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Abstract: In this paper we present two ways to solve the Jacobian conjecture. The first way is an equivalent

statement to the Jacobian conjecture using idempotent ideals. The second way is to use an equivalent thesis to the

thesis of the Jacobian conjecture. In both cases we will show that the Jacobian conjecture is true.
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1. Introduction

The Jacobian conjecture, formulated by Keller [1] in 1939, is one of the most important open
problems stimulating modern mathematical research (see [2]). In this article we deal with the problem
of the Jacobian conjecture for Cn. The results can be generalized to an n-dimensional algebraically
closed field. We present a positive solution to this conjecture.

Jacobian conjecture. If the polynomial mapp F : Cn → Cn has a non-zero Jacobian constant, then F is
an automorphism.

This conjecture is one of the classic problems of polynomial mapping theory and has many
implications and applications in algebraic geometry, number theory, and holomorphic dynamics.
There are various approaches to this problem, based on algebraic, analytical or combinatorial methods.
More information on this subject can be found in two monographs [3], [5].

It is worth noting that in [4] the authors showed the relationship between the Jacobian hypothesis
and irreducible and square-free elements in certain rings of polynomials. In this article, we will also
show relationships, although not motivated by [4].

Let us recall thath an ideal I is called idempotent if it satisfies the condition I2 = I. For example,
the ideal (x) in Z[x] is square-free but not idempotent. An article [6] defines the concept of a square-free
ideal, i.e. it is an ideal I in the ring R, where for any x ∈ R, if x2 ∈ I, then x ∈ I. Note that every
idempotent ideal is square-free. Indeed, let x ∈ R and x2 ∈ I. Then x2 = x · x ∈ I2 = I ⇒ x · x ∈ I ⇒
x ∈ I.

In the section 2 we will show an equivalent statement to the Jacobian conjecture (Theorem 2.1),
which is based on the idempotent and maximal ideals. We will also present a positive solution to the
Jacobian conjecture (Corollary 2.4).

In the section 3 we will also show a second way to solve the Jacobian conjecture. First, we will
show (Theorem 3.1) that the thesis of the Jacobian conjecture is equivalent to the thesis that the ideal
generated by f1 − x1, f2 − x2, . . . , fn − xn is an idempotent ideal. Then in Theorem 3.2 we will show
that the Jacobian conjecture is true using the 3.1 theorem.

2. Equivalent theorem to the Jacobian conjecture

Let us begin by presenting an equivalent statement to the Jacobian conjecture.

Theorem 2.1. Let A = C[x1, . . . , xn]. Let I = (F1, . . . , Fn) be the ideal generated by the coordinates F =

(F1, . . . , Fn) : Cn → Cn. Let J = (J1, . . . , Jn) be the ideal generated by the coordinates G = (G1, . . . , Gn) :
Cn → Cn such that G(F(x)) = x for each x ∈ Cn Then the Jacobian conjecture is equivalent to the following
statement:
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If I is an idempotent ideal in A, then J is maximal in A.

Proof. If the ideal I is idempotent in A, then I2 = I. Every idempotent ideal is square-free, and then
radical, i.e. I = Rad(I). From Nullstellensatz, we know that there is a bijection between the radical
ideals of A and the closed algebraic subsets of Cn. So I corresponds to some subset of V ⊂ Cn such
that V2 = V. Since F is a locally bijection, V is discrete and finite. So V = {x1, . . . , xk} for some k ∈ N
and xi ∈ Cn. Note that F(xi) = xi for each i = 1, . . . , k. This means that G belongs to the maximal ideal
M ⊂ A corresponding to the set V. Since G(F(x)) = x for each x ∈ Cn, this means that G belongs
to the core of the I ideal in A. So J ⊂ c(M ∩ I) ⊂ A, where c(M ∩ I) is a core of the ideal M ∩ I, i.e.
c(M ∩ I) = {P ∈ A : P(M ∩ I) ⊂ I}. Since M is maximal in A and J is not non-zero in A (because G is
not constant), then J = M.

