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1 Abstract: This paper compares a series of traditional and deep learning methodologies for the
= segmentation of textures. Six well-known texture composites first published by Randen and Husey
s were used to compare traditional segmentation techniques (co-occurrence, filtering, local binary
«  patterns, watershed, multiresolution sub-band filtering) against a deep-learning approach based on
s the U-Net architecture. For the latter, the effects of depth of the network, number of epochs and
o different optimisation algorithms were investigated. Overall, the best results were provided by the
z  deep-learning approach. However, the best results were distributed within the parameters, and many
s  configurations provided results well below the traditional techniques.

s Keywords: Texture; Segmentation; Deep Learning

o 1. Introduction

"

1 Texture, and more specifically textural characteristics in images, has been widely studied in the
1z past decades as texture is one of the most important features present in images and can be used for
1z feature extraction [1-8] and classification and segmentation [9-14]. The areas of study where texture
12 is present range from crystallographic texture [15], stratigraphy [16,17], food science of potatoes [18]
15 or apples [19], patterned fabrics [20] to natural stone industry [21]. In medical imaging, there is a
1s large volume of research which exploits the use of texture for different purposes like segmentation of
17 classification in most acquisition modalities like magnetic resonance imaging (MRI) [22-26], ultrasound
e [27,28], computed tomography (CT) [29-31], microscopy [32,33] and histology [34]. There are numerous
1o approaches to texture: Haralick’s co-occurrence matrix [4,5] on the spatial domain, Gabor filters [35-37]
20 and ordered pyramids [8] on the spectral domain, wavelets [38,39] or Markov random fields [3,40].
2 In recent years, advances in artificial intelligence have been revolutionised image processing tasks.
22 Several deep learning approaches [41-43] have achieved outstanding results in difficult tasks such
2 as those of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [44]. Convolutional
22 Neural Networks (CNNs) are well suited to analyse textures as their repetitive patterns can be learned
= and identified by filter banks [45]. The U-Net architecture proposed by Ronneberger [46] has become
26 a very widely used tool for segmentation and analysis reaching thousands of citations in few years
2z since it was published. U-Nets have been used widely, for instance, road extraction [47], singing voice
2s  separation [48], automatic brain tumour detection and segmentation [49] and cell counting, detection,
20 and morphometry [50]. The success of these deep learning approaches in very different areas invite for
30 its application on texture analysis.

a1 In this work, a U-Net architecture for the segmentation of textures is implemented and objectively
;2 compared against several popular traditional segmentation strategies. To perform an objective
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33 comparison, six well-known texture composites from the Brodatz [51] album, first published by Randen
sa  and Husey [52], are segmented with U-Nets of different configurations and parameters and the results
s compared against previously published results. The effects of the configuration of the networks, namely,
s number of epochs, depth of the network in the number of layers, and type of optimisation algorithm
5o are assessed. All the programming was performed in Matlab® (The Mathworks™, Natick, USA) and
ss the code is freely available through GitHub (https://github.com/reyesaldasoro/Texture-Segmentation).

e 2. Materials and Methods

a0 2.1. Texture composite images

a Six composite texture images were segmented in this work (Fig. 1). The first five composites are
a2 images of 256 x 256 pixels and consist of five different textures whilst the last one is 512 x 512 pixels
«3 and is formed with 16 different textures. The masks with which these were formed are shown in Fig. 2.
s It should be highlighted that these textures have been histogram equalised prior to the arrangement
s and thus they cannot be distinguished by the general intensity of each region. Furthermore, whilst
s some textures are easy to distinguish, there are some that are quite challenging, for instance, the
«z difference between the central and bottom regions in Fig. 1(c) or the top left corners of Fig. 1(d,e).
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Figure 1. Six composite texture images. (a-e) Texture arrangements with five textures. (f) Texture
arrangement with sixteen textures. Notice first, that individual textures have been histogram equalised
and thus each region cannot be distinguished by the intensity, and second, some textures area easier to
distinguish (e.g. (a)) than others (e.g. (d)).
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Figure 2. (a) Mask corresponding to texture arrangements of Figs. 1(a-e). (b) Mask corresponding to
texture arrangements of Fig. 1(f).

s 2.2. Training data

a9 The training data in [52] is provided separately and is shown in Fig. 3 for the first five composites
so and in Fig. 4 for the last case. For the purpose of training the U-Nets, the training images were
51 tessellated into sub-regions of 32 x 32 pixels each.

