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Abstract: This study presents a probabilistic geotechnical analysis of the Visonta Keleti-III lignite 

mining area, focusing on the statistical evaluation of soil parameters and their integration into slope 

stability modeling. The objective was to provide a more accurate representation of the spatial 

variability of geological formations and mechanical soil pro-perties, in contrast to traditional 

deterministic approaches. The analysis was based on over 3,300 laboratory samples from 28 

boreholes, processed through multi-stage outlier filtering and regression techniques. Strong 

correlations were identified between physical soil parameters—such as wet and dry bulk density, 

void ratio, and plasticity index—particularly in cohesive soils. The probabilistic slope stability 

analysis applied the Bishop simplified method in combination with Latin Hypercube simulation. 

Results demonstrate that traditional methods tend to underestimate slope failure risk, whereas the 

probabilistic approach reveals failure probabilities ranging from 0% to 46.7% across different 

sections. The use of tailored statistical tools—such as Python-based filtering algorithms and 

distribution fitting via MATLAB—enabled more realistic modeling of geotechnical behavior. The 

findings emphasize the necessity of statistical methodologies in mine design, particularly in 

geologically heterogeneous, multilayered environments, where spatial uncertainty plays a critical 

role in slope stability assessments. 

Keywords: statistical analysis; complex geology; open pit mining; probabilistic slope stability 

analysis 

 

1. Introduction 

The statistical evaluation of soil parameters is of fundamental importance in slope stability 

analysis, as the physical and mechanical properties of soil exhibit significant spatial variability. 

Traditional slope stability analysis methods, such as limit equilibrium approaches, cannot always 

take into account these uncertainties. Modern approaches, such as Monte Carlo simulation, provide 

an opportunity for the quantitative estimation and integration of these uncertainties into the design 

process. [1,2] Uncertainties in shear strength parameters such as soil cohesion and internal friction 

angle influence safety factors. Monte Carlo simulation enables the implementation of probabilistic 

analyses, allowing the modeling of the effects of various soil parameters. [3,4]  

The natural anisotropy of soils, which develops during particle deposition, fundamentally 

influences slope stability. Traditional isotropic models may significantly overestimate safety factors, 

whereas considering anisotropy allows for more accurate results. [4,5] Numerical methods, such as 

the Finite Elements Method (FEM) and the Discrete Elements Method (DEM), can account for the 

spatial variability of the mechanical properties of soil and rock. Probabilistic analysis techniques, such 

as the Strength Reduction Techniques (SRT) method, enable a detailed investigation of slope 

instability processes. [6,7] Statistically based evaluation techniques assist in determining optimal 

design parameters, thereby reducing the risk of underestimated instability. These methods can be 
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applied to the design of earth dams, mining slopes, as well as road and railway embankments. [3] [7] 

Integrating these approaches into the engineering design process facilitates the development of safer 

and more cost-effective solutions. It is necessary to understand the impact of soil parameter 

variability and explore potential risk reduction strategies. Probabilistic modeling is a method that 

accounts for the uncertainty associated with input parameters during analysis, yielding the statistical 

distribution of the Factor of Safety (FS) instead of a single deterministic value. The resulting 

probability of failure (PF) has become a widely accepted design criterion. [8 - 10] The basis of the 

Probability of Failure (PF) concept is the determination of a statistical distribution (probability 

density function) for each input parameter in a slope stability analysis. The statistical distribution of 

the Factor of Safety (FS) can be established using a stochastic simulation process. PF quantifies the 

percentage of cases where FS < 1, indicating potential failure. Soil mechanical analyses often 

encounter the inherent uncertainty of soil parameters, which significantly impacts slope stability. To 

account for uncertain soil parameters, researchers have applied a probabilistic approach that has 

proven to be an effective tool when combined with Monte Carlo or Latin Hypercube simulation and 

Bishop’s simplified method. The analysis examined critical slip surfaces and the factor of safety, 

highlighting that probabilistic modeling of soil strength improvements and groundwater levels can 

significantly reduce the risk of slope failure. [11] Natural soil deposition processes often lead to 

strength anisotropy, which, if neglected, can result in inaccurate slope stability assessments. In the 

study of He et al. (2022) [12] a generalized anisotropic model was applied to describe the directional 

variations in the soil’s friction angle. The results indicate that ignoring anisotropy can overestimate 

the stability factor by up to 32.9%, particularly in the case of gentler slopes. The study emphasizes 

the importance of explicitly considering soil strength anisotropy to achieve more accurate stability 

assessments. [12] The stability of mining slopes is of paramount importance due to safety, economic, 

and environmental considerations. A Synthetic Rock Model (SRM) study aimed to simulate various 

geological layers and discontinuities accurately. Discrete Elements Methods (DEM) and Strength 

Reduction Techniques (SRT) enabled a detailed examination of sliding mechanisms. The results 

confirmed that these numerical models effectively predict the stability of complex geological 

environments, particularly in identifying slip surfaces and instability processes. [13] This study 

presents a comprehensive statistical evaluation of soil parameters and a probabilistic slope stability 

analysis of the Visonta lignite mining area in Hungary, highlighting how advanced data filtering, 

distribution fitting, and Latin Hypercube simulations can effectively capture the uncertainty of 

geotechnical parameters and provide a more realistic assessment of slope safety, ultimately revealing 

an estimated failure probability for one of the critical mining sections. 

2. Geological Settings and Geotechnical Parameters 

2.1. Geographical Location 

Visonta is located in North Hungary, at the southern foothills of the Northern Medium 

Mountains, east of Gyöngyös. (Figure 1) The Visonta mining site, based on lignite extraction, is 

located on the northern edge of the Great Hungarian Plain, at the southern foothills of the Mátra 

Mountains (Figure 2). Since the 1970s, multiple open-pit mining operations have been carried out in 

the region, utilizing the Visonta lignite deposit. The mining area is a key part of the Northern 

Hungarian lignite region. Geological research conducted in the 1960s and 1970s indicated that the 

Mátra and Bükkalja regions contain hundreds of millions of tons of extractable mineral resources, 

suitable for long-term energy utilization. Geomorphologically, the area is highly diverse and can be 

classified as a low hill region. Its topography is characterized by decreasing slopes towards the south 

and rising ridges towards the northwest. The highest part of the mining site, located in the 

northeastern section, varies between 160 and 180 meters above sea level, while its lowest point lies at 

an elevation of 115 meters above sea level in the valley of the Tarnóca Creek. 
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Figure 1. (a) Hungary in Europe. (b) Visonta lignite site in Hungary. (c) Location and sections of Keleti-III Lignite 

Mine, in Visonta. 

