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Abstract 

In this study, we propose a novel system, TACTIC-GRAPHS, which integrates complex mathematical 
mechanisms and graph neural reasoning structures for semantic understanding and threat 
recognition in tactical video under high noise and weak structure conditions, breaking through the 
traditional empirical AI paradigm by innovatively introducing graph spectral theory embedding, 
temporal causal edge modelling and multivariate discriminative path inference mechanism, and 
establishes a multimodal graph inference model with structural interpretability and causal loop 
closure capability. An intelligent keyframe hierarchical extraction algorithm (ILKE-TCG) is designed 
to extract semantically-driven keyframe nodes from video, fusing image structure, voice rhythms 
and action paths to construct a heterogeneous temporal graph. Through the graph attention 
mechanism and Laplace spectral space mapping technique, the system achieves cross-modal node 
weight estimation and causal signal deconstruction in spectral space. Experiments on the TACTIC-
AVS and TACTIC-Voice datasets show that the model achieves an accuracy of 89.3% in multimodal 
temporal alignment recognition, with a complete threat causal chain recognition rate of more than 
85%, and the node inference latency is controlled within the range of ±150 ms, which is significantly 
better than existing CNN/Transformer fusion methods. In particular, the introduction of spectral 
graph theory enhances the structural verifiability and variable distinguishability of causal paths, and 
pushes the TACTIC system from shallow fusion to deep structural modelling paradigm.TACTIC-
GRAPHS not only provides tactical mission type discrimination and threat intensity scoring, but also 
achieves a number of breakthroughs in the areas of high-dimensional graph structural modelling, 
complex mathematical path recognition, and cross-modal variable embedding. breakthroughs. This 
research provides theoretical support and modeling paradigm for the deployment of structural 
intelligence systems in intelligent security, battlefield sensing, law enforcement identification and 
national surveillance systems, and represents the cutting-edge direction of multimodal AI causal 
modelling and a new level of complex reasoning systems. 

Keywords: causal graph embedding; multimodal tactical reasoning; graph spectral theory in AI; 
intelligent keyframe extraction 
 

I. Introduction 

1.1. Background of the Study 

The current global security situation continues to deteriorate, with transnational conflicts, the 
activities of non-state armed organisations and the frequency of terrorist attacks all on the rise, and 
in particular, armed struggle resulting from illicit cross-border conflicts has become a major security 
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risk. The 2023 annual report of the United Nations Office on Drugs and Crime (UNODC) notes that 
the involvement of armed non-state actors in conflict has become the norm and is highly correlated 
with large-scale weapons smuggling (UNODC, 2023). Meanwhile, while passive surveillance 
resources have exploded, actual effectiveness has failed to improve significantly due to poor image 
quality and lack of multimodal fusion. According to IHS Markit’s 2016 data, although the global 
installed base of video surveillance devices has exceeded one billion units, more than 60 per cent of 
them are still low resolution compressed, and the overall analytics capability has long relied on back-
end clusters and cloud platforms, with a serious lack of edge inference capability (IHS Markit, 2016). 

In this context, covert missionaries are using low-light environments, collapsible weapons and 
non-standard wearable tactics to effectively evade detection systems. Traditional single-frame image 
recognition methods are no longer able to accurately capture the carrying and deployment of 
weapons, and the lack of synchronised voice information makes it impossible to infer tactical intent 
or area affiliation. Worse still, in the vast majority of cases today, surveillance video includes only 
visual modalities and lacks complementary signals such as acoustic and thermal imaging, resulting 
in serious gaps in the recovery of behavioural chains and a fragmented and low-confidence pattern 
of intelligence. 

For example, in North Africa and the Middle East, the tactic of “concealment → deployment” 
using compressed SMG equipment with a pouch is becoming more common, where simple silhouette 
analysis fails to identify the structure of the weapon, and motion-triggered recognition is unstable. 
At the same time, the lack of audio makes action intent, command triggering, and attributed voice 
features completely lost, which constitutes a major obstacle to the detection task (Smith & Chang, 
2022). Therefore, how to achieve the whole chain and multimodal fusion reasoning of “weapon 
form→behavioural action→voice signal→tactical intent→area attribution” in high-noise, low-light, 
and weak-resolution video materials is a cutting-edge scientific proposition in the field of military 
intelligence and border defence and counter-terrorism at present. Solving this problem will not only 
reconstruct high-confidence threat assessment in a single video situation, but also provide strong 
intellectual support for strategic applications such as border security, urban counter-terrorism and 
unmanned reconnaissance. 

1.2. Technical Challenges 

The technical challenges are, firstly, that military surveillance is often deployed in multiple 
unfavourable contexts such as low light, long range, and compressed HD (IHS Markit, 2016), 
resulting in the prevalence of blurred video images, insufficient frame rates, and compression 
artefacts, and this blurred information makes it difficult to accurately identify weapon form-factors 
(e.g., grips, sights, and magazine contours), which undermines traditional target detection and image 
segmentation methods’ Effectiveness of traditional target detection and image segmentation 
methods. Second, in war reconnaissance scenarios, speech samples are extremely limited, and there 
is a diversity of accents, such as non-standard military accents, local dialects, and low speech rates, 
which significantly degrades the recognition performance of ASR systems, especially in the case of 
sample scarcity, where the acoustic model has difficulty in capturing the high amount of dialectal 
variation and intonation patterns (Hinsvark et al., 2021; Gillis, 2024). Gillis, 2024). Again, multimodal 
fusion faces extremely severe time synchronisation and causal inference challenges. The lack of 
precise timestamp alignment mechanisms between image frames and speech signals results in the 
inability to establish credible correlations between weapon deployment actions and mnemonics or 
intonation, which makes it difficult for subsequent intent inference models to achieve causal 
determination and behavioural path recovery. Overall, there is still a lack of integrated methods that 
can simultaneously achieve “weapon morphology recovery, accent source analysis, and cross-modal 
causal inference” under the conditions of low-quality video and limited audio samples, which is a 
challenge that plagues the practical implementation of intelligent reconnaissance systems in highly 
sensitive scenarios, such as border security, urban counter-terrorism, and unmanned system 
deployment. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2025 doi:10.20944/preprints202507.1431.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1431.v1
http://creativecommons.org/licenses/by/4.0/


 3 of 56 

 

1.3. Contribution of This Paper 

In this study, a tactical recognition system integrating image structure enhancement, audio 
voiceprint analysis and multilayer graph modelling is innovatively proposed in the context of low-
quality images, limited speech samples and cross-modal alignment challenges. The core technology 
includes the TVSE-GMSR (GAN-based multi-stage image structure enhancement) module, which 
adopts the “GAN-assisted multi-stage denoising and semantic reconstruction based tactical image 
structure enhancement technique” for high fidelity detail recovery (AI) of blurred and compressed 
video frames with the assistance of generative adversarial network. Graphic Reconstruction), which 
ensures high accuracy recognition of weapon features such as grips, magazines, and sights. At the 
same time, I introduced the SpectroNet voiceprint analysis system, which extracts Mel spectra from 
restricted audio segments and quantifies patterns of voice pitch, dialect and speech rate to accurately 
classify the geographical affiliation and commanding intonation of vocalisers through low-sample 
training. In addition, I propose a multi-layer temporal causal graph modelling method called 
TACTIC-GRAPHS, which embeds structural features, weapon states, audio rhythms and semantic 
keywords nodes in the temporal graph after image enhancement in each frame, and recovers the 
complete tactical chain of “Concealed Carry-Deployment-Command-Intent to Act” through graph 
neural network reasoning. Tactical chain. The experimental results show that the framework can 
achieve more than 85% threat recognition accuracy under single video and a small amount of audio 
conditions, providing a deployable and resource-efficient system solution for intelligent 
reconnaissance and forensics in border security and urban counter-terrorism. 

II. Overview of Relevant Work 

2.1. Speech Mapping and Tactical Voice Recognition Techniques 

In reconnaissance and counter-terrorism scenarios, audio information is often the only available 
auxiliary modality, and spectrograms, especially mel-spectrograms, are widely used for voiceprint 
and accent modelling due to their high fit to human hearing and time-frequency visualisation 
properties. It is based on the decomposition of audio by short-time Fourier transforms, the use of Mel 
filter banks to weight the low frequencies to obtain more significant frequency band features for 
speech perception, and the subsequent mapping of frequency intensity on a logarithmic scale (Mel-
frequency cepstrum, 2025). 

On this basis, it has been shown that conventional convolutional neural networks (CNNs) 
perform excellently in extracting local spectral features of speech, while integrating them with gating 
mechanisms to further enhance the robustness. For example, the Gated-CNN + Temporal Attention 
architecture proposed by Xu et al. in the DCASE challenge in 2017, for large-scale weakly labelled 
audio scenarios, achieves dual metrics optimisation of audio event detection and label classification 
by introducing gated linear units (GLUs) and linking the attention mechanism (F-value is improved 
to 55.6%, and the equal error rate is reduced to 0.73). The model has direct reference value for military 
speech semantic recognition, short command recognition and accent inference. 

In addition, the Gated CNN combined with cyclic structure also performs outstandingly well, 
and is particularly suitable for dealing with imperative, sentence-breaking languages. At its core, the 
CNN is responsible for extracting local spectral structure, while the GRU/LSTM network is used to 
aggregate long-time dependencies, thus adapting to the broken-sentence contexts and bursty 
command patterns common in tactical intonation (Convolutional Gated Recurrent Neural Network 
Incorporating ..., 2017). The application of this model to voice command recognition and tactical 
password recognition significantly enhances the robustness to key information extraction in noisy 
environments. 

Taken together, combining the Mel spectrogram with Gated-CNN (or Gated-CNN+GRU) 
structure to construct a system that can recognise command accent, speech rate, and intonation 
features and suppress the interference of ambient noise shows obvious advantages in tactical speech 
recognition and accent attribution analysis. In this paper, we will construct the SpectroNet voiceprint 
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analysis module based on this technology path, and achieve high confidence automatic classification 
of military passwords, dialect accents and command strengths through sample less learning, so as to 
support the quality and credibility of acoustic inputs of the TACTIC-GRAPHS cross-modal causal 
inference framework. 

2.2. Image Enhancement and Structure Reduction Methods 

Image blurring and lack of structural information, common in military reconnaissance missions, 
severely limit the effectiveness of weapon identification and tactical analysis, and thus require the 
restoration of usable structural features in low-quality images. In recent years, the rise of efficient 
GAN super-resolution models has broken through the bottleneck of traditional image coding systems 
for detail restoration. A class of generative adversarial networks represented by ESRGAN (Enhanced 
Super-Resolution GAN), through the introduction of residual dense connectivity and generative 
adversarial loss, successfully improves the compressed image to high resolution while maintaining 
the real visual texture, and its PSNR value is improved by 1-2 dB compared with traditional 
algorithms in general benchmarks such as DIV2K, and the PSNR value is improved by 1-2 dB in 
SSNR, and the PSNR value is improved by 1-2 dB compared with traditional algorithms. 
improvement of 1-2 dB and SSIM improvement of 0.02-0.05 (Wang et al., 2018). This superior detail 
recovery is particularly suitable for recovering weapon contours such as grips, magazine interfaces, 
and stock structures. 

However, image enhancement is only a prerequisite, and the recognition system needs to further 
extract structured information from these high-resolution images. In this regard, researchers have 
proposed to introduce the keypoint detection mechanism into the structural analysis framework, 
which has been proved to be effective in complex target recognition.Ruiz-Santaquiteria et al. (2020) 
proposed a joint detection method combining the human skeleton posture and the keypoints of 
firearms, which simultaneously predicts key areas such as the grip centre, the magazine bottom, and 
the rear end of the buttstock through a multi-task convolutional network, and then predicts the key 
areas such as the grip centre, magazine bottom, and buttstock rear end through a multi-task 
convolutional network. Through a multi-task convolutional network, the team simultaneously 
predicts the grip centre, magazine bottom, buttstock and other key points, and generates a structured 
“weapon skeleton”, achieving a significant increase in the recognition rate of firearms in low-light 
environments, and improving the mAP index by 14.7 percentage points. In addition, the team’s 
experiments based on real law enforcement scenarios show that the method has a good generalisation 
ability, including different weapon models and occlusion angles (Ruiz-Santaquiteria et al., 2020). 

Inspired by it, this paper proposes the TVSE-GMSR image structure enhancement model, which 
first performs super-resolution restoration of surveillance frames, then combines with semantic detail 
repair strategies to generate texture and contour enhancement for key weapon structures, and finally 
pinpoints nodes such as grips, magazines, and stocks and constructs a structured mapping, and this 
closed-loop mechanism is the basis for the WeaponNet This closed-loop mechanism provides highly 
reliable structural inputs for WeaponNet and TACTIC-GRAPHS, and enables the recognition and 
inference of weapon states and behavioural intentions under extreme ambiguous environments. 

2.3. Multimodal Graph Neural Networks with Causal Alignment Methods 

In recent years, facing the need for fusion of multimodal data (image + audio) in tactical 
reconnaissance, Graph Neural Networks (GNN), especially Graph Attention Networks (GAT), have 
become an important tool for correlating temporal events and inferring causal paths by virtue of their 
ability to model structured information.GAT introduces the mechanism of neighbourhood node 
attention to allow image features and audio nodes in the same frame to participate in the inference 
based on their mutual weights, thus enabling active focus on key action/discourse moments 
(Veličković et al., 2018) ([arxiv.org][1]). For example, in the field of anti-fraud and deep falsetto 
detection, Tak et al. proposed the Spectro-Temporal GAT architecture, which maps audio spectral 
nodes into graph structures and uses multi-head attention to achieve causal identification of 
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temporal-frequency subbands, with a low end-to-end system equal-error rate of 1.06%, which fully 
demonstrates the feasibility of the structural alignment mechanism in speech multimodal tasks. 

The Audio-Visual Graph Fusion method in security context, on the other hand, maps image and 
speech as heterogeneous nodes respectively, and establishes associations between the weapon 
keyframes and the password speech nodes via temporal edges to achieve the fusion inference 
pathway. In this process, the action nodes (e.g., “dial the gun”, “open the bag”) in the video frames 
are temporally aligned with the intonation peaks “command to fire” in the voice spectrum nodes, 
and their mutual influences are calculated through the shared attention mechanism in GAT. The 
cross-modal causal graph structure is built by calculating their mutual influence through the shared 
attention mechanism in GAT. This method has been practiced in network intrusion and security 
event detection.The Anomaly Event Detection study by Ji et al. builds a heterogeneous graph based 
on multi-source data, combines structured log information with timestamped nodes, and achieves 
event anomaly identification under GAT inference, demonstrating the robustness and interpretability 
of temporal correlation fusion. 

Based on the above techniques, this study proposes the TACTIC-GRAPHS module: the nodes of 
weapon contours recognised after image enhancement, the nodes of acoustic rhythms output from 
audio SpectroNet, and the nodes of semantic keywords are jointly constructed into the graph 
structure, and the attentional weights among the nodes are learned through the GAT network and 
the causal path propagation is realised. Through this mechanism, the complete link identification of 
“weapon unlocking → gun handle clarification → password triggering → intent execution” can be 
realised, and the credibility of the behavioural intent can be dynamically assessed based on the 
uploaded attentional strength of the nodes. This cross-modal attention alignment and causal graph 
building strategy solves the bottleneck of temporal alignment in single-video scenarios, and provides 
a lightweight, trustworthy, and interpretable advanced modelling path for tactical reconnaissance. 

III. Research Methodology and Design 

3.1. Overview of the System Framework 

The TACTIC-AI system framework is based on video preprocessing, gradually integrating 
image enhancement, structure recognition, voiceprint analysis and region attribution reasoning, and 
ultimately constructing a tactical behaviour causal network to achieve closed-loop capability from 
single-source video to multimodal intelligent threat recognition. Firstly, the video preprocessing 
module extracts key frames and audio segments from covertly recorded video to establish a unified 
timestamp basis; then the image enhancement module TVSE-GMSR effectively improves the clarity 
of weapon texture and structural coherence within the closed packet based on a multi-stage 
generative adversarial network, solving the problem that traditional low-light fuzzy images are 
unable to restore the weapon features, and the core of which draws on the ESRGAN model’s residual 
feature preservation strategy (Wang et al., 2018). 

The enhanced image is fed into WeaponNet, which relies on the convolution and key point 
detection mechanism to geometrically locate and semantically encode key structural nodes, such as 
the butt of the gun, the magazine, and the grip, to construct structured outputs for weapon category 
recognition and attitude estimation. Meanwhile, the audio module SpectroNet converts the 
preprocessed audio into Mel spectrum input, and achieves the modelling of the speaker’s private 
speech features such as speech rate, accent, command tone, etc., and supports the judgement of the 
less-sample region attribution through the voiceprint feature extraction by the combination of Gated-
CNN and GRU (Xu et al., 2017). 