52 Pairs of textures and labels were constructed simultaneously in the following way: two training
ss images were selected. Sub-regions of each image were selected and for every pair of the sub-regions,
sa half of each was selected and placed together so that a new 32 x 32 patch with both textures was
ss created with a corresponding 32 x 32 patch with the classes. The patches were created with diagonal,
s vertical and horizontal pairs. The training images were traversed horizontally and vertically without
sz overlap creating numerous training pairs. A montage of the texture pairs and labels corresponding to
se Fig. 1(a) is illustrated in Fig. 5. All pairs between classes were consideredie. 1 —2,1-3,1—-4,1 —
o 5,2—-1,2-3,...,5—-23,5—4. In total, 2,940 patches were created for the five composites with five
s textures and 35,280 were created for the composite with sixteen textures.
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. Training images corresponding to the texture arrangements of Figs. 1(a-e).
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Figure 4. Training images corresponding to the texture arrangements of Fig. 1(f).
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Figure 5. Montages of the texture pairs created to train the deep learning networks. Training images
shown in Figs. 3,4 were tessellated and arranged in diagonal, vertical and horizontal pairs. (a) Texture
pairs. (b) Labels. (c) Detail of the texture pairs. (d) Detail of the labels.

o1 2.3. Texture segmentation algorithms

62 For this paper, we compared the results of the following texture segmentation algorithms:
es co-occurrence matrices [5], filtering [52], Local Binary Patterns (LBP) [53], watershed [54] and
s« multiresolution sub-band filtering (MSBF) [8] against a U-Net architecture [46]. As the traditional
es algorithms have been thoroughly described in the literature, this section will only describe the
e configuration of the U-Net. For a review of traditional texture techniques, the reader is referred
ez to any of the following reviews [55-57].

65 The basic U-Net architecture was formed with the following layers: Input, Convolutional, ReLu,
e Max Pooling, Transposed Convolutional, Convolutional, Softmax and Pixel Classification. Two levels of

70 depth were investigated by repeating the downsampling and upsampling blocks in the following
7 configurations:

72 15 layers:
73 Input,
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74 Convolutional, ReLu, Max Pooling,
75 Convolutional, ReLu, Max Pooling,
76 Convolutional, ReLu,
77 Transposed Convolutional, Convolutional,
78 Transposed Convolutional, Convolutional,
70 Softmax,
80 Pixel Classification
81
82 20 layers:
83 Input,
84 Convolutional, ReLu, Max Pooling,
85 Convolutional, ReLu, Max Pooling,
86 Convolutional, ReLu, Max Pooling,
87 Convolutional, ReLu,
88 Transposed Convolutional, Convolutional,
8o Transposed Convolutional, Convolutional,
%0 Transposed Convolutional, Convolutional,
o1 Softmax,
02 Pixel Classification.
93
0a The image input layer was configured for the 32 x 32 patches. The convolutional layers consisted

os of 64 filters of size 3 and padding of 1. The pooling size was 2 with stride of 2. The transposed
o6 convolutional had a filter size of 4, stride of 2 and cropping of 1. The number of epochs evaluated
oz were 10,20, 50,100. The following optimisation algorithms were analysed: stochastic gradient descent
os  (sgdm), Adam (Adam) [58] and Root Mean Square Propagation (RMSprop). One last investigation
ss was performed by training the 20 layer network two separate times to investigate the variability of the
100 Process.