2.2. Interburden and Overburden Layer Characteristics 

The overburden above the uppermost coal seam and the interbeds between the individual coal 

seams consist of loose sediments. The Late Pannonian formation, containing the lignite seams, is 

overlain by a Quaternary overburden of varying thickness. This overburden consists primarily of 

various materials, including dark brown, red, reddish brown, yellowish brown, grey, yellow and 

black bentonite deposits, often with limestone concentrations and occasionally with limonite and 

manganese content. In some areas, a sandy clayey gravel layer can be observed. Some clayey 

materials have a mosaic structure, which breaks into small (walnut-sized) shiny-surfaced fragments 

after the loss of the substrate. The thickness of the Quaternary overburden ranges from 5 to 50 m, 

showing an increasing trend from north to south. The Cserhát–Mátra–Bükkalja lignite-bearing 

sequence is overlain by inland sand, silt and clay layers, occasionally interbedded with lignite seams. 

The coal layers within the sequence are separated by clay and sand layers. In some places, sandstone 

layers and compact marly silts represent significant resistance to mining. 
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Figure 2. Geological Cross-Section from the Mátra Mountains to the Great Hungarian Plain Across the Visonta 

Mining Area after Horváth et al. (2005) [14]. 

2.3. Geological Structure of Lignite Layers 

The lignite deposits are found in Pliocene formations, which are overlain by Quaternary cover 

layers. (Figure 3) The structural setting of the area is basin-like, with a basement composed of 

Miocene andesite formations of the Mátra Mountains. Overlying this basement is a several hundred-

meter-thick Pliocene sedimentary sequence, with its Late Pannonian section containing the lignite 

seams. The sedimentary sequence is characterized by relatively stable depositional conditions, with 

a general dip direction of NW-SE at an average inclination of 2–3°. Due to variations in stratigraphic 

dip, some lignite seams extend to the denuded surface of the Late Pannonian formations, where they 

have been partially eroded. The individual coal seams show significant differences in thickness, 

quality, and structural characteristics. These lignite seams belong to the Bükkalja Lignite Formation, 

deposited during the Late Pannonian epoch of the Tertiary period. Sediments accumulated in a 

shallow basin, fed by weathering products from surrounding mountains. Over time, delta slope facies 

evolved into floodplain and fluvial-lacustrine deposits, filling the basin by the epoch's end. Swamps 

and peatlands formed along basin margins, giving rise to lignite seams from Taxodium swamp 

forests. [15] 

Figure 4 displays two geological cross-sections from the Visonta Keleti-III lignite mining area, 

showing stratigraphic layering based on borehole data. Multiple sedimentary units are represented, 

including various clays (e.g., fat clay or high plasticity clay, medium plasticity clay, organic and 

bentonitic clays), silts, silty clays, and lignite seams. Strata are shown with distinct colors. The lignite 

seams are interbedded with fine-grained sediments and occur at varying depths across sections. 

Upper layers are predominantly composed of fat clays and silts, while deeper units include high-

plasticity and organic clays. The aquifer units consist of granular soils, predominantly sandy layers. 
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Figure 3. Geological structure of the Keleti-I mine (simplified, schematic stratigraphy) [14].
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Figure 4. Geotechnical Cross-Sections of the Visonta Keleti-III Mining Area. 

2.4. Geotechnical Investigations and Stability Calculations 

Several investigatory drillings have been made in the area. The geological logs were obtained, 

containing the identified stratigraphic layers from individual boreholes, along with detailed sample 

descriptions, age determinations, depth data, sample types, and corresponding sample numbers. 

These reports contained information such as borehole name, layer name, soil sample color, material 

characteristics, other relevant properties, layer depth, sample age, and sample number. For disturbed 

samples, the following parameters were determined: liquid limit (wL), plastic limit (wP), relative 

consistency index (Ic), plasticity index (Ip), and grain size frequency distribution characteristics—

percentage distribution of gravel, sand, silt, and clay, as well as characteristic grain diameter (Dm), 

uniformity coefficient (Cu), and grain size parameters (D10, D20, D60). For undisturbed samples, the 

available data included water content (w), void ratio (e), degree of saturation (Sr), dry bulk density 

(rd), and wet bulk density (rn). Certain samples underwent shear testing, and results were provided 

as average values measured on a horizontal shear plane. From these tests, the cohesion values, as 

well as internal friction angles, were determined. A total of 28 boreholes, drilled between 1988 and 

2008 in the Visonta Keleti-III mining area, were examined during the current research. The bore-holes 

are documented with known drilling dates, EOV (X) and EOV (Y) coordinates, height above sea level, 

and drilling depths. Table 1 shows the number of all the laboratory tests completed on soil samples 

from Visonta mining area. 

Table 1. Number of laboratory tests on samples from the Visonta mining area. 

Borehole 28 

Drilling Depth (m) 3305 

Grain Size Distribution 1205 

Shear Testing  Internal Friction Angle f (deg) 237 
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Cohesion c (kPa) 238 

Residual Internal Friction frez (deg) 264 

Residual Cohesion crez (kPa) 265 

Triaxial Compression Test 

 Water Content W (%) 196 

Saturated Bulk Density rs (g/cm3) 155 

Void Ratio e 184 

Degree of Saturation Sr 188 

Wet Bulk Density rn (g/cm3) 205 

Dry Bulk Density rd (g/cm3) 197 

Internal Friction Angle f (deg) 166 

Cohesion c (kPa) 166 

Natural Water Content - Wn (%) 1265 

Median Grain Size - Dm (mm) 1206 

Coefficient of Uniformity - Cu 816 

Grain Size Corresponding to 10% Finer  - D10 (mm) 1206 

Grain Size Corresponding to 20% Finer- D20 (mm) 1008 

Grain Size Corresponding to 60% Finer (mm) 1171 

Liquid Limit - WL (%) 653 

Plastic Limit - Wp (%) 654 

Consistency Index  Ic    360 

Plasticity Index - Ip (%) 1046 

Water Content - W (%) 1225 

Void Ratio - e (-) 1258 

Porosity - n (-) 121 

Degree of Saturation - Sr (-) 1221 

Dry Unit Weight  - rd (g/cm3) 1286 

Wet Unit Weight - rn (g/cm3) 1291 

Undrained Shear Strength (kPa) 471 

Number of Samples 3307 

3. Methodology 

After examining the data of the 28 boreholes and more than 3300 samples from the Visonta 

Keleti-III mining area, soil classification was performed based on plasticity index and grain size 

distribution results. After the classification, statistical analyses were performed focusing on two main 

categories: shear strength parameters, unit weight, and physical soil parameters. Ultimately, the 

collected data were used for probabilistic slope stability analysis. The workchart for the investigation 

is on Figure 5. 
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Figure 5. Workflow of Soil Classification and Probabilistic Slope Stability Analysis in the Visonta Mining Area. 

