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Abstract: Lithium-ion batteries (LIBs) are widely deployed in electric vehicles (EVs) due to their
high energy density and long cycle life. Even after retirement typically at around 80% of their rated
capacity LIBs can still be repurposed for second-life applications such as residential energy storage
systems (ESS). However, effectively grouping these heterogeneous cells is crucial to optimize
performance of the module. Retired LIBs can be effectively repurposed for numerous second-life
applications such as energy storage systems (ESS), and other power backups. In this paper, we
compare four clustering approaches including random grouping, equal-number Support Vector
Clustering (SVC), K-means, and equal-number Gaussian Mixture Model (GMM) to organize 60
retired cells into 48 V modules consisting of 15-cell groups. We verify the performance of each
method via simulations of a 1552P configuration, focusing on standard deviation of final charge
voltage, average charge throughput, delta capacity, and coulombic efficiency. Based on the
evaluation metrics analyzed after regrouping the battery cells and simulating them for second-life
ESS applications, the GMM based clustering method demonstrates better performance.

Keywords: lithium-ion battery; clustering; gaussian mixture model; repackaged module

1. Introduction

With the increasing global emphasis on decarbonization and sustainable energy solutions,
lithium-ion batteries have emerged as the leading choice for energy storage in electric vehicles (EVs)
due to their high energy density, long cycle life, and favorable performance characteristics [1]. As the
EV market continues to grow, the worldwide production and deployment of Li-ion batteries are
expected to surge, resulting in a parallel increase in the number of batteries reaching their end of life
[2]. However, many of these batteries retain sufficient residual capacity and can be repurposed for
less demanding applications rather than being prematurely discarded. This concept of second-life
usage provides both economic and environmental benefits by extending battery lifespans and
reducing the environmental impact associated with battery manufacturing and disposal.

Among various second-life applications, stationary Energy Storage Systems (ESS) have gained
significant attention. Residential and commercial ESS solutions can buffer fluctuations in renewable
energy sources and help to stabilize the power grid [3]. In particular, the demand for standardized
battery module configurations is growing as it simplifies the integration process, lowers development
costs, and ensures compatibility with existing battery management systems (BMS). One widely
adopted standard for residential ESS is the 48V module configuration, which provides a safe and
modular building block [4]. Despite its practical advantages, reassembling used cells into battery
modules still faces challenges related to cell-to-cell variability, state of health (SOH) discrepancies,
and capacity mismatches. These issues necessitate a robust and effective grouping or clustering
strategy to ensure consistent module performance and prolonged operating life.
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In light of these challenges, there has been extensive research on methods to optimally regroup
cells for second-life usage. Beyond simple heuristic or rule-based approaches, data-driven clustering
and classification methods are increasingly being adopted to handle complex, multidimensional
battery performance data [5]. For instance, Support Vector Clustering (SVC) leverages the kernel trick
to capture non-linear relationships in the data, making it suitable for identifying tightly knit clusters
even when the boundaries are not trivially separable. K-means, a classic and widely used partitioning
algorithm, remains attractive due to its simplicity and computational efficiency [6]. However, K-
means typically assumes spherical or near-spherical cluster shapes, which may not always align with
battery performance data distributions [7]. Gaussian Mixture Models (GMM), on the other hand, offer
a probabilistic framework that can model more flexible cluster geometries and allow for soft
clustering [8], where data points can belong to multiple clusters with varying degrees of membership.

Despite their theoretical differences, there is a need to systematically compare these clustering
methods under realistic operational scenarios, especially for second-life battery modules intended for
residential ESS applications. In this study, we build a 48V module simulation platform designed to
replicate real-world conditions and thoroughly evaluate SVC, K-means, and GMM in terms of their
ability to form well-balanced groups of second-life Li-ion cells. By simulating the module’s
operational metrics such as standard deviation in final cell charging voltages, energy throughput,
and delta capacity over time we demonstrate how different clustering strategies can significantly
influence overall module performance and battery longevity. Our findings show that while all three
methods have their merits, GMM-based clustering tends to yield more balanced cell groupings and
better overall performance under a range of load scenarios.

2. Data Description and Preprocessing

The experimental data used in this work is derived from the MIT-Stanford Toyota Research
Center battery dataset, originally measured by Severson et al. [9]. The dataset focuses on the
APR18650M1A battery cells, manufactured by A123 Systems. Table I provides an overview of the
key parameters and usage recommendations for the APR18650M1A battery. Notably, the testing was
conducted at a constant temperature of 30°C, employing a one-step or two-step fast charging strategy.
The charging protocol follows a constant-current—constant-voltage (CCCV) approach with an upper
cutoff voltage of 3.6 V and a lower cutoff voltage of 2.0 V, as recommended by the manufacturer.

