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Abstract: Schizophrenia is a spectrum of neuropsychiatric deformities, characterized by hallucination, 
delusion, mood disorders, speech pathology, and neurocognitive deficits. Among various clinical 
manifestations, hallucination has been recognized as a core psychotic symptom that occurs more frequently in 
schizophrenia. A significant number of subjects with neurocognitive disorders like Alzheimer’s disease (AD), 
Parkinson’s disease (PD), Huntington’s disease (HD), and other neurological diseases like stroke and epileptic 
seizure also experience hallucinations. While aberrant neurotransmission has been linked to the 
neuropathogenic events of schizophrenia, the specific cellular mechanism contributing to hallucinations 
remains ambiguous. Neurodegeneration in the hippocampus of the brain has been identified as a predominant 
pathogenic determinant of dementia. While the scientific proof for the neurodegeneration in schizophrenia is 
limited, the occurrence of dementia in schizophrenia has become increasingly evident. To note, both 
neurodegenerative, neurodevelopmental, and neuropsychiatric disorders display impaired neurogenesis in 
the brain. Impaired neurogenesis in the hippocampus has been linked to dementia and mood disorders. 
Notably, the early phase of many neurodegenerative disorders has been characterized by reactive 
neuroblostosis and aberrant cell cycle activation in mature neurons leading to the fluctuation in neurogenic 
processes leading to abnormal synaptogenesis and neurotransmission in the brain. Thus, this article 
emphasizes a hypothesis that aberrant neurogenic processes could be an underlying mechanism of 
hallucination in schizophrenia and other neurological diseases.  
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Introduction 

Schizophrenia is a debilitating neuropsychiatric disorder, characterized mainly by hallucination, 
delusions, mood disorders, and cognitive deficits[1–3]. Initially, Emil Kraepelin described the clinical 
features of this peculiar affective disorder as dementia praecox, and manic depression due to the 
admixer of behavioral deformities overlapping with various mental illnesses [4]. Later on, the term 
schizophrenia was suggested by Eugen Bleuler in 1908 and provided a further description of the 
different positive and negative psychotic symptoms [2,5]. While frequent episodes of hallucinations, 
delusions, paranoia, abnormal exhilaration, irrational thinking, and inexplicable behaviors are the 
positive symptoms of schizophrenia, the obvious negative symptoms comprise speech disorders, 
apathy, emotional blunting, catatonia, depression, and suicidal thoughts. Considerable degree of 
memory loss, deterioration of interpersonal skills, and attention deficits are the key cognitive deficits 
noticed in schizophrenia [1,2,4,6].  
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Figure 1. Clinical symptoms of schizophrenia; The digital highlights the key clinical manifestations 
of schizophrenia, the positive, negative, and cognitive symptoms. 