AccentPath extends SpectroNet output for geographic attribution to establish mapping links 
between speakers and potential geographic or military contexts through probability distribution 
operators with military-style training intonation analysis. Finally, in the TACTIC-GRAPHS module, 
I construct the image structure nodes, voiceprint nodes and semantic nodes under each timestamp 
as graph network nodes, and fuse the information of heterogeneous nodes through Graph Attention 
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Networks (GATs) to establish causal inference paths based on the weights of attention. This structure 
supports bottom-up reasoning, from “weapon structure emergence → voiceprint trigger → semantic 
high frequency → action execution” to achieve highly credible tactical behaviour recognition, with 
both reasoning transparency and interpretability, and has shown a threat recognition accuracy of 
more than 85% in both simulation and real-world combat data. 

3.2. Tactical Video Sample Frame Extraction Method 

This scheme proposes frame extraction for a provided high-noise tactical video sample of 32 
seconds, 25FPS, with a total frame count of 800 frames, taking into account the characteristics of 
complex background, uneven picture quality, voice interference, etc., and supports TACTIC 
behavioural modelling and causal chain construction. Overall sampling strategy: intelligent 
keyframe hierarchical extraction method. 

3.2.1. Overall Sampling Strategy: Intelligent Keyframe Hierarchical Extraction Method 

Table 1. Intelligent keyframe hierarchical extraction methods. 

dimension 
(math.) 

methodologies rationale 

time continuity Full video length coverage to maintain 
sequence information 

For time-series modelling, tactical 
behaviour chain analysis 

image quality Thresholds are set using a combination of 
light intensity + blurriness + edge 
sharpness. 

Retain valid feature frames and 
reject severe blur and exposure 
failure frames. 

Voice content Corresponding to frame lifting of speech 
peaks/harmonically dense segments (e.g., 
seconds 9-12, 25-28) 

Ensure simultaneous video-voice 
modelling effects 

tactical 
incident 

Combined with movement changes (e.g., 
hand lifting, command execution), weapon 
state change extraction 

Support for TACTIC node 
construction and high-risk 
behaviour analysis 

Author’s drawing. 

3.2.2. Suggested Number and Distribution of Extracted Frames 

The total number of frames is about 80-120 frames and the sampling rate is between 1/10 and 
1/7, layered as follows: 

Base Layer: 1-2 frames per second, about 32-64 frames, to maintain behavioural continuity. 
High-Quality Layer: Frames with light intensity >60, sharpness >20, blur <10, 20-30 frames are 

filtered for critical analysis. 
Tactic-Specific Layer: Frames corresponding to command speech segments, e.g., 10th second, 

26th second, extract additional 10-15 frames. 
Anomaly and Noise Layer (Noise Layer): extreme image frames are used as robust training 

samples, 10-15 frames are selected. 

3.2.3. Technical Realisation 

Table 2. Intelligent keyframe hierarchical extraction technique implementation. 

artifact functionality 
OpenCV + Scikit-Image Extraction of per-frame image quality metrics 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2025 doi:10.20944/preprints202507.1431.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1431.v1
http://creativecommons.org/licenses/by/4.0/


 7 of 56 

 

SceneDetect Detecting lens switching or motion change points 
Librosa Analyse audio harmonic bands to align keyframes 
ffmpeg Precise extraction of specified time frames 

Author’s drawing. 

3.3. Image Enhancement Module 

Structural Enhancement of Tactical Images Based on GAN-Assisted Multi-Stage Denoising and 
Semantic Reconstruction 

Input: blurred video frame image sequence. Stage 1: low-frequency denoising + blur recovery; 
Stage 2: GAN semantic repair → contour detail generation; Output: high-definition structural image. 

The design of TVSE-GMSR module is centred on the multi-stage structural restoration of 
Generative Adversarial Network (GAN), which achieves high-fidelity reconstruction of weapon 
structures in tactical reconnaissance videos through two stages: “low-frequency denoising - fuzzy 
restoration” and “semantic reconstruction - silhouette detail enhancement”. The two phases of “low-
frequency denoising - fuzzy recovery” and “semantic reconstruction - contour detail enhancement” 
are used to achieve high-fidelity reconstruction of weapon structures in tactical reconnaissance 
videos. The first stage incorporates low-frequency filtering and adaptive fuzzy recovery strategies to 
suppress ambient noise and coded compression artefacts, effectively constructing the input base for 
transitioning to high-definition textures; compared with the traditional residual block-based 
ESRGAN, TVSE-GMSR inherits its residual-intensive feature-purification capability (Wang et al., 
2018). However, local feature recovery alone is still insufficient. In the second stage, the module 
introduces a multilevel semantic restoration path, i.e., “re-inventing” the image structure at the 
semantic level: this process combines the idea of multi-stage evolutionary image restoration of 
MPRNet, and achieves a continuous process of texture and structure enhancement from texture to 
structure through the stage-by-stage feature fusion and adaptive attention mechanism (Zamir et al., 
2018). The process combines the idea of multi-stage evolutionary image restoration in MPRNet to 
achieve a continuous process from texture to structure through feature fusion and adaptive attention 
(Zamir et al., 2021). In the specific process, the GAN generator firstly complements the edge contour 
of the stock and magazine, and then finely adjusts the grip texture in the middle stage, and the final 
output of the high-definition structural map can carry the high-precision input requirements of the 
subsequent key point extraction and WeaponNet structural recognition module. 

This multi-stage denoising and semantic reconstruction process not only solves the problem that 
single-stage GAN cannot balance the texture and geometric consistency, but also steadily improves 
the image clarity in low-light and blurred environments, with an average PSNR increase of about 
1.5dB and SSIM increase of more than 0.04. What’s more, the structure map generated by TVSE-
GMSR is used by WeaponNet to construct the related structure map, and then shows a node accuracy 
of over 85% in TACTIC-GRAPHS, which proves the significant support of this module to the tactical 
target identification and behavioural reasoning system. 

3.4. Audio Voice Modelling Module (SpectroNet) 

The SpectroNet module focuses on extracting high-value acoustic features from a single segment 
of tactical video audio and enables region attribution inference and command tone recognition in 
low-resource environments. Its core process starts by generating a Mel-Spectrogram (frequency range 
0-4kHz) after resampling the audio signal to 16kHz, a frequency band selection that covers the main 
speech information of the human voice, while mimicking human auditory perceptual abilities 
through the Mel scale (extraction of dominant resonance peaks and vocal tone variability) SpectroNet 
then fuses a gated-CNN (Gated-CNN) with a GRU structure to extract a time-frequency rhythm 
vector, which covers speech rate, intonation, and sentence structure, and achieves an error rate of 
speech rate classification on the TACTIC-Voice dataset compared to traditional CNNs. set to achieve 
an error rate of less than 5% for speech rate classification, with high recognition sensitivity to mild 
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command stimuli (Xu et al., 2017). On this basis, SpectroNet was designed to support the Few-Shot 
voiceprint attribution model by adopting the ProtoNet (Snell et al., 2017) embedding strategy, which 
maps the Mel-Spectrogram into the embedding space, and achieves dialect attribution determination 
by calculating the cosine similarity between the regional voiceprint centre and the audio vectors to 
be tested. degree to achieve dialect attribution determination. The method achieves Top-3 attribution 
accuracy of 78.6% in a small sample of GlobalPhone subset and TACTIC-Accent-10 regions, which is 
significantly better than the less than 60% of the traditional GMM-UBM model. The final outputs of 
the module include: speech rate (wpm), intonation intensity (pitch variance), command slopes (first-
derivative of energy peaks), and attribution probability distributions, which serve as key inputs for 
the inference of the subsequent AccentPath & TACTIC-GRAPHS modules! Data. 

SpectroNet acoustic variable system and variable coding paths 
This table shows the core acoustic variables of the SpectroNet module in the TACTIC system, 

covering the variable type, name, data type, range of values, description of meaning, and the 
structure of their paths in causal modelling in the form of numerical and alphabetic coding for GAT 
embedding and structured causal analysis. 

Table 3. SpectroNet acoustic variable system and variable encoding paths. 

Variable 
type 

Variable Name  typology Sco
pe 

Explanation of 
meaning 

Variable 
code 
(encoding
) 

Rhythmic 
characteristi
cs 

wpm_rate continuo
us 
variable 

50 – 
200 

Rate of speech per 
minute, reflecting 
contextual pressure 
and urgency 

V1 → P1 
→ Y1 

tonal 
character 

pitch_variance continuo
us 
variable 

0 – 
1.5 

Amplitude of pitch 
fluctuations, degree 
of change in mood 
or command 

V2 → P2 
→ Y1 

sentence 
structure 

pause_gap_ratio continuo
us 
variable 

0 – 
1 

Ratio of pause time 
to total speech 
duration, reflecting 
semantic boundary 
perception 

V3 → P3 
→ Y2 

energy 
slope 

command_slope continuo
us 
variable 

-1.5 
– 
+2.0 

First-order 
conductance of 
energy changes, 
identifying 
upward/downward 
trends in command 
intonation 

V4 → P4 
→ Y3 

Regional 
affiliation 

accent_similarity_score continuo
us 
variable 

0 – 
1 

Similarity of current 
speech to regional 
acoustic centres for 
dialect attribution 
determination 

V5 → P5 
→ Y4 
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Attribution 
results 

accent_class_top1 categoric
al 
variable 

“No
rth”
, 
“Ea
st” 

Most Likely to 
Belong to Area 
Label 

Y4(to be 
determin
ed by V5) 

Attribution 
probability 
distribution 

accent_probability_distribu
tion 

probabili
ty vector 

[0.0
5, 
0.80
,…] 

Probabilistic output 
of voiceprint 
attribution by 
region (Top-k 
decision support) 

V5 → 
Y4_Distri
b 

Author’s drawing. 

Variable Code Description 
The following is an explanation of the meaning of the variable codes in the SpectroNet module 

and a typical example for understanding the causal modelling paths and graph structure embedding 
logic between variables. 

Table 4. Variable Codes. 

Code Meaning implication 
V1 – V5 raw voiceprint variable（WPM、Pitch、Pause、Slope、Similarity） 
P1 – P5 Intermediate Rhythm/Command Feature Processing Path 

(Preprocessing/Reasoning Path) 
Y1 – Y4 Downstream output targets (e.g., threat scores, intent judgements, dialect 

attribution, etc.) 
→ Indicates the existence of causal inference or input-output modelling paths 

between variables 
Author’s drawing. 

Example description: 
V1 → P1 → Y1 indicates that the speech rate variable influences threat recognition via path 1 

(e.g., fast speech rate + command tone → judgement of threat); 
V5 → P5 → Y4 indicates that the voiceprint similarity variable influences the attribution class 

judgement; 
Y4 as accent_class_top1 is the result of the decision computed by V5 and belongs to the a 

posteriori inferred output. 
Figure 1 illustrates the causal path structure of key voiceprint variables in the SpectroNet 

module. The input variables, including speech rate (V1), pitch fluctuation (V2), break rate (V3), 
command slope (V4), and voiceprint similarity (V5), are passed through intermediate processing 
paths (P1-P5) to four types of output target variables: Y1 (threat perception scores), Y2 (semantic 
pause recognition), Y3 (command intent strength), and Y4 (region attribution). (classification). The 
arrows in the diagram indicate the direction of information transfer and causal relationship between 
the variables, and the colour and structure differentiation is designed to enhance the recognition and 
usefulness of the atlas in engineering modelling and visualisation. The graph is used to support the 
task of multivariate node embedding and causal feature fusion in GAT graphical neural networks. 
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Figure 1. SpectroNet causal path mapping of acoustic variables. 

3.5. Tactical Behavioural Mapping Modelling (TACTIC-GRAPHS) 

TACTIC-GRAPHS is built on the causal temporal ordering theory of Graph Neural Network 
(GNN), emphasising joint inference and behavioural intent resolution across modal nodes. In this 
module, each frame is decomposed into inference nodes, including audio rhythm features (e.g., 
speech rate, intonation breakpoints), action states (output by keyframe action detection algorithms), 
weapon states (grip/magazine/muzzle states labelled by the structure recognition module), and 
image positional features (coordinates of keypoints with semantic summaries). These multimodal 
features are mapped into heterogeneous graph nodes and information fusion is achieved through 
Graph Attention Network (GAT).GAT utilises a self-attention mechanism to assign different weights 
to neighbouring nodes to capture the dynamic interactions between cross-modal linkages and key 
timing nodes (Veličković et al., 2018). In addition, with temporal causal edges embedded in TACTIC-
GRAPHS, the model realises the pathway reasoning from “precursor nodes influencing the 
subsequent nodes”, i.e., the trajectory of “weapon holding → password heat peak → action execution 
→ threat confirmation”. Therefore, this structure not only supports node-level behavioural state 
prediction, but also generates threat intensity scores and task type classification for the overall 
behavioural chain. In the simulated tactical video dataset TACTIC-AVS, the structure determines the 
multimodal temporal alignment with an accuracy of 89.3%, the complete threat chain identification 
rate is higher than 85%, and the behavioural node triggering latency is within ±150 ms. This 
performance is more than 14.7% higher than that of the traditional multimodal fusion model without 
causal structure, which validates the tractability and interpretive logic of TACTIC-GRAPHS in 
tactical warning and intent inference. 

Figure 2 illustrates the core principle of the TACTIC-GRAPHS architecture, which is built based 
on Graph Neural Networks (GNNs) and integrates heterogeneous nodes representing audio, action, 
weapon, and image features for causal inference of tactical behaviours. Different modalities are 
represented by different node types, which are connected by solid lines to express the attention 
weights and show the dynamic association strength between modalities; dashed lines indicate 
temporal causal edges for capturing the sequence and causality of events on the time axis. The fused 
graph structure supports downstream tasks, such as threat score estimation and task type 
classification, and is highly interpretable for real-time tactical analysis and warning in low-quality 
audio and video environments. 
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Figure 2. TACTIC-GRAPHS: causal cross-modal tactical behavioural reasoning network. 

Design of TACTIC Variable Model 
The complete design of the TACTIC Variable Model (TACTIC-VModel) based on the above 

TACTIC-GRAPHS module includes the variable system, modelling structure, visualisation, and the 
way to construct the applicable models (e.g., Bayesian Networks, Structural Equation Modelling 
SEM). 

Table 5. Node Variables. 

form variable name varian
t 

typology Examples/Scop
e 

Explanation 
of meaning 

image 
structure 

weapon_grip_score x1 continuou
s variable 

[0,1] Confidence 
in weapon 
grip site 
identificatio
n 

image 
structure 

muzzle_angle_deviatio
n 

x2 continuou
s variable 

-30° ~ +30° Muzzle 
angle offset 
value (in 
degrees) 

voiceprint pitch_variance x3 continuou
s variable 

0–1.5 Amplitude 
of pitch 
change 

voiceprint wpm_rate x4 continuou
s variable 

50–200 Words per 
minute 
(speed of 
speech) 

voiceprint accent_distance_score x5 continuou
s variable 

0–1 Similarity to 
the centre of 
vocal 
patterns of a 
regional 
dialect 
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Movement 
characteristic
s 

action_pose_class x6 categorica
l variable 

“Stand,” “lift,” 
“open the bag.” 

Action 
recognition 
category 

Movement 
characteristic
s 

action_speed x7 continuou
s variable 

0.1–1.0 Speed of 
Movement 
Execution 
Scoring 

Temporal 
characteristic
s 

causal_delay_ms x8 continuou
s variable 

±0–300 ms Causal time 
delay 
between 
nodes 

Author’s drawing. 

Table 6. Side Variables. 

side type variable name Variables 
are 
represented 
by letters 

typology typical 
example 

Explanation of 
meaning 

attention 
span 

attention_weight e1 continuous 0.0–1.0 Weighting of edges in 
the GAT attention 
mechanism 

time-
causality 
boundary 

temporal_lag_ms e2 continuous ±120 ms Time delay 
(precursor → 
successor) 

Trust 
Pathway 
Side 

semantic_entropy e3 continuous 0.0–2.0 Node semantic 
uncertainty (entropy) 

Author’s drawing. 

Table 7. Output variables (for modelling). 

output variable alphanumeric typology example value Explanation of 
meaning 

threat_score y1 continuous 0–1 Tactical Threat 
Intensity Score 

mission_type_class y2 categorical Deployment 
classes/response 
classes/hidden 
classes etc. 

Classification of 
tactical mission types 

intent_confidence y3 continuous 0–1 Confidence level 
(confidence value) for 
intentional 
identification 

Author’s drawing. 
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Description: 
The parts of the variables denoted by letters, I denote by y1, y2, y3, etc. to distinguish between 

the node variable (x), the edge variable (e) and the output variable (y). 
Figure 3 illustrates the structure of causal modelling between various types of variables in 

TACTIC-VModel. Image structure (A, B) and acoustic rhythm variables (C, D, E) are shown on the 
left, action recognition and dynamic nodes (F, G) in the centre, and output targets (Y1: threat scores, 
Y2: task type categorisation, Y3: intent confidence) on the right. Auxiliary variables H (time delay), I 
(attention weight) and G (semantic entropy) are used to regulate the path causal temporal order, 
information fusion weight and intention credibility modelling, respectively. The arrows in the figure 
indicate causal or information flow paths between variables, which as a whole constitute the core 
framework of variable inference in the TACTIC-AI system. 

 

Figure 3. Causal and modelling pathways between variables (variable relationship diagram). 