101 3. Results

102 For each image, the networks were trained with the 3 different optimisation algorithms, 3 layer
103 configurations and 4 epoch numbers, for a total of 36 different combinations. Thus for the 6 composites
10a images there were 216 results. The misclassification of each segmentation was measured against the
15 ground truth as the percentage of pixels classified incorrectly. These results are summarised in table 1.
106 The best results for each image were selected and compared against traditional methodologies
107 and are shown in table 2. The results are illustrated graphically in two ways. Fig. 6 shows segmented
10s  the classes overlaid as different colours over the original textured images. Fig. 7 shows correctly
100 segmented pixels in white and the misclassified pixels in black.
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Table 1. Comparative misclassification (%) results of the different U-Net configurations. (Bold and
underline denotes the best result for each image).

Method Figures
Layers | Optimisation Algorithm | Epochs a b C d e f
15 sgdm 10 6.8 | 21.5 | 40.8 | 31.2 | 27.2 | 209
20 sgdm 10 33.0 | 59.0 | 743 | 79.1 | 77.3 | 419
20 sgdm 10 719 | 629 | 743 | 788 | 72.1 | 39.0
15 Adam 10 32 | 104 79 | 71| 178 | 193
20 Adam 10 74 | 155 | 465 | 25.0 | 45.1 | 94.2
20 Adam 10 6.4 | 155 | 36.0 | 21.1 | 26.7 | 329
15 RMSprop 10 5.1 8.9 | 140 | 183 | 121 | 176
20 RMSprop 10 53 | 424 | 453 | 599 | 56.2 | 27.7
20 RMSprop 10 20.2 | 374 | 47.0 | 43.7 | 442 | 26.1
15 sgdm 20 3.8 (231|175 | 159 | 141 | 19.8
20 sgdm 20 273 | 605 | 74.8 | 69.3 | 739 | 274
20 sgdm 20 23.8 | 51.0 | 63.6 | 66.8 | 56.5 | 26.7
15 Adam 20 3.7 | 11.6 7.5 74 95 | 71.7
20 Adam 20 6.1 | 133 | 28.7 | 185 | 40.8 | 32.2
20 Adam 20 56 | 179 | 274 | 225 | 39.3 | 94.0
15 RMSprop 20 38 | 11.7 | 145 | 192 | 11.7 | 179
20 RMSprop 20 6.1 | 422 | 54.7 | 475 | 426 | 22.3
20 RMSprop 20 19.1 | 30.3 | 44.7 | 51.7 | 37.1 | 269
15 sgdm 50 32 | 153 9.2 7.7 | 13.8 | 19.6
20 sgdm 50 18.2 | 322 | 60.3 | 42.8 | 30.2 | 289
20 sgdm 50 94 | 552 | 56.0 | 16.0 | 324 | 324
15 Adam 50 34 | 104 9.8 99 | 39.1 | 226
20 Adam 50 83 | 803 | 198 | 823 | 79.6 | 34.8
20 Adam 50 7.2 9.6 | 414 | 10.0 | 27.6 | 23.6
15 RMSprop 50 34 | 187 | 10.0 83 | 11.2 | 175
20 RMSprop 50 5.6 | 332 | 25.7 | 34.8 | 344 | 224
20 RMSprop 50 54 | 228 | 453 | 20.0 | 34.7 | 29.2
15 sgdm 100 39 | 106 7.9 77 | 7.7 | 214
20 sgdm 100 9.6 | 22.1 | 394 | 39.7 | 30.3 | 23.8
20 sgdm 100 13.7 | 171 | 52.8 | 26.3 | 37.1 | 30.5
15 Adam 100 2.7 | 16.6 | 80.3 72 | 182 | 219
20 Adam 100 2.6 | 389 | 799 | 80.1 | 31.1 | 25.7
20 Adam 100 34 | 800 | 79.7 | 809 | 80.3 | 28.6
15 RMSprop 100 48 | 112 | 72| 81 9.5 | 18.1
20 RMSprop 100 71 | 66.0 | 46.0 | 28.6 | 30.9 | 24.0
20 RMSprop 100 56 | 295 | 269 | 185 | 293 | 229
Max 719 | 80.3 | 80.3 | 823 | 80.3 | 94.1
Mean 104 | 30.7 | 394 | 33.7 | 35.6 | 30.7
Min 2.6 8.9 7.2 7.1 77 | 175
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Table 2. Comparative misclassification (%) results with co-occurrence [5], best filtering result from
Randen [52], pg and LBP [53], Watershed [54], Multiresolution sub-band filtering (MSBF) [8] and U-Net
[46]. (Bold is the best for each image).

