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Abstract: Lithium-ion batteries (LIBs) are widely deployed in electric vehicles (EVs) due to their 

high energy density and long cycle life. Even after retirement typically at around 80% of their rated 

capacity LIBs can still be repurposed for second-life applications such as residential energy storage 

systems (ESS). However, effectively grouping these heterogeneous cells is crucial to optimize 

performance of the module. Retired LIBs can be effectively repurposed for numerous second-life 

applications such as energy storage systems (ESS), and other power backups. In this paper, we 

compare four clustering approaches including random grouping, equal-number Support Vector 

Clustering (SVC), K-means, and equal-number Gaussian Mixture Model (GMM) to organize 60 

retired cells into 48 V modules consisting of 15-cell groups. We verify the performance of each 

method via simulations of a 15S2P configuration, focusing on standard deviation of final charge 

voltage, average charge throughput, delta capacity, and coulombic efficiency. Based on the 

evaluation metrics analyzed after regrouping the battery cells and simulating them for second-life 

ESS applications, the GMM based clustering method demonstrates better performance. 

Keywords: lithium-ion battery; clustering; gaussian mixture model; repackaged module 

 

1. Introduction 

With the increasing global emphasis on decarbonization and sustainable energy solutions, 

lithium-ion batteries have emerged as the leading choice for energy storage in electric vehicles (EVs) 

due to their high energy density, long cycle life, and favorable performance characteristics [1]. As the 

EV market continues to grow, the worldwide production and deployment of Li-ion batteries are 

expected to surge, resulting in a parallel increase in the number of batteries reaching their end of life 

[2]. However, many of these batteries retain sufficient residual capacity and can be repurposed for 

less demanding applications rather than being prematurely discarded. This concept of second-life 

usage provides both economic and environmental benefits by extending battery lifespans and 

reducing the environmental impact associated with battery manufacturing and disposal. 

Among various second-life applications, stationary Energy Storage Systems (ESS) have gained 

significant attention. Residential and commercial ESS solutions can buffer fluctuations in renewable 

energy sources and help to stabilize the power grid [3]. In particular, the demand for standardized 

battery module configurations is growing as it simplifies the integration process, lowers development 

costs, and ensures compatibility with existing battery management systems (BMS). One widely 

adopted standard for residential ESS is the 48V module configuration, which provides a safe and 

modular building block [4]. Despite its practical advantages, reassembling used cells into battery 

modules still faces challenges related to cell-to-cell variability, state of health (SOH) discrepancies, 

and capacity mismatches. These issues necessitate a robust and effective grouping or clustering 

strategy to ensure consistent module performance and prolonged operating life. 
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In light of these challenges, there has been extensive research on methods to optimally regroup 

cells for second-life usage. Beyond simple heuristic or rule-based approaches, data-driven clustering 

and classification methods are increasingly being adopted to handle complex, multidimensional 

battery performance data [5]. For instance, Support Vector Clustering (SVC) leverages the kernel trick 

to capture non-linear relationships in the data, making it suitable for identifying tightly knit clusters 

even when the boundaries are not trivially separable. K-means, a classic and widely used partitioning 

algorithm, remains attractive due to its simplicity and computational efficiency [6]. However, K-

means typically assumes spherical or near-spherical cluster shapes, which may not always align with 

battery performance data distributions [7]. Gaussian Mixture Models (GMM), on the other hand, offer 

a probabilistic framework that can model more flexible cluster geometries and allow for soft 

clustering [8], where data points can belong to multiple clusters with varying degrees of membership. 

Despite their theoretical differences, there is a need to systematically compare these clustering 

methods under realistic operational scenarios, especially for second-life battery modules intended for 

residential ESS applications. In this study, we build a 48V module simulation platform designed to 

replicate real-world conditions and thoroughly evaluate SVC, K-means, and GMM in terms of their 

ability to form well-balanced groups of second-life Li-ion cells. By simulating the module’s 

operational metrics such as standard deviation in final cell charging voltages, energy throughput, 

and delta capacity over time we demonstrate how different clustering strategies can significantly 

influence overall module performance and battery longevity. Our findings show that while all three 

methods have their merits, GMM-based clustering tends to yield more balanced cell groupings and 

better overall performance under a range of load scenarios. 