While the schizoid symptoms in childhood are rare, subtle prodrome signs appear to develop in 
the late teenage and thus marked degree of altered behavioral patterns is distinguishable in a 
significant percentage of individuals during their fourth decade of life[6,7]. The prevalence of 
schizophrenia is almost 1% of the global population regardless of gender and ethnicity [1,8]. 
Presently, there are no structured diagnostic strategies and confirmative biomarkers available to 
delineate the behavioral symptoms and pathogenesis of schizophrenia, because the etiology of the 
disease is not distinctive, the psychotic patterns are comorbid, vary among patients, and differ over 
time. The symptoms of schizophrenia appear to often be co-occurred with psychosis, BPD, OCD and 
MDD [9,10]. Despite the accumulation of enormous clinical reports and case studies, the precise 
etiology and distinguished pathogenic mechanisms accountable for the onset and progression of 
schizophrenia remain to be established. Also, the screening strategies for prenatal diagnosis and 
preventive measures for schizophrenia are highly limited. Thus, the therapeutic targets for 
establishing an effective curative regime remain ambiguous. The available interventional 
medications such as tailored combinations of antipsychotics, antidepressants, and anxiolytic agents 
are aimed at merely handling behavioral disorders through modulation of aberrant 
neurotransmission in the brain [1,11]. Moreover, many neuropharmacological approaches 
implemented for schizophrenia pose unforeseen adverse effects rather than a cure [1,12]. Therefore, 
there is a crucial need for scientific advancement in deciphering the underlying pathogenic 
determinants of schizophrenia which would help in identifying the ultimate therapeutic target. 
Reactive astrogliosis, an overpopulation of pathogenic astrocytes has widely been regarded as a non-
neuronal pathogenic consequence leading to disruption of brain homeostasis and creating an 
imbalance in neurotransmitters during clinical episodes of various mental innless [13]. Though 
experimental evidence highlights the alterations in the expression of astrocyte-related genes, the 
reports on the abnormal astrogliogenic events in schizophrenia are inconsistent [13–16]. Thus, the 
involvement of astrocytes in the pathogenic events in schizophrenia remains to further be established. 
Besides, a prominent histopathological signature for the activation of microglial cells, in part 
responsible for neuroinflammation has also increasingly been evident in the brains of schizophrenic 
subjects [17,18]. The progressive neuroinflammatory process has been known to impair the ongoing 
neurogenic process in the brain [19–21]. Ample experimental evidence suggests dysregulation of 
adult neurogenesis, is a prominent pathogenic characteristic of various neurodegenerative, mood, 
and psychiatric disorders that include Alzheimer’s disease (AD), Huntington’s disease (HD), 
Parkinson’s disease (PD), stress, depression, anxiety, and schizophrenia [20,22–26]. While the 
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progressive decline in hippocampal neurogenesis contributes to the pathomechanisms of dementia 
and mood disorders, ample experimental evidence demonstrated the occurrence of reactive 
neurogenesis in the early phases of many neurodegenerative and psychiatric disorders that include 
AD, PD, HD, and schizophrenia [27–31], Neuroblasts have been considered as immature neurons, 
derived from the neuronal stem cells of the developing as well as the adult brain [32,33]. The amount 
of neuroblasts produced in the brain determines the degree of terminal neurogenic process in the 
adult brain accounting for various neurogenerative plasticity and brain repair [32]. Recently, a new 
line of emerging scientific evidence underpins an abnormal activation profile of neural cells namely 
reactive neuroblostosis that depicts the overproduction of immature neurons leading to aberrant 
neurogenesis in the early phase of many neurodegenerative disorders that display movement 
disorders and dementia including AD and HD [27,33–36]. As these neurodegenerative disorders 
progress into the later stages, the neuroblastosis events appear to be diminished due to the depletion 
of neural precursor cells or degeneration of the neuroblasts [33–35,37]. Notably, traumatic brain 
injury, cerebral stroke, and epileptic seizure have also been characterized by reactive neuroblostosis 
and subsequent abnormal migration of mitotically active neuroblasts in the affected regions of the 
brain [36,38–40]. However, the role of reactive neuroblastosis in the pathogenic process or brain 
repair remains ambiguous. As the ultimate cell fate of reactive neuroblasts is uncertain, reports on 
their possible involvement in the disease progression, and cognitive, and psychiatric alterations are 
limited. To note, the fluctuation in the regulation of neurogenesis resulting from reactive neuroblasts 
in the adult brain could alter and deteriorate the neuroplasticity responsible for mental health and 
behavior including memory and mood.  

Risk factors and etiopathological relevance of schizophrenia 

The clinical manifestations of schizophrenia appear to originate from multifactorial elements 
including some definitive and mostly unknown gene mutations, copy number variations, epigenetic 
alterations, dysregulated transcriptomics, chromosomal abnormalities, metabolic defects, abnormal 
brain development, synaptic dysfunctions, aberrant neurotransmission, abnormal lifestyle, 
environmental factors [2,41]. Notably, maternal malnutrition, preeclampsia, gestational diabetes, 
prenatal viral infections, vitamin D deficiency, twin gestation, emergency cesarean section, childbirth 
complications, birth during the winter season, low birth weight, autoimmune diseases, chronic mood 
disorders, asphyxia, air pollution, illiteracy, and substance abuse, living in an urban area, 
immigration to the foreign country, living in unsuitable environment and transcultural influences 
have been identified as the key risk factors for schizophrenia [2,42–45]. Thus, the etiology and risk 
factors of schizophrenia are highly multifaceted. While the shreds of evidence for pathogenic 
signatures of neurodegeneration in schizophrenia-affected brains are indecisive, the 
neurodevelopmental hypothesis has been considered in which early neurogenic defects and aberrant 
migration of neuronal precursor cells have been emphasized as underlying psychotic symptoms and 
cognitive deficits at the later stage of life accounting for schizoaffective disorders [46]. Embryonic 
stem cells derived from early neurogenesis through the generation of neuroblast cells are an 
important aspect of brain development during embryogenesis [47]. The abnormal in-utero condition 
affecting brain development at the level of neuroblast formation and migration has been considered 
a prime risk factor for schizophrenia [48,49]. Eventually, several theories have been postulated for 
the neuropathogenic basis of schizophrenia. Disruption of glutamate transmission in the 
thalamocortical areas has been linked to the development of schizophrenia. Various experimental 
evidence gathered from the use of anesthetic agents namely phencyclidine and ketamine suggest that 
defects in the expression and function of glutamate decarboxylase (GAD)-1, hypofunction glutamate, 
and N-methyl-D-aspartate (NMDA) receptors are associated with the development of schizophrenia 
[50,51]. While glial cells are important for the neurotransmission of glutamate at the synapses, 
abnormal gliogenic events during brain development have also been proposed to be involved in the 
progression of schizophrenia [52]. Further, unusual flux in the release of dopamine and differential 
expression of its receptors in mesolimbic areas, nigrostriatal, and mesocortical tracts have also 
strongly been coupled to the symptomatic signature of schizophrenia [53]. As increased release and 
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hyper-transmission of dopamine in the subcortical area of the brain is known to contribute to positive 
symptoms such as hallucinations and delusions in schizophrenia, its hypofunction resulting from 
decreased expression or inactivation of dopamine receptors in the prefrontal cortex and caudate 
nucleus appears to be associated with the development of negative symptoms like anhedonia, lack 
of motivation, and speech disorders [53,54]. Experimental studies established from the use of 
antipsychotic drugs that modulate the serotonergic and dopaminergic systems revealed impaired 
interaction between dopamine and serotonin could prime the abnormal neurochemical events 
accounting for schizophrenia [55–57]. Furthermore, recent evidence indicates the dysfunctions of 
GABAergic neurons in the cortex, altered levels of serotonin, and defects in the cholinergic system of 
the brain during the symptomatic phase of schizophrenia [11,41,58,59]. Recently, increased level of 
norepinephrine has also been suggested to play a role in the pathophysiology of schizophrenia [60]. 

