.com/roddev-v/vue-document-collaboration.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Evans, D. The Internet of Things: How the Next Evolution of the Internet Is Changing Everything, 2011 - Available
online: http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf

2. Google Docs About page - Available online: https://www.google.com/docs/about/ (accessed on 20 June
2024).

3. Laaki, H; Miche, Y.; Tammi, K. Prototyping a Digital Twin for Real Time Remote Control Over Mobile
Networks: Application of Remote Surgery, IEEE Access, 2019, 7, 20325-20336.

4. Wang, L.D.; Zhou, X.Q.; Hu, T.H. A New Computed Torque Control System with an Uncertain RBF Neural
Network Controller for a 7-DOF Robot, Tehnicki Vjesnik-Technical Gazette, 2020, 27, 5, 1492-1500.

5. Chen, T.S,; Yabuki, N.; Fukuda, T. Mixed reality-based active Hazard prevention system for heavy
machinery operators, Automation in Construction, 2024, 159.

6. Son, H.; Kim, C. Integrated worker detection and tracking for the safe operation of construction machinery,
Automation in Construction, 2021, 126.

7. Zhang, S.T,; Yang, J.J.; Wu, X.L. A distributed Project management framework for collaborative product
development, Progress of Machining Technology, 2002, 972-976.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

40

8. Doukari, O.; Kassem, M.; Greenwood, D. A Distributed Collaborative Platform for Multistakeholder Multi-
Level Management of Renovation Projects, Journal of Information Technology in Construction, 2024, 29, 219-
246.

9. Erder, M,; Pureur, P., Woods, E. Continuous Architecture in Practice: Software Architecture in the Age of Agility
and DevOps; Addison-Wesley Professional, 2021.

10. Ciceri, C.; Farley, D.; Ford, N.; Harmel-Law, A.; Keeling, M.; Lilienthal, C. Software Architecture Metrics: Case
Studies to Improve the Quality of Your Architecture; O'Reilly Media, 2022.

11. Cortellessa, V.; Eramo, R.; Tucci, M. From software architecture to analysis models and back: Model-driven
refactoring aimed at availability improvement, Information and Software Technology, 2020, 127.

12. Nsafoa-Yeboah, K.; Tchao, E.T.; Kommey, B.; Agbemenu, A.S.; Klogo, G.S.; Akrasi-Mensah, N.K. Flexible
open network operating system architecture for implementing higher scalability using disaggregated
software-defined optical networking, IET Networks, 2024, 13, 3, 221-240.

13. Gao, X.M.; Wang, B.S.; Zhang, X.Z.; Ma, S.C. A High-Elasticity Router Architecture with Software Data
Plane and Flow Switching Plane Separation, China Communications, 2024, 13, 3, 37-52.

14. Fé, I; Nguyen, T.A.; Di Mauro, M.; Postiglione, F.; Ramos, A.; Soares, A.; Choi, E.; Min, D.G.; Lee, JW;
Silva, F.A. Energy-aware dynamic response and efficient consolidation strategies for disaster survivability
of cloud microservices architecture, Computing, 2024.

15. Muntean, M.; Brandas, C.; Cristescu, M.P.; Matiu, D. Improving Cloud Integration Using Design Science
Research, Economic Computation and Economic Cybernetics Studies and Research, 2021, 55, 1, 201-218.

16. Goldstein, M.; Segall, I. Automatic and Continuous Software Architecture Validation, 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, 2015, 2, 59-68.

17. Ronzon, T. Software Retrofit in High-Availability Systems When Uptime Matters, IEEE Software, 2016, 33,
2,11-17.

18. Goetz, B. Java Concurrency In Practice; Pearson India, 2016.

19. Tudose, C. Java Persistence with Spring Data and Hibernate; Manning: New York, NY, USA, 2023.

20. Smith, P.N.; Guengerich, S.L., Client/Server Computing (Professional Reference Series); SAMS, 1994.

21. Saternos, C. Client-Server Web Apps with JavaScript and Java: Rich, Scalable, and RESTful; O'Reilly Media, 2014.

22. Anacleto, R; Luz, N.; Almeida, A.; Figueiredo, L.; Novais, P. Creating and optimizing client-server;
Universidade do Minho - Campus of Gualtar, Braga, Portugal, 2013.