2. Data Description and Preprocessing 

The experimental data used in this work is derived from the MIT-Stanford Toyota Research 

Center battery dataset, originally measured by Severson et al. [9]. The dataset focuses on the 

APR18650M1A battery cells, manufactured by A123 Systems. Table I provides an overview of the 

key parameters and usage recommendations for the APR18650M1A battery. Notably, the testing was 

conducted at a constant temperature of 30°C, employing a one-step or two-step fast charging strategy. 

The charging protocol follows a constant-current–constant-voltage (CCCV) approach with an upper 

cutoff voltage of 3.6 V and a lower cutoff voltage of 2.0 V, as recommended by the manufacturer. 

Table 1. This is a table. Tables should be placed in the main text near to the first time they are cited. 

Parameter Value 

Nominal Capacity 1.1Ah 

Nominal Voltage 3.3V 

Recommended standard charge method 1.5 A to 3.6 V (CCCV) 

Recommended charge and cut-off voltage at 25° 3.6 to 2.0V 

Operating temperature range -30 ~ 60 °C 

For our study, we select 60 battery samples from the dataset and use the data of their first 400 

charge–discharge cycles to validate the proposed clustering approach. All samples undergo 4C-

discharge rates to ensure a uniform discharge process. The fundamental goal is to repurpose these 

retired or partially used cells for second-life applications, making it critical to quantify their current 

condition accurately and group them accordingly. From the available measurements, we focus on 

three key parameters [10]. Capacity, internal resistance (IR), and remaining useful life (RUL) as these 

factors play a dominant role in determining battery health, performance, and viability for second-life 

usage. 

Battery capacity is a primary indicator of the SOH for lithium-ion batteries. The discharge 

capacity Cn of the nth cycle can be expressed by: 

𝐶𝑛 = 𝐶𝑛
𝐻 − 𝐶𝑛

𝐿 (1) 
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where 𝐶𝑛
𝐻 denotes the total capacity after the battery is fully discharged, and 𝐶𝑛

𝐿  is the capacity at 

the start of discharge for cycle n. As the number of cycles increases, 𝐶𝑛 typically declines, adversely 

affecting the battery’s usable lifetime. Figure 1 illustrates how the discharge capacity decreases over 

the cycles. 

 

Figure 1. Relationship between capacity and voltage. 

Internal resistance (IR) is another critical parameter that impacts the performance of battery and 

thermal characteristics. A higher IR leads to increased energy losses and faster degradation. When 

the battery starts discharging, there is an instantaneous voltage drop [11]. Let t be the moment the 

battery begins discharging, and U be the interpolated voltage at that instant. If t1 and t2 are two closely 

spaced sampling points with voltages U1 and U2, the ohmic internal resistance 𝑅𝑛 during the nth 

discharge cycle can be approximated by: 

𝑅𝑛 =
𝑈𝑛

𝐼𝑛

  𝑤ℎ𝑒𝑟𝑒 𝑈𝑛 = |
𝑈2 − 𝑈1

𝑡2 − 𝑡1

|
𝑡

 (2) 

here, 𝑈𝑛 is the effective voltage change caused by internal resistance, and 𝐼𝑛 is the discharge current 

of the nth cycle. Figure 2 illustrates the rapid voltage-current fluctuations occurring during 

instantaneous discharge of the power lithium-ion batteries due to internal resistance. 

 

Figure 2. Concept of internal resistance measurement by discharge pulse. 

RUL represents the projected service life or the number of additional cycles a battery can deliver 

before reaching a specified end-of-life threshold. In this dataset, we can calculate RUL directly from 

the measured capacity. When a battery’s capacity decays to 80% of its rated capacity CR, it is 

considered retired [12]. That is, the condition for retirement is: 

𝐶 ≤ 0.8𝐶𝑅     (3) 

where 𝐶 is the actual capacity of the battery. Figure 5 shows the variation trend of battery capacity 

with the number of cycles. 
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Figure 3. Battery capacity degradation and RUL approximation. 