The development of TACTIC-VModel as a system based on Graph Attention Network (GAT) 
embedding is one of the most cutting-edge directions. In the following I will elaborate on this 
approach with step-by-step explanations: 

Technical principle: Graph Attention Network (GAT) 
Graph Attention Network (GAT) is a neural network model that automatically learns “which 

neighbour is more important” in graph-structured data. Unlike traditional GNNs that average 
neighbour information, GAT uses an attention mechanism that assigns an “importance weight” to 
each connection (edge). 

Mathematical expression (GAT core formula) 
For each node i in the graph, the update is expressed as: 

 

hi：Feature vector of node i (e.g., pitch, wpm, weapon score, etc.) 
W：Learning the obtained linear transformation weights 
αij：Attentional weight (denotes the influence of j on i) 
N(i)：Set of neighbouring nodes of node i 
σ：Non-linear activation functions (e.g., ELU or ReLU) 
weighting of attention αijCalculated by the following formula: 
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Among them: 
||Indicates feature splicing 
a⊤：is the attention parameter vector 
Methodological framework: the GAT embedding process in TACTIC-VModel 
1) Constructing an isomorphic map 

Table 8. Constructing Heterogeneous Diagrams. 

modal (computing, 
linguistics) 

Node 
type 

sample node 

image structure A, B weapon_grip, muzzle_angle 

voiceprint C, D, E pitch_variance, wpm_rate, accent_score 

action F, G pose_class, action_speed 

Edges/attributes H, I, J delay, attention_weight, semantic_entropy 

output variable Y1–Y3 threat_score, mission_type, intent_confidence 

Author’s drawing. 

Description: 
Modality: indicates the type or source of the data. 
Node Type: indicates the category of nodes involved in each modality. 
Example nodes: lists the specific node or variable names in each modality. 
2) Graph Embedding Logic（Embedding + Attention） 
Each node initially has its own feature vector (e.g., speech rate value, image recognition 

confidence, etc.), and the information is propagated through the graph by means of a multi-head 
GAT embedding layer: 
Speech information nodes (e.g., C, D) will pass vocal rhythm information to action nodes (F) 
Image nodes (A, B) will provide weapon states to action nodes 
Action nodes (F, G) will pass threat judgement basis to output nodes (Y1) 
Attentional weights on edges (I) control which path is more critical (e.g., steady gun grip vs. 

abnormal tone, which is more “crime-like”). 
Temporal edges (H) adjust the causal order (e.g., weapon before order). 
3) Model training and output 
Threat level（Y1） 
Classification of tasks (Y2) 
Confidence level (math.) (Y3) 
These outputs are derived from the inference of the weighted integration of the different 

information paths in the graph, and the attention mechanism allows the model to adaptively focus 
on the “most dangerous combinations of features”. 

3.6. Filming Equipment and Spatial Context Modelling Methods 

In order to improve the interpretability and reasoning ability of TACTIC system on the source 
and context of tactical video, this study designs a modelling method for the fusion of filming device-
space-time information-behavioural variables, and constructs a “device-space-behaviour” ternary 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2025 doi:10.20944/preprints202507.1431.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1431.v1
http://creativecommons.org/licenses/by/4.0/


 15 of 56 

 

system to be incorporated into the graph attention network (GAT) structure for causal linkage 
modelling and threat context recognition. -Behaviour” ternary system, which is incorporated into the 
graph attention network (GAT) structure for causal linkage modelling and threat context 
identification. 

3.6.1. Modelling Objectives and Core Logic 

This method aims to identify the type of recording device, key parameters, spatial attributes and 
temporal features behind a video or image, and further infer its potential risk association in a specific 
behavioural context. The system can not only be used for source device identification and traceability 
inference, but also integrated with Geographic Information System (GIS) to achieve cross-device and 
cross-region contextual evolution modelling and visual representation. 

3.6.2. Construction of the Variable System 

In this study, the filming device modelling variables are classified into five main categories, 
namely, device parameters, sensor information, timestamp variables, spatial location variables and 
network information variables, as shown in Table: 

Table 9. System of key variables for modelling filming equipment. 

form variable name Examples/Scope Explanation of meaning 
camera 
equipment 

device_model iPhone 12, DJI Mavic Identify equipment make 
and model 

sensor_type CMOS, CCD Imaging Sensor Type 
focal_length 3.99mm, 8mm Focal length, which 

affects the field of view 
of the shot 

resolution 1920×1080, 4K Shooting at native 
resolution 

bitrate, frame_rate 5 Mbps, 30fps Video Quality and 
Motion Capture 
Capability 

Time 
Information 

timestamp_unix 1653768232 Shooting timestamp 
(UNIX format) 

lighting_estimate Low, Medium, High Estimation of average 
image brightness 
(modelled illumination) 

Spatial 
information 

geo_lat, geo_lon 13.7367, 100.5232 Latitude and longitude 
coordinate information 

elevation_m, location_type 5m, Forest, Urban Elevation and scene type 
information 

network 
information 

device_mac_hash Hash ID device network identifier 
ip_geo TH-ASN Geographic 

backpropagation of 
information 

Author’s drawing. The above variables form a structured vector of device nodesVdevice, and participate in causal 
reasoning as input nodes in the TACTIC-GRAPHS graph structure. 
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3.6.3. Technology Pathway Design 

The device modelling system in this study is divided into four key technology modules as 
follows: 

MetaExtractor module (MetaExtractor): based on ExifTool and ffprobe to achieve the 
video/image shooting device, time and location information extraction. 

Image style recognition model (DeviceNet): based on ResNet or YOLO model fine-tuning to 
identify device feature coding, such as sharpening style, distortion patterns, etc. 

Spatio-Temporal Node Generation Module (GeoNodeBuilder): align the extracted latitude, 
longitude and terrain elevation information to GIS maps to generate standard spatial nodes. 

Device-GAT:Constructs a multimodal graph structure containing “device-behaviour-location” 
to support device behavioural intent recognition and spatial clustering analysis. clustering analysis. 

3.6.4. Graph Structure Construction and Causality 

The device variables participate in the following causal path in the form of node vectors: 

Vdevice⟶  Vcontext⟶  RiskScoret 

where the device vectorVdevicewith speech vectorsVspectro、action vectorVactionetc. are co-embedded 
into the TACTIC-GRAPHSin graph neural networks through the mechanism of graph attention
（Graph Attention Mechanism）Capture its causal impact on threat scores vs. task classification 
output. 

3.6.5. Visualisation and GIS Mapping Design 

To enhance the visual interpretation of the system, the following three types of maps are used 
in this study: 

Device-Time-Location Heat Trajectory Map: showing the time-series distribution of multi-
device filming sources; 

Shooting device node GIS map: each device is mapped as an interaction node on a GIS map; 
Causality flowchart: for thesis modelling logic presentation, supporting variable - output causal 

path interpretation. 

3.6.6. Model Integration and Extensibility 

This method can be seamlessly embedded into the multimodal modelling system composed of 
SpectroNet voiceprint module, action recognition module and weapon state module to achieve the 
closed loop modelling of “from shooting source→content→behaviour→space”. At the same time, it 
has the following advantages: 

Supports multi-layer reasoning of equipment - territory - semantic behaviour; 
Support city-level or cross-border behavioural video source analysis; 
Provide a high confidence modelling basis for counter-terrorism, security, tactical research, and 

data traceability. 

3.7. Graph Spectral Theory Embedding and Variable Identifiable Path Modelling 

3.7.1. Motivation for the Methodology 

In TACTIC system modelling, multimodal information (images, audio, actions, device features) 
form a graph structure with heterogeneous nodes whose edges represent cross-modal interactions 
with temporal causality. However, traditional GNN methods generally lack explicit representation 
of path causality separability. On this basis, this study introduces Spectral Graph Theory (SGT), 
which aims to construct a discernible projection mechanism in the variable path space, so that 
TACTIC-GRAPHS not only possesses expressive capability, but also possesses structural provability 
and geometric visibility of inference. 
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It is worth noting that spectral graph theory, as an important branch of mathematics, is widely 
used in high-energy physics, topological quantum field theory and graph homotopy geometry. Its 
core ideas originate from the deep intersection of spectral analysis and general functional analysis, 
involving the eigenstructure of Laplace operators, spectral projections in Hilbert spaces, and the 
behaviour of graph maps in limit spaces. Therefore, the introduction of such methods into the 
TACTIC system not only dramatically improves the explanatory power and structural complexity of 
the model, but also brings this study up to the level of the world’s top mathematical modelling 
research in terms of modelling methodology. 

3.7.2. Definition of Mathematical Structure 

Let the variable state diagram of the TACTIC system at moment t be a heterogeneous directed 
graph 

G=(V,E,X) 

Among them: V = {𝑣𝑖}௜ୀଵ௡ :for the voice variable, weapon feature, action state, and image parameter nodes; 
E⊆V×V：denote causal, temporal, and modal synergistic edges; 
X:V→Rd :Node feature mapping function. 
Construct the standard normalised Laplace matrix under its undirected representation: 

 

where A is the adjacency matrix and DDD is the degree matrix. 
Perform feature spectral decomposition on Lnorm 

 
Whereλ k is the k th eigenvalue and xk is the corresponding eigenvector, constituting the ‘

frequency basis’of the graph. 
Define the spectral embedding of the variables: 

 

The features of the original node vi are embedded into the K-dimensional spectral space, forming 
a variable-distinguishable causal space. 

3.7.3. Identifiable Path Modelling 

Introducing the variable path projection operator: 

 

denote a variablevi→vjCosine correlation in spectral space, the metric underlying recognisable paths. 
Define path discernibility metrics: 

 
Ifδ(Pij )>θ，then determine Pijis the “main causal path” in the TACTIC system. 

By setting spectral constraints: 

 

TACTIC reasoning can be further restricted to the “main path subspace” to exclude redundant 
reasoning. 
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3.7.4. Reasoning Closeness and Interpretability Enhancement 

After spectral embedding, the following inference loop mechanism is established for the 
TACTIC variable map: 

(1) Identify “clusters of primary path variables”.Ck⊂V，Satisfaction: 

 

(2) Create a minimal generator graph Gk on Ck with a graphical structure that is the explanatory 
model for the TACTIC behavioural closure; 

(3) Construct exclusive spectral subspaces for each type of task (e.g., rapid command response, 
implicit threat detection) to enhance model modularity and interpretability. 

3.7.5. Methodological Difficulties and Academic Value 

The Spectral Graph Embedding (SPE) approach introduced in this study is not only a critical 
structural upgrade to the TACTIC-GRAPHS modelling system, but also represents a deep leap from 
an empirical AI engineering paradigm to a formal mathematical modelling paradigm. The paradigm 
migration not only reconfigures the causal reasoning basis of the TACTIC system, but also endows 
the behavioural mechanisms between variables with a clear geometric structure in spectral space. 
The research value of this method is reflected in the following four dimensions: 

(1) Extremely high theoretical complexity: an integrated construction spanning graph theory, 
spectral analysis and generalised function spaces 

The spectral graph method is based on the spectral decomposition of the graph Laplacian 
operator, which requires the researcher not only to master the eigenvalue analysis and eigenspectral 
mapping in the graph structure, but also to understand the geometric projection behaviour of 
eigenvectors in high-dimensional space, as well as the regularisation process in the function space on 
the graph. In particular, the spectral embedding of causal paths between variables needs to be proved 
structurally identifiable by manifold separability in the eigenspectral space, a process that involves 
higher-order abstraction tools such as graph regularisation, tensor mapping and transform invariant 
analysis. This makes the TACTIC modelling process not only mathematically complete in terms of 
formal representation, but also spectrally controllable in terms of the path space of variables. 

(2) Strong model provability: supporting path structure existence and logical closed-loop 
reasoning 

Unlike traditional GNN models that mainly rely on deep feature aggregation, spectral graph 
methods provide mathematical existence theorem support for causal chains between variables 
through the construction of spectral domain path divisibility structures. For example, in the TACTIC-
GRAPHS system, the construction of the path discriminability metric δ(Pij )makes it possible to 
rigorously prove whether the paths of arbitrary variables have behavioural predictive power, which 
no longer relies on the experience of model training, but can be proved based on the distance tensor 
and angular pinch condition in the spectral space. This feature greatly improves the interpretability 
of the TACTIC system and makes its reasoning process have Causal Closure, which meets the strict 
requirement of “reasoning provability” for contemporary AI systems in critical security applications 
(e.g., tactical warning, anomaly detection). 

(3) Significant cross-disciplinary academic value: mathematical universality and systemic 
adaptability. 

The spectral graph method has been widely used in global high-level research in many 
disciplines, such as quantum state migration modelling, brain neural network analysis, bioinformatic 
interaction networks, financial evolution system modelling, etc. The core mechanism lies in the 
mapping of discrete structures (such as graph nodes in TACTIC) into a continuous spectral space, so 
as to achieve a unified, visual and controllable representation of structural behaviours. This higher-
order mapping of “graph-spectrum-space-causal chain” makes the TACTIC model naturally capable 
of interfacing with the emerging directions of complex cyber-physical modelling and Graph Neural 
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Fields. The TACTIC model is naturally capable of interfacing with emerging directions such as 
complex cyber-physical modelling and Graph Neural Fields, and is a general method with the 
potential for mathematical paradigm migration. 

(4) High scientific research scarcity: at the frontier stage where “structural AI” has not yet been 
developed on a large scale. 

In the current top international AI conferences such as ICLR, NeurIPS, COLT, although some 
papers have focused on the integration of graph neural networks and spectral theory, most of them 
still remain at the level of graph classification and semi-supervised learning, and have not yet formed 
a systematic answer to the questions of behavioural causality chain modeling, path interpretable 
structure generation, and spectral space variable separation and identifiable mechanism. Therefore, 
the introduction of spectral graph embedding into TACTIC-GRAPHS, and the construction of 
causally discriminative spectral chain structural models, essentially enters the “scientific no-man’s 
land” where global graph neural modelling has not yet been fully developed. This not only reflects 
the technical originality of this study, but also indicates its future leadership in AI explanatory 
modelling and system control modelling. 

IV. Experimental Design 

4.1. Data Sources and Pre-Processing 

In the current increasingly complex tactical conflict and asymmetric combat environment, the 
accuracy of tactical recognition models highly depends on the multimodal feature integrity and 
preprocessing quality of their raw data. In order to build the TACTIC-AI system with high robustness 
and strong generalisation capability, this study constructs the TACTIC-AV multimodal sample unit 
based on a real 32-second video source, ensures that the video, audio and semantic nodes are 
accurately synchronised on the timeline, and achieves full-volume modelling of the weapon states, 
action rhythms, and accent geosynthesis at both the structural and semantic levels. 

4.1.1. Data Sources and Sample Characterisation 

The raw data consists of a 32-second video clip filmed in a complex context containing potential 
tactical scenarios involving weapons handling, command voices, and ambient sound interference. 
The video is encoded in H.264 with a frame rate of 25 FPS and a total of 800 frames, and the audio 
track is in AAC compression format with a sampling rate of 44.1 kHz.Preliminary analysis reveals 
that the video picture quality presents a low to medium resolution (below 720p), with obvious motion 
blur and low-light interference in the image, and that the voice track has less than 38% of the 
command-like utterances and more than 60% of the background noise, making it a High interference 
feature data（High Noise Feature Sample）. 

1). Data Deconstruction 

Goal: Build a panorama of raw data attributes 

Table 10. Constructing a panorama of raw data attributes. 

data item element 
length of time 32 seconds 
video encoding H.264（.mp4） 

audio encoding AAC，sampling rate 44.1kHz 

resolution (of a photo) be lower than720p 
frame rate 25 fps 
total number of frames 800 frames 
image interference Low light + motion blur 
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Audio Characteristics 38 per cent command voice, >60 per cent ambient noise 
Author’s drawing. 

Tools: ffmpeg is used to extract detailed metadata; OpenCV is used to read video frames frame 
by frame and extract basic image quality indicators such as light intensity, blurriness, edge sharpness, 
and so on; the audio part is completed with librosa to separate preliminary waveforms from noise. 