3.1. Methodology of Correlation Analysis 

A total of thirteen soil types were analysed: clayey Sand (clSa), clayey Silt (clSi), Sand (Sa), sandy 

Clay (saCl), sandy clayey Silt (saclSi), sandy Silt (saSi), sandy silty Clay (saclSi), sandy Gravel (saGr), 

Silt (Si), silty Sand (siSa), high plasticity Clay, medium plasticity Clay, and low plasticity Clay.  
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Relationships were examined between the following parameters: wet bulk density and void 

ratio, dry bulk density and void ratio, wet bulk density and dry bulk density and plasticity index and 

liquid limit. The study was conducted in three phases. The first phase served as a baseline, where all 

available laboratory results for each parameter related to each soil type were included. 

Subsequently, outlier values were filtered for each soil type and for each studied soil parameter 

using manual, basic filtering based on the Interquartile Range (IQR) method. The IQR filtering 

method is used to remove data points that significantly differ from the rest, known as outliers. The 

central part of the data is identified, and the range between the lower and upper quartiles is 

measured. Based on this range, boundaries are determined, and any values falling outside these 

limits are excluded, as they are considered unusual or potentially incorrect. This procedure can be 

performed in Python, and from Microsoft Excel 2016 onwards, the quartile function is also supported 

for this purpose.  

The same procedure was later carried out using a more professional and efficient approach—

dynamical filtering—implemented through Python code. The Python program performs iterative 

outlier detection and visualization on soil-related experimental data. It applies linear regression 

within each soil type group and iteratively removes statistical outliers based on interquartile range 

(IQR) analysis of residuals. Each iteration’s regression line is recorded: all intermediate fits are shown 

as dashed grey lines, while the final fit is highlighted in bold. The tool facilitates reproducible and 

transparent data cleaning for soil parameter analyses. Dashed grey lines represent earlier regression 

fits, while the final regression model is shown as a solid blue line. This method allows for very 

accurate data filtering but carries the risk of excessive data loss. The amount of data lost is shown in 

Table 2. The simple filter called IQR filtering with MS Excel was used during the research, since too 

much data loss can have negative consequences because it reduces the representativeness of the data. 

 

Figure 6. Regression Fit and Outlier Filtering (examples of dynamical filtering method). 

The essential part of the Python script code has been highlighted below. 
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def iterative_outlier_filtering(group): 

    group = group.copy() 

    all_outliers = [] 

    regression_lines = [] 

    num_iterations = 0 

    while True: 

        if len(group) < 2: 

            break 

        slope, intercept, _, _, _ = linregress(group['Value1'], group['Value2']) 

        regression_lines.append((slope, intercept)) 

        num_iterations += 1 

        group['Predicted_Value2'] = group['Value1'] * slope + intercept 

        group['Residual'] = group[' Value2'] - group['Predicted_ Value2'] 

        q1 = group['Residual'].quantile(0.25) 

        q3 = group['Residual'].quantile(0.75) 

        iqr = q3 - q1 

        lower_bound = q1 - 1.5 * iqr 

        upper_bound = q3 + 1.5 * iqr 

        group['Outlier'] = ~group['Residual'].between(lower_bound, upper_bound) 

        outliers = group[group['Outlier']] 

        if outliers.empty: 

            break 

        all_outliers.append(outliers) 

        group = group[~group['Outlier']] 

   group['Outlier'] = False 

    if all_outliers: 

        all_outliers_df = pd.concat(all_outliers) 

        all_outliers_df['Outlier'] = True 

        final_group = pd.concat([group, all_outliers_df]) 

    else: 

        final_group = group 

    final_group = final_group.sort_index() 

    final_slope, final_intercept = regression_lines[-1] if regression_lines else (0, 0) 

    return final_group, final_slope, final_intercept, regression_lines, num_iterations 

3.1. Methodology of the Statistical Analysis 

In probabilistic slope stability analysis, accurately defining the statistical properties of input 

parameters is essential. This includes determining the appropriate probability distribution, mean, 

standard deviation, and range. These parameters ensure that variability is realistically captured in 

the model. The analysis in this study uses Rocscience software, which limits inputs to seven 

distribution types: Normal, Lognormal, Triangular, Gamma, Beta, Uniform, and Exponential. Hence, 

selecting the most representative distribution for each parameter is critical. A custom MATLAB script 

was developed specifically for this study. It focuses on the seven distributions supported by 

Rocscience. By estimating parameters, the script fits multiple distributions: normal, lognormal, 

exponential, gamma, beta, uniform, and triangular. Each model is evaluated using log-likelihood and 
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the Akaike Information Criterion (AIC), which balances model fit with complexity. The best-fitting 

model is identified based on the lowest AIC value. Visualization includes a histogram with overlaid 

probability density functions (PDFs) for each distribution, each plotted in a distinct color.  

The best-fitting model is emphasized with a thicker line and annotated with the distribution 

name, AIC, mean, and standard deviation. For improved usability and validation, a parallel Python 

implementation was created. It mirrors the MATLAB version but includes more robust error 

handling and input validation. 

 

 

(a)                                                       (b) 

Figure 7. Comparison of Probability Distribution Fits Using Matlab (a) and Python (b). 

The left figure shows a Matlab result, while the right figure shows the same result calculated 

using Python code. The two plots show the results of a distribution fitting of a dataset, comparing 

several probability distributions based on the quality of the fit. In both plots, several distributions 

(normal, lognormal, gamma, uniform, triangular, and exponential) are fitted to the histogram of the 

data. The gamma distribution is the best fit, with the lowest AIC value. The gamma distribution 

closely follows the shape of the histogram, indicating a good fit. In both plots, AIC (Akaike 

Information Criterion) values were used to determine the fit: lower values indicate a better fit. 