To ensure fair and consistent comparison among the three parameters (capacity, internal 

resistance, and RUL), we apply a min–max normalization scheme. This transformation maps each 

parameter to a uniform range of 0 to 1, thereby preventing any single parameter with larger numeric 

values from dominating the clustering algorithms. The min–max normalization for a given parameter 

𝑥 can be expressed as follows [13]: 

𝑥𝑛𝑜𝑟𝑚 =  
𝑥 − 𝑥𝑚𝑖𝑛

𝑥max − 𝑥𝑚𝑖𝑛
     (4) 

where 𝑥𝑚𝑖𝑛  and 𝑥𝑚𝑎𝑥  are the minimum and maximum observed values of 𝑥  in the dataset, 

respectively. By performing this step, the capacity, internal resistance, and RUL metrics all lie on a 

comparable scale, which is beneficial for methods such as SVC, K-means, and GMM. 

3. Clustering Methods 

After extracting and normalizing the key battery parameters like capacity, IR and RUL, we 

employ three different clustering algorithms to regroup second-life batteries: SVC, K-means, and 

GMM. This section offers an overview of each approach and their application to our standardized 

dataset. 

3.1. Support Vector Clustering (SVC) 

Support Vector Clustering (SVC) is a kernel-based approach that adapts the principles of 

Support Vector Machines (SVM) to unsupervised learning. In SVC, the normalized data points are 

mapped to a high-dimensional feature space using a kernel function, typically the radial basis 

function (RBF) [10], which is defined as 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

     (5) 

where 𝛾 is a hyperparameter controlling the width of kernel. In this feature space, SVC determines 

the smallest hypersphere that encloses the majority of the data points. 
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Figure 4. Support Vector Clustering Results. 

Upon convergence, the projection of this hypersphere back into the original input space 

produces a decision boundary. A data point x can be tested by evaluating 

𝑓(𝑥) =  ‖Φ(𝑥) − 𝑎‖2 − 𝑅2 (6) 

so that 𝑓(𝑥) < 0 indicates 𝑥 is inside the sphere, and 𝑓(𝑥) > 0 signals it is an outlier or lies in 

another region. When different enclosed regions emerge in the input space, multiple clusters can be 

formed. In the context of second-life battery regrouping, equal number SVC applies an additional 

post-processing step to ensure each cluster contains a fixed number of cells. Although SVC excels at 

discovering arbitrarily shaped clusters, it demands careful parameter tuning. 

3.2. K-Means 

In contrast, the K-means algorithm partitions the dataset into a predetermined number of 

clusters 𝑘 , by minimizing the within-cluster sum-of-squares. Which can be represented by 

𝐽(𝑐, 𝑢) =  ∑‖𝑥 − 𝑢𝑖‖
2

𝑀

𝑖=1

 (7) 

where ‖𝑥𝑖 − 𝑢𝑖‖
2 is the squared Euclidean distance between a data point 𝑥 and the centroid 𝑢𝑖 [14]. 

To improve the stability and convergence speed of the algorithm, we employ K-means++ 

initialization, which selects initial centroids in a way that maximizes their separation. This approach 

helps the clusters converge to a more optimal configuration than random initialization would 

typically allow. 

 

Figure 5. K-Means Clustering Results. 
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After initialization, each data point is iteratively assigned to the nearest centroid [15]. The 

centroids are then recalculated as the mean of the assigned points, and this process is repeated until 

the assignments stabilize or a maximum iteration limit is reached. While K-means++ reduces the risk 

of poor initial cluster placements, the algorithm itself still assumes roughly spherical clusters and 

relies on Euclidean distance for defining cluster boundaries. Consequently, K-means struggles to 

handle overlapping or non-spherical distributions, as is often the case in second-life battery data, 

where cell parameters may not neatly conform to uniform cluster shapes. 