If I is maximal in A, then J corresponds to a single point x ∈ Cn. So G(x) = x and G(F(x)) = x
for each x ∈ Cn. So F is invertible and F−1 = G. Since F and G are polynomial, their Jacobians are
non-zero on Cn.

Several conclusions can be drawn from the above Theorem, e.g. that the ideals I and J are
orthogonal or conjugate, but we are most interested in the following conclusions.

Corollary 2.2. With the above designations:

(1) The ideals I and J are radical.
(2) The ideals I and J are relatively prime.

Proof. (1) The ideal I = (F1, . . . , Fn) is a primary ideal because it is generated by the coordinates of the
mapping F, which is a ring homomorphism. Thus its radical is a prime ideal generated by the kernel F.

Similarly, the ideal J = (J1, . . . , Jn) is a primary ideal because it is generated by the coordinates of
the map G, which is a homomorphism and inverse of F. Thus its radical is the prime ideal generated
by the kernel G.

To show that I and J are radical, it suffices to show that they are prime. If Fi and Gi are irreducible
of A, then the ideals (Fi) and (Gi) are prime of A. So the ideals I and J are the products of prime ideals
and are also prime in A.

(2) From (1) we know that the ideals I and J are primary ideals of A. We will show that the radicals of
the ideals I and J are also prime and generate the same ideals. From the definition of a radical, we
have that if x ∈

√
I, then xn ∈ I for some n > 0. Similarly, if x ∈

√
J, then xn ∈ J for some n > 0. Thus√

I and
√

J are primary ideals of A. Moreover, from the radical property we have
√

I J =
√

I ∩
√

J. So
if x ∈

√
I or c ∈

√
J, then xn ∈ I J for some n > 0. Hence

√
I ∩

√
J is a prime ideal in A. But since I

and J are prime and primary, they must be equal to their radicals. So we have
√

I =
√

J = I = J.

From the ideal sum property, we have I + J ⊆
√

I +
√

J. But since
√

I =
√

J, then we have√
I +

√
J =

√
I. So we have I + J ⊆

√
(I). On the other hand, let r ∈ A be arbitrary. Then rn ∈ A for

every n > 0. Since
√

I is the smallest ideal containing I, it must contain all powers of rn. So there is
n > 0 such that rn ∈

√
I. But since

√
I is primary and prime, then r ∈

√
I. So we have A ⊆

√
I. Hence

I + J =
√

I = A. We have shown that the ideals I and J are relatively prime, that is, their sum is equal
to the entire ring A.

The next Theorem will help us to solve the problem of the Jacobian conjecture positively.

Theorem 2.3. Let A = C[x1, . . . , xn]. Let I and J be radical, relatively prime, ideals of A. If I is an idempotent
ideal of A, then J is maximal in A.

Proof. Let I and J be radical, relatively prime ideals in A. Assume I is an idempotent ideal. We will
show that J is a maximal ideal in A. Suppose that there is an ideal K of A such that J ⊂ K ⊂ A. Then
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there is an element k ∈ K \ J such that k ̸= 0. We want to show that k is invertible of A, that is, there is
an element in l ∈ A such that kl = 1.

Since k ∈ K \ J, then k /∈ J. So k is not a root of any polynomial of J. In particular, k is not a root
of the polynomial j0 ∈ J such that 1 = i0 + j0. So the polynomial j0 − k has exactly one root k with
multiplicity 1.

Since k ∈ K ⊂ A, then k is a polynomial of n variables with complex coefficients. So it can be
decomposed into a product of linear factors over C:

k = c(x − a1)(x − a2) . . . (x − an),

where c ∈ C \ {0} is a constant, a1, . . . , an ∈ C are roots of k (perhaps with repetitions). Note that
since k is square free in A (because it belongs to I), then every root of ai has a multiplicity of 1.

Now, we want to show that every root of ai belongs to I. Suppose that there is a root ai such that
ai /∈ I. Then ai is not a root of any polynomial of I. In particular, ai is not a root of the polynomial i0 of
I such that 1 = i0 + j0. So the polynomial i0 − ai has exactly one root ai with multiplicity 1.