The MATLAB and Python code snippets both aim to identify the best-fitting statistical 

distribution based on the Akaike Information Criterion (AIC), yet exhibit notable differences. The 

MATLAB script employs a straightforward loop structure, normalizes data specifically for the Beta 

distribution without parameter constraints, computes log-likelihood directly from fitted 

distributions, and stores only the best-fitting model parameters and their AIC. In contrast, the Python 

implementation utilizes explicit normalization parameters (floc, fscale) for Beta distributions, 

separately manages the triangular distribution as a special case, computes additional statistics (mean, 

standard deviation) for each fit, systematically captures fitting errors via structured warnings, and 

returns comprehensive results for all distributions tested, including detailed statistical summaries. 

Overall, the Python approach provides greater analytical depth, explicit error handling, and 

enhanced result organization compared to the concise, more simplistic MATLAB methodology. 

The essential parts of the codes have been highlighted below. 

Matlab code for selecting best fit distribution: 

% Fit each distribution and compute AIC 

for i = 1:size(distributions, 1) 

    distName = distributions{i, 1}; 

    distFunc = distributions{i, 2}; 

    try 
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        if strcmp(distName, 'Beta') 

            normalized_data = (data - min(data)) / (max(data) - 

min(data)); 

            pd = distFunc(normalized_data); 

        else 

            pd = distFunc(data); 

        end 

        logL = sum(log(pdf(pd, data))); 

        k = length(pd.ParameterValues); 

        AIC = 2 * k - 2 * logL; 

        AIC_values(i) = AIC; 

        if AIC < bestAIC 

            bestAIC = AIC; 

            bestDist = distName; 

            bestParam = pd.ParameterValues; 

            bestPD = pd; 

        end 

    catch ME 

        fprintf('Error fitting %s distribution: %s\n', distName, 

ME.message); 

    end 

end 

 

Python code or selecting best fit distribution: 

def fit_and_compare_distributions(data): 

    results = [] 

    for name, dist in distributions.items(): 

        try: 

            if name == "beta": 

                data_min, data_max = np.min(data), np.max(data) 

                normalized_data = (data - data_min) / (data_max - 

data_min) 

                params = dist.fit(normalized_data, floc=0, fscale=1) 

                ll = np.sum(dist.logpdf(normalized_data, *params)) 

                mean, var = dist.stats(*params, moments="mv") 

                mean = mean * (data_max - data_min) + data_min 

                std = np.sqrt(var) * (data_max - data_min) 

            elif name == "triangular": 

                a, c = np.min(data), np.max(data) 

                b = np.mean(data) 

                loc = a 

                scale = c - a 

                params = ((b - a) / scale, loc, scale) 

                ll = np.sum(dist.logpdf(data, *params)) 
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                mean, var = dist.stats(*params, moments="mv") 

                std = np.sqrt(var) 

            else: 

                params = dist.fit(data) 

                ll = np.sum(dist.logpdf(data, *params)) 

                mean, var = dist.stats(*params, moments="mv") 

                std = np.sqrt(var) 

            k = len(params) 

            aic = 2 * k - 2 * ll 

            results.append({ 

                "distribution": name, 

                "params": params, 

                "log_likelihood": ll, 

                "aic": aic, 

                "mean": mean, 

                "std": std, 

            }) 

        except Exception as e: 

            warnings.warn(f"Error fitting {name} distribution: {e}") 

    if results: 

        return results, min(results, key=lambda x: x["aic"]) 

    else: 

        warnings.warn("No distributions successfully fitted to the 

data.") 

        return [], None 

4. Statistical Analysis Results for Soil Physical and Strength Parameters 

4.1. Correlation Analysis of Soil Physical Parameters 

The three plots of the Figure 8 show the coefficient of determination (R²) values obtained for 

three different regression models for different soil types. Each plot shows the R² values for three data 

treatment approaches: basic, dynamical filtering, and simple filtering. Higher R² values indicate 

stronger model fit. Filtering methods, especially dynamical filtering, consistently produce higher R² 

values for most soil types, suggesting that model performance improves when outliers are removed. 

High-plasticity clays and medium-plasticity clays generally yield the highest R² values, especially in 

the dynamical filtered model, indicating that these soil types allow for more predictable relationships 

between the variables under study. In contrast, sandy silt (saSiS) and Silt (Si) show lower R² values 

in the basic model, especially for the wet-dry bulk density relationship, suggesting greater data 

variability or nonlinear behavior in these soils. Predictive relationships between variables are 

significantly improved when filtering techniques are used. The choice of soil type plays a critical role 

in the strength of the regression model, with cohesive soils (e.g. clays) providing more reliable results. 

For practical applications of geotechnical modeling, data filtering is recommended to improve the 

robustness of regression-based predictions, especially for granular soils with higher natural 

variability. 

Different data filtering methods produce different results, primarily because they remove 

outliers from the data set to different degrees. Basic filtering removes less data, resulting in more 

outliers entering the model and lower correlation (R²) values. Simple filtering removes outliers to a 
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moderate extent, improving the model but retaining most of the data. On the other hand, dynamical 

filtering treats outliers iteratively and much more strictly, significantly increasing correlation values 

but causing a large amount of data loss. The result depends largely on the tested soil type and its 

natural variability. Cohesive soils, such as clays, have a lower natural variance, so more stringent 

filtering effectively improves the quality of the model while reducing the amount of data. In contrast, 

granular soils (e.g. sandy silts, sands) have greater natural variability, so overly strict filtering may 

result in the loss of a lot of data and lead to an overly simplified, idealized model. Results for each 

filtering method are shown in Figure 8, while the amount of data loss is presented in Table 2. 

 

(a) 

 

(b) 

(c) 

Figure 8. (a) Correlation analysis of wet bulk density – void ratio (b) Correlation analysis of dry bulk density - 

void ratio (c) Correlation analysis of wet bulk density – dry bulk density. 
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Table 2 presents the number of samples used in three different regression analyses—wet bulk 

density vs. void ratio, dry bulk density vs. void ratio, and wet bulk density vs. dry bulk density—

across various soil types and data filtering approaches (basic, simple filtered, and dynamical filtered). 

For all soil types and relationships, a reduction in sample size is observed as data filtering is applied, 

particularly in the dynamical filtered approach. This indicates that outliers or influential data points 

have been systematically removed to improve model quality. Minimal sample loss is observed in 

fine-grained soils (e.g., clays), suggesting that these datasets contain fewer extreme outliers, whereas 

coarser soils (e.g., silty sand) show a more noticeable drop in sample size post-filtering. Data filtering 

significantly affects the available sample size, but it is necessary to enhance model accuracy, as 

supported by the higher R² values observed in the filtered datasets. 