3.3. Gaussian Mixture Model (GMM) 

Gaussian Mixture Models (GMM) offer a probabilistic framework that models the data as a 

mixture of K Gaussian distributions. Each component in the mixture is characterized by a mean vector 

𝜇𝑘 and a covariance matrix 𝛴𝑘 , and a mixing coefficient 𝜋𝑘  and the overall probability density 

function is given by [16] 

𝑝( 𝑥 | Θ ) = ∑ 𝜋𝑘𝒩(𝑥; 𝜇𝑘, 𝛴𝑘)

𝐾

𝑘=1

 (8) 

• 𝜋𝑘 ≥ 0   𝑎𝑛𝑑   ∑ 𝜋𝑘𝑘
𝑘=1 = 1 

• 𝒩(𝑥; 𝜇𝑘 , 𝛴𝑘) =  
1

(2𝜋)
𝑑

2⁄ |𝛴𝑘|
1

2⁄
𝑒

𝑒𝑥𝑝(−1
2

(𝑥−𝑈1)𝑇𝛴𝑘(𝑥−𝜇𝑘))
 

• Θ = {𝜋𝑘 , 𝑢𝑘 , 𝛴𝑘}𝑘=1
𝐾  

where 𝜋𝑘 represents the mixing coefficient for the kth component and Θ denotes the set of all model 

parameters. 

A crucial step in fitting a GMM is choosing initial parameter values, since poor initialization can 

lead to suboptimal clustering or slow convergence in the EM algorithm. In our case, we initialize the 

GMM means 𝑢𝑘 using K-means++ which was proposed by S. Vassilvitskii and D. Arthur in 2007 [17]. 

Specifically, we first use K-means++ to select K well-spaced centroids. These centroids then serve as 

the initial means 𝑢𝑘 . The covariance matrices 𝛴𝑘  can be initialized (for instance) as the identity 

matrix or estimated from the local neighborhoods of these initial means, while the mixing coefficients 

𝜋𝑘 are set to 
1

𝐾
 by default. This initialization strategy helps avoid local maxima often encountered 

by random initialization. 

Once we have initial parameter estimates, the GMM parameters are iteratively refined using the 

Expectation-Maximization (EM) algorithm [18]. Each iteration of EM comprises two steps: 

3.3.1. Expectation Step 

Compute the posterior probability 𝛾𝑖𝑘 that data point 𝑥𝑖 belongs to cluster 𝑘: 

𝛾𝑖𝑘 =  𝑝(𝑧𝑘  | 𝑥𝑖) =  
𝜋𝑘𝑁(𝑥𝑖; 𝜇𝑘, 𝛴𝑘)

∑ 𝜋𝑗
𝑁
𝑖=1 𝑁(𝑥𝑖; 𝜇𝑘 , 𝛴𝑘)

 (9) 

where 𝑧𝑘 denotes the event that 𝑥𝑖 comes from the kth Gaussian component. The responsibilities 

𝛾𝑖𝑘 quantify soft cluster membership, allowing a single data point to have fractional membership in 

different clusters. 

3.3.2. Maximization Step 

Update the model parameters {𝜋𝑘 , 𝑢𝑘, 𝛴𝑘} to maximize the expected complete-data log-

likelihood. The standard formulas for the updates are: 
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{
𝜋𝑘

𝑛𝑒𝑤 =  
1

𝑁
∑ 𝛾𝑖𝑘 ,      𝜇𝑘

𝑛𝑒𝑤 =
∑ 𝛾𝑖𝑘𝑥𝑖

𝑁
𝑖=1

∑ 𝛾𝑖𝑘
𝑁
𝑖=1

 𝑁
𝑖=1 ,

 ∑ =  
∑ 𝛾𝑖𝑘(𝑥𝑖−𝜇𝑘

𝑛𝑒𝑤)(𝑥𝑖−𝜇𝑘
𝑛𝑒𝑤)T𝑁

𝑖=1

∑ 𝛾𝑖𝑘
𝑁
𝑖=1

 𝑛𝑒𝑤
𝑘

}      (10) 

where 𝑁 is the total number of data points. Each update step re-estimates the mixing coefficients, 

means, and covariances based on the current responsibilities. 