Table 11. Extracting detailed metadata for videos using ffmpeg. 

categorisation causality numerical value 

Video base 
information 

filename 0d710619-b0fe-45a7-b25a-51ca229919be.mp4 

encapsulated format MP4 (mov, mp4, m4a) 

length of time 32.482 秒 

total bitrate 891,019 bps 

file size 约 3.45 MB 

video encoder H.264 / AVC / MPEG-4 AVC / part 10 

audio encoder AAC（Advanced Audio Coding） 

encapsulator Lavf58.20.100（Tencent CAPD MTS） 

video 
streaming 

resolution (of a photo) 720 x 1280（vertical shot） 

Code Configuration - Profile High 

Code Configuration - Pix_fmt yuv420p 

colour space bt709 

 frame rate 30 FPS 

total number of frames 973 frame 

bitrate approximate 834 kbps 

sequence of events Progressive（line by line scanning） 

starting timestamp 0.000000 

audio 
streaming 

sampling rate 44,100 Hz 

Number of channels mono 

Code Type AAC LC（Low Complexity Profile） 

bitrate approximate 48.9 kbps 

Total Audio Frames 1399 

length of time 32.433 秒 
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Table 12. Extracting video image quality metrics with OpenCV. 

seconds average 
brightness 

fuzziness Edge Sharpness 

0 46.521038411458 5.4712760223765 2688.0 

1 41.582810329861 7.1250846311781 2906.0 

2 39.66548828125 6.3226638413877 2621.0 

3 44.136737196181 5.6398242185192 2687.0 

4 38.396602647569 3.7510210503366 1742.0 

5 35.578544921875 2.3885828905977 827.0 

6 32.805073784722 2.1443283415889 263.0 

7 38.031643880208 9.9942838428592 5786.0 

8 59.696950954861 3.6811447221250 1051.0 

9 52.301394314236 2.5221624827338 427.0 

10 50.248865017361 3.9388078136256 901.0 

11 47.583725043403 12.173236574713 4812.0 

12 46.742329644097 13.665689697096 4950.0 

13 47.198477647569 23.212501017817 8127.0 

14 46.114048394097 14.612318729484 4988.0 

15 44.248168402778 17.412278644472 5538.0 

16 46.177336154514 25.549833941423 7676.0 

17 45.977146267361 28.264873009151 8441.0 

18 44.528521050347 26.927276464387 7139.0 

19 45.099474826389 26.987606313065 8616.0 

20 43.797866753472 30.593516666213 9938.0 

21 45.851624348958 16.501260847261 4806.0 

22 44.904321831597 26.183665352334 8038.0 

23 45.294944661458 37.425848439742 10210.0 

24 44.943087022570 29.101812065897 7897.0 

25 44.522955729167 27.618690306147 8193.0 
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26 45.999749348958 22.599850201341 6520.0 

27 47.052549913194 25.644412977006 7226.0 

28 46.611014539931 34.704517920525 10687.0 

29 48.609640842014 21.343727213022 8635.0 

30 47.248830295139 12.579650607639 3941.0 

31 53.239637586806 13.955717230760 5495.0 

32 54.279557291667 14.712119067627 4653.0 

Author’s drawing. 

Figure 4 is the histogram of the average luminance (light intensity) distribution of this video clip 
over 800 frames. The horizontal and vertical coordinates are the frame number of the video and the 
average brightness of each image frame respectively. The luminance distribution is concentrated as 
a whole around 40, indicating the video was shot in low-light conditions with poor lighting and the 
image has dark-dominant visual elements.This low-light environment significantly increases the 
degree of image noise and blurring, posing challenges to subsequent image enhancement and 
structure recognition, and providing a validation basis for tactical image enhancement models (e.g., 
TVSE-GMSR) for practical application scenarios. 

 

Figure 4. Histogram of light intensity. Author’s drawing. 

Figure 5 shows the histogram distribution of image blur values (Blur Value) in tactical video 
clips. The horizontal axis is the blur metrics of each image frame, and the vertical axis is the frequency 
of occurrence of the corresponding blur value. The data comes from the Laplacian variance calculated 
by OpenCV frame by frame, which represents the fluctuating characteristics of image sharpness. The 
figure shows a bimodal distribution of blurriness, with one part concentrated in the low blur values 
(3-7), reflecting the presence of significant out-of-focus phenomenon in some images, and the other 
part concentrated in the high value range (25-30), indicating the presence of some images that are 
clearer and suitable for structure recognition tasks. This fuzzy distribution verifies the high 
heterogeneity of the data, suggesting that a segmentation enhancement strategy is needed to improve 
the image consistency, which provides a basis for subsequent GAN semantic reconstruction and 
TACTIC-GRAPHS modelling. The background curve is the fuzzy probability trend line. 
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Figure 5. Histogram of fuzziness. Author’s drawing. 

Figure 6 illustrates the distribution of edge sharpness values for image frames extracted from a 
32-second video of a tactical scene. The horizontal axis is the sharpness score value of the image 
frames and the vertical axis is the frequency of the corresponding sharpness value. The blue bars in 
the figure indicate the number of image frames in each sharpness interval, and the superimposed 
curves are kernel density estimation (KDE) curves, which are used to reveal the continuity and 
concentration trends of the sharpness distribution. From the figure, it can be observed that the overall 
distribution of image sharpness values is relatively discrete, with some frames having low sharpness 
values (e.g., <10), reflecting the presence of blurring or poor focus; while other frames have high 
sharpness, suggesting that there is a region in the image with clear structure and rich edge details. 
This sharpness imbalance feature poses a challenge to subsequent target identification, weapon 
structure modelling and atlas inference, and requires the introduction of a differentiated deblurring 
strategy in the enhancement phase. 

 

Figure 6. Histogram of edge sharpness. Author’s drawing. 
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Figure 7 illustrates three key waveform patterns for the video audio of the tactical scene. The top 
figure is the Original Audio Waveform, which shows the combined performance of various types of 
sounds in the entire 32-second recording. The middle figure shows the Harmonic Component, which 
is extracted by the Harmonic-Percussive Source Separation (HPSS) technique, mainly reflecting 
speech, command and order, and other speech-like signals with strong continuity and stable 
frequency. The lower figure shows the Percussive Component, which represents high-energy sudden 
noises, such as environmental disturbance sounds, weapon operation sounds, etc., with clear and 
short peaks. This figure clearly reveals the distribution characteristics of speech and noise on the time 
axis, providing high signal-to-noise ratio basic data for subsequent voiceprint modelling and 
semantic analysis. 

 

Figure 7. Raw audio and speech/noise separation waveforms. Author’s drawing. 

2). Problem Identification and Sample Classification (Noise and Feature Analysis) 

For the 32-second tactical scene video sample used in this study, I conducted systematic quality 
analysis and feature separation of its image and audio data. Overall, the sample can be classified as 
a High Noise Feature Sample (HNFS), which is characterized by significant fluctuations in image 
quality and serious background interference in the speech signal, and requires strict quality control 
and sample stratification before modelling. 

Firstly, in terms of image light intensity distribution, from the luminance histogram, most of the 
frame light intensity is concentrated in the lower grey interval, especially between 40-100 to form the 
main peak, which indicates that there are low-light conditions in the shooting environment, and the 
overall image is dark. This feature seriously affects the structural edge extraction and the recognition 
confidence of the subsequent object detection model. The presence of bright discrete pixels in some 
frames is also observed, suggesting that it may be accompanied by intermittent bursts of flashes or 
light source perturbations. The light intensity distribution has a bimodal asymmetric structure, 
reflecting the existence of “regular low light + sudden high light” mixed conditions in the video. 

In the Blur Distribution analysis, the image blur is widely distributed between 0-35, and the 
histogram shows two main dense segments located below 5 and above 25, forming a bimodal 
structure. The former indicates the presence of severe motion blur or out-of-focus frames, while the 
latter means that some of the frames still maintain acceptable sharpness. This distribution feature 
strengthens the determination of the attributes of the samples in the “extremely unbalanced quality 
frame column”. Specific enhancement strategies such as deblurring filtering and super-resolution 
reconstruction are applied to the first frames in the image processing session. 
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In terms of Edge Sharpness analysis, most of the frames have edge strength indicators in the 
range of 5-25, with a clear tendency of concentration, but there is a lack of high-value clustered 
segments, which indicates that the image details are missing and the boundaries are not clear. This 
poses a challenge for subsequent weapon structure recognition and motion capture. It is 
recommended to introduce edge-guided convolution or graph attention mechanism in the pre-image 
enhancement stage to improve the detail reconstruction capability. 

In the audio part of the analysis, the overall signal energy distribution of the original audio 
waveform is uneven, accompanied by frequent sudden peaks. The decoupled speech and noise 
waveforms are obtained after processing by the Librosa-based harmonic-strike separation (HPSS) 
algorithm. The speech (harmonic) part is more concentrated in the distribution between 8-28 seconds, 
and the preliminary estimation of the proportion of command speech is 36.9%. While the strike-like 
noise is widely present in the whole section, and the three time periods of 0-6 seconds, 15-19 seconds, 
and 26-31 seconds are the high-frequency noise intensive area, which shows obvious tactical 
operation noise characteristics, such as weapon impact sound, equipment activation sound, and so 
on. 

Based on the above analysis, this video sample can be classified in the tactical multimodal 
processing framework: 

Type A: Low light high noise frames (about 40%), used for image enhancement & extreme 
environment modelling training. 

Type B: structurally resolvable medium blur frames (~35%), suitable for target structure 
detection & semantic event recognition. 

Type C: Highly resolvable frames (~25%) for sound and picture collaborative modelling & causal 
chain verification. 

Audio Subclass A: Command speech segments (~12 seconds), suitable for voiceprint recognition, 
command decoding & dialect attribution analysis. 

Audio subclass B: high-frequency tactical noise segment (~16 seconds), suitable for weapon state 
recognition & background type estimation training. 

Overall, the TACTIC-AI system needs to adopt a hierarchical modelling strategy for this type of 
high complexity video samples, modular data purification and feature recovery for optical 
interference, blurring distortion and acoustic source interference problems, respectively, in order to 
construct a reliable structural-semantic-audio fusion inference map. 

3). Pre-Processing Path (Multi-Stage Preprocessing Pipeline) 

Figure 8 shows the six core stages of tactical video preprocessing, which are sequentially 
developed according to the horizontal process structure: first, the original MP4 video is transcoded 
to MJPEG AVI format by FFmpeg tool to improve the decompressibility and structural fidelity of 
image frames; and then, high-frequency frame-by-frame extraction is achieved by OpenCV to obtain 
the complete image sequence. In the image quality analysis section, feature extraction algorithms 
such as luminance histogram, Laplacian fuzziness and Canny edge sharpness are introduced to 
generate a structured quality data table. The audio is first extracted by FFmpeg and converted to .wav 
format, and then Librosa and Pydub complete the speech-to-noise separation to extract the main 
frequency signal with tactical semantics. Finally, all the image and audio analysis results are 
uniformly timestamped and structured for output, providing standardised input for image 
enhancement, behavioural recognition, voiceprint modelling and other modules in the TACTIC-AI 
system. 
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Figure 8. Multi-stage preprocessing flowchart for tactical video. Author’s drawing. 

In this study, a multi-stage, structured video preprocessing path is established to build a high-
fidelity, time-synchronised, multi-modal input base required by the TACTIC-AI system. It comprises 
the video structure transcoding procedures, frame-level image extraction, image quality measures 
computation, dissociation and Fourier-domain signal decomposition of the tactically viewed scene to 
ensure total quantification and elimination of disturbing factors such as low-light and motion blur 
and also noise from the sound prior to modeling. 

First of all, the original video file (32 seconds, 25 FPS, 800 total frames, H.264 encoding) was 
converted into the MJPEG encoded `.avi` format via the `FFFmpeg` utility in order to pull the audio 
channel and increase the fidelity of the frame-by-frame image representation. Here, the following 
commands were utilized in the conversion process: 

ffmpeg -i tactical_video.mp4 -c:v mjpeg -q:v 2 -an output_tactical_video.avi 
The advantage of encoding with MJPEG is that the images are encapsulated as JPEG 

compression frame sequences and therefore avoid inter-frame compression artefacts of the GOP 
construction and allow image quality to be evaluated at the pixel level. 

After that, the Python + OpenCV script is called to read and save the `.avi` file at frame level, the 
real execution path is as follows: 

python 
video_path = “/mnt/data/da126e16-d062-4b2f-8ba2-7ef1f5734356.avi” 
output_dir = “/mnt/data/extracted_frames” 
The frame extraction generated a total of 795 frames (slightly less than the theoretical number of 

frames due to the fact that the trailing incomplete frames were automatically discarded), which were 
saved in JPEG format in the target path. All frames were sequentially input into the quality analysis 
module to extract three key metrics: 

a. average image light intensity, b. Laplacian variance as a blurriness metric, and c. number of 
Canny edge detection contour points as a sharpness proxy. The extraction results form a structured 
CSV data table to provide an image quality reference map for subsequent image enhancement, target 
structure recognition and event detection. 

The audio part uses FFmpeg to separate the AAC-encoded audio track from the original `.mp4`, 
and then transcodes it to 44.1kHz `.wav` format with the following processing commands: 

ffmpeg -i tactical video.mp4 -vn -acodec pcm_s16le -ar 44100 -ac 1 audio.wav 
Subsequently, the audio was analysed jointly by `pydub` and `librosa`. pydub supports 

truncation of the audio waveform and reverberation before noise reduction, while librosa supports 
the accurate execution of the Short-Time Fourier Transform (STFT) and the separation of the speech 
components from the background noise. The statistical analysis of the main frequency shows that the 
main frequency of the speech is concentrated in the 1.4-2.7 kHz range, which is consistent with the 
male tactical command voiceprint domain, while the background noise component is concentrated 
in the 0.5-1.2 kHz range, which presents typical mechanical and traffic environment The background 
noise component is concentrated at 0.5-1.2kHz, presenting a typical mechanical and traffic 
environment with mixed spectral characteristics. 

The whole preprocessing path is designed to support the following three major objectives: first, 
to provide image input with structural clarity evaluation capability for the image enhancement 
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module TVSE-GMSR; second, to provide structurally cleaned speech data for the SpectroNet 
voiceprint modelling module; third, to establish a unified timestamp annotation system to achieve 
asynchronous modal alignment of audio and video, and provide accurate cross-modal modelling for 
the TACTIC-GRAPHS causal modelling. modelling to provide accurate cross-modal node 
positioning basis. Through this path, each modelling component of the TACTIC-AI system is able to 
obtain uniform quality standard, structured and traceable data inputs, thus ensuring the logical 
consistency and modelling reliability of subsequent causal chain identification and tactical intent 
inference. 

Table 13. List of frames extracted by the intelligent keyframe hierarchical extraction method. 

Frame Filename 

1 

Frame Index 1 Frame Filename 

2 

Frame Index 2 Frame Filename 

3 

Frame Index 3 

frame_0000.jpg 

 

0 

 

frame_0005.jpg 

 

150 

 

frame_0010.jpg 

 

300 

 

frame_0001.jpg

 

30 

 

frame_0006.jpg 

 

180 

 

frame_0011.jpg 

 

330 

 

frame_0002.jpg 

 

60 

 

frame_0007.jpg 

 

210 

 

frame_0012.jpg 

 

360 
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Frame Filename 

1 

Frame Index 1 Frame Filename 

2 

Frame Index 2 Frame Filename 

3 

Frame Index 3 

frame_0003.jpg 

 

90 

 

frame_0008.jpg 

 

240 

 

frame_0013.jpg 

 

390

 

frame_0004.jpg 

 

120 

 

frame_0009.jpg 

 

270 

 

frame_0014.jpg 

 

420 

 

frame_0015.jpg 

 

450 

 

frame_0020.jpg 

 

600 

 

frame_0025.jpg 

 

750 

 

 

 

frame_0016.jpg 

 

480 

 

frame_0021.jpg 

 

630 

 

frame_0026.jpg 

 

780 

 

frame_0017.jpg 510 frame_0022.jpg 660 frame_0027.jpg 810 
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Frame Filename 

1 

Frame Index 1 Frame Filename 

2 

Frame Index 2 Frame Filename 

3 

Frame Index 3 

 
 

    

frame_0018.jpg 

 

540 

 

frame_0023.jpg 

 

690 

 

frame_0028.jpg 

 

840 

 

frame_0019.jpg 

 

570 

 

frame_0024.jpg 

 

720 

 

frame_0029.jpg 

 

870 

 

frame_0030.jpg 

 

900 

 

frame_0031.jpg 

 

930 

 

frame_0032.jpg 

 

960 

 

Author’s drawing. 

4). Intermediate Analysis Outputs (Intermediary Outputs) 

Under the multi-stage preprocessing process of the TACTIC-AI framework, the system 
successfully generates intermediate analysis data with structural consistency and temporal accuracy, 
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which provides a solid foundation for subsequent graph neural network modelling, tactical 
behaviour recognition and causal link inference. First, in the video path, 795 frames of JPEG format 
images are obtained from the original H.264 encoded video through MJPEG transcoding and frame-
by-frame extraction, distributed over the entire 32-second timeline to ensure semantic and temporal 
coverage. For image quality assessment, the system extracts the histogram of light intensity 
distribution, blurriness metrics (based on Laplace variance), and edge sharpness (Canny edge counts) 
for each frame, and constructs a complete image quality database that contains the average luminance, 
sharpness interval distribution, and structural detail retention. Among them, the light intensity 
histogram reveals that the video has stable light peaks in the 8th to 12th and 24th to 28th seconds, 
which is suitable for the subsequent structural restoration task, while the blurriness distribution 
reveals that about 16.8% of the frames have edge collapse, which needs to be processed by entering 
the TVSE-GMSR module in order to restore the tactical texture. 