Table 2. Data loss during data filtering on Visonta samples. 

Soil type 

Wet bulk density - 

void ratio 

Dry bulk density - 

void ratio 

Wet bulk density - 

dry bulk density 

n
o

. 

sa n
o

. 

sa m n
o

. 

sa m n
o

. 

sa m n
o

. 

sa m n
o

. 

sa m n
o

. 

sa n
o

. 

sa m n
o

. 

sa m

Sand (Sa) 60 58 56 59 57 28 59 57 56 

sandy Silt (saSi) 206 197 164 206 197 159 206 196 195 

Silt (Si) 67 64 63 67 65 56 67 65 64 

silty Sand (siSa) 113 107 99 113 108 91 113 105 100 

high plasticity Clay 429 413 396 428 414 374 428 421 396 

medium plasticity Clay 189 186 175 188 185 179 188 186 176 

low plasticity Clay 68 64 65 68 64 59 68 62 61 

Clays, especially those with high plasticity, are more stable in terms of data quality, making 

them preferable for regression-based modeling. Granular soils, due to their higher natural variability, 

may require more aggressive filtering and careful interpretation to ensure reliable predictions. Thus, 

the filtering process is justified despite the reduction in sample size, as it contributes to more 

statistically sound models. The dynamical filtering overestimates the true correlation. Where many 

values have been filtered out, the difference between the R2 values in the diagram is more significant. 

4.1.1. Wet density –void ratio 

Figure 9 illustrates the relationship between wet bulk density (horizontal axis) and void ratio 

(vertical axis) for various soil types, each represented by a distinct color. A negative correlation is 

clearly observed: as wet bulk density increases, the void ratio decreases. Denser soils typically contain 

less pore space. The distribution of data points suggests that the strength of this relationship varies 

among soil types. Clayey soils (e.g., high plasticity clay, clayey sand) are associated with higher void 

ratios at lower wet bulk densities, showing greater variability and a wider spread. The low wet bulk 

density values for the high plasticity clays are related to high organic content, since the organic 

content reduces the density of the clays. Some clay layers contain different amounts of organic 

materials. Sands and silts (e.g., sand, sandy silt, silty sand) are clustered at higher densities and lower 

void ratios, indicating more compacted and less compressible structures. A few outliers can be 

identified, particularly among clayey sands, suggesting that some variability remains unexplained 

and may be due to heterogeneity in sample properties or measurement inconsistencies. 
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Figure 9. Correlation Between Wet Bulk Density and Void Ratio Across Various Soil Types in the Visonta Mining 

Area. 

4.1.2. Dry density – void ratio 

Figure 10 displays the relationship between dry bulk density (horizontal axis) and void ratio 

(vertical axis) for a variety of soil types, each indicated by a different color. A clear inverse 

relationship is observed: as dry bulk density increases, the void ratio decreases. This trend is 

consistent with fundamental soil mechanics, where denser soils contain less void space. The data 

points corresponding to high plasticity clays show a wider spread and are concentrated toward lower 

dry bulk densities and higher void ratios, indicating a more porous and compressible structure. In 

contrast, granular soils (e.g., sand, silty sand) are distributed toward the higher density–lower void 

ratio region, reflecting more compacted conditions with less variability. The tight clustering of points 

for medium plasticity clays and sands suggests more consistent behavior and potentially better 

predictability in modeling efforts. A few outliers are present, primarily among clay-rich soils, 

suggesting heterogeneity in sample characteristics or testing conditions. Low dry bulk density values 

indicate organic matter content. The higher the organic matter content, the lower the dry bulk density 

as it is mentioned above. 
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Figure 10. Relationship Between Dry Bulk Density and Void Ratio for Various Soil Types in the Visonta Mining 

Area. 

4.1.3. Wet bulk density – dry bulk density 

Figure 11 displays the relationship between dry bulk density (x-axis) and wet bulk density (y-

axis) for various soil types, each marked with a different color. A strong positive linear relationship 

is observed: as dry bulk density increases, wet bulk density also increases. This aligns with 

expectations, as wet bulk density includes both the solid particles and the water content, while dry 

bulk density considers only the solids. Most soil types follow this linear trend closely, particularly 

sands, silts, and clays with medium or low plasticity, indicating a consistent relationship across a 

wide range of soils. High plasticity clays are more widely spread and appear at lower dry bulk 

densities with correspondingly lower wet bulk densities. This suggests greater variability in water 

content and structure, which is typical of such fine-grained, compressible soils. The reason for that is 

the high organic content of some of the high plasticity clay samples, as mentioned before. The tight 

clustering of sands and silts near the trend line indicates more predictable and uniform behavior. The 

relationship between dry and wet bulk densities can be reliably modeled with a linear regression, 

particularly for non-cohesive and low-plasticity soils. 
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Figure 11. Correlation Between Dry and Wet Bulk Density for Various Soil Types in the Visonta Mining Area. 

4.1.4. Plasticity Index – Liquid Limit 

Figure 12 shows the relationship between the liquid limit and the plasticity index for different 

soil samples. A reference line—Line A, defined by the equation Ip=0.73(wL-20) —is also included to 

assist in classification, following the widely used Casagrande plasticity chart method. A positive 

correlation is clearly observed: as the liquid limit increases, the plasticity index also increases, 

indicating that soils with higher water content at the liquid limit tend to have greater plasticity 

ranges. The data points are color-coded by soil type, with dark red points representing high plasticity 

clays, while cyclamen, grey and green points representing lower-plasticity silts and clays. Most of the 

points lie around the A-line, except some of the high plasticity clays, mainly with very high liquid 

limit. Based on the analysis of the Casagrande diagram, it can be determined that some of the high 

plasticity clays are located below the A-line, which typically indicates an increased organic matter 
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content of the samples.

 

Figure 12. Plasticity Index vs. Liquid Limit. 

4.1. Statistical Analysis of Shear Strength Parameters 

The boxplot on Figure 13 presents the distribution of friction angle (φ) values for the investigated 

soil types, providing insight into their shear strength characteristics. Sands (Sa), sandy silts (saSi), 

and silty sands (siSa) show relatively higher median φ values, generally ranging between 25° and 

30°, with some values extending above 35°.  
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This is expected, as granular soils typically exhibit higher friction angles. Silts (Si) and clays 

(high, medium, and low plasticity) demonstrate lower φ values, with medians between 10° and 25°, 

indicating more compressible, less frictional behavior. High plasticity clays have the lowest median 

and minimum φ values. Variation is higher among fine-grained soils, particularly clays, as seen from 

the larger interquartile ranges and whiskers, implying greater heterogeneity. These findings 

highlight the importance of soil classification and testing for proper geotechnical evaluation and 

design safety. 