Now, consider the polynomial f = (j0 − k)(i0 − ai) belonging to A. Note that f has exactly two
roots: k with a multiplicity of 1 (because j0 − k has only one root k with a multiplicity of 1) and ai with
a multiplicity of 1 (because i0 − ai has only one root ai with a multiplicity of 1). So f is a quadratic
polynomial of A.

Since 1 = i0 + j0, then f = −(j0 − k)i0 + (i0 − ai)j0. So f belongs to the ideal I J. Since I J is a
radical ideal of A, then every root of f belongs to I J. In particular, k belongs to I J. But k also belongs
to K, so k belongs to I J ∩ K.

On the other hand, since I and J are relatively prime ideals of A, then I J = I ∩ J. So k belongs to
(I ∩ J) ∩ K = I ∩ (J ∩ K). But J ∩ K ⊆ J, so k belongs to I ∩ J. But I ∩ J = {0} because I + J = A, so
k = 0. Contradiction.

So J is a maximal ideal of A.

We can draw conclusions from the above considerations.

Corollary 2.4. The Jacobian conjecture is true.

Proof. By Theorem 2.1 it suffices to show that if I is an idempotent ideal of A, then J is a maximal
ideal of A, with the notation of Theorem 2.1. From Corollary 2.2 we know that the ideals I and J are
radical and relatively prime. Then just use the theorem 2.3.

3. Equivalence of the thesis of the Jacobian conjecture

Let’s start with the following theorem.

Theorem 3.1. Let R = C[x1, . . . , xn] be the ring of polynomials over the complex field. Let f = ( f1, . . . , fn)

be a polynomial mapping Rn → Rn. Let I be the ideal generated by f1 − x1, . . . , fn − xn. Then f is invertible
and the inverse f−1 is also a polynomial if and only if I is an idempotent ideal.

Proof. Note that f is invertible and the inverse f−1 is also a polynomial if and only if there exists a
polynomial mapping g = (g1, . . . , gn) such that f ◦ g = g ◦ f = idRn . This means that fi(g1, . . . , gn) =

xi and gi( f1, . . . , fn) = xi for every i = 1, . . . , n. In other words, the polynomials fi − xi and gi − xi
belong to the ideal J generated by f1 − x1, . . . , fn − xn, g1 − x1, . . . , gn − xn.

On the other hand, if I is an idempotent ideal, then it means that I2 = I. In particular, if x = fi − xi,
then x2 = ( fi − xi)

2 ∈ I, so x ∈ I. This means that fi − xi ∈ I for every i = 1, . . . , n. Therefore, the
ideal I contains the ideal J, that is, I = J. Since I is generated by f1 − x1, . . . , fn − xn, it means that
there exist polynomials g1, . . . , gn such that gi − xi ∈ I for every i = 1, . . . , n. Then g = (g1, . . . , gn) is a
polynomial mapping that satisfies f ◦ g = g ◦ f = idRn , that is, f is invertible and the inverse f−1 is
also a polynomial. □
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Theorem 3.2. The Jacobian conjecture is true.

Proof. We will use the symbols with Theorem 3.1.

Theorem 3.1 shows that the existence of the polynomial inverse of the mapping f is equivalent to
the idempotency of the ideal I. Therefore, to prove the Jacobian conjecture, it is enough to show that
the condition for the determinant J f (jacobian) is equivalent to the idempotence of the ideal I. In other
words, we need to show that if J f is a nonzero constant, then I is an idempotent ideal, and vice versa.

If J f is a non-zero constant, then f is invertible and the inverse of f−1 is also a polynomial. Since I
is generated by f1 − x1, . . . , fn − xn, which is the set of polynomials in R that have a value of zero at
every point in the image f . Therefore R/I is the set of all abstraction classes of polynomials from R
with respect to the equivalence relation p ∼ q ⇐⇒ p − q ∈ I.