Eventually, schizophrenia has a heritable nature as many genetic determinants have been linked 
to its pathogenesis [61]. The first-degree relatives and offspring of subjects with schizophrenia pose 
a considerable degree of risk of developing the clinical symptoms [42,61]. However, the genetic 
linkages and the mutations are not unique among schizophrenia patients. The clinical episodes of 
schizophrenia have been mapped to various polymorphisms or dysregulation of susceptibility genes 
such as 1) neuregulin (NGR)-1, a candidate gene involved in brain development, vesicular transport 
of glutamate and EGF signaling, 2) dystrobrevin-binding protein (DTNBP)-1 which aids in glutamate 
release, 3) catecholamine O-methyl transferase (COMT), important for signal transduction of 
dopamine, 4) dopamine beta-hydroxylase (DBH) that catalyzes the hydroxylation of dopamine and 
some phenylethylamine derivatives and 5) regulator of g-protein signaling (RGS)-9 responsible for 
various molecular pathways transduction in the brain and 6) the disrupted-in-schizophrenia 1 
(DISC1) that is known to interact with factors responsible downstream dopamine signaling pathway 
and glycogen synthase kinase-3 (GSK-3) [62–67]. Eventually, the suicidal behaviors in schizophrenia 
have been attributed to defects in genes such as the corticotropin-releasing hormone receptor 
(CRHR)-1 and corticotropin-releasing hormone binding protein (CRHBP) that encode stress response 
elements involved in the regulation of the hypothalamic-pituitary-adrenal (HPA)-axis [68]. Notably, 
the aforementioned neurobiochemical and genetic determinants and risk factors appear to be 
associated with morphological differences and neuroanatomical abnormalities in schizophrenia.  