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited.

Parameter Value
Nominal Capacity 1.1Ah
Nominal Voltage 3.3V
Recommended standard charge method 1.5 A to 3.6 V (CCCV)
Recommended charge and cut-off voltage at 25° 3.6 to 2.0V
Operating temperature range -30 ~ 60 °C

For our study, we select 60 battery samples from the dataset and use the data of their first 400
charge—discharge cycles to validate the proposed clustering approach. All samples undergo 4C-
discharge rates to ensure a uniform discharge process. The fundamental goal is to repurpose these
retired or partially used cells for second-life applications, making it critical to quantify their current
condition accurately and group them accordingly. From the available measurements, we focus on
three key parameters [10]. Capacity, internal resistance (IR), and remaining useful life (RUL) as these
factors play a dominant role in determining battery health, performance, and viability for second-life
usage.

Battery capacity is a primary indicator of the SOH for lithium-ion batteries. The discharge
capacity Cn of the nth cycle can be expressed by:

C,=CH—CL 1
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where Cf denotes the total capacity after the battery is fully discharged, and C is the capacity at
the start of discharge for cycle n. As the number of cycles increases, C, typically declines, adversely

affecting the battery’s usable lifetime. Figure 1 illustrates how the discharge capacity decreases over
the cycles.
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Figure 1. Relationship between capacity and voltage.

Internal resistance (IR) is another critical parameter that impacts the performance of battery and
thermal characteristics. A higher IR leads to increased energy losses and faster degradation. When
the battery starts discharging, there is an instantaneous voltage drop [11]. Let f be the moment the
battery begins discharging, and U be the interpolated voltage at that instant. If t1 and t2 are two closely
spaced sampling points with voltages U1 and Uz, the ohmic internal resistance R,, during the nth
discharge cycle can be approximated by:

U, - U,
=1

Un
R, = — where U, =
I

)

t

here, U, is the effective voltage change caused by internal resistance, and I, is the discharge current
of the nth cycle. Figure 2 illustrates the rapid voltage-current fluctuations occurring during
instantaneous discharge of the power lithium-ion batteries due to internal resistance.

un

AU

Figure 2. Concept of internal resistance measurement by discharge pulse.

RUL represents the projected service life or the number of additional cycles a battery can deliver
before reaching a specified end-of-life threshold. In this dataset, we can calculate RUL directly from
the measured capacity. When a battery’s capacity decays to 80% of its rated capacity Cr, it is
considered retired [12]. That is, the condition for retirement is:

C <0.8C 3)

where C is the actual capacity of the battery. Figure 5 shows the variation trend of battery capacity
with the number of cycles.
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Figure 3. Battery capacity degradation and RUL approximation.

To ensure fair and consistent comparison among the three parameters (capacity, internal
resistance, and RUL), we apply a min—max normalization scheme. This transformation maps each
parameter to a uniform range of 0 to 1, thereby preventing any single parameter with larger numeric
values from dominating the clustering algorithms. The min—-max normalization for a given parameter
x can be expressed as follows [13]:

— _ X~ Xmin

Ynorm = Xmax - Xmin (4)
where X,,;, and Xp,,, are the minimum and maximum observed values of x in the dataset,
respectively. By performing this step, the capacity, internal resistance, and RUL metrics all lie on a
comparable scale, which is beneficial for methods such as SVC, K-means, and GMM.

3. Clustering Methods

After extracting and normalizing the key battery parameters like capacity, IR and RUL, we
employ three different clustering algorithms to regroup second-life batteries: SVC, K-means, and
GMM. This section offers an overview of each approach and their application to our standardized
dataset.

3.1. Support Vector Clustering (SVC)

Support Vector Clustering (SVC) is a kernel-based approach that adapts the principles of
Support Vector Machines (SVM) to unsupervised learning. In SVC, the normalized data points are
mapped to a high-dimensional feature space using a kernel function, typically the radial basis
function (RBF) [10], which is defined as

K (xi,x7) = el 5)

where y is a hyperparameter controlling the width of kernel. In this feature space, SVC determines
the smallest hypersphere that encloses the majority of the data points.
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Figure 4. Support Vector Clustering Results.

Upon convergence, the projection of this hypersphere back into the original input space
produces a decision boundary. A data point x can be tested by evaluating

f@) = lloC) —all* - R (6)

so that f(x) < 0 indicates x is inside the sphere, and f(x) > 0 signals it is an outlier or lies in
another region. When different enclosed regions emerge in the input space, multiple clusters can be
formed. In the context of second-life battery regrouping, equal number SVC applies an additional
post-processing step to ensure each cluster contains a fixed number of cells. Although SVC excels at
discovering arbitrarily shaped clusters, it demands careful parameter tuning.