 

Figure 13. Boxplot of Internal Friction Angle (f) for Different Soil Types. 

The boxplot on Figure 14 illustrates the cohesion values (in kPa) for the investigated soil types. 

It can be observed that sands (Sa), sandy silts (saSi), silts (Si), and silty sands (siSa) exhibit relatively 

low cohesion values. In contrast, clays, particularly those with high and medium plasticity, 

demonstrate significantly higher cohesion, with values extending beyond 200 kPa in some cases. Low 

plasticity clay also shows moderately high cohesion, though with a wider variability. These results 

indicate that cohesion is strongly influenced by the soil's plasticity and composition. 
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Figure 14. Boxplot of Cohesion (kPa) for Different Soil Types. 

5. Application of the Statistical Analyses of the Investigated Soils for 

Probabilistic Slope Stability Calculations 

5.1. Input Data 

5.1.1. Characteristic Soil Properties 

The investigatory drillings determined the stratum of the investigated area. Sections for the 

calculations were determined according to the determined layers. Example sections can be seen in 

Figure 4. Based on the laboratory results, the characteristic properties (unit weight, cohesion and 

angle of friction) were determined for each layer, which are in Table 3. The characteristic values were 

used for deterministic stability calculations and for some layers in the probabilistic stability 

calculations, where not enough data was available for the probabilistic approach. 

Table 3. Characteristic soil properties. 

  Unit Weight (kN/m3) 
Cohesion 

(kPa) 
Phi (°) 

Quarternary Fat clay (high plasticity Clay) 19.1 103 13 

Quarternary clayey Silt (clSi) 20.0 56 22 

Quaternary Pannonian sandstone formation 20.0 30 33 

Silt (Silt) (Si) 20.0 45 22 

silty Clay (clayey Silt) (clSi) 20.0 67 16 

Lignite seam 13.0 100 26 

Silt (Silt) (Si) 20.0 42 23 

sandy Clay (low plasticity Clay) 19.5 56 22 

cover fat Clay (high plasticity Clay) 19.5 103 13 

intermediate organic fat Clay (high plasticity 

Clay) 
20.0 87 7 

clayey Silt (clSi) 20.0 56 22 
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organic silty fat Clay (high plasticity Clay) 20.3 87 7 

medium Clay (medium plasticity Clay) 20.0 56 23 

bentonite fat Clay (high plasticity Clay) 20.0 103 13 

sandy Silt (saSi) 20.3 42 23 

aquifer (Sand) (Sa) 20.3 20 20 

waste material 17.3 11 28 

5.1.2.  Probabilistic Soil Properties 

On Figure 15 the best-fitting statistical distributions for unit weight of various soil types can be 

seen, determined using multiple methods: CumFreq (MAE), EasyFit (Kolmogorov–Smirnov, 

Anderson–Darling, Chi-Squared), and Akaike Information Criterion (AIC) via Matlab and Python. 

Lognormal, Normal, Gamma, and Beta distributions are predominantly identified. Lognormal and 

Normal distributions are frequently favored, especially by MAE and AIC-based evaluations. For 

example, low plasticity clay and silty sand are consistently best described by the Lognormal 

distribution across most methods. Beta distributions are commonly associated with high plasticity 

clays. Table 4 show the results of the probabilistic analyses. 
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Figure 15. Best-Fitting Probability Distributions for Unit Weight Across Soil Types Using Multiple Statistical 

Methods. 

Table 4. Probabilitic values of Unit weight (kN/m3). 
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Figure 16 summarizes the best-fit probability distributions for shear strength parameters of the 

investigated soil types, using several goodness-of-fit methods: CumFreq (MAE), EasyFit 

(Kolmogorov–Smirnov, Anderson–Darling, Chi-Squared), and Akaike Information Criterion (AIC) 

applied via Matlab and Python. Gamma and Normal distributions are most frequently selected, 

particularly for clay soils. Uniform and Triangular distributions are more often associated with sandy 

and silty soils, especially in EasyFit methods. Lognormal and Exponential distributions are mainly 

linked to Silt and Silty Sand for phi, especially in AIC-based evaluations. Table 5 and 6 show the 

results of the analysis for the cohesion and angle of friction. 
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Figure 16. Best-Fitting Probability Distributions for Shear Strength Parameters (ϕ, c) by Soil Type and 

Statistical Method. 

Table 5. Probabilistic Cohesion (kPa) values. 
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Quarternary fat clay (high plasticity Clay) Normal 91.4 43.1 207.4 116 1.7 89.7 

Quarternary clayey Silt (clSi)   56.0           

Quaternary Pannonian sandstone formation   30.0           

Silt (Silt) (Si) Gamma 46.1 31 87.1 41 6.6 39.5 

silty Clay (clayey Silt) (clSi)   67.0           

Lignite seam   100.0           

Silt (Silt) (Si) Gamma 46.1 31 87.1 41 6.6 39.5 

sandy Clay (low plasticity Clay) Normal 58.3 28.7 110.6 52.3 10.9 47.4 

cover fat Clay (high plasticity Clay) Normal 91.4 43.1 207.4 116 1.7 89.7 

intermediate organic fat Clay (high plasticity Clay) Normal 91.4 43.1 207.4 116 1.7 89.7 

clayey Silt (clSi)   56.0           

organic silty fat Clay (high plasticity Clay) Normal 91.4 43.1 207.4 116 1.7 89.7 

medium Clay (medium plasticity Clay) Gamma 86.3 49.9 207 120.7 1.7 84.6 

bentonite fat Clay (high plasticity Clay) Normal 91.4 43.1 207.4 116 1.7 89.7 

sandy Silt (saSi) Normal 30.9 17.2 70 39.1 1.3 29.6 

aquifer (Sand) (Sa) Lognormal 21.3 8.4 32.3 11 13.5 7.8 

waste material   11.0           

Table 6. Probabilistic values of internal friction angle Phi (deg) values. 
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Quarternary fat clay (high plasticity Clay) Gamma 11.00 5.80 23.50 12.50 0.00 11.00 