Neuro morphological and pathological sequelae of schizophrenia  

Owing to its obvious abnormalities in neurotransmission, there has been overwhelming data 
available for the description of the behavioral deformities and psychotic symptoms in schizophrenia 
[69]. However, the distinct neuropathological changes of schizophrenia arising from various 
idiopathic factors have long been refractory to the definitive diagnosis. Earlier radiology-based 
pneumoencephalography attempts revealed dilated lateral and third ventricles in the brains of 
subjects with schizophrenia [70,71]. Later on, Johnstone et al validated the enlarged brain ventricles 
using axial brain scans in schizophrenic brains [72]. As considerable scientific and technological 
advancements made in recent decades, neuroimaging techniques, and neuromorphometric 
assessments have revealed anatomical, cytoarchitectural alteration, and functional defects in the 
brains of subjects with and at risk of schizophrenia. In the quest to address the neuropathological 
changes in the brain of schizophrenia, ample neuroimaging evidence obtained from computed 
tomography (CT), magnetic resonance imaging (MRI) involved diffusion-tensor imaging (DTI) 
tractography, and functional imaging, magnetic resonance spectroscopy (MRS), 
magnetoencephalography (MEG) and positron emission tomography (PET)-based studies 
convincingly demonstrated and validated enlarged ventricles, grey matter loss, structural 
deformities and loss in corpus callosum, increased volume in basal ganglia, loss of myelination and 
dysconnectivity of neural network, differences in neurite curvature among key brain areas in 
schizophrenia [71,73–75]. Further, a series of MRI-based reports on gross brain morphometric and 
gyrification assessments unveiled obvious volumetric reduction in the frontal lobe and temporal lobe 
in schizophrenia subjects [76]. Concomitantly, decreased density of cortical regions and shrinkage in 
the amygdala, thalamus, nucleus accumbens, and hippocampus have been established as region-
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specific morphological defects in schizophrenia [78,79]. A surface-based MRI analysis by Sprooten et 
al., 2013 intended the widespread cortical thinning, more predominantly in superior frontal, medial 
parietal, and lateral occipital regions during the early stages of schizophrenia [80]. A resting-state 
functional magnetic resonance imaging (rs-fcMRI) based analytical study done by Sheffield et al., 
2017 in schizophrenic individuals reported that cognitive impairment is linked to loss of functional 
connectivity within and between fronto-parietal lob and cingulo-opercular networks [81]. Studies 
from the magnetic resonance spectroscopy and PET on the brains of schizophrenia patients reported 
that dopamine and GABA systems primarily contribute to the pathophysiology and development of 
psychotic disorders, which has been attributed to an excitatory-inhibitory imbalance in the cerebello-
thalamo-cortical and striato-thalamo-cortical loops, hyperfunction in the mesolimbic dopamine 
pathway and differences in dopaminergic content in the prefrontal cortex (PFC), anterior cingulate 
gyrus, and hippocampus [82,83].  

The increased volume of cerebrospinal (CSF) and the possibilities of neurodegeneration have 
been proposed for the enlarged ventricles in schizophrenia [84]. To note, the enlarged ventricle has 
been established as a prominent neuropathological mark related to many neurodegenerative 
processes and tissue remodeling in many neurocognitive diseases as the neuroblasts migrate from 
the subventricular zone (SVZ) to the degenerating sites [85,86]. At the same time, the corpus callosum 
helps in connecting and coordinating the functions of two hemispheres, dysconnectivity between 
functional areas has been assumed to result in schizophrenia [87,88]. While the occurrence of 
neurodegeneration in schizophrenia has been a long-standing subject of examination, the studies of 
histopathological correlates of the postmortem brain samples from schizophrenia victims revealed 
synaptic loss rather than neurodegeneration can be responsible for the volume loss in many brain 
regions [89]. Eventually, demyelination resulting from the degeneration of oligodendrocytes has been 
predicted to be the reason for white matter lesions in the frontal cortex, hippocampus, and 
cerebellum in schizophrenia [56,90]. Among various brain regions, the hippocampus has been 
considered to play a crucial role in neurocognitive functions as it holds a niche for neural stem cells 
(NSCs) and regenerative capacity [91,92] . Atrophy or dysfunction of the hippocampus has been 
linked to dementia, mood, and psychotic disorders [20,33–35,91,92]. Notably, schizophrenia has been 
characterized by neuroanatomical, cytoarchitectural, synaptic dissociation, demyelination, microglial 
activation, and functional abnormalities in association with neuroinflammation in the hippocampus 
[93,94]. Distinctly, the ongoing neurogenesis mediated by NSCs-derived neuroblasts has been 
reported to play a key role in regenerative plasticity, neurocognitive regulation, memory, and mood 
functions [92]. Defects in the hippocampal neurogenic process have been linked to dementia, stress, 
and depression-related symptoms in various neurological illnesses and traumatic brain injuries 
[20,34,35,39,40,85,93,95]. Eventually, abnormal neurogenesis appears to be associated with 
neurodevelopmental disorders like autism [96]. Therefore, the possibilities for the involvement of 
aberrant neurogenesis in the hippocampus in the establishment of psychotic disorders cannot be 
excluded. Among various, maladaptive disorders, hallucination appears to be a district psychotic 
symptom predominantly observed in schizophrenia [97]. While the aging-related progressive 
cognitive decline has been correlated with a steady decline in hippocampal neurogenesis, recent 
evidence suggests varying degrees of neurogenesis upon the pathogenic progression in mental 
deterioration and neurodegenerative illnesses that not only display dementia [98]. Notably, 
schizophrenia has been characterized by arrest in the maturation of the hippocampus due to elevated 
levels of cellular and molecular signatures of immature neurons [99,100]. Considering the 
aforementioned facts, the possibilities for the involvement of the regulation of neurogenesis in the 
hippocampus along with the disease progression could be highly relevant in schizophrenia. 
Differential regulation, prolonged dysregulation, and impaired neurogenesis may significantly 
contribute to dysfunctional information processing leading to both cognitive deficits and 
hallucinations in schizophrenia. Thus, insight into mechanisms associated with hallucinations and 
impaired neurogenesis might aid in the emergence of future therapeutics to mitigate the disease 
progression. 
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Figure 2. Neurochemical and anatomical differences in healthy and schizophrenia. The image depicts 
the environmental impact, variations in neurotransmission and hereditary factors as the etiological 
causes of schizophrenia. Nneuroanatomical alterations such as cortical thinning and loss of grey 
matter in the schizophrenic brain compare to healthy brains. 