3.2. K-Means

In contrast, the K-means algorithm partitions the dataset into a predetermined number of
clusters k , by minimizing the within-cluster sum-of-squares. Which can be represented by

Jew = ) = wl? )

where ||x; — w;||? is the squared Euclidean distance between a data point x and the centroid u; [14].
To improve the stability and convergence speed of the algorithm, we employ K-means++
initialization, which selects initial centroids in a way that maximizes their separation. This approach
helps the clusters converge to a more optimal configuration than random initialization would
typically allow.
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Figure 5. K-Means Clustering Results.
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After initialization, each data point is iteratively assigned to the nearest centroid [15]. The
centroids are then recalculated as the mean of the assigned points, and this process is repeated until
the assignments stabilize or a maximum iteration limit is reached. While K-means++ reduces the risk
of poor initial cluster placements, the algorithm itself still assumes roughly spherical clusters and
relies on Euclidean distance for defining cluster boundaries. Consequently, K-means struggles to
handle overlapping or non-spherical distributions, as is often the case in second-life battery data,
where cell parameters may not neatly conform to uniform cluster shapes.

3.3. Gaussian Mixture Model (GMM)

Gaussian Mixture Models (GMM) offer a probabilistic framework that models the data as a
mixture of K Gaussian distributions. Each component in the mixture is characterized by a mean vector
U and a covariance matrix X, and a mixing coefficient m, and the overall probability density
function is given by [16]

K

P(x10)= ) M (i 5) ®)

k=1

. me =0 and YK  mk=1

1 T
1 exp(——(x—ul) Ek(x—uk))
*  NwmI)= — 1 ’
@m 2|5, 2

i 0 = {my, up, T Jr=1

where m;, represents the mixing coefficient for the kth component and ® denotes the set of all model
parameters.

A crucial step in fitting a GMM is choosing initial parameter values, since poor initialization can
lead to suboptimal clustering or slow convergence in the EM algorithm. In our case, we initialize the
GMM means u; using K-means++ which was proposed by S. Vassilvitskii and D. Arthur in 2007 [17].
Specifically, we first use K-means++ to select K well-spaced centroids. These centroids then serve as
the initial means u;. The covariance matrices X} can be initialized (for instance) as the identity
matrix or estimated from the local neighborhoods of these initial means, while the mixing coefficients
m, are set to % by default. This initialization strategy helps avoid local maxima often encountered
by random initialization.

Once we have initial parameter estimates, the GMM parameters are iteratively refined using the
Expectation-Maximization (EM) algorithm [18]. Each iteration of EM comprises two steps:

3.3.1. Expectation Step

Compute the posterior probability y;, that data point x; belongs to cluster k:

TN (X5 per Zic)
M1 N (s e, Zi)

Yik = (2 | ;) = )

where z;, denotes the event that x; comes from the kth Gaussian component. The responsibilities
Yix quantify soft cluster membership, allowing a single data point to have fractional membership in
different clusters.

3.3.2. Maximization Step

Update the model parameters {my, uy, 2} to maximize the expected complete-data log-
likelihood. The standard formulas for the updates are:
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where N is the total number of data points. Each update step re-estimates the mixing coefficients,
means, and covariances based on the current responsibilities.

These two steps (E and M) alternate until convergence, typically when changes in the log-
likelihood or parameter values fall below a chosen threshold.
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Figure 6. GMM Clustering Results.

Soft clustering is a defining characteristic of Gaussian Mixture Models (GMM) that proves
especially valuable in second-life battery applications, where cells often exhibit overlapping
performance characteristics. Unlike hard clustering methods, which assign each cell to exactly one
cluster, a GMM outputs membership probabilities that indicate how strongly each cell belongs to
each cluster. In our case, we leverage these soft memberships to form equal-sized modules, by sorting
the cells of each cluster in descending order of membership probability and assigning them until the
desired module size is reached. If any clusters become over- or underfilled, cells near the boundary
of cluster membership are reassigned to maintain the overall equal distribution. This probabilistic
approach ensures that each 15-cell module remains compositionally uniform while still respecting
the practical requirement of equal-sized modules.