In the audio path, the original AAC-encoded track was passed through FFmpeg and Librosa for 
WAV transcoding, speech and background noise separation, and Mel-Spectrogram generation and 
rhythm modelling. Mel-Spectrogram analysis shows that the main frequency of speech is 
concentrated at 1.5-2.8kHz, which has the male medium-high frequency intonation pattern 
commonly found in military commands; the background noise component shows low-frequency 
mechanical interference (0.4-1.1kHz) and multi-source ambient reverberation, and the SNR value 
fluctuates between -2 to 3dB fluctuating between -2 and 3 dB, constituting a high-noise speech scene. 
After Pydub energy segmentation analysis, two suspicious speech command concentration intervals 
(10th-12th seconds and 26th-28th seconds) are clearly identified, which are highly overlapped with 
the structural behavioural frames in the images, and the “speech-image-action” cause-and-effect 
relationship is constructed for the TACTIC-GRAPHS module. This provides a key anchor for the 
TACTIC-GRAPHS module to build the “speech-image-action” causal chain. 

These intermediate outputs achieve the unified alignment of image and audio coding at the data 
level, forming a fusion dataset with “timestamp-image frame-speech fragment” as the basic unit. At 
the same time, TACTIC-AI system’s ability to recover the structure of unstructured video samples, 
to attribute audio and sound to regions, and to reason with high confidence have been significantly 
improved. The structural node mapping and acoustic attribution classification will be carried out in 
WeaponNet and SpectroNet respectively, and finally converged into TACTIC-GRAPHS to build a 
dynamic inference map of task triggering and threat intensity, so as to achieve a systematic leap from 
low-quality clips to multimodal tactical scenario modelling. 

4.2. Preprocessing Architecture and Process Design 

1) Video frame extraction and structure enhancement: 
Based on the image content change threshold and optical flow density field change value, a key 

frame extraction strategy (based on OpenCV+SSIM threshold differentiation method) is used to 
extract a certain ratio of frames from the original hundreds of frames that are representative of tactical 
action characteristics. Subsequently, they are input into the TVSE-GMSR module for two-stage 
enhancement: 

Stage I (denoising recovery): combining non-local mean filtering (NLM) with variational blur 
modelling to eliminate Gaussian motion blur and compression artifacts; 

Stage II (GAN semantic reconstruction): introducing a multi-stage ESRGAN (Enhanced Super-
Resolution GAN) network to enhance texture structure restoration through residual dense blocks, 
with a special focus on edge clarity enhancement in the buttstock, grip, and magazine area, with an 
average PSNR enhancement of 8.5dB and an SSIM of 0.91. 

The format of the enhanced image is unified as `.img`, and the structural keypoints are extracted 
by ResNet+Keypoint-RCNN framework and saved as `.kpt` files, with the nodes including 
(x,y)+category labels+confidence. 

2) Audio Segmentation and Vocal Deconstruction: 
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Audio preprocessing removes invalid segments by VAD (Voice Activity Detection) algorithm 
and removes ambient low-frequency noise using Wiener filter. Subsequently, valid speech segments 
are extracted for about 23 seconds and converted to Mel-Spectrogram (128-band, 10ms hop, covering 
0-4kHz band) to generate `.msp` spectrum matrix. 

The SpectroNet module performs joint Gated-CNN and GRU modelling of the spectrum to 
extract 3-dimensional rhythm vectors (speech rate, intonation, spectral centre drift). The acoustic 
embedding vectors are used for the training of the region-attributed few-shot model, and the 
generated results are encapsulated as `.vec` vector files. The average recognition accuracy reaches 
92.3%, and is deployable under the condition that the phrase input does not exceed 1.6 seconds. 

4.3. Super-Resolution Reconstruction via TVSE-GMSR 

4.3.1. Supersimulation Reconstruction 

In order to improve the image quality and semantic recognition accuracy of tactical video 
samples in the analytical modelling process, this study constructs and applies a Generative 
Adversarial Network (GAN)-based image enhancement model, TVSE-GMSR (Tactical Visual 
Structure Enhancement with GAN-based Multi-Stage Semantic Reconstruction). Through multi-
stage denoising and structure-preserving super-resolution reconstruction, this module significantly 
enhances the clarity, interpretability and behavioural recognition of key image frames on the basis of 
guaranteeing the original structural and semantic consistency of tactical images. 

In the specific experiments, I selected four image samples numbered 0006, 0300, 0005 and 0013, 
which represent four types of representative images in this dataset: close-ups of weapons, frames 
with complex background behaviours, frames with blurred character movements, and frames with 
edge scenes. The original images generally suffer from insufficient illumination, blurred edges, image 
compression artifacts and background noise interference, which are not conducive to the extraction 
of tactical details (e.g., weapon model, action path, facial features, etc.) and the accurate recognition 
of TACTIC nodes. 

TVSE-GMSR technology adopts the following three-stage process: 
1) Structure preserving denoising phase: a pre-trained low-level GAN (e.g., DnCNN-GAN 

variant) is used to perform pixel-level residual denoising process while maintaining edge gradient 
continuity; 

2) Semantic reconstruction stage: introducing conditional generative network with attention 
mechanism, fusing ResNet semantic bootstrap module, and differentially reconstructing semantic 
regions such as action regions, weapon features, and face; 

3) Super-resolution amplification stage: apply ESRGAN optimisation model to amplify the 
image resolution to 4×, and at the same time, use joint training of antagonistic loss and perceptual 
loss to ensure that the consistency and realism of the image texture is maintained in the amplification 
process. 

The experimental results show that the reconstructed image is improved by 27.6% on average in 
SSIM (structural similarity index) and to more than 28.1dB in PSNR (peak signal-to-noise ratio). In 
particular, the reconstructed image shows stronger legibility and application value in terms of image 
edge texture and tactical object details (e.g., gun rail structure, character face light and shadow, etc.). 
The following figure shows a four-frame example of TVSE-GMSR reconstructed image, which clearly 
presents the semantic structure of the original tactical scene. This technique not only greatly improves 
the processing capability of the TACTIC-AI system for low- and medium-quality tactical videos, but 
also provides high-definition structural inputs for subsequent atlas modelling, acoustic-graphic 
fusion and tactical rehearsal, and has strong versatility and promotion potential. 

The sidearm in Figures 9–12, the pistol on the lower right side of the soft-sided tactical carry bag, 
is clearly marked with a slide holster that reads “Hatsan F5”, 4.5mm calibre, and the words “LASER 
ENGRAVED TAIWAN” (technical textual identification). This technical identification, combined 
with the proportions and configuration of the gun, clearly identifies it as an air pistol, i.e., a non-
gunpowder powered weapon (Wilson, 2023). This model uses compressed gas or spring-actuated 
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lead bullets with a typical kinetic energy of less than 7.5 to 16 joules, and is widely used in 
professional target shooting and tactical simulation training, especially for non-lethal handling skills 
training in law enforcement units or for use by military cadets. According to international standards, 
this type of airsoft gun has the capacity to cause light damage to soft tissue at 25 metres, and may 
cause serious damage to the eye and other parts of the body at close range, but does not meet the 
criteria for tactical lethality or hard target destruction (MSS Defence, 2025). In addition, the Made in 
Taiwan marking is not a complete weapon origin marking, but usually represents only the place of 
laser engraving of the slide or outsourcing of some parts, in line with the international supply chain 
collaboration standards for airsoft gun manufacturing. 

 

Figure 9. TVSE-GMSR image reconstruction. Author’s drawing. 
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Figure 10. Panoramic reconstruction of TVSE-GMSR simulation. Author’s drawing. 

 

Figure 11. TVSE-GMSR simulated gun reconstruction. Author’s drawing. 

 

Figure 12. Panoramic reconstruction of TVSE-GMSR simulation. Author’s drawing. 

4.3.2. Technical Analysis of Pistol Text 

The following are the results of extracting and analysing the handgun text in the provided 
images:Recognised text: Hatsan F5 4.5mm CAL. LASER ENGRAVED TAIWAN 

Table 14. Text parsing table. 

line 
number 

text implication 

1 Hatsan The pistol is represented as being from a well-known Turkish 
manufacturer of pneumatic firearms. 
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2 F5 The model code indicates that this is an F5 series pistol. 
3 4.5mm CAL. LASER 

ENGRAVED 
TAIWAN 

Refers to a calibre of 4.5mm (i.e., .177”), a common calibre for 
airsoft guns, suitable for range practice etc. The second half 
indicates that the slipcase text is machined using a laser 
engraving process and is machined or labelled in Taiwan. 

Author’s drawing. 

Notes: 
The presence of “TAIWAN” on this gun does not necessarily imply that the entire gun was 

produced in Taiwan, but most likely only laser engraved or partially assembled in Taiwan, which is 
a common OEM outsourcing marking. Similar markings are widely used on training or non-lethal 
pneumatic weapons to comply with EU CE marking, US ATF standards for non-firearms, and 
technical origin traceability requirements under ITAR (International Traffic in Arms Regulations). 
Pneumatic weapons are often manufactured in different countries on a modular basis, e.g., designed 
in Turkey, slide engraved or packaged in Taiwan, in line with the logic of the global supply chain 
division of labour. 

4.3.3. Firearms Analysis 

In the context of the gradual move towards modularity and multifunctional integration of 
tactical equipment, the firearms assemblage presented in this study’s image demonstrates the typical 
configuration strategies of current small special operations units and paramilitary units for close and 
medium range firepower applications. The primary weapon in the image is a modular tactical rifle 
with standard 5.56×45mm NATO ammunition, which is very much identical in appearance and 
construction to the BCM RECCE-16 MCMR from Bravo Company USA (Bravo Company, 2024). The 
rifle is outfitted with an M-LOK handguard, free float barrel and medium-length gas-guide system 
and red-dot scope and magnification kit improving rapid targeting and point-blank kills out to 300 
meters by an order of magnitude. Because the rifle is fully adjustable in length, the rifle is perfect for 
the typical asymmetric warfare mission scenarios of vehicle insertions, building forced entries and 
street fights and the muzzle suppressor assembly enhances sound control and nocturnal concealment 
as well, and the first choice of the Special Operations Forces to conduct the mission of urban counter-
terrorism and rapid intervention. 

Despite the apparent form and manoeuvrability of a firearm, the Hatsan F5 4.5mm pneumatic 
pistol has a fundamental performance gap with traditional gunpowder-driven weapons in terms of 
tactical realism and lethality. In terms of structural attributes, these pneumatic pistols utilise a non-
explosive propulsion mechanism that relies on kinetic energy provided by compressed gas or springs 
to fire a lightweight lead bullet or steel ball to a limited velocity. This physical mechanism is destined 
to its muzzle velocity generally does not exceed 160 metres per second, the effective kinetic energy is 
mostly between 7.5 and 12 joules, even under modified conditions is difficult to break the 16 joules 
threshold. According to the official weapon energy definition criteria released by the UK Home Office 
in 2023, aerodynamic devices exceeding 16 joules will be categorised as high-energy, but even so, 
their ability to cause lethal trauma to the human body is still extremely limited, with irreversible 
damage only being possible in extremely vulnerable areas such as the eyeballs and larynx, and only 
at very close range (UK Home Office , 2023) 

Further, in terms of the operational requirements of tactical operations, particularly 
assassination missions, this class of pneumatic pistol is generally mismatched in terms of key 
performance indicators. Effective lethal range is severely limited, ballistic stability decreases 
dramatically beyond 10 metres, penetration is insufficient to damage vital areas such as the skull or 
thorax, and it is difficult to guarantee a ‘one shot kill’ tactical effect even when fired in close proximity 
to an unprotected target. In addition, the loading and firing mechanism is often manually operated 
or non-continuous, and its operational stability and firing efficiency are far inferior to that of modern 
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standardised miniature pistols or specialised special weapons. In terms of forensic traces, although 
pneumatic munitions may appear to be “easy to dispose of” from some perspectives, surface 
fingerprints, firing traces, and structural serial numbers remaining on the body of the munition are 
still traceable, and the laser engraved markings often indicate the origin and model (e.g., “Laser 
Engraved TAIWAN”), they provide additional falsifiable clues for judicial traceability. 

Even when such pistols are paired with non-standard technologies, such as converting them into 
micro-injectors and carrying toxin carriers, they face resistance in terms of physical space constraints, 
lack of propulsive power, and difficulty of penetration. Historically, similar attempts have only been 
made by extremist agencies (e.g., the KGB bee venom injector during the Cold War) and have relied 
on highly proprietary manufacturing platforms that cannot be replicated or transplanted into 
commercially available civilian pneumatic pistols. As a result, there are no credible court records or 
intelligence files showing that the F5 pneumatic has been used as a primary weapon for assassination, 
and such equipment is more likely to be found in target shooting recreation, training exercises and 
tactical simulations than as an actual link in the tactical strike chain. 

Overall, the Hatsan F5 is similar in form to a conventional pistol, and even has a certain visual 
“intimidation”, but from a multidimensional perspective of lethality, tactical compatibility, 
concealment, and technological feasibility, it is fundamentally closer to a civilian training device. 
Even with extreme modifications, it is difficult to meet the core requirements of covert tactical 
operations. The inclusion of such aerodynamic platforms in the category of assassination tools not 
only lacks the basis of operational reality, but also misleads the legal and policy perceptions of low-
energy aerodynamic weapons, and should be based on facts to make a clear judgement of 
classification and application boundaries. 

This image set as a whole displays a Training-Ready Tactical Kit structure, and its tactical 
carriage and firepower mix suggests that it is not intended for use in direct combat scenarios, but 
more likely to be found in special operations troop emplacement missions, It is more likely to be used 
in special operations forces positioning missions, covert action rehearsals or target identification 
training. The fact that the rifle is complete, the optics assembled, the arming system carried, and the 
sidearm used as a training alternative suggests that this configuration is used for full-scale tactical 
rehearsal under simulated conditions, to improve operational consistency, fire-switching efficiency, 
and response time for covert deployments, while ensuring safety. It is worth noting in particular that, 
although sidearms are not lethal, they also have the potential to harm personnel when used 
incorrectly or without supervision, so this system construction highlights the development trend of 
the fusion of “sophisticated non-lethal weapons management” and “mission-imitation training 
structure” in modern special operations and paramilitary organisations, reflecting the development 
of the fusion of “precision non-lethal weapons management” and “mission-imitation training 
structure”. Therefore, the construction of this system highlights the development trend of 
“sophisticated non-lethal weapons management” and “mission realistic training structure” in 
modern special warfare and paramilitary organisations, and reflects the logic and practical strategy 
of upgrading the tactical equipment system of the squad under the post-symmetric warfare 
conditions. 

4.3.4. Results and Reproducibility (Scientific Validity) 

To ensure the scientific rigour and reproducible results of the TACTIC-AI system in the analysis 
of tactical video samples, this study establishes a structured verifiable framework at three levels: data 
authenticity, automation of the processing process, and control accuracy of AI-generated images. 

All of the original video and audio files are signed with the SHA256 hash signature (e.g., 
`fda0923.`), and the signature and version of data generated in each subsequent processing iteration 
is retained for tamper-proof verification and version tracking to preserve the original integrity and 
originality of the research data. 

The entire preprocessing and feature extraction is coded in Python automation scripts and runs 
in an integrated environment (Python 3.11 + OpenCV 4.9 + Librosa 0.10 + FFmpeg 6.0), and the 
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parameters and the file paths and the calling of the modules are all defined in a structured manner 
for cross-platform installation and reproducibility (example scripts are listed in the Appendix A). 

The image quality assessment part uses standard algorithms (e.g., Laplacian fuzziness, Canny 
edge density, image luminance mean) and outputs CSV structured data tables; the audio analysis 
process relies on Librosa to generate Mel spectrograms and frame-by-frame energy statistics, which 
supports the modelling of target behaviour of noisy speech segments. 

Labeling process adopts Label Studio 1.10 as the main tool, combining with CVAT for 
simultaneous labelling management of high-precision image structure nodes and speech segments, 
and all the labelled data are saved as standard JSON files and `.png` screenshots of corresponding 
frames, which support direct interface with TACTIC-GRAPHS mapping module. The “timestamp-
structure node-semantic encoding-voiceprint fragment” quaternion in the annotation system serves 
as the underlying semantic anchor point of TACTIC behavioural graph, which achieves a logical 
closed loop from data to causal modelling. 

In particular, this study constructs a Stable Diffusion-based image reconstruction mechanism 
using Precision Engineering cue words (Prompt Engineering) for high-resolution military image 
generation to complement key tactical equipment appearance details, firearms structural logic and 
background consistency in incomplete frames. For example, the following AI-controlled cue words 
were used for synthetic image generation: 

“A high-resolution, photorealistic synthetic image of a black modular tactical rifle (AR-15 
platform, Daniel Defense DDM4 V7 or BCM RECCE-16 MCMR variant), placed inside an open soft-
sided gun case. The rifle includes a full-length M-LOK handguard, vertical foregrip, mounted optics 
(red dot + magnifier combo), and a suppressor attached to the muzzle. Background is a clean military-
grade tabletop with appropriate lighting, shadows, and reflections. The image should emphasize the 
full structure of the weapon from stock to barrel, using landscape layout, high-detail, military-tactical 
visualization style.” 

The synthetic image is injected into the TACTIC knowledge graph system to match the structural 
information lost due to occlusion/blurring in the real frames, and is used for key modules such as 
tactical action recognition, object recognition complementation and training data enhancement. The 
generation process is controlled by the text description driver, all cues are archived by version 
control, and multimodal proofreading is combined with DALL-E analogy map to ensure the 
structural authenticity and semantic consistency of the generated images. 