Reactive neuroblastosis as an underlying mechanism of hallucination in schizophrenia and 

other neurological disease 

Hallucination is the involuntary generation of illusory, perceptual, and mystical experiences of 
the brain that occur devoid of external stimuli from the sensory organs and environment [101]. 
Hallucination can occur at the level of auditory, visual, tactile, olfactory, and gustatory functions 
during conscious as well as in paradoxical sleeping states. Ample functional neuroimaging studies 
suggest that the generation of abrupted neural impulses in the key brain areas including the sensory 
cortex, insula, putamen, and hippocampus could be an underlying cause of hallucination [102–104]. 
However, the origin of the spontaneous neural activity in the brain that synthesizes substrate for the 
generation of hallucination remains obscure. Thus far, numerous theories have been postulated for 
the underlying basis of hallucination [105,106]. For example, Lopez Ibor proposed that abnormal 
activation of engram, a hypothetical form of substratum essential for the cognitive process in 
ideational centers of the brain, can be an underlying basis of hallucination [105,107]. According to 
Hughlings Jackson, the upper motor centers of the brain are involved in intellectual ability when 
spontaneous activities of the foremost motor centers of the brain independent of peripheral reactions 
or activation of mid-level motor centers upon deactivation of the upper motor center could result in 
hallucination [108,109]. As per Wilder Penfield’s experimental findings, electrical stimulation in 
certain cortical or subcortical structures can cause different forms of hallucinations [110,111]. Notably, 
the occurrence of hallucination is associated with changes in neuroplasticity closely related to key 
brain regions like primary and secondary sensory cortices, basal ganglia, and limbic system including 
the hippocampus [112]. Among different neurotransmitter-based hypotheses, varying levels of 
dopamine in the limbic system have been considered to actively contribute to the development of 
hallucinations [113]. Recently, abnormal immune activation, increased cerebral blood flow, 
circulating metabolites, and energy metabolism in the brain have been linked to hallucinations [114–
117]. However, most of the theories on hallucinations appear to be merely paradoxical and none of 
the concepts has been proven to delineate the definite mechanism of hallucination. Therefore, 
advancement in the understanding of the root cause of hallucination from different perspectives 
including at the cellular level has become important.  

Though hallucination has been ascertained as a foremost psychotic symptom of schizophrenia, 
it also occurs in many other diseases and arises in response to some substance abuse [113]. Indeed, 
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hallucination is a key clinical problem in diverged medical conditions including psychiatric 
complications and neurodegenerative diseases [118]. Notably, various forms of dementia, bipolar 
disorder, obsessive-compulsive disorder (OCD), epilepsy, cerebral stroke, brain trauma, migraine, 
brain lesions, brain tumors, metabolic disorders, and Charles bonnet syndrome have been known to 
be associated with a considerable degree of incidence with hallucination [119]. Mood disorders like 
anxiety, stress, depression, and post-traumatic stress disorder (PTSD) have also been linked to 
hallucinations [120]. In AD, reduced acetylcholinesterase activity in the brain has been predicted as 
a biochemical cause of hallucinations in a significant percentage of subjects with progressive memory 
loss [121,122]. Eventually, PD and HD patients have also been reported to experience hallucinations 
due to an imbalance in dopamine and GABA in the limbic system of the brain [123,124]. However, 
the occurrence of hallucinations in neuropsychiatric and neurodegenerative disorders is a subject of 
debate as many drugs that are used for the management therapy of neurological deficits, psychotic 
problems, sleeping abnormalities, and mood disorders have also been known to induce 
hallucinations [125]. Eventually, prolonged intake of antiepileptic drugs, antidepressants, anticancer 
medications, and sleeping pills such as narcotics, steroids, pentoxifylline, tramadol, bromocriptine, 
sertraline, trazodone, appears to cause hallucinations [126,127]. There is no defined biochemical or 
molecular pathway ascertained for the incidence of hallucinations. Therefore, understanding a 
specific pathogenic signature in schizophrenia that overlaps with other neurological diseases and the 
mode of action of hallucinating drugs could provide a valid clue in understanding the underlying 
basis of the hallucinations.  