Quarternary clayey Silt (clSi)   22.00           

Quaternary Pannonian sandstone formation   33.00           

Silt (Silt) (Si) Lognormal 15.20 10.40 36.00 20.80 1.60 13.60 

silty Clay (clayey Silt) (clSi)   16.00           

Lignite seam   26.00           
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Silt (Silt) (Si) Lognormal 15.20 10.40 36.00 20.80 1.60 13.60 

sandy Clay (low plasticity Clay) Lognormal 22.71 1.72 25.80 3.09 21.10 1.61 

cover fat Clay (high plasticity Clay) Gamma 11.00 5.80 23.50 12.50 0.00 11.00 

intermediate organic fat Clay (high plasticity 

Clay) 
Gamma 11.00 5.80 23.50 12.50 0.00 11.00 

clayey Silt (clSi)   22.00           

organic silty fat Clay (high plasticity Clay) Gamma 11.00 5.80 23.50 12.50 0.00 11.00 

medium Clay (medium plasticity Clay) Normal 17.70 6.69 33.30 15.60 4.00 13.70 

bentonite fat Clay (high plasticity Clay) Gamma 11.00 5.80 23.50 12.50 0.00 11.00 

sandy Silt (saSi) Normal 26.22 3.52 30.00 3.78 20.00 6.22 

aquifer (Sand) (Sa) Normal 25.80 3.10 28.80 3.00 21.50 4.30 

waste material   28.00           

5.2. Results of the Slope Stability Analysis 

The introduced statistical data processing were used in practice to determine the stability of the 

slopes of the open pit lignite mine. Both deterministic and probabilistic slope stability calculations 

were done using the Slide2 software on the 7 sections, which are shown in Figure 1. The results 

demonstrate the difference between the two methods and the importance of the probabilistic 

approach. 

5.2.1. Deterministic Calculation Results 

The results of the deterministic analysis are encouraging, the slope proved to be stable for all 

sections. Due to the minimum safety factor of 1.35, slope optimization was later performed on 

Sections 3, Section 4 and Section 7, but this is not discussed in this study. 

Table 7. Deterministic test results of all Sections. 

 Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 

FS [-] 1.951 1.379 1.305 1.226 1.653 1.583 1.334 

Figure 17 shows the deterministic calculation result of the Section 1. The Factor of Safety 

(FS=1.951) is above the desired value, the slope is stable according to the result. 

 

Figure 17. Deterministic test result of Section 1. 

5.1.2. Probabilistic Calculation Results 

Table 8 presents the results of the probabilistic slope stability study of the Visonta Keleti-III 

lignite mine. The FS (Factor of Safety), PF (Probability of Failure), and RI (Reliability Index) values in 

the table were determined for the different sections based on the Bishop simplified method and Latin 

Hypercube simulation. Latin Hypercube analysis is an advanced version of Latin Hypercube 

simulation that samples the entire set of input parameter values in a structured manner, thus 

increasing the efficiency and accuracy of the simulation. FS is the result of a deterministic calculation 

run with the Mean values of the parameters. FS (mean) is the expected FS value obtained from the 

results of 1000 runs, where the Mean value takes on a different value in each run. Based on the FS 
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values, Section 3 (FS = 2,060) is the most stable section, while Section 2 (FS = 1,207) is the most critical. 

In terms of PF, i.e. the probability of failure, Section 2 is particularly risky, as it shows a 46.7% failure 

probability. The results of the research confirm that traditional deterministic models cannot reliably 

handle the spatial uncertainty of geotechnical parameters in the Visonta mine area. The probabilistic 

approach using Latin Hypercube simulation provides a more detailed and realistic assessment of 

slope stability, which is essential for safe mine design. 

Table 8. Probabilistic test results of all Sections. 

 Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 

FS [-] 2.025 1.207 2.060 1.647 1.729 1.583 1.334 

FS (mean) 1.523 1.019 1.542 1.216 1.243 1.579 1.334 

PF [%] 11.1% 46.7% 9.0% 28.6% 23.3% 0.0% 0.0% 

RI (normal) 1.327 0.063 1.411 0.61 0.745 41.571 - 

RI (lognormal) 1.526 -0.079 1.643 0.542 0.714 51.781 - 

After the statistical analysis was completed and the statistical parameters were obtained, the 

practical implementation followed. In addition to the statistical parameters, there was a need for 

characteristic values. The Visonta mining area was very densely stratified, as shown in the Figure 4, 

so for several layers there were only characteristic input data. For the rest, we calculated with 

probabilistic values. The interpretation of the results of the probabilistic slope stability calculation is 

presented on Section 1 of the Visonta mining area. Figure 18 displays a probabilistic analysis of slope 

stability of this section using the Bishop simplified method.  

 

Figure 18. Probabilistic test result of Section 1. 

Figure 19 shows a histogram of the Factor of Safety (FS) with relative frequency on the y-axis.The 

distribution is right-skewed, indicating a larger concentration of simulations resulting in FS values 

between approximately 1.3 and 1.7, with a peak near 1.5.The orange bars on the left (FS < 1.0) 

represent failure cases, where the slope is not considered stable. The blue bars correspond to stable 

conditions (FS ≥ 1.0). A fitted probability density function (PDF) curve is overlaid in grey, 

approximating the distribution trend. 
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Figure 19. Histogram of Factor of Safety (FoS) from Probabilistic Analysis Using Bishop Simplified Method 

(Section 1). 

The results indicate that while the majority of simulations show a stable slope, a non-negligible 

probability of failure exists. This probabilistic approach highlights the variability and uncertainty in 

slope stability due to input parameter distributions. 

Figure 20 illustrates the Cumulative Distribution Function (CDF) of the Factor of Safety (FS) 

calculated using the Bishop simplified method. The x-axis represents the Factor of Safety, and the y-

axis shows the corresponding cumulative probability. The curve exhibits a typical sigmoidal shape, 

characteristic of cumulative distributions. At FS = 1.0, the cumulative probability is approximately 

0.11, indicating a 11% probability of failure. 

 

Figure 20. Cumulative Distribution Function of Factor of Safety (FoS) from Probabilistic Analysis Using the 

Bishop Simplified Method (Section 1). 

The graph in Figure 21 illustrates the convergence behavior of the Probability of Failure (PF) 

calculated via the Bishop simplified method as a function of the number of Latin Hypercube samples. 

The x-axis represents the number of samples, while the y-axis shows the corresponding PF (%). Initial 
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estimates (<100 samples) show high variability and instability, as expected with low sample sizes. 