These two steps (E and M) alternate until convergence, typically when changes in the log-

likelihood or parameter values fall below a chosen threshold. 

 

Figure 6. GMM Clustering Results. 

Soft clustering is a defining characteristic of Gaussian Mixture Models (GMM) that proves 

especially valuable in second-life battery applications, where cells often exhibit overlapping 

performance characteristics. Unlike hard clustering methods, which assign each cell to exactly one 

cluster, a GMM outputs membership probabilities that indicate how strongly each cell belongs to 

each cluster. In our case, we leverage these soft memberships to form equal-sized modules, by sorting 

the cells of each cluster in descending order of membership probability and assigning them until the 

desired module size is reached. If any clusters become over- or underfilled, cells near the boundary 

of cluster membership are reassigned to maintain the overall equal distribution. This probabilistic 

approach ensures that each 15-cell module remains compositionally uniform while still respecting 

the practical requirement of equal-sized modules. 

4. Comparative Analysis 

4.1. Clustering Methods Evaluation 

In our evaluation, we quantitatively compared the clustering performance of SVC, K-means, and 

GMM using three widely recognized indices: the Silhouette Coefficient (SC), Calinski-Harabasz Score 

(CHS), and Davies–Bouldin Score (DBI). The Silhouette Coefficient measures how similar an object is 

to its own cluster compared to other clusters, defined for each sample as 

𝑆𝐶 =
𝑏−𝑎

max (𝑎,𝑏)
                          (11) 

where 𝑎 is the average distance between a sample and all other points in the same cluster, and 𝑏 is 

the average distance between a sample and the points in the nearest cluster. Values closer to 1 indicate 

well-separated clusters. The Calinski-Harabasz Score, calculated as the ratio of the between-cluster 

dispersion to the within-cluster dispersion, further validates the distinctness of clusters, the higher 

the CHS, the more distinct the clusters are [19]. In contrast, the Davies–Bouldin Score, which 

evaluates the average similarity between each cluster and its most similar one, rewards lower values 

that imply better clustering performance [20]. 
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Figure 7 shows a bar chart comparing SC, CHS, and DBI for SVC, K-means, and GMM. GMM 

consistently outperforms the other two methods across all three metrics. The ability of GMM to 

provide soft assignments helps it adapt to inherent variations in the battery data, allowing each cell 

to be assigned in a way that better balances the 15-cells-per-module requirement while 

accommodating natural differences in capacity, resistance, and RUL. 

   

(a) (b) (c) 

Figure 7. Comparison of evaluation indices for the clustering methods: (a) Silhouette Coefficient; (b) Davies-

Bouldin Score; (c) Calinski-Harabasz Score. 

In contrast, K-means, which strongly depends on the Euclidean distance to cluster centroids, can 

struggle with clusters that have non-spherical shapes or uneven data densities. SVC, particularly in 

its equal-number variant, does allow for more flexible boundaries compared to K-means, but the 

forced equal-cluster-size constraint means that if the natural distribution of battery parameters is 

strongly imbalanced, the clustering may not fully capture all nuances of the data. As a result, both 

SVC and K-means can exhibit slightly lower SC, lower CHS, and higher DBI scores than GMM. 

4.2. Clustering Performance Evaluation 

After determining appropriate cell clusters using SVC, K-means, or GMM, it is essential to verify 

that these groupings also perform well under practical operating conditions. A purely data-driven 

clustering approach can overlook system-level constraints such as voltage, current, and thermal 

behavior during charge–discharge cycles. Therefore, a MATLAB/Simulink-based simulation block 

diagram shown in Figure 8 is a valuable bridge between theoretical clustering outcomes and actual 

battery pack performance. By modeling the battery modules in software, we can accurately estimate 

how each cluster will behave as part of a 48V battery pack. 

 

Figure 8. Simulation Block Diagram. 