During embryogenesis, the generation of neurons from embryonic NSCs-derived neuroblasts 
plays a key role in neurodevelopmental, whereas pathogenic processes in neurodevelopmental 
disorders and mental disturbances have been attributed to defects in the early neurogenic process 
[128,129]. Among various predictions, a potential link between schizophrenia and aberrant 
neurogenic events responsible for unrecognizable abnormal brain development in early life has been 
widely considered to have a negative impact in the latter adulthood stage leading to psychiatric 
disturbance and neurocognitive impairments [31,130,131]. Thus, there has been considerable 
scientific interest in exploring the alteration of neurogenesis in schizophrenia [132]. In the healthy 
brain, the degree of neuroblasts generation accounting for the neuroregenerative characteristics has 
been directly correlated with mental health, intellectual ability, sexual drive, pattern separation, and 
cognitive functions, including learning and memory [91,133–135]. The immature and differentiating 
state of neuroblasts has been characterized by the expression of PSA-NCAM, doublecortin, and 
calretinin in the adult brain [32,136,137]. Though turnover of neurogenesis in the human brain and 
animal brain has been reported to be dissimilar at the level of neuroblasts generation, occurrence of 
neurogenesis in adulthood has been demonstrated in human brains [134,138,139].  

In general, understanding the regulation of neurogenesis in the human brain has some 
drawbacks due to the unavailability of healthy brain samples during the critical period and technical 
disadvantages [140]. However, the persistence and regulation of neuroblasts in the healthy human 
brain and aberrant levels of neurogenic process in disease conditions have been unequivocally 
demonstrated [22,138,140,141]. While impaired neurogenesis during fetal development has been 
linked to intellectual disability disorders, the progressive decline in the neuroblast population 
followed by the loss of new neurons in the hippocampus has been established as a brain aging and 
distinct neuropathogenic event along with progressive memory loss [35,91,98,134,135,142,143]. 
However, the role of aberrant neurogenesis in pathogenic mechanism in neuropsychiatric and 
neurodegenderative disorders has been less explored. Notably, neurological diseases like epilepsy 
and cerebral stroke are associated with increased neurogenesis in the hippocampus, unusual 
migration of neuroblasts in the cortex and striatum, and altered cell fate events in the neurogenic and 
non-neurogenic areas [36,39]. Notably, a significant percentage of subjects with epileptic seizures and 
cerebral ischemia have been reported to experience hallucination [144–146]. Besides, physical exercise 
in a physiological state has been known to enhance cognitive ability via the brain-derived 
neurotrophic factor (BDNF) mediated neurogenesis [147]. However, aggressive physical exercise 
appears to exacerbate the disease progression in some neurodegenerative diseases and some 
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individuals experience hallucination after vigorous physical activities [148]. Interestingly, elevated 
levels of BDNF induced by physical exercise, enriched environment, and thorough supplement of 
neuroprotective agents have been established to facilitate hippocampal neurogenesis as it promotes 
the proliferation and survival of neuroblasts. Moreover, schizophrenic brains have been 
characterized by increased level of BDNF which might in part contribute to increased neurogenic 
events accounting for hallucinations [149].  