4. Comparative Analysis

4.1. Clustering Methods Evaluation

In our evaluation, we quantitatively compared the clustering performance of SVC, K-means, and
GMM using three widely recognized indices: the Silhouette Coefficient (5C), Calinski-Harabasz Score
(CHS), and Davies—Bouldin Score (DBI). The Silhouette Coefficient measures how similar an object is
to its own cluster compared to other clusters, defined for each sample as

b-a
max (a,b)

SC =

(11)

where a is the average distance between a sample and all other points in the same cluster, and b is
the average distance between a sample and the points in the nearest cluster. Values closer to 1 indicate
well-separated clusters. The Calinski-Harabasz Score, calculated as the ratio of the between-cluster
dispersion to the within-cluster dispersion, further validates the distinctness of clusters, the higher
the CHS, the more distinct the clusters are [19]. In contrast, the Davies—Bouldin Score, which
evaluates the average similarity between each cluster and its most similar one, rewards lower values
that imply better clustering performance [20].

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 7 shows a bar chart comparing SC, CHS, and DBI for SVC, K-means, and GMM. GMM
consistently outperforms the other two methods across all three metrics. The ability of GMM to
provide soft assignments helps it adapt to inherent variations in the battery data, allowing each cell
to be assigned in a way that better balances the 15-cells-per-module requirement while
accommodating natural differences in capacity, resistance, and RUL.

sc DBI CHS
0.8 3 20
0.7 25 80
0.6 n
05 2 60
50
0.4 15 o
03 1 30
02 20
0.1 . 0.5 10
0 o 0

sve K-Means GMM
svc K-Means GMM sve Means oMM
(a) (b) (o)

Figure 7. Comparison of evaluation indices for the clustering methods: (a) Silhouette Coefficient; (b) Davies-

Bouldin Score; (c) Calinski-Harabasz Score.

In contrast, K-means, which strongly depends on the Euclidean distance to cluster centroids, can
struggle with clusters that have non-spherical shapes or uneven data densities. SVC, particularly in
its equal-number variant, does allow for more flexible boundaries compared to K-means, but the
forced equal-cluster-size constraint means that if the natural distribution of battery parameters is
strongly imbalanced, the clustering may not fully capture all nuances of the data. As a result, both
SVC and K-means can exhibit slightly lower SC, lower CHS, and higher DBI scores than GMM.

4.2. Clustering Performance Evaluation

After determining appropriate cell clusters using SVC, K-means, or GMM,, it is essential to verify
that these groupings also perform well under practical operating conditions. A purely data-driven
clustering approach can overlook system-level constraints such as voltage, current, and thermal
behavior during charge—discharge cycles. Therefore, a MATLAB/Simulink-based simulation block
diagram shown in Figure 8 is a valuable bridge between theoretical clustering outcomes and actual
battery pack performance. By modeling the battery modules in software, we can accurately estimate
how each cluster will behave as part of a 48V battery pack.

Passive
»  Balancing
Circuit

.

Controlled
CCCV 15S2P YI,ROG

Discharging
cc

Each Cell
Parameters
I

Figure 8. Simulation Block Diagram.

Residential ESS solutions commonly use a nominal 48 V battery pack design for reasons of safety,
modularity, and compatibility. To achieve this nominal voltage using Li-ion cells (with each cell
having a nominal voltage of 3.3 V), the typical solution is to connect around 15 cells in a series. In our
case, a 155 chain ensures the battery pack can reach the required voltage range under normal
conditions. While 15 cells in series fix the pack voltage, adding parallel branches increases the total

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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capacity and extends the usable energy for the module. Depending on the energy needs, the number
of parallel branches can be scaled up, allowing for a flexible approach to capacity sizing without
changing the nominal voltage. Figure 9 shows the voltage, current and state of the charge waveforms
of the 1552P (30 cells) simulation for one of the clustering groups.

voltage (V)

current (A)

Offset=0
1F

=
@
T

S
@
T

state of charge
°
=

=)
o N

0.5 1 15 2
) "
Offset=0 Time (seconds) 1o
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Figure 9. Voltage, current and SOC waveforms of 15s2p simulation for CCCV of regrouped cells.

The effectiveness of each clustering method was evaluated by simulating battery modules using
the actual parameters of the clustered cells from the dataset, including internal resistance, actual
capacity, SOC-OCV values, etc. Each module was constructed using 15 representative cells per cluster
and configured as a 15S2P system. The modules were subjected to constant current (CC) charging
until the voltage limit was reached, followed by constant voltage (CV) charging, and then constant
current discharging.

The key performance indicators used for comparison were:

e  The standard deviation of the final charging voltages measured across all 15 cells within the
battery module, which indicates the degree of voltage imbalance among the cells at the end of
the charging process.

e  The average charge throughput of the 15 cells during the charging process, representing the total
amount of charge each cell accepted on average, used as a measure of the overall charging
performance and uniformity within the module.

e  The difference between the maximum and minimum cell capacities within each cluster reflects
the internal consistency of the clustering method in grouping cells with similar energy storage
capabilities.

e  The Coulombic efficiency of the battery module, calculated as the ratio of discharge capacity to
charge capacity, used to evaluate how effectively the input electrical energy is converted into
usable output energy.