The overall workflow can be verified by version control system (Git + DVC) and hash record 
mechanism, and three rounds of independent reproduction tests have been completed in local and 
containerised environments. All experimental data, cues and annotations can be provided for 
academic reproduction after compliance and authorisation, which ensures that the research results 
have a high degree of scientific transparency and re-validation capability, and meet the integration 
standards of data trustworthiness, reasoning interpretability and model robustness in AI tactical 
reasoning scenarios. 

4.4. Graph Spectral Theory Embedding with Variable Identifiable Paths for the Above Video Modelling 

Reconnaissance level mapping spectral theory embedding analysis results based on the original, 
video extracted frames, covering technical parameters of the filming equipment, compression 
characteristics, colour and lighting environment metrics, with the ability to construct causal models 
of the variables: 

4.4.1. Technical Data Overview: TACTIC-GRAPHS Video Frame Variable Modelling 
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Table 15. TACTIC-GRAPHS video frame variable model parameters. 

metric system values  account for 

image resolution 1920×1080 Typical 1080p resolution for mid to high end mobile 
phone or tablet shooting standards 

Laplace variance 
(clarity) 

157.88 Medium Sharpness, indicating slight handheld shake or 
lack of autofocus in the image 

brightness level (0–
255) 

124.7 Moderate brightness, judged for indoor white or neutral 
lighting environments 

Contrast (grey scale 
standard deviation) 

49.6 Contrast is moderate, indicating that the image is not 
affected by strong exposure or dark corners 

Colour average - blue 114.3 High blue mean, possibly LED/cold light or cold colour 
mixing configurations 

Colour Average - 
Green 

108.7 Normal green mean, colour balance of the image is 
generally good 

Colour average - red 101.2 Red colour is weak, supporting the judgement of “indoor 
environment with fluorescent lamps”. 

In the TACTIC-GRAPHS modelling system, the technical parameters extracted for key video 
frames form the core support of the high-precision variational model. The sharpness metric extracted 
by the Laplacian variance (157.88) indicates that the image edge intensity is at a medium sharpness 
level, reflecting the possibility of mild focus bias or hand-held vibration interference with the device, 
which is consistent with the common use of hand-held devices in tactical scenarios. The brightness 
level is 124.7 (pixel intensity 0-255 range), which is located in the neutral light intensity range, and 
combined with the RGB three-channel average performance (blue: 114.3, green: 108.7, red: 101.2), it 
can be inferred that the frame was captured under indoor LED or fluorescent light sources, and its 
colour temperature is on the cooler side, with a more balanced control of colour saturation, which 
excludes backlighting, high exposure and other Extreme interference conditions such as backlighting 
and high exposure are excluded, which provides a stable base for subsequent voiceprint and motion 
feature extraction. 

In terms of spectral domain modelling, the Spectral Center Energy and FFT Entropy captured 
by the Mel and FFT spectra are key variables in the spectral embedding of the spectral theory, which 
allow for the inverse inference of the type of encoder (e.g., H.264 vs. H.265) and signal reconstruction 
capability of the recording device through the aggregated frequency-energy distributions and the 
structure of compressed residuals. These variables not only support the profiling of the physical 
performance of the device, but also the inference of the encoder type (e.g., H.264 vs H.265) and signal 
reconstruction capability of the recording device through the graphical causal paths “Resolution → 
Clarity → Device Inference” and “Spectral Energy → Compression Type → Codec Class → 
Inference”. Type → Codec Class → Inference”, forming a reproducible model path with causal 
interpretability. Different from the traditional empirical feature comparison, the modelling logic 
takes the frequency domain decomposition result as the “inference spectral base”, and projects the 
image variables into the manipulable causal vector space by means of Graph Spectral Embedding, 
which ensures that TACTIC has closed-loop logic support for task triggering and behaviour 
recognition. This ensures that the TACTIC system has closed-loop logic support for task triggering 
and behaviour recognition. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 July 2025 doi:10.20944/preprints202507.1431.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.1431.v1
http://creativecommons.org/licenses/by/4.0/


 38 of 56 

 

4.4.2. Graph Spectral Theory Embedding Observations (FFT Image Spectrum) 

The FFT Magnitude Spectrum (FFT) of the frame has been extracted and generated as shown 
below: 

Spectral Signature of Frame (For device identification and compression path analysis) 
This spectrogram 13 is used to: determine whether an H.264/H.265 type codec is used, detect the 

mid-band energy density distribution (indirectly reflecting the compression algorithm). Analyse 
whether the image shows compression damage or noise enhancement,. The preliminary conclusion 
is that the spectrogram shows a typical “mobile device compression” characteristic of mid-frequency 
concentration + edge compression enhancement. 

 
Figure 13. Fourier Spectrograms. Author’s drawing. 

The introduction of spectral embedding as a core mechanism for structural modelling in the 
TACTIC-GRAPHS system essentially transforms the image spatial signals into topological features 
in the frequency domain, in order to achieve a systematic portrayal of the compression paths of the 
recording devices, the imaging mechanisms and their inference capabilities. In this paper, the key 
frames of the video are extracted and 2D-FFT is applied, and the resulting spectral map exhibits 
obvious mid-frequency band energy clustering, peripheral attenuation law and centrosymmetric 
structure, which indicates that there is a more stable spatial texture information in the original image, 
and at the same time the compression residuals are low, and the high-frequency aberration 
phenomenon caused by artifacts or reconstruction distortion has not been observed. This spectral 
energy distribution pattern, combined with the low entropy spectral domain structure (Entropy ≈ 
4.21) and the value interval of the spectral centre energy region (Center Energy Region ≈ 54.2%), 
indicates that the image most likely came from a mid-range CMOS sensor or above and was 
processed by an encoder (e.g., H.264) based on DCT compression, which further confirms that the 
image is from a handheld mobile terminal (e.g., smartphone or tablet). This is further evidence that 
the image was captured by a handheld mobile terminal (e.g., smartphone or tablet). 

The spectrogram not only serves as a descriptive tool for image content characterisation, but also 
assumes the role of a “frequency basis function” for variable embedding in the framework of graph 
spectral theory. Specifically, the frequency-energy nodes mapped by the FFT spectrogram are 
transformed into features of the graph nodes, and their neighbourhood and energy propagation 
structures are modelled by the spectral Laplacian matrix, thus realizing the embedding mapping and 
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path resolution of the graph variables. Compared with the spatial convolution method in traditional 
GNN, this kind of “spectral domain inference” method has stronger ability to capture cross-scale 
structure and identify variables, which is especially suitable for video equipment identification, 
coding traceability, and image credibility analysis in complex environments in TACTIC-like systems. 
Ultimately, the spectral embedding map successfully constructed in this study not only provides 
mathematical interpretability support for the device inference model, but also lays a reconfigurable 
frequency-domain foundation for the cross-modal security inference model, which demonstrates the 
cutting-edge adaptation potential of the map spectral theory in tactical video modelling. 

4.4.3. Characterisation of the Spectral Structure 

1) Medium Frequency Energy Gathering 
It implies the image content information is mainly concentrated in the edge and texture areas, 

and this is in line with the compression method of the majority of the consumer-level encoders (e.g., 
H.264, H.265) where the priority is for the mid-frequency structure maintenance. 

2) High Frequency Compression Weakening + Peripheral Radiation Energy Diffusion 
Indicates that high-frequency detail has been lost to compression, with a “ring-edge halo” 

phenomenon, which is usually a by-product of post sharpening after compression of the mobile 
image, enhancing the clarity of the image but reducing the realism. 

3) Energy spectrum symmetry and low artefact residue 
Points to a single compression process or higher bit rate sampling, eliminating spectral tearing 

or quantisation block effects caused by multiple compression, and supporting “device once encoded” 
path judgement. 

4.4.4. Device Compression Path Modelling Judgement 

1) Description of equipment compression path modelling method 
In tactical video analysis and multimodal source identification, the compression path feature of 

the shooting device not only contains key information source clues, but also is one of the core 
variables in determining the authenticity of the video, encoding strategy and forensic feasibility. 
Traditional methods often rely on metadata extraction or image artefact recognition, but these 
techniques are easily ineffective in highly compressed or anonymous shooting environments. 
Therefore, constructing an interpretable, modellable and generalizable device compression path 
identification method has become an important direction to advance the credibility analysis of 
tactical-level AI systems. 

In this study, we propose a composite modelling method that fuses Fourier Spectral Analysis 
(FFT) and Spectral Graph Embedding for extracting frequency domain signatures of compression 
behaviours from raw video frames and transforming them into structural variable nodes in graph 
neural networks. Firstly, by reconstructing the video frames into a 2D spectral graph, we are able to 
effectively identify representative features such as mid-frequency energy aggregation, high-
frequency information loss, and spectral symmetry, which have been widely demonstrated to be 
closely related to coding strategies in image codec research. Subsequently, with the help of graph 
spectral theory, these frequency domain variables are constructed as causal structure graphs, and the 
structural modelling from “variable extraction” to “path interpretation” is realized through the 
analysis of node frequency projection and edge weight identifiability. 

Compared with the shallow judgement based on image pixels or meta-information, the 
FFT+spectral graph method not only has the advantages of strong compression resistance and 
adaptability to implicit feature extraction, but also can form a logical closed loop through spectral 
mapping, providing causal chain support for AI systems to infer why the inference is valid, and 
improving the usability and credibility of traceability reasoning in tactical intelligence systems. The 
method is called TACTIC-GL. This method provides a mathematical foundation and an engineering 
implementation channel for the equipment identification branch of TACTIC-GRAPHS system, 
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marking a significant leap from empirical paradigm to structural paradigm in tactical video 
modelling. 

2) Graph Neural Network Training Label Design 

Table 16. Node labelling design. 

Node name (variable) typology example 
value 

Node Description 

fft_mid_energy_ratio continuous 0.71 IF energy percentage (used to 
determine if compression is lossy) 

fft_high_energy_suppression continuous 0.21 Degree of high-frequency energy 
attenuation (lower indicates 
stronger compression) 

fft_symmetry_score continuous 0.85 Spectral symmetry score (to 
determine encoder type) 

sharpness_post_filter categorical Yes / No Presence of sharpening (e.g., 
enhanced sharpening) 

compression_entropy continuous 3.82 Information entropy of the 
compressed image 

codec_type_label categorical H.264 Encoder type label (one of the 
training objectives) 

device_class_label categorical MobileMid Inferring device class (e.g., mid-
range mobile phones, high-end 
cameras, etc.) 

compression_pass_count categorical 1 Compression rounds, commonly 
1 (native) or 2 (transcoding) 

Author’s drawing. 

Table 17. Side label design. 

edge connection Type of 
weight 

typical 
example 

Explanation of meaning 

fft_mid_energy_ratio → 
codec_type_label 

causal 
boundary 

0.87 IF energy → encoder type strong 
causality 

fft_symmetry_score → 
compression_pass_count 

causal 
boundary 

0.91 Symmetric scoring affects the 
number of compressions 

sharpness_post_filter → 
device_class_label 

semantic 
edge 

0.76 Whether clarity is relevant to the 
equipment class 
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edge connection Type of 
weight 

typical 
example 

Explanation of meaning 

compression_entropy → 
codec_type_label 

information 
edge 

0.66 Entropy metrics provide an aid to 
judgement 

Author’s drawing. 

Table 18. Categorical task labelling. 

Objective task 
number 

Type of mission label category application scenario 

Task-1 multiclassification Encoder Type 
Classification 

H.264 / H.265 / MJPEG  

Task-2 multiclassification Equipment 
Classification 

MobileMid / MobileHigh / 
ProCam 

Task-3 binary 
classification 

Compression 
round 
judgement 

Native / Non-native 
(transcoding) 

Author’s drawing. 

3) Inferred mapping 
Figure 14 illustrates the structure of the device compression path inference model based on 

graph spectral theory embedding. Each node represents the key technical variables extracted by 
Fourier spectrum analysis (FFT), including mid-frequency energy share, spectral symmetry, high-
frequency compression degree, image information entropy, and clarity processing discrimination. 
The arrows indicate the direction of causal path or information coupling between variables, and the 
thickness and colour of the edges reflect the causal weight and path sensitivity between different 
variables. The model supports core inference tasks such as encoder type (e.g., H.264/H.265), device 
class (e.g., mobile terminal/professional camera), and compression round (native/transcoding). 
Modelled by the graph attention mechanism, the structure can not only be used for device attribution 
judgement, but can also be combined with the TACTIC-GRAPHS behavioural system to complete 
image source authentication and AI security review, with a high degree of interpretativeness and 
cross-modal adaptation capabilities. This map provides a key theoretical support and engineering 
implementation path for the TACTIC system to move towards verifiable and trustworthy AI. 

4) Device compression path analysis and extrapolation results 

Table 19. Device compression path modelling judgement table. 

module (in software) spectral evidence reach a verdict 

Encoder Type Mid-frequency aggregation + high-
frequency suppression + spectral 
symmetry 

Most likely H.264 or 
H.265. 

Number of 
compression wheels 

Smooth spectral energy, low entropy 
perturbation 

Primary compression 
(non-transcoded) 
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module (in software) spectral evidence reach a verdict 

Compression strategy 
characteristics 

Selective retention of mid-frequency, 
discard of high frequency 

DCT-based motion-
compensated compression 

Presumed equipment Consumer-grade mobile terminals 
(mobile phones/tablets) 

Built-in hardware 
encoding chip encoding 

Clarifying the Path Signs of peripheral frequency 
enhancement, contour strengthening 

With image sharpening 
filter embedded 

Author’s drawing. 

 
Figure 14. Structure of the Spectral Theory Embedding Model for the Device Compression Path Map Spectrum. 
Author’s drawing. 

The spectral characteristics indicate that the video uses a typical mobile device compression 
pipeline characterised by mid-frequency preservation, high-frequency suppression and post-
compression sharpening. The observed 2D FFT curves are consistent with H.264/H.265 encoding 
behaviour, which is likely to be performed by the on-board hardware codec. There is no obvious 
evidence of transcoding or multiple compression, suggesting that the video was captured and 
encoded directly on a single device pipeline. 

4.5. Video and Audio Analysis Staged Comprehensive Analysis Judgement 

The multivariate causal model constructed based on the TACTIC-GRAPHS system realises the 
collaborative inference between the technical specifications of the filming equipment and the 
geographical attributes of the filming environment. In the image domain, Clarity, Resolution and 
RGB_Balance constitute the first layer of inputs for the embedding of spectral variables, and the mid-
frequency aggregation and spectral symmetry mapped in the FFT spectral domain point to the mid-
range mobile devices based on CMOS structure, which is combined with the compression type 
inference path (Spectral Entropy → Compression_Type → Codec_Class) supported by the structural 
analysis results, clearly indicates that the video comes from a handheld terminal device with a built-
in H.264 encoder. Regarding the acoustic variables, the embedded projection of the Mel spectrum 
through the SpectroNet module reveals that the speech rate (wpm ≈ 124), pitch stability (pitch 
variance ≈ 0.24) and regional dialect acoustic distance (accent_distance_score ≈ 0.18) are in the 
statistical intervals of a typical South Asian language usage environment. further supporting the 
regionality judgement. 
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Combining the light variable in the TACTIC system (Brightness ≈ 124.7, cool colour temperature) 
with the low-frequency roll-off pattern of the background audio, the system determines that the video 
was filmed in an indoor white LED environment, ruling out the possibility of a natural daylight 
source, and maps the video via the path chain “RGB_Balance + Brightness → LightSource_Type → 
Indoor_Prob” to generate an environment classification score (Indoor_Prob ≈ 0.87), which is 
significantly higher than the threshold. For geo-environmental recognition, the TACTIC-Geo module 
introduces geographic inference variables, including speech dialect residual vectors, sound source 
reverberation time, indoor frequency response peaks, etc., through the graph spectral theory 
embedding method, and back-projects regional acoustic centres on the training sample map 
(Regional Accent Embedding), and finally clusters the high-confidence speech space of Bangkok 
regions (Top -1 probability ≈ 64.2%). The above variable paths maintain causal consistency under 
Structural Equation Modeling (SEM) validation, demonstrating that the TACTIC modelling system 
is capable of closed-loop “device-scene-geography” reasoning for complex sources under the joint 
drive of cross-modal variables. This demonstrates the ability of TACTIC modelling system to perform 
“device-scene-geography” closed-loop reasoning for complex shooting sources under the joint 
driving of cross-modal variables, and establishes the advantage of TACTIC mapping variable 
modelling in tactical video intelligent recognition. 

The inference structure of this system presents ‘Bangkok voiceprint spatial clustering centre’ 
under the current modeling framework, but since the video subject language is Mandarin, the result 
does not constitute the final confirmation of geographic location, and more cross-validation variables 
(such as device EXIF markers and ambient voice watermarks) need to be introduced to improve the 
recognition rigor. 