Residential ESS solutions commonly use a nominal 48 V battery pack design for reasons of safety, 

modularity, and compatibility. To achieve this nominal voltage using Li-ion cells (with each cell 

having a nominal voltage of 3.3 V), the typical solution is to connect around 15 cells in a series. In our 

case, a 15S chain ensures the battery pack can reach the required voltage range under normal 

conditions. While 15 cells in series fix the pack voltage, adding parallel branches increases the total 
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capacity and extends the usable energy for the module. Depending on the energy needs, the number 

of parallel branches can be scaled up, allowing for a flexible approach to capacity sizing without 

changing the nominal voltage. Figure 9 shows the voltage, current and state of the charge waveforms 

of the 15S2P (30 cells) simulation for one of the clustering groups. 

 

Figure 9. Voltage, current and SOC waveforms of 15s2p simulation for CCCV of regrouped cells. 

The effectiveness of each clustering method was evaluated by simulating battery modules using 

the actual parameters of the clustered cells from the dataset, including internal resistance, actual 

capacity, SOC-OCV values, etc. Each module was constructed using 15 representative cells per cluster 

and configured as a 15S2P system. The modules were subjected to constant current (CC) charging 

until the voltage limit was reached, followed by constant voltage (CV) charging, and then constant 

current discharging. 

The key performance indicators used for comparison were: 

• The standard deviation of the final charging voltages measured across all 15 cells within the 

battery module, which indicates the degree of voltage imbalance among the cells at the end of 

the charging process. 

• The average charge throughput of the 15 cells during the charging process, representing the total 

amount of charge each cell accepted on average, used as a measure of the overall charging 

performance and uniformity within the module. 

• The difference between the maximum and minimum cell capacities within each cluster reflects 

the internal consistency of the clustering method in grouping cells with similar energy storage 

capabilities. 

• The Coulombic efficiency of the battery module, calculated as the ratio of discharge capacity to 

charge capacity, used to evaluate how effectively the input electrical energy is converted into 

usable output energy. 

These indicators compare the performance across modules formed via SVC, K-means, and 

GMM-based clustering. Each parameter was extracted from the simulation models to evaluate that 

the inconsistency of the LIBs group is reduced, and the performance of the groups has been improved. 

In this simulation, a 15S2P battery pack underwent a 1.5A constant-current, constant-voltage 

(CCCV) charge. The final cell voltages within a group were then monitored, and the standard 

deviation of these final charge voltages was calculated to gauge the voltage spread across the cells in 

one group. As shown in Figure 10, comparing the random grouping, SVC, K-Means, and GMM 

methods, it is clear that the GMM-based module exhibits the lowest voltage spread. Specifically, 

methods B and D achieve standard deviations of 0.01320 and 0.01133, respectively. 
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Figure 10. Standard deviation of final cell voltages of each module across different clustering methods. 

In addition to analyzing the final voltage dispersion, we also examined the average charge 

throughput can be seen in the bar graph on Figure 11. As all cells in series string share the same 

current, the throughput primarily reflects how uniformly the cells accept charge over the duration of 

the charging period. In our simulation, we observed that modules clustered via GMM exhibit more 

consistent charge throughput, indicating fewer outlier cells that could reduce the overall capacity 

utilization as group A and B have an average charge throughput higher than 1 Ah. Conversely, 

random grouping or other clustering approaches tend to include cells with disproportionately lower 

or higher acceptance rates, which ultimately lowers the group’s average throughput. By aligning cells 

of similar condition, GMM ensures identical charging behavior, thereby optimizing the total charge 

delivered to the battery pack and enhancing the reliability of second-life energy storage modules. 

 

Figure 11. Average charge throughput of each module across different clustering methods. 

Another key metric in analysis is the delta capacity in Figure 12, which is the difference between 

the highest-capacity cell and the lowest-capacity cell within each group. A smaller delta capacity 

indicates that the cells are more closely matched, thereby minimizing the risk of overcharging or 

over-discharging the weaker cells during operation. The GMM-based clusters showed notably lower 

delta capacity values compared to both random groupings and two other clustering methods. 
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Figure 12. Delta capacity of each module across different clustering methods. 