These indicators compare the performance across modules formed via SVC, K-means, and
GMM-based clustering. Each parameter was extracted from the simulation models to evaluate that
the inconsistency of the LIBs group is reduced, and the performance of the groups has been improved.

In this simulation, a 15S2P battery pack underwent a 1.5A constant-current, constant-voltage
(CCCV) charge. The final cell voltages within a group were then monitored, and the standard
deviation of these final charge voltages was calculated to gauge the voltage spread across the cells in
one group. As shown in Figure 10, comparing the random grouping, SVC, K-Means, and GMM
methods, it is clear that the GMM-based module exhibits the lowest voltage spread. Specifically,
methods B and D achieve standard deviations of 0.01320 and 0.01133, respectively.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 10. Standard deviation of final cell voltages of each module across different clustering methods.

In addition to analyzing the final voltage dispersion, we also examined the average charge
throughput can be seen in the bar graph on Figure 11. As all cells in series string share the same
current, the throughput primarily reflects how uniformly the cells accept charge over the duration of
the charging period. In our simulation, we observed that modules clustered via GMM exhibit more
consistent charge throughput, indicating fewer outlier cells that could reduce the overall capacity
utilization as group A and B have an average charge throughput higher than 1 Ah. Conversely,
random grouping or other clustering approaches tend to include cells with disproportionately lower
or higher acceptance rates, which ultimately lowers the group’s average throughput. By aligning cells
of similar condition, GMM ensures identical charging behavior, thereby optimizing the total charge
delivered to the battery pack and enhancing the reliability of second-life energy storage modules.

1100

mA =B uC mD

Random K-Means Equal-number
Grouping GMM

1050
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©
a1
o

©
o
o

Average Charge Throughput (mAh)

©
@
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Figure 11. Average charge throughput of each module across different clustering methods.

Another key metric in analysis is the delta capacity in Figure 12, which is the difference between
the highest-capacity cell and the lowest-capacity cell within each group. A smaller delta capacity
indicates that the cells are more closely matched, thereby minimizing the risk of overcharging or
over-discharging the weaker cells during operation. The GMM-based clusters showed notably lower
delta capacity values compared to both random groupings and two other clustering methods.
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Figure 12. Delta capacity of each module across different clustering methods.

Finally, we evaluated coulombic efficiency, which measures how effectively each module
converts the charged energy into usable discharge energy. The 15S2P configurations derived from
GMM-based clustering demonstrated consistently higher coulombic efficiency of 98.18% relative to
other methods as shown in Figure 13, underscoring more uniform energy utilization and reduced
internal losses. Cells with similar capacity and internal resistance avoid mismatch driven
inefficiencies that often occur in packs assembled through less adaptive clustering approaches.
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Figure 13. Coulombic efficiency of each module across different clustering methods.

Overall, these findings demonstrate that the GMM-based clustering approach provides more
balanced and efficient battery modules than random grouping, SVC, or K-means. The minimized
voltage spread indicates tighter cell matching, while the higher average charge-throughput reflects a
more uniform charge acceptance across the entire module. In tandem, the reduced delta capacity
confirms that GMM consistently groups cells of similar health, mitigating the risk of over-stressing
weaker cells. Finally, the notable coulombic efficiency gain underscores the method’s ability to limit
internal losses and capitalize on the available capacity. Taken together, these improvements validate
GMM as a robust clustering strategy for assembling second-life lithium-ion cells into reliable and
long-lasting battery packs.

5. Conclusion

In conclusion, this work demonstrates that effectively grouping second-life lithium-ion cells into
standardized 48 V modules can significantly enhance their performance in residential ESS
applications. By comparing random grouping, equal-number SVC, K-means, and a K-means++-
initialized equal-number GMM, we reveal that the soft clustering paradigm of GMM provides the
most balanced clusters. Simulation results from a 1552P configuration confirm reduced voltage
deviations, higher average charge throughput, lower delta capacity, and improved coulombic
efficiency for GMM-based modules. The K-means++ initialization assists in mitigating local optima,
while the post-processing step ensures each group contains an equal number of cells. These findings

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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underscore the potential of GMM to accommodate subtle variations in retired EV batteries, extending
their useful life and stability in second-life applications. Future work could involve expanding the
proposed approach to larger-scale battery packs and validating the technique in field demonstrations
to further establish its robustness and versatility.
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