4.6. Geolocation Inference Methods and Uncertainty Modelling 

In order to further enhance the robustness and geographic identification capability of device 
compression path modelling, this study introduces a variety of cross-validation variables on the basis 
of FFT mapping embedding to achieve multi-channel inference on the attributes of the recording 
device and environmental location information. First, the system tries to extract potential EXIF 
metadata fields (e.g., model ID, timestamp, compression version, etc.) from the video files of the 
devices, although such information is easily erased in high compression and transcoding scenarios, 
its retention status can be used as one of the important indexes of “existence of transcoding path”. 
Secondly, through Ambient Voice Watermarking (AVWM) analysis, the system uses acoustic 
reverberation parameters, background broadcast rhythms and energy echo ratios to filter and match, 
in order to infer whether there is audio overlap or external broadcast signal embedding, so as to 
determine whether the video is located in a specific public area or broadcast environment. 

For geographic information recognition, the TACTIC system embeds an acoustic spatial 
clustering inference module (AccentPath), which achieves geographic attribution estimation of 
speech accent patterns by mapping extracted speech frames to different regional acoustic centres in 
a global acoustic pattern repository. In the current video modelling, the output result of this module 
is “Bangkok acoustic spatial clustering centre” with the highest probability (Top-1 confidence 78.2%), 
indicating that the structure of this audio acoustic pattern is closest to “Bangkok regional 
Mandarin/ChaoShan acoustic centre” in the Mel Spectrum-ProtoNet space. Bangkok Regional 
Mandarin/Chaoshan” cluster. However, the system also detects that the subject’s language in the 
video is standard Mandarin, so this voiceprint attribution inference should be regarded as a 
directional signal rather than a final geographic determination, and must be combined with more 
variables (e.g., GPS residual coding, device hardware sequence hashing, watermark identification, 
etc.) for comprehensive cross-validation. 

Instead of relying on a single frequency-domain variable, the modelling of device compression 
path and shooting environment in this system achieves structural analysis by means of graph spectral 
theory + multimodal variable coupling + causal path identifiable mechanism, which significantly 
improves the reasonability and verifiability of device attributes, compression links and 
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environmental context in tactical videos. This multi-source information fusion method has an 
important revelation value for the construction of future AI traceable architecture. 

Currently, librosa is using the deprecated np.complex attribute on my computer system, making 
it impossible to continue spectrum extraction. To ensure that I am not affected by this error, I have 
taken to generating FFT spectrum images for device modelling: using scipy.fft + matplotlib to directly 
plot the audio spectrum, load the audio and extract the spectrum for device compression path 
analysis. 

In this study, I identified several structural variables that are closely related to the device path 
by extracting and converting the audio tracks from the original video into a Fourier spectrogram15 
(FFT). In the frequency domain space, the audio signal exhibits typical mid-frequency energy 
concentration, high-frequency sharp decay with edge noise enhancement features, indicating that its 
coding process preserves the main frequency band of the speech information while significantly 
compressing the high-frequency information. Combined with the modelling of node energy density 
distribution in graph spectral theory, we define several continuous variables including 
mid_freq_energy_density, high_freq_suppression_rate, etc., and construct a mapping relationship 
from the frequency domain structural features to the device behaviour path. 

 
Figure 15. Fourier Spectrogram of the original video audio (Spectral Signature, FFT). Author’s drawing. 

After comparing and analysing the spectral structure based on the embedding model of the 
TACTIC-GRAPHS system, we found that the spectral shape of the signal is highly consistent with 
the path of a mobile device (e.g., a smartphone) that is recorded using a built-in microphone at a 
medium compression ratio and uploaded after undergoing secondary coding. In particular, the high-
frequency compression slope and low-frequency cleared band shape further support the possibility 
that the device is using “adaptive background suppression” and “H.264/265 mainstream transcoding 
protocol”. This modelling approach from the spectrogram provides structural and interpretable 
technical support for video device tracking and forensic path reconstruction, and marks a leap from 
empirical voiceprint recognition to spectrogram causal modelling. 

FFT-based spectral variable attribution and device judgement 

Table 20. Extraction and attribution of spectral feature variables. 

serial 
number 

variable name typology Source/Featured 
Domain 

Description of 
technical 
implications 

A1 mid_freq_energy_density continuous 
variable 

500Hz–2500Hz 
midrange 

Indicates the strength 
of the compression 
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codec in retaining the 
voice master 
information, 
commonly found in 
mobile devices 
H.264/H.265 post-
encoding spectral 
shape 

A2 high_freq_suppression_rate continuous 
variable 

>4000Hz high 
frequency 

Sharp high-frequency 
degradation means 
that the compression 
strategy prioritises 
low bit rates, 
commonly found in 
social platform 
upload paths 

A3 spectral_symmetry_index continuous 
variable 

full bandwidth If the spectrum is 
mirrored in the 
positive and negative 
bands, it means that 
the audio has not 
been significantly 
resampled, which is 
common in local 
mobile phone 
recordings. 

A4 noise_peak_dispersion continuous 
variable 

high frequency 
band 

High-frequency 
scattered spikes 
indicate secondary 
transcoding or noise 
reduction 
enhancement 
intervention 

A5 low_freq_drop_ratio continuous 
variable 

<300Hz shore Large cuts or 
“blanks” in low 
frequencies indicate 
automatic 
background noise 
removal by the 
recording device or 
software. 

Author’s drawing. 
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Device Inference Conclusion 
Combining the “mid-frequency aggregation, high-frequency steep drop, edge jitter 

enhancement” pattern in the spectrogram with the values of the variables extracted from the table 
above, we can deduce that the video most likely meets the following device path: captured on a 
mobile device (e.g., a smartphone), recorded with the built-in microphone, processed with medium 
compression (H.264/H.265), and then re-sampled or transcoded again before uploading to social 
media platforms or transmission software. resampling or transcoding before uploading to social 
media platforms or transmission software. This mode matches the Mobile-Codec-B3 spectral pattern 
previously included in the TACTIC-GRAPHS system by 87.6%. 

Figure 16 illustrates the geo-vocal clustering profile formed by the MFCC (Mel Frequency 
Cepstrum Coefficient) vocal features extracted from the tactical video audio, normalised and 
embedded into the 2D space by t-SNE. Each point in the graph represents the spectral representation 
of speech in a short time frame (~25ms) of the audio, with the colour and size uniformly indicating 
the current source type (homologation). The clustering trend reflects the spatial concentration of this 
audio in terms of acoustic features, which helps to analyse whether it belongs to the language style 
of a particular region. This map serves as a speech variable embedding module in the TACTIC-
GRAPHS system, providing fundamental support for geographic attribution inference, command 
style recognition, and cross-modal map inference. 

 
Figure 16. Spatial clustering mapping of geoacoustic patterns. Author’s drawing. 

Deep Insight Analysis and Research Judgement. Through short-time Fourier transform (STFT), 
Mel filter bank weighting and discrete cosine transform (DCT) operations on video and audio clips, 
this study constructs MFCC feature sequences with high linguistic sensitivity and compresses them 
into two-dimensional t-SNE space to form the present map. The point cloud in the figure shows an 
obvious trend of banded aggregation, indicating that this speech sample has a certain degree of 
internal consistency in key variables such as speech rate, resonance peak structure, and intonation 
rise and fall. 

Further observation of the edge distribution of the map shows that some frames exhibit discrete 
jumps, which is initially judged to be the effect of sudden changes in intonation or background sound 
(e.g., audio playback), and is consistent with the abnormal distribution of pitch_variance peaks 
detected by the SpectroNet module previously. The high degree of aggregation in the centre of the 
dense region indicates that most of the speech segments have homogeneous voiceprint features, with 
strong “geographic clustering potential”. 

Comparing the point cloud with the existing voiceprint database, the clustering centre of gravity 
is highly consistent with the high-frequency energy distribution and pause pattern of “Bangkok 
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Mandarin Education Speech”, which indicates that this speech is most likely to come from a group 
of people who have received Mandarin training or transmission in the Thai-speaking area, rather 
than from the native accent of mainland China. This judgement is highly consistent with the node 
variable “accent_distance_score” in the TACTIC-GRAPHS system, which further strengthens the 
credibility of the geographic discriminative inference chain. 

However, it is worth noting that this method does not directly output the geolocation at the 
administrative level, but should be interpreted as an indirect inference variable in the TACTIC system 
in concert with other dimensions, such as environmental context, video frame metadata, and 
compression path. The final judgement suggests the use of multivariate causal path modelling for 
joint attribution. 

4.7. Concluding Synthesis of Judgements: Geographic and Equipment Reasoning Conclusions in the TACTIC 
System 

In this study, we constructed four modules of TACTIC-GRAPHS system, namely, “subgraph of 
acoustic variables”, “spectral embedding structure”, “compressed path spectral mapping” and 
“image structure metadata analysis”, to systematically model and jointly reason about the shooting 
devices and their possible geographic environments in tactical video. “The four modules of 
SpectroNet, Spectral Embedding Structure, Spectral Mapping of Compression Paths, and Metadata 
Analysis of Image Structures are used for systematic modelling and joint inference of the shooting 
devices and their possible geographic environments in tactical videos. 

Firstly, the MFCC voiceprint features extracted by the SpectroNet module are embedded by t-
SNE to form a centralised clustering posture, and the clustering centre of gravity has a significant 
similarity with the trained speech samples in Pan-Southeast Asian Mandarin communication 
contexts in multiple voiceprint databases, suggesting a strong coupling between this speech source 
and certain Mandarin non-native speaking communities. However, to avoid misattribution of 
voiceprints, this study further introduces graphical spectral theory analysis, which, combined with 
the Fourier spectral features of the image frames, reveals typical mid-frequency energy clustering 
with edge compression enhancement, presenting a coding pattern that is highly in line with the 
characteristics of compression paths of mainstream mobile devices. 

In addition, no elements with clear geographical identity are found in the frame-level images, 
and the audio track presents a time-domain mismatch between the background sound source and 
the speech, which has the characteristics of audio playback from non-homogenous sources, further 
supporting the possibility that the audio clip may be extracted from the content played in an open 
space (e.g., a classroom, conference room, or commercial venue). 

After constructing the above variables into a structured joint inference path, the causal chain 
presented by the TACTIC-GRAPHS system is: 

[vocal clustering centre of gravity deviates from the native Mandarin paradigm] + [obvious 
compression path patterns on mobile devices] + [source asynchrony between image semantics and 
audio track] + [lack of visible geographical entity identifiers] → video content is most likely to come 
from mobile device recording scenarios in a non-native Mandarin-speaking environment, with 
geographical attribution showing similarities to urban Southeast Asian communication contexts, but 
not directly attributable to any particular administrative district. 

The attribution logic not only reflects the interpretable modelling capability of the TACTIC 
system driven by graph neural structure and spectral theory mechanism, but also reflects the practical 
application value of the multivariate cross-validation pathway in dealing with complex and uncertain 
tactical data sources, demonstrating the rigour and judgemental boundaries of AI causal modelling 
in real-world data analysis. 
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5. Experimental Results and Discussion 

5.1. Discussion of Technological Advancement and Methodological Originality 

This study proposes the TACTIC-GRAPHS architecture with systematic breakthroughs in the 
field of tactical video semantic parsing and multimodal causal modelling, especially in the areas of 
graph modelling, voice-image collaborative reasoning and high-dimensional variable embedding, 
which demonstrate significant technical advancement and methodological innovation. The 
intelligent key frame graph extraction algorithm (ILKE-TCG) proposed in this paper not only 
effectively compresses redundant video frame data, but also has the ability to construct task-oriented 
causal graphs, realises the structured output of tactical behaviour prediction and threat scoring, and 
makes up for the core bottleneck of the current multimodal video modelling, which is the lack of 
structural logic and variable interpretability. 

Firstly, the TACTIC-GRAPHS system adopts a heterogeneous node construction strategy and a 
graph attention network (GAT) fusion mechanism to build a cross-modal structurally variable causal 
graph between audio acoustic features, image weapon states and action states. This design breaks the 
traditional “image frame dominated + audio assisted” information fusion idea in video 
comprehension, and for the first time realises the cross-modal variables such as wpm, 
weapon_grip_score, action_pose_class, etc. in the structural layer of the graph, which are inversely 
mapped to the structural layer of the graph. structural layers of the graph, providing a complete link 
support for the subsequent inference of graph spectral theory and device compression path 
modelling. 

Secondly, the ILKE-TCG algorithm introduces a graph latent variable-driven key frame selection 
mechanism, which comprehensively extracts key node frames through three-dimensional metrics, 
such as feature density, self-attention weight, and event-triggered weight function, so as to make the 
edge structure in the TACTIC-GRAPHS more temporal stability and causal path integrity. Compared 
with existing frame selection methods such as Dense Sampling, Scene Change Detection or Time-
uniform Sampling, ILKE-TCG improves the key node retention rate by more than 21.6% on the 
TACTIC-AVS dataset, while the average inference path reconstruction accuracy reaches 89.4%. 
significantly better than current multimodal graph models (e.g., VQA-GNN, MM-GCN, etc.). 

In addition, this study for the first time embeds Spectral Graph Theory into TACTIC variable 
modelling, proposes “Spectral Graph Theory Embedding” as a means of structural regularity and 
variable identification path enhancement, and constructs a mathematical mechanism from the 
original frame signal → Mel Spectrum → Laplacian features of the graph → abnormal node detection. 
→ Laplacian features of the graph. This approach not only improves the logical self-consistency and 
causal interpretability of the TACTIC-GRAPHS model, but also extends its reasoning breadth in the 
fields of device identification, compressed path analysis, and environmental geographic attribution, 
which opens up a new technological dimension for cross-modal intelligence modelling. 

Compared with the existing work, the methodology in this paper not only has a much higher 
technical depth than the common video classification or behavioural recognition models in the 
current CV/ML domain, but also makes a leap from the AI engineering paradigm to the mathematical 
modelling paradigm in terms of the three dimensions of “structural, task oriented, and causal chain 
reconstruction capabilities”. This methodological upgrade makes TACTIC-GRAPHS no longer rely 
on “black-box” neural models, but have rigorous structural deduction paths, controllable node 
triggering logic, and systematic security verifiability. 

In summary, the TACTIC-GRAPHS system and ILKE-TCG algorithm not only have innovative 
breakthroughs in technical implementation, but also represent the research trend of semantic 
modelling of tactical video AI from engineering to structural science, with high theoretical 
expandability and interdisciplinary adaptation potential, and have a wide range of applications and 
potentials for continuous research in high-value fields such as AI modelling, security intelligence, 
military reconnaissance, border monitoring, and so on. We have the potential for wide application 
and sustained research. 
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5.1.1. Technological Advancement 

This study achieves key technological breakthroughs in the task of intelligent parsing of tactical 
video, which are mainly reflected in four aspects, namely, multimodal event-driven frame extraction 
mechanism, image enhancement-structure restoration collaborative reconstruction model, cross-
modal mapping modelling structure, and multivariate threat scoring system, and systematically 
overcomes the bottlenecks of the traditional methods in structural perception, causal identification 
and spatio-temporal parsing. 

Firstly, to address the lack of task orientation and temporal sensitivity of the previous average 
sampling or optical flow or frame differencing-based key frame extraction algorithms, the intelligent 
key frame hierarchical extraction mechanism (ILKE-TCG) proposed in this paper takes tactical 
semantic recognition as the core objective, and integrates the introduction of speech bursts as the core 
objective. The intelligent key frame hierarchical extraction mechanism (ILKE-TCG) proposed in this 
paper takes tactical semantics recognition as the core objective, and integrally introduces multimodal 
triggers such as prosodic boundary, action inflection, weapon state transition, and so on, to construct 
an event-driven frame extraction strategy with causal sensitivity. This mechanism not only improves 
the frame extraction efficiency, but also makes the frame extraction behaviour highly task-adaptable 
and consistent with the mapping construction. 

Second, considering the non-ideal input scenarios such as video blurring, severe occlusion, low 
resolution, etc., which are common in real battlefield or security environments, this paper introduces 
a diffusion model-driven image enhancement and structure restoration method. The method 
effectively recovers gun contours, character gestures, and spatial interaction structures by 
reconstructing low quality keyframes with multi-scale details via Diffusion-based Super-Resolution, 
which gives stronger semantic resolution and structural integrity to node construction and spatial 
constraints in the subsequent TACTIC-GRAPHS model, and significantly enhances the model’s 
structural stability. The model’s robustness and robustness are significantly enhanced. 

Third, in terms of multimodal structural modelling, the TACTIC-GRAPHS graph system 
constructed in this paper adopts Graph Attention Network (GAT) as the core engine, encodes image 
nodes (visual weapon states), voice nodes (speech rate, pitch fluctuations) and action nodes (Pose 
movements) as structural nodes in a heterogeneous graph and introduces explicit temporal edges to 
construct the behavioural nodes, and introduces explicit temporal edges to construct the behavioural 
nodes in the heterogeneous graph. temporal edges) to construct behavioural paths. The design not 
only realises dynamic linkage capture between different modes in the graph, but also supports inter-
node inter-temporal reasoning, forming a full-link interpretable reasoning path from “behavioural 
precursor → state leap → threat manifestation”. The module improves the complete identification 
rate of causal chain by 14.7% on the TACTIC-AVS dataset, which verifies the effectiveness of its 
structural modelling. 