Finally, we evaluated coulombic efficiency, which measures how effectively each module 

converts the charged energy into usable discharge energy. The 15S2P configurations derived from 

GMM-based clustering demonstrated consistently higher coulombic efficiency of 98.18% relative to 

other methods as shown in Figure 13, underscoring more uniform energy utilization and reduced 

internal losses. Cells with similar capacity and internal resistance avoid mismatch driven 

inefficiencies that often occur in packs assembled through less adaptive clustering approaches. 

 

Figure 13. Coulombic efficiency of each module across different clustering methods. 

Overall, these findings demonstrate that the GMM-based clustering approach provides more 

balanced and efficient battery modules than random grouping, SVC, or K-means. The minimized 

voltage spread indicates tighter cell matching, while the higher average charge-throughput reflects a 

more uniform charge acceptance across the entire module. In tandem, the reduced delta capacity 

confirms that GMM consistently groups cells of similar health, mitigating the risk of over-stressing 

weaker cells. Finally, the notable coulombic efficiency gain underscores the method’s ability to limit 

internal losses and capitalize on the available capacity. Taken together, these improvements validate 

GMM as a robust clustering strategy for assembling second-life lithium-ion cells into reliable and 

long-lasting battery packs. 

5. Conclusion 

In conclusion, this work demonstrates that effectively grouping second-life lithium-ion cells into 

standardized 48 V modules can significantly enhance their performance in residential ESS 

applications. By comparing random grouping, equal-number SVC, K-means, and a K-means++-

initialized equal-number GMM, we reveal that the soft clustering paradigm of GMM provides the 

most balanced clusters. Simulation results from a 15S2P configuration confirm reduced voltage 

deviations, higher average charge throughput, lower delta capacity, and improved coulombic 

efficiency for GMM-based modules. The K-means++ initialization assists in mitigating local optima, 

while the post-processing step ensures each group contains an equal number of cells. These findings 
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underscore the potential of GMM to accommodate subtle variations in retired EV batteries, extending 

their useful life and stability in second-life applications. Future work could involve expanding the 

proposed approach to larger-scale battery packs and validating the technique in field demonstrations 

to further establish its robustness and versatility. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Xu, J., Cai, X., Cai, S., Shao, Y., Hu, C., Lu, S., & Ding, S. (2023). High-energy lithium-ion batteries: recent 

progress and a promising future in applications. Energy & Environmental Materials, 6(5), e12450, 

https://doi.org/10.1002/eem2.12450. 

2. Jena, A., Borra, V. L., Saida, S., Venkatesan, P., Ö nal, M. A. R., & Borra, C. R. (2025). Synergistic 

hydrometallurgical recycling of Li-ion battery cathode active material, anode copper and waste SmCo 

magnets. Sustainable Materials and Technologies, e01284, doi: https://doi.org/10.1016/j.susmat.2025.e01284. 

3. Sarker, M. T., Haram, M. H. S. M., Shern, S. J., Ramasamy, G., & Al Farid, F. (2024). Second-life electric 

vehicle batteries for home photovoltaic systems: transforming energy storage and sustainability. Energies, 

17(10), 2345, https://doi.org/10.3390/en17102345 

4. D. Santos et al., “ESS Design and Management considering Solar PV to fed off-grid EV Charger,” 2024 12th 

International Conference on Smart Grid (icSmartGrid), Setubal, Portugal, 2024, pp. 636-641, 

https://doi.org/10.1109/icSmartGrid61824.2024.10578284. 

5. Shahjalal, M., Roy, P. K., Shams, T., Fly, A., Chowdhury, J. I., Ahmed, M. R., & Liu, K. (2022). A review on 

second life of Li-ion batteries: Prospects, challenges, and issues. Energy, 241, 122881. 

https://doi.org/10.1016/j.energy.2021.122881 

6. Li, W., Chen, S., Peng, X., Xiao, M., Gao, L., Garg, A., & Bao, N. (2019). A comprehensive approach for the 

clustering of similar-performance cells for the design of a lithium-ion battery module for electric vehicles. 