Interestingly, increased level of neuroblasts proliferation and their ectopic migration has also 
become increasingly evident in the early phase of neurodegenerative disorders, while the late phase 
of these disorders with the prominent sign of dementia and depression-related disease have been 
characterized by diminished level of neuroblasts in the brain [20,33,35,37,96,150]. Notably, the 
ongoing turnover of neuroblasts has generally been confined to the hippocampus and SVZ-OB 
system, several reports indicate the possibility for the occurrence and migration of neuroblasts in the 
other brain regions including the cortex, striatum, and hypothalamus [33,37,151–153]. The presence 
of astroglial cells in the non-neurogenic areas of the brain has been regarded as an alternate source of 
NSCs responsible for neurogenic events in different areas of the brain [154]. Recently, the sustaining 
of non-newly generated terminally undifferentiated neuroblasts with differential neuroplastic nature 
has also been reported in the brains of some mammals such as dolphins and sheep [155,156]. These 
quiescent neuroblasts are likely to be activated upon environmental stimuli or during disease 
progression [20,157]. In disease conditions, the abnormal discharge of proinflammatory cytokine 
from activated immune cells leads to a cell cycle arrest in NSCs which can cause the stimulation of 
proliferation in neuroblasts as a compensatory cellular effect [20,35]. Recently, based on the 
immunohistological findings of the DCX staining in brains of the transgenic animal models of HD, 
Kandasamy and Aigner proposed a concept known as reactive neruoblastosis which describes an 
abnormal cellular condition of the brain in which neuroblasts undergo enormous proliferation and 
ectopic migration in the non-classical neurogenic areas [33,34]. These abnormal cell cycle events have 
been demonstrated to occur as a result of elevated levels of TGF-β mediated induced quiescent of 
NSCs as well as neuronal differentiation, owing to its pleiotropic properties [20,35,158]. Besides, 
Kandasamy and colleagues conceptualized an alternative hypothesis that reactive neuroblastosis 
might also occur due to the dedifferentiation of neurons in neurodegenerative conditions [150]. 
Likewise, the level of TGF-β has been reported to be increased during the disease course of 
schizophrenia [159]. This indicates the possibility of the occurrence of reactive neuroblastosis in 
schizophrenia. Notably, postmortem studies have revealed reduced cell proliferation by means of a 
lesser count of Ki 67 and PCNA immunopositive cells in the hippocampus of schizophrenia victims 
[160]. However, the reduction in the overall cell proliferation did not reflect the number of 
neuroblasts in the neurogenic area of the brain, as D Barbeau et al., reported that reduction in the 
number of PSA-NCAM-immunoreactive neuroblasts was confined in the hilar region but not in the 
DG of brains of schizophrenic subjects [161]. Notably, N M Walton et al in 2012 reported the transition 
state of immature neurons in the hippocampal DG of CaMKIIα-hKO mice that display behavior 
abnormalities similar to schizophrenia and bipolar disorder [162,163]. This report also points towards 
the possibilities for the reactive neuroblastosis in schizophrenia. Interestingly, a recent report from 
Joen-Rong Sheu et al in 2019 revealed an increased number of DCX-expressing neuroblasts with 
enhanced dendritic arborization, indicating the surplus amount of interacting neuroblasts in the 
circuit of the hippocampus in the brains of the maternal immune-activated rodent model of 
schizophrenia [31]. In corroboration with experimental animal study, they demonstrated an 
increased level of calretinin-positive cells in the hippocampal DG of postmortem brains of 
schizophrenia [31]. Eventually, a large number of postmortem data indicated an increased density of 
interstitial white matter neurons (IWMNs) in the brains with schizophrenia, which could have been 
derived from the enhanced production of neuroblasts [164]. However, Feng et al indicated the there 
is no change mRNA expression of neuroblast marker in the schizophrenic brains compared to age 
matched controls that indicates a compensatory cellular mechanism upon ageing process accounting 
for interstitial white matter neurons enhanced [165].  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 December 2023                   doi:10.20944/preprints202312.0820.v1

https://doi.org/10.20944/preprints202312.0820.v1


 9 

 