Method Figures
a b C d e f | Average
Co-occurrence [5] 9.9 | 27.0 | 26.1 | 51.1 | 35.7 | 49.6 | 33.23
Bestin Randen [59] | 7.2 | 18.9 | 20.6 | 16.8 | 17.2 | 34.7 | 19.23

ps [60] 74 | 128 | 159 | 184 | 166 | 27.7 | 16.46
LBP [60] 6.0 | 180 | 121 | 9.7 | 114 | 17.0 | 12.36
Watershed [54] 71| 107 | 124 | 11.6 | 149 | 200 | 12.78
MSBF [8] 28| 148 | 84| 73| 43| 179 | 925
U-Net [46] 26| 89| 72| 71| 77| 175 | 850
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Figure 6. (a-f) Results of the segmentation with U-Nets for the six texture arrangments. The
misclassification (%) is shown in each case. The classes are shown as overlaid colours.
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Figure 7. (a-f) Results of the segmentation with U-Nets for the six texture arrangments. The
misclassification (%) is shown in each case. Pixels that are correctly classified appear in white.

4. Discussion

The results provided by the U-Net algorithm provided interesting results. First, overall, the
segmentation results provided by the U-Net were better than all the traditional algorithms and were
the best four of the six images. In some cases, the results were very close to the second best option
(a,d,f) and in two cases (e,f) traditional algorithms provided better results. Second, there was a great
variability in the results produced by the different configurations. It was surprising that the maximum
value of the misclassification in some cases was extremely high, 80% in the cases of 5 textures and
94% in the case of 16 textures, those cases are equivalent of selecting a single class for all textures.
Third, three of the best results were obtained with 100 epochs, 2 with 10 epochs, and 1 with 50, which
is counter-intuitive as it would be expected that longer training times would provide better results.
Fourth, three of the best results were provided by RMSprop optimisation, two by Adam and one by
sgdm. Finally, and perhaps the most surprising result was that the results provided by the two 20 layer
configurations were very different. In a few cases the result were equal (e.g. image ¢, sgdm, 10 epochs;
image b, Adam, 10 epochs) but in others the variation was huge (e.g. image b, Adam, 50 epochs).

In terms of texture, it can be highlighted that not all textures are the same, the five textures of
image (a) are far easier to distinguish and correctly segment than those of image (b) and image (f). The
U-Net was capable of segmenting these textures with accuracy comparable or better than traditional
techniques. There are many other configuration parameters that could be varied; learning rate, batch size,
variations of the training data, different number of layers, but for the purpose of this work, the results show
first, the capability of deep learning architectures for segmentation of textured images and second, in
some cases better results that traditional methodologies. However, the configuration of the network
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11 is not trivial and variations of some parameters can provide sub-optimal results. The experiments
132 conducted in this work did not provide conclusive evidence for the selection of any of the parameters
133 evaluated. Furthermore, training of the networks requires considerable resources. The training times
13¢  for the images with 5 textures took around 5 hours and for the image with 16 textures around 96 hours
135 on a Mac Pro (Late 2013) with a 3.7GHz Quad-Core and 32 GB Memory with Dual AMD FirePro D300
136 graphics processors.

137 Therefore, it can be concluded that U-Net convolutional neural networks can be used for texture
13 segmentation and provide results that are comparable or better than traditional texture algorithms.
130 Furthermore, these results encourage the application of deep learning to other areas, like the texture
10 Of voice spectrograms [61]. We can even hypothesise that the images in two dimensions can be
11 decomposed into one-dimensional signals and revisit the analysis of voice signals for the segmentation
12 and classification of phonemes as it was done with early versions of Convolutional Neural Networks
s [62].

144
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