Engineering, 5(4), 795-802, https://doi.org/10.1016/j.eng.2019.07.005. 

7. Wu, S., & Chow, T. W. (2004). Clustering of the self-organizing map using a clustering validity index based 

on inter-cluster and intra-cluster density. Pattern Recognition, 37(2), 175-188. https://doi.org/10.1016/S0031-

3203(03)00237-1 

8. X. He, D. Cai, Y. Shao, H. Bao and J. Han, “Laplacian Regularized Gaussian Mixture Model for Data 

Clustering,” in IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 9, pp. 1406-1418, Sept. 2011, 

https://doi.org/10.1109/TKDE.2010.259. 

9. Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., ... & Braatz, R. D. (2019). Data-driven 

prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383-391, 

https://doi.org/10.1038/s41560-019-0356-8 

10. C. Li, N. Wang, W. Li, Y. Li and J. Zhang, “Regrouping and Echelon Utilization of Retired Lithium-Ion 

Batteries Based on a Novel Support Vector Clustering Approach,” in IEEE Transactions on Transportation 

Electrification, vol. 8, no. 3, pp. 3648-3658, Sept. 2022, https://doi.org/10.1109/TTE.2022.3169208 

11. Zhao, S., Wu, F., Yang, L., Gao, L., & Burke, A. F. (2010). A measurement method for determination of dc 

internal resistance of batteries and supercapacitors. Electrochemistry Communications, 12(2), 242-245, 

https://doi.org/10.1016/j.elecom.2009.12.004 

12. “How to Measure the Remaining Useful Life of a Battery,” Battery University. [Online]. Available: 

https://batteryuniversity.com/article/bu-901b-how-to-measure-the-remaining-useful-life-of-a-battery. 

[Accessed: Mar. 17, 2025]. 

13. Dalatu, P. I., & Midi, H. (2020). New approaches to normalization techniques to enhance K-means 

clustering algorithm. Malaysian Journal of Mathematical Sciences, 14(1), 41-62. 

14. Yuan, C., & Yang, H. (2019). Research on K-Value Selection Method of K-Means Clustering Algorithm. J, 

2(2), 226-235. https://doi.org/10.3390/j2020016 

15. Song, R., Pang, F., Jiang, H., & Zhu, H. (2024). A machine learning based method for constructing group 

profiles of university students. Heliyon, 10(7). https://doi.org/10.1016/j.heliyon.2024.e29181 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2025 doi:10.20944/preprints202505.2428.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2428.v1
http://creativecommons.org/licenses/by/4.0/


 13 of 13 

 

16. “Gaussian Mixture Model – Understanding and Implementation,” Data Flair, [Online]. Available: 

https://data-flair.training/blogs/gaussian-mixture-model/. [Accessed: Mar. 17, 2025]. 

17. Vassilvitskii, S., & Arthur, D. (2006, January). k-means++: The advantages of careful seeding. In Proceedings 

of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp. 1027-1035). 

18. Zhang, T., Kuo, CC.J. (2001). Sound Effects Classification and Retrieval. In: Content-Based Audio 

Classification and Retrieval for Audiovisual Data Parsing. The Springer International Series in Engineering 

and Computer Science, vol 606. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3339-6_5 

19. Falah, N., Falah, N., Solis-Guzman, J., & Marrero, M. (2025). An Indicator-Based Framework of Circular 

Cities Focused on Sustainability Dimensions and Sustainable Development Goal 11 Obtained Using 

Machine Learning and Text Analytics. Sustainable Cities and Society, 106219, 

https://doi.org/10.1016/j.scs.2025.106219\ 

20. Sasithradevi, A., Perumal, D. A., & Persiya, J. (2024). Infrared Perspectives: Computing laptop energy 

dissipation via thermal imaging and the Stefan-Boltzmann equation. Thermal Science and Engineering 

Progress, 53, 102742, https://doi.org/10.1016/j.tsep.2024.102742 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 May 2025 doi:10.20944/preprints202505.2428.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2428.v1
http://creativecommons.org/licenses/by/4.0/