Moreover, the treatment of experimental animals with M108, a potent halogenic compound 
resulted in increased levels of hippocampal neurogenesis and aggravated the symptoms of 
schizophrenia [31]. In contrast, suppression of the neurogenic process during the adolescent period 
delayed the onset and progression of schizophrenia-like symptoms in experimental rats [31]. Also, 
Ketamine and phencyclidine have been considered as potent hallucinating drugs [166]. Multiple lines 
of experimental evidence suggest that these hallucination drugs increase hippocampal neurogenesis 
in the hippocampus. Experimental studies revealed that ketamine treatment increases the number of 
neuroblasts in the hippocampus [167]. Though repeated phencyclidine treatment has been reported 
to decrease the survival of neurons, a week later repopulation of the compensatory neurons was 
evident [168,169]. Besides, ample evidence suggested increased proliferative events in the 
neuroepithelium of schizophrenia patients, compared to explants from healthy controls [170]. Hong, 
S. et al. provide experimental evidence that PARP-1 is required for the differentiation of NSCs, while 
its absence results in defective neurogenesis and behavioral impairments leading to schizophrenia-
like phenotype in experimental animal models [171]. Eventually, altered levels of Wnt signaling 
components that induce cell cycle events are evident in schizophrenia [172]. A recent study conducted 
using iPSC reported altered Wnt-1 signaling activity, a potent inducer of cell cycle in association with 
abnormal NPC proliferation and imbalanced differentiation of excitatory and inhibitory neurons 
leading to neuronal circuit miswiring as the developmental origin of schizophrenia [173]. Moreover, 
subjects with brain metastatic conditions, a state with the malignant proliferation of neuroblasts and 
glial cells have been reported to display hallucinations [174]. Therefore. it can be strongly argued that 
reactive proliferation and dendritic growth of neuroblasts contribute to the pathophysiological of 
hallucination in schizophrenia. Arnold et al, 2001, conducted a study using olfactory epithelium (OE), 
a structure that continues to undergo neurogenesis and regulation throughout adult life. In his study, 
he reported the presence of neurons at different stages of development in the post-mortem OE 
samples, and an increase in the number of immature neurons was evident in schizophrenic patients 
[175]. In order to survive, the generation of neuroblasts has to be integrated into existing circuits as 
failure in the integration of neuroblasts would result in their extinction [176]. Therefore, it can be 
expected that an increased amount of neuroblast generation would form redundant synapses with 
existing neurons in a competitive nature. Strikingly, neuroblasts have been considered a potential 
source of the engram, possess electrical properties, and exhibit synoptical activities even in an 
immature state [33,34,177]. A surplus number of immature neurons resulting from reactive 
neuroblostosis may tend to integrate into the existing neuronal circuit or may form an extra neural 
connection in a provocative manner leading to abnormal synoptical, and metabolic activation in the 
brain thereby drastically misshaping the synapse and electrical events, and creating dysregulation in 
the release of neurotransmission in the cognitive centers of the diseased brain. Therefore, 
ultrastructural findings reported the abnormal formation of synapses in schizophrenia patients could 
be a result of neuroblastosis events leading to miswiring or abnormal patterns of synaptic connections 
in the brain. The abnormal neurogenic process at the level of integrating an exceeding number of 
neuroblasts can be proposed to induce abnormal maladaptive psychotic behaviors specifically 
hallucination. Whereas failure or defects in the integration of a subset of neuroblasts and their 
consequent loss could be associated with dementia regardless of neurodegeneration of existing 
mature neurons in schizophrenia.  
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Figure 3. Regulation of adult neurogenesis and reactive neuroblastosis in heathy and schizophrenia 
brain. The picture provides an overview on the regulation of adult neurogenesis and neuronal 
integrity in a healthy brain, as well as abnormal neurogenesis and neural integration in schizophrenia. 
While physiological adult neurogenesis contributes to brain plasticity responsible for cognition 
function, defective neurogenesis brought on by reactive neuroblastosis causes disruption in neuronal 
integration and neurotransmission in schizophrenia. Increased neurotransmission from enhanced 
integration of reactive neuroblasts from could be an underling cause of hallucinations, while 
decreased neural integration could results in dementia. 

Conclusions 

The brain is an irreplaceable organ of complex structure that synthesizes dreams, imagination, 
innovative ideas, and various forms of experiences. Highly structured and regulated forms of 
neuroplasticity resulting from voluntary and involuntary signals are crucial for motor, physiological, 
and cognitive performance. Various functional regions of the brain have a great capacity to 
spontaneously produce neuroplasticity independent of internal and external stimuli. The key 
functional areas of the brain have the ability to regenerate throughout life. Regulation of NSCs-
mediated adult neurogenesis through the generation of neuroblasts has been known to be an integral 
mechanism for various forms of cognitive functions including intellectual measures, learning, and 
memory. While various factors can modulate neurogenesis from development to the adult stages, 
defects in neurogenesis at the level of NSC proliferation and differentiation are associated with 
various diseases. While known or unknown mutations may alter the cell cycle parameters of the NSC 
and neuroblasts prolonged activation of immune cells can interfere with their neuronal 
differentiation and integration process through the proinflammatory and neurotropic factors. 
Notably, schizophrenia has been linked to an aberrant neurogenic process in the brain. Hallucination 
is the prime behavioral pathology of schizophrenia and subjects with neurological diseases and 
intake of some drugs also experience Hallucination for which no confined mechanism has been 
established. This article emphasizes that reactive neuroblastosis might be responsible for the 
occurrence of hallucinations as it can abruptly strengthen the synapses and induce abnormal 
neurotransmission. Besides, failure in the integration of newly generated neuroblasts could 
contribute to dementia as evidence for neurodegeneration is limited in schizophrenia. Therefore, the 
futuristic therapeutic targets aimed at harnessing reactive neuroblastosis and correcting the 
functional integration might be highly beneficial against hallucination and dementia in schizophrenia 
and other diseases.  
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