Since f is a bijection, it means that every point in Cn is an image of exactly one point in Cn by f .
Therefore, each polynomial in R has exactly one value at every point in Cn. So each abstract class in
R/I has exactly one value at every point in Cn. Thus, there is a bijection ϕ : R/I → C that assigns each
abstraction class its value at any point in Cn. Since ϕ is a bijection, it means that it is an isomorphism if
it preserves ring operations, i.e. ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for any a, b ∈ R/I. Let
a, b ∈ R/I, i.e. a = p(x1, . . . , xn) + I and b = q(x1, . . . , xn) + I for some p, q ∈ R. Then

ϕ(a + b) =ϕ((p + q)(x1, . . . , xn) + I) = (p + q)( f1, . . . , fn) =

p( f1, . . . , fn) + q( f1, . . . , fn) = ϕ(a) + ϕ(b)

and

ϕ(ab) =ϕ((pq)(x1, . . . , xn) + I) = (pq)( f1, . . . , fn) =

p( f1, . . . , fn)q( f1, . . . , fn) = ϕ(a)ϕ(b).

Therefore ϕ is an isomorphism between R/I and C. We have shown that R/I ∼= C.

It follows that I is a maximal ideal in R. We will show that I is an idempotent ideal.

Suppose I is not an idempotent ideal. This means that I2 is a subideal of I, but is not equal
to I. So there is an element x ∈ I, but x /∈ I2. Consider the ideal J generated by x and I, that is,
J = {x + y : y ∈ I}. We will show that J is an ideal that contains I but is different from I and R. Then I
will not be a maximal ideal. Note that J contains I because if y belongs to I, then x + y belongs to J (for
any x). Note also that J ̸= I because x belongs to J (for y = 0), but x does not belong to I2, so x does
not belong to I. Obviously J ̸= R, since x is not an invertible element in R, since x belongs to I and I is
a proper ideal. So J is an ideal that contains I but is different from I and R. This means that I is not a
maximal ideal. We have shown that I is an idempotent ideal.

Conversely, we will show that if I is an idempotent ideal, then R/I ∼= C, and therefore J f is a
non-zero constant.

First, we will show that since I is an idempotent ideal, it means that R/I is a simple ring, i.e.
there are no non-zero proper ideals. Let J be a nonzero ideal in R/I. Then J is of the form J = L/I,
where L is an ideal in R containing I. Note that J2 = (L/I)2 = (L2/I). Since I is idempotent, then
I2 = I, so L2 ⊆ I2 = I. Therefore J2 = (L2/I) = (0/I) = 0. We have (L2/I) = (0/I) because L2 is
a subideal of I, so every element of K2 also belongs to I. Therefore, each element of (L2/I) is of the
form l2 + I, where l2 belongs to I. But then l2 + I = I, because I is an ideal and contains its neutral
element. Therefore (L2/I) is a set that contains only one element, i.e. I. But I is equivalent to 0 in the
quotient ring R/I because I is an ideal. Therefore (L2/I) = (0/I). This means that J is a nilpotent
ideal, i.e. there exists n ∈ N such that Jn = 0. Specifically, J2 = 0, so J = 0. Therefore R/I does not
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have any non-zero proper ideals, i.e. it is a simple ring. Now, since R/I is a simple ring, it means that
it is isomorphic to some algebraic field over C, denote by K.

Now, to show that J f is a nonzero constant, we need to use the fact that R/I is isomorphic to
some algebraic field over C. This means that there is a bijection ϕ : R/I → K, where K is an algebraic
field over C that preserves ring operations, i.e. ϕ(a + b) = phi(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for
any a, b ∈ R/I.

Now, since R/I is isomorphic to K, it means that J f is a non-zero constant. Substantially, Because
J f is the determinant of the Jakobi matrix f , i.e. a polynomial in n complex variables. Therefore, J f
belongs to R, so we can treat it as an element of R/I. Then ϕ(J f ) is an element of K, which is the
determinant of the Jakobi matrix ϕ( f ). Since ϕ is an isomorphism, it means that ϕ( f ) is invertible
and the inverse of ϕ( f )−1 is also a polynomial. Therefore ϕ(J f ) is a non-zero constant because it is
the determinant of the Jakobi matrix of the invertible polynomial mapping. Since ϕ is a bijection, this
means that J f is also a non-zero constant because it is the only element of R/I that is transformed by ϕ

into ϕ(J f ).
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