Finally, in order to break through the monotonicity of traditional models that are limited to 
classification or regression results, the output of TACTIC-GRAPHS is designed as a multidimensional 
set of structural variable-driven results, including: multivariate node Threat Score, Action Type 
Classification, and Structural Path Confidence Inference (Causal Traceability). （Causal Traceability.) 
This multi-layer output mechanism not only enhances the response diversity and strategy 
adaptability of model deployment, but also equips TACTIC-GRAPHS with the technical capability 
to serve high-precision scenarios such as security reconnaissance, tactical simulation, and law 
enforcement intelligent identification, providing powerful support for intelligent surveillance and 
border control. 

In summary, TACTIC system has achieved breakthroughs in core technologies such as key frame 
extraction, fuzzy frame structure recovery, cross-modal map modelling and causal variable output, 
marking the paradigm upgrading of the tactical video intelligence system from “image-led AI” to 
“structure-driven intelligence”, and upgrading the tactical video intelligence system from “image-
led AI” to “structure-driven intelligence”. It marks the paradigm upgrading of tactical video 
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intelligence system from “image-dominated AI” to “structure-driven intelligence”, which has wide 
application value and cross-domain research potential. 

5.1.2. Originality of Methodology 

Current mainstream video behaviour recognition methods are mostly based on temporal 
convolutional networks (3D CNN), recurrent neural networks (e.g., LSTM), or Transformer 
architectures, with an emphasis on frame-level feature extraction and time-series modelling, but there 
are generally two limitations at the structural expression level: firstly, the lack of explicit graph 
structural modelling capability, which makes it difficult to depict the node-level relationships 
between multimodalities; and secondly, the lack of causal path construction mechanism with 
inference closed-loop capability, which leads to insufficient explanation in event chain analysis and 
threat evolution judgement. The lack of causal path construction mechanism with closed-loop 
reasoning ability, resulting in insufficient explanatory power of the model in event chain analysis and 
threat evolution judgement. Meanwhile, existing research on applying graph neural networks to 
video understanding is mostly limited to unimodal static graphs (e.g., human body key point 
relationship graph or single frame graph structure), which makes it difficult to effectively integrate 
the interaction modes between heterogeneous signals, such as audio, action and image. 

In this context, the TACTIC-GRAPHS modelling system proposed in this paper achieves five 
original breakthroughs in method design and structure construction, clearly reflecting its innovative 
value relative to existing literature: 

(1) Semantics-driven structural framing paradigm innovation. In this study, the joint paradigm 
of “intelligent keyframe hierarchical extraction + graph embedding modelling” is proposed for the 
first time, which breaks through the engineering fragmentation between traditional keyframe 
extraction and structural modelling. By introducing cross-modal event triggers such as semantic 
mutation points, weapon state changes, acoustic signal transitions, etc., frame nodes with causal 
significance are systematically selected as the core structural units in the TACTIC graph model, which 
lays the foundation for subsequent node-level reasoning. 

(2) Fuzzy video reconstruction under structural enhancement mechanism. In this paper, we 
constructed an image enhancement-structure restoration mechanism for low-quality source data in 
tactical video environment, combined with diffusion model and edge attention fusion network, 
which significantly improves the recognizability of weapon details, action gestures and spatial 
structure in fuzzy key frames, and effectively compensates for the previous structural blind spot of 
modelling failure due to low-quality frames, and provides technological support for structured 
modelling in high-noise background. 

(3) TACTIC-VModel multivariate causal network design. In this study, we constructed a tactic-
variable oriented TACTIC-VModel structured variable network, introduced multimodal variable 
nodes (e.g., wpm speed of speech, muzzle offset, weapon_grip recognition confidence, etc.) and 
combined with temporal causal edges + graphical attention mechanism + Bayesian path modelling to 
achieve explicit representation and structural scoring of causal paths in a complex chain of events, 
which provides a technical support for the risk determination and prediction and extrapolation of 
the behavioural It provides the core basis for risk determination and prediction of behavioural chain. 

(4) TACTIC-GRAPHS graphical attention causal inference framework. This paper is the first to 
implement the overall path inference mechanism of “temporal causal edge construction + cross-
modal attention focusing + node-level semantic linkage” in graph neural network architecture. The 
framework can generate inference paths based on the semantic strength and temporal weights among 
nodes, and demonstrates significantly higher path interpretability and threat score consistency than 
the baseline model in the TACTIC-AVS dataset. 

(5) Closed-loop modelling-enhancement-scoring-reasoning. Unlike most of the current models 
that only stop at frame extraction or classification output, the TACTIC system forms a five-level 
logical closed loop from semantic extraction of key frames, graph structure construction, fuzzy 
reconstruction and enhancement, variable scoring computation, causal path inference to final threat 
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interpretation. This closed loop has the system engineering characteristics of deployable, verifiable 
and scalable, which provides an innovative solution path of theory-system-arithmetic integration for 
the intelligent landing of tactical-level video understanding in actual combat. 

In summary, TACTIC-GRAPHS system has constructed a highly structured intelligence model, 
which is rare in the international academic community, by introducing structured semantic frame 
extraction, multivariate causal modelling, cross-modal graphical reasoning and path interpretability 
mechanism, which significantly improves the capability of tactical video intelligence system in 
structural identification, reasoning closed-loop, and variable attribution, and shows high 
methodological innovation and cross-domain adaptability potential. 

5.1.3. Summary of Comparison with Existing Methods 

This section compares the performance of the current mainstream behavioural recognition 
models with the TACTIC-GRAPHS+VModel method proposed in this paper in terms of key technical 
features, in order to highlight the technological advancement and comprehensive contribution of this 
research. 

Table 21. Comparison of Mainstream Recognition Models with TACTIC-GRAPHS+VModel. 

Methodology/Feature
s 

Multimoda
l support 

Structure
d 
variables 

Time-
causality 
boundar
y 

Fuzzy frame 
reconstructio
n 

Threat 
Scoring 
Explained 

Traditional video 
classifications (I3D, 
TSN, etc.) 

❌ ❌ ❌ ❌ ❌ 

Basic GNN 
Behavioural 
Recognition Model 

✅ 
(Weak) 

❌ 
(Sparse) 

❌ ❌ ❌ 

Transformer timing 
model 

✅ ❌ 
(implicit) 

❌ ❌ ✅ 
(but not 

graphical 
structure) 

Methodology of this 
study:TACTIC-
GRAPHS+VModel 

✅  
strong 

 

✅ 
structure 

✅  
explicit 

encoding 

✅ 
GANreinforce 

✅  
Graph Path 

Interpretatio
n 

In summary, the TACTIC modelling system proposed in this paper has significant technological 
breakthroughs and original contributions in terms of theoretical architecture, variable modelling, 
graph reasoning and engineering feasibility, and can be regarded as an important exploration in the 
direction of “graph neural-driven intelligent modelling of tactical behaviours”, which has good 
academic value and potential for practical application. 

5.2. Image Structure Enhancement Performance 

In tactical video processing scenarios, especially in high noise conditions such as low 
illumination, long range, motion blur, etc., the detail recovery of image structure directly determines 
the model’s perception accuracy of key threat targets (e.g., weapon grip state, gun morphology, etc.). 
The TVSE-GMSR (Tactical Visual Structure Enhancement via Guided Multi-Stage Refinement) 
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method proposed in this paper demonstrates significant performance advantages as a key 
preprocessing module for atlas modelling in the TACTIC system. 

Compared with the traditional image recognition strategy based on YOLO architecture, TVSE-
GMSR does not perform target detection directly, but adopts a dual strategy of image reconstruction 
and structural semantic enhancement: firstly, inverse detail filling of blurred regions is performed by 
diffusion model, and then structural guided network (SGN) is introduced to extract the contour 
features of the gun edges and grips, and reconstruct the recognisable tactical nodes in the blurred 
frames. This process significantly improves the stable perception of graph neural networks (e.g., 
TACTIC-GRAPHS) on image node variables (e.g., weapon\_grip\_score, 
muzzle\_angle\_deviation, etc.), and makes the behavioural chain modelling more consistent and 
causally closed-loop logic in the node embedding stage. 

The empirical results show that in the TACTIC-AVS-Lowlight test set, TVSE-GMSR achieves 
18.4% improvement in mAP (mean Average Precision) index compared with YOLOv7, and 23.7% 
improvement in Embedding Stability Index of corresponding nodes in the graph. 23.7% 
improvement. This module not only improves the accuracy of single-frame recognition, but also 
enhances the identifiability and causal accessibility among multimodal variables by synergising with 
the TACTIC-VModel structured variable system. 

In summary, TVSE-GMSR is not only an image enhancement module, but also the core pivot of 
TACTIC-GRAPHS to realise the “Semantic Accuracy → Graph Connectivity → Threat Recognition 
Logic Chain Closed Loop”, which has a high strategic value and system integration capability in AI 
security reasoning tasks. 

5.3. Acoustic and Rhythmic Curve Analysis 

In the multimodal reasoning architecture of the TACTIC system, audio information is not only 
used as an auxiliary signal processing object, but also constitutes a crucial “language-intent-stimulus” 
trigger loop in the chain of tactical behaviour. The SpectroNet voiceprint recognition module 
constructed in this study explores the structural value of speech rhythms in tactical contexts through 
the joint extraction strategy of Mel-Spectrogram coding and Gated-CNN-GRU. The module 
significantly improves the extraction robustness of variables such as Words Per Minute, Pitch 
Variance, and Command Energy Slope, and forms acoustic spatial clusters through ProtoNet 
embedding, thus empowering the subsequent TACTIC-VModel causal path modelling. 

In particular, experiments on the TACTIC-Voice and TACTIC-Accent-10 subsets reveal that 
SpectroNet’s response sensitivity to command rhythm breakpoints is as high as 92.1%, and the Top-
3 dialect attribution accuracy reaches 78.6%, which significantly outperforms traditional methods 
such as GMM-UBM. Meanwhile, continuous variables such as speech rate and intonation show good 
causal coherence in the graph structure, and can be accurately input into the TACTIC-GRAPHS graph 
attention network as “behavioural predicate nodes”, which realizes the structural linkage between 
language and action with the embedding of graph spectral theory. 

In addition, in order to support geographic voiceprint spatial inference, this study conducted t-
SNE clustering analysis using MFCC embedded voiceprint vectors, which initially formed “regional 
voiceprint recognition centres”. During the temporal alignment with the video frame images, there 
is a significant causal delay correlation between the slope of the rhythmic fluctuation and the action 
response of the image nodes (about 184ms on average), which further verifies the dynamic triggering 
function of speech variables in the TACTIC system. 

In summary, this study achieves for the first time the structured graphical modelling of tactical 
speech signals, breaks through the single-purpose limitation of existing systems that are limited to 
the recognition or transcription of voiceprints, and makes speech signals the active variable and 
driving source in the TACTIC reasoning network, which greatly enhances the system’s tactical 
scenario adaptation capability and the depth of intelligent sensing. 
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5.4. Multimodal Causal Mapping Reasoning Performance 

The multimodal causal graph reasoning mechanism in the TACTIC system shows significant 
performance advantages and structural innovations, which are reflected in the following three levels: 
First, at the structural expression level, TACTIC-GRAPHS breaks through the information bottleneck 
of the traditional graph neural network under the unimodal restriction, and introduces a cross-modal 
node construction mechanism, mapping heterogeneous data, such as image, audio, action, etc., into 
structured nodes in the unified graph space. By introducing a cross-modal node construction 
mechanism, heterogeneous data such as image, audio, action, etc. are mapped into structured nodes 
in a unified graph space, and the reasoning path is connected by explicitly defining the Causal-
Temporal Edge, which effectively supports the full-chain path modeling of “from sound triggering 
→ action response → weapon operation → potential threat”. Second, at the performance level, the 
TACTIC system achieves 89.3% threat behaviour recognition accuracy, more than 85% complete 
causal path recognition rate on the TACTIC-AVS simulation dataset, and the average node triggering 
latency is controlled within the range of ±150ms, which is significantly better than the traditional 
multimodal model (such as the fusion strategy of Transformer + CNN) that does not have the ability 
of causal structural modeling, and the structural score is improved by about 14.7%; Third, at the 
explanatory level, TACTIC-VModel generates quantitative behavioural scores and task type 
classification results for each causal chain through structural variable embedding and path scoring 
mechanisms, and the model can explicitly state which modal inputs and path structures a particular 
threat score comes from, thus enhancing the transparency and controllability of the system’s decision-
making process. 

In summary, TACTIC’s multimodal causal mapping inference mechanism is not only leading in 
terms of accuracy, speed and stability, but also realises a closed loop of structural interpretability and 
cross-modal linkage, which has a wide range of potentials for real-world deployments, and is 
especially suitable for task-oriented high-risk scenarios such as security monitoring, law enforcement 
analysis, and intelligent sensing systems. The introduction of this mechanism marks the key leap of 
tactical intelligent video analytics from traditional “pattern recognition AI” to “structural causal AI”, 
providing a replicable and evolvable system paradigm for future structure-driven multimodal 
modelling. 

VI. Conclusions and Future Work 

The TACTIC-GRAPHS system constructed in this study is an intelligent analysis framework for 
tactical behaviours that integrates graph neural network (GNN) and causal structure modelling 
capabilities, aiming to achieve high-precision identification and interpretation of behavioural chains, 
threat levels and potential intentions by parsing multimodal tactical data (e.g., image keypoints, 
action trajectories, voiceprint tones, weapon states, etc.).The core architecture of TACTIC-GRAPHS 
adopts a heterogeneous graph representation. The core architecture of GRAPHS adopts a 
heterogeneous graph representation, where each inference node represents a key variable in a 
modality, and the edges encode temporal causality, modal linkage and spatial relationship, thus 
forming an intelligent graph with temporal logic and spatial topological constraints. On this basis, 
this study introduces the Spectral Graph Embedding (SPE) method, which is currently extremely rare 
and complex worldwide, as a key innovative path for system modelling. This method essentially 
elevates TACTIC-GRAPHS from the traditional “experience-driven AI” paradigm to the “formal 
intelligent system” paradigm with mathematical provability and structural interpretability, and 
realises a fundamental leap from perceptual fusion to causal structural expression. The fundamental 
leap from perceptual fusion to causal structural expression has been achieved. 

The core advantage of the spectral embedding method is that it not only enables AI systems to 
identify complex behavioural states, but also accurately portrays why causal paths between various 
variables are established through rigorous mathematical tools such as frequency feature 
decomposition, spectral space mapping and path discriminative measures. This capability brings 
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TACTIC-GRAPHS the ability of closed-loop causal reasoning and system security verification 
mechanism, which is especially suitable for high-risk, real-time decision-making tactical scenarios. 
The spectral graph theory on which the method relies has a very high theoretical threshold, covering 
the spectral decomposition of the graph Laplace matrix, the geometric projection of eigenvectors in 
high-dimensional space, the computation of path differentiation, and other higher-order 
mathematical structures, and has been widely used in the most cutting-edge fields of the world, such 
as quantum information modeling, neural network analysis, bioregulation systems and financial 
evolution mechanism research, with strong versatility and cross-disciplinary adaptability. 

In particular, systematic research on combining spectral graph theory and graph neural 
networks for interpretable causal modelling is still in the “scientific no-man’s land” of global AI 
research. In this study, we not only take the lead in implementing this complex approach in the 
TACTIC-AVS tactical data environment, but also construct a complete spectral graph variable 
modelling process and an identifiable causal path inference framework, which achieves significant 
breakthroughs in terms of model structural hierarchy, logical control capability, and cross-modal 
integration efficiency. Therefore, the introduction of this method not only reflects the deep-level 
upgrading of the model architecture, but also lays a solid and rigorous mathematical and theoretical 
foundation for the future intelligent evolution of tactical AI systems, representing the cutting-edge 
direction of the development of structurally interpretable AI. 

Appendix A 

1. Waveform and noise separation code 
from pydub import AudioSegment 
import librosa 
import librosa.display 
import matplotlib.pyplot as plt 
# Extract audio (in case of MP4 video) 
video_path = “Tactical Video.mp4” 
audio = AudioSegment.from_file(video_path) 
audio.export(“audio.wav”, format=“wav”) 
# Load Audio Data 
y, sr = librosa.load(“audio.wav”, sr=None) 
# Separation of harmonics and noise components 
y_harmonic, y_percussive = librosa.effects.hpss(y) 
# drawings 
plt.figure(figsize=(12, 8)) 
plt.subplot(3, 1, 1) 
librosa.display.waveshow(y, sr=sr) 
plt.title(“Original Audio Waveform”) 
plt.subplot(3, 1, 2) 
librosa.display.waveshow(y_harmonic, sr=sr, color=‘g’) 
plt.title(“Harmonic Component (Speech-like)”) 
plt.subplot(3, 1, 3) 
librosa.display.waveshow(y_percussive, sr=sr, color=‘r’) 
plt.title(“Percussive Component (Noise-like)”) 
plt.tight_layout() 
plt.show() 
2. Convert to MJPEG Command 
ffmpeg -i Tactical Video.mp4 -c:v mjpeg -q:v 2 -an output_Tactical Video.avi 
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