23. Meloni, J.; Kyrnin, J. HTML, CSS, and JavaScript All in One: Covering HTML5, CSS3, and ES6; Sams Publishing,
2018.

24. Nagy, R. Simplifying Application Development with Kotlin Multiplatform Mobile: Write robust native applications
for iOS and Android efficiently; Packt Publishing, 2022.

25. Siahaan, V.; Sianipar, R.H. Building Three Desktop Applications with SQLite and Java GUI; Independently
published, 2019.

26. Marquez-Soto, P. Backend Developer in 30 Days: Acquire Skills on API Designing, Data Management, Application
Testing, Deployment, Security and Performance Optimization; BPB Publications, 2022.

27. Hermans, K. Mastering Back-End Development: A Comprehensive Guide to Learn Back-End Development;
Independently published, 2023.

28. Marinescu, D.C. Cloud Infrastructure; Cloud Computing: Theory and Practice, 2013, 67-98.

29. Morris, K. Infrastructure as Code: Dynamic Systems for the Cloud Age 2nd Edition; O'Reilly Media, 2021.

30. Newman, S. Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith; O'Reilly Media, 2019.

31. Vernon, V.; Tomasz, J. Strategic Monoliths and Microservices: Driving Innovation Using Purposeful Architecture,
Addison-Wesley Publishing, 2022.

32. Al Qassem, L.M.; Stouraitis, T.; Damiani, E.; Elfadel, .M. Proactive Random-Forest Autoscaler for
Microservice Resource Allocation, IEEE Access, 2023, 11, 2570-2585.

33. Richardson, C. Microservice Architecture Pattern, 2024 - Available online:
http://microservices.io/patterns/microservices.html

34. Cao, X.M.; Zhang, H.B.; Shi, H.Y. Load Balancing Algorithm of API Gateway Based on Microservice
Architecture for a Smart City, Journal of Testing and Evaluation, 2024, 52, 3, 1663-1676

35. Zuki, S.Z.M.; Mohamad, R.; Saadon, N.A. Containerized Event-Driven Microservice Architecture, Baghdad
Science Journal, 2024, 21, 2, 584-591

36. Fielding, R.T. Architectural Styles and the Design of Network-based Software Architectures, PhD Thesis, 2000.

37. Bandruski, P. Publish WebSocket in the experience layer, 2020, Available online:
https://ambassadorpatryk.com/2020/03/publish-web-socket-in-the-experience-layer/

38. Tay, Y. Front End System Design Guidebook, 2024, Available online:
https://www.greatfrontend.com/questions/system-design/news-feed-facebook

39. Vue]S Official Documentation - Available online: https://vuejs.org/guide/introduction.

40. Spring Boot Documentation - Available online: https://docs.spring.io/spring-boot/index.html.

41. Arnold, K.; Gosling, J.; Holmes, D. The Java Programming Language, 4th ed.; Addison-Wesley Professional:
Glenview, IL, USA, 2005.

https://doi.org/10.20944/preprints202408.1228.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 August 2024 d0i:10.20944/preprints202408.1228.v1

41

42. Sierra, K.; Bates, B.; Gee, T. Head First Java: A Brain-Friendly Guide, 3rd ed.; O’Reilly Media: Sebastopol, CA,
USA, 2022.

43. Luksa, M. Kubernetes in Action; Manning: New York, NY, USA, 2017.

44. Nickoloff, J.; Kuenzli, S. Docker in Action, Second Edition; Manning: New York, NY, USA, 2019.

45. Fava, F.B.; Leite, L.F.L.; da Silva, L.F.A.; Costa, P.R.D.A.; Nogueira, A.G.D.; Lopes, A.F.G.; Schepke, C.;
Kreutz, D.L.; Mansilha, R.B. Assessing the Performance of Docker in Docker Containers for Microservice-
based Architectures, 2024 32nd Euromicro International Conference on Parallel, Distributed and Network-
Based Processing, 2024, 137-142.

46. Vitale, T. Cloud Native Spring in Action With Spring Boot and Kubernetes; Manning: New York, NY, USA, 2022.

47. Tudose, C.; Odubasteanu, C.; Radu, S. Java Reflection Performance Analysis Using Different Java
Development Advances In Intelligent Control Systems And Computer Science 2013, 187, 439-452

48. Wu, H. Reliability Evaluation of the Apache Kafka Streaming System; 2019 IEEE 30th International
Symposium on Software Reliability Engineering Workshops, 2019, 112-113.

49. Kim, H,; Bang,J.; Son, S; Joo, N.; Choi, M.].; Moon, Y.S. Message Latency-Based Load Shedding Mechanism
in Apache Kafka, EURO-PAR 2019: Parallel Processing Workshops, 2020, 11997, 731-736.

50. Holmes, S.D.; Harber, C. Getting MEAN with Mongo, Express, Angular, and Node, Second Edition; Manning;:
New York, NY, USA, 2019.

51. Vokorokos, L.; Uchndr, M.; Balaz, A. MongoDB scheme analysis 2017 IEEE 21st International Conference
on Intelligent Engineering Systems (INES), 2017, 67-70

52. Pernas, L.D.E.; Pustulka, E. Document Versioning for MongoDB, New Trends in Database and Information
Systems, ADBIS, 2022, 1652, 512-524

53. Ferrari L.; Pirozzi E. Learn PostgreSQL - Second Edition: Use, manage and build secure and scalable
databases with PostgreSQL 16, 2nd Edition; Packt Publishing; 2023.

54. Bonteanu, A.M.; Tudose, C. Performance Analysis and Improvement for CRUD Operations in Relational
Databases from Java Programs Using JPA, Hibernate, Spring Data JPA, Applied Sciences — Basel, 2024, 14, 7,
2743

55. Raptis, T.P.; Passarella, A. On Efficiently Partitioning a Topic in Apache Kafka, 2022 International Conference
on Computer, Information and Telecommunication Systems (CITS), Piraeus, Greece, 2022, 1-8

56. Ellis, C.A.; Gibbs, S.J. Concurrency control in groupware systems, ACM SIGMOD Record, 1989, 18, 2, 399-
407

57. Gadea, C.; Ionescu, B.; Ionescu, D. Modeling and Simulation of an Operational Transformation Algorithm
using Finite State Machines, 2018 IEEE 12th International Symposium on Applied Computational Intelligence
and Informatics (SACI 2018), Timisoara, 2018, 119-124

58. Gadea, C.; Ionescu, B.; Ionescu, D. A Control Loop-based Algorithm for Operational Transformation, 2020
IEEE 14th International Symposium on Applied Computational Intelligence and Informatics (SACI 2020),
Timisoara, 2020, 247-254

59. Shapiro, M.; Preguica, N.; Baquero, C.; Zawirski, M. Conflict-Free Replicated Data Types, Stabilization,
Safety, and Security of Distributed Systems, 2011, 6976, 386-+

60. Nieto, A.; Gondelman, L.; Reynaud, A.; Timany, A.; Birkedal, L. Modular Verification of Op-Based CRDTs
in Separation Logic, Proceedings of the ACM on Programming Languages-PACMPL, 2022, 6, OOPSLA, 188

61. Guidec, F.; Maheo, Y.; Nots, C. Delta-State-Based Synchronization of CRDTs in Opportunistic Networks,
Proceedings of the IEEE 46th Conference on Local Computer Networks (LCN 2021), 2021, 335-338

62. Hupel L. An Introduction to Conflict-Free Replicated Data Types - Available online:
https://lars.hupel.info/topics/crdt/07-deletion/

63. Centelles, R.P.; Selimi, M.; Freitag, F.; Navarro, L. A Monitoring System for Distributed Edge
Infrastructures with Decentralized Coordination, Algorithmic Aspects of Cloud Computing (ALGOCLOUD
2019), 2019, 12041, 42-58

64. Cola G.; Mazzal M.; Tesconi M. Twitter Newcomers: Uncovering the Behavior and Fate of New Accounts
Through Early Detection and Monitoring, IEEE Access, 2023, 11, 55223-55232

65. Pinia Official Documentation - Available online: https://pinia.vuejs.org.

66. Redux Official Documentation - Available online: https://redux.js.org.

67. Tudose, C. JUnit in Action; Manning: New York, NY, USA, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

https://doi.org/10.20944/preprints202408.1228.v1