Around 200–300 samples, the PF begins to stabilize, with fluctuations decreasing progressively. From 

approximately 600 samples onwards, the PF converges around 11–12%, indicating statistical stability 

of the estimated probability of failure. This behavior confirms that at least several hundred samples 

are required for reliable PF estimation in slope stability analysis using probabilistic methods. This 

plot is essential for validating the adequacy of amount of samples in probabilistic geotechnical 

modeling. 

 

Figure 21. Convergence of Probability of Failure with Increasing Sample Size in Latin Hypercube Simulation 

(Section 1). 

6. Discussion 

The probability of failure (PF) results from the probabilistic stability study conducted in the 

Keleti III part of the Visonta mining area highlight the risk assessment limitations of traditional 

deterministic methods and confirm the need for a probabilistic approach. The effectiveness of 

probabilistic slope stability studies is also supported by other research, especially studies using 

metaheuristic methods, such as Zeng et al. [52], where hybrid optimization algorithms were used to 

assess slope safety more reliably. The spatial variability of physical soil parameters fundamentally 

affects the reliability of slope stability studies. Therefore, probabilistic analyses complementing 

deterministic approaches are necessary for safe planning.  

The acceptability of failure probability is a widely discussed issue. There is no agreed consensus, 

only recommendations and tables [10][16-28]. Numerous interpretations of PF are apparent after 

reviewing several articles related to PSSA from the past decades. In their article, Ng and Kok Shein 

[29] considered a value below 5% safe, while above 25% they considered it a high risk. Penalba et al. 

[30] in their work considered a 6% failure probability acceptable. Bi et al. [31] is quite permissive, 

stating that slopes below 50% are safe. Moradi et al. [32] maximized the allowable failure probability 

at 5%. In their case study in Taiwan, Wang et al. [33] considered the failure probability of 17.3% to be 

too high. Hamedifar et al. [34] considered 30% to be dangerous. According to Kulatilake et al. [35], 

5% is the permissible limit, and Chaulagai [36] had the same opinion. Mandal et al. [37] said that the 

slope was not considered safe for a PF=15%. Nerman et al. [38] in 2018 set a PF value of 10% as the 

upper limit. However, Obregon [39] determined the maximum at 20%. Sitharam [40] quotes Sjöberg 

[41], meaning that the PF obtained of 7.5% is acceptable, but close to the 10% limit. Rafiei [42] claimed 

that PF should be below 10-15%. Mathe & Ferentinou [43] and Sachpazis [44] capped the maximum 
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allowable value of PF at 5% .  Sdvyzhkova et al. [45] assessed a PF value of 12.55% as a significant 

slip hazard. Do et al. [46] recommend a 10-20% allowable PF. However, Li et al. [47] wrote that a PF 

greater than 5-10% is no longer acceptable. Nguyen et al.'s [48] is even more stringent, according to 

their results, PF=2.2% cannot be considered safe. Abhijith et al. [49] interpret a PF greater than 17% 

as a potential danger zone, and this was based on the recommendation of the US Army Corps of 

Engineers (1997) [50]. 

These studies show no final consistent agreement on the maximum value of PF. It is important 

to keep in mind Ferreira's [51]  statement, after Wesseloo & Read (2009) [21], that the minimum FS 

and maximum PF requirements must be evaluated simultaneously. 

The calculated FS and PF of the slope of the Visonta lignite mine also show that it is not easy to 

evaluate the long-term stability according to the results. When the FS was around 1.50, which was 

considered stable, the PF was between 0 - 11%, which can be stable but bigger than the 5% limit, 

which was considered the upper limit of the safe zone in some of the above-mentioned studies. When 

the SF was 1.33 at section 7, then the PF was 0%, so it can be considered stable.  

For a more exact evaluation of the PF results, it should take into account the consequence of a 

failure as well as it is determined by Gibson [10] and Adams [23]. When a failure can cause serious 

problems, damages in valuables or endanger human life then the limit of the PF should be small, 

other case it could be bigger. In this case study according to Adams [23] the accepted risk can be 

moderate so the upper limit of the PS should be 10%  

7. Conclusions 

The paper presents a comprehensive probabilistic geotechnical study of the Visonta Keleti-III 

lignite mining area in Hungary, emphasizing the statistical evaluation of soil parameters and their 

integration into probabilistic slope stability analysis. The Visonta mine is situated in a geologically 

complex basin with Pliocene lignite seams overlain by Quaternary sediments. Thirteen distinct soil 

types were classified based on plasticity index and grain size distribution, including various clays, 

silts, sands, and their mixtures. The deposit is stratified, with considerable heterogeneity in layer 

composition, thickness, and geotechnical behavior. Over 3,300 lab samples from 28 boreholes were 

processed using a multi-phase outlier filtering method (manual, IQR-based, and dynamical filtering 

via Python), improving model fit and regression robustness. Relationships between parameters like 

bulk densities, void ratio, and plasticity were modeled with strong correlation, especially in cohesive 

soils. Best-fit distributions for unit weight and shear strength parameters (φ and c) were identified 

using various tools (CumFreq, EasyFit, Matlab, Python). Gamma, Normal, and Lognormal 

distributions were most frequently selected, with variability across soil types and parameters. The 

Bishop simplified method combined with Latin Hypercube simulation was employed. A histogram 

of FS showed a right-skewed distribution, with most results between 1.3–1.7, but with ~20% 

probability of failure (FS < 1.0). The CDF plot validated this, and the PF convergence plot indicated 

stability after ~600 simulations, suggesting adequacy of the sample size. This study demonstrates the 

necessity and effectiveness of probabilistic approaches in slope stability evaluation within a mining 

context. Traditional deterministic models often overlook the spatial and statistical variability of soil 

properties, leading to potential underestimation or overestimation of slope safety. The integration of 

advanced filtering techniques, tailored distribution fitting, and Latin Hypercube simulation allows 

for realistic modeling of geotechnical behavior. Importantly, the application of such methods 

highlights the value of data quality and parameter uncertainty, especially in stratified and variable 

geological formations like Visonta. The use of custom Python and Matlab tools optimized for 

compatibility with engineering software (e.g., Rocscience) presents a practical contribution to 

geotechnical data processing and modeling workflows. The probabilistic method outperforms 

traditional approaches by quantifying uncertainty and providing realistic estimates of failure 

probability. Cohesive soils, particularly clays, showed more predictable relationships and better 

model fit after filtering. The estimated 11–12% probability of failure in section 1 indicates that while 

the slope is mostly stable, design mitigation may be warranted. Tools and techniques developed (e.g., 
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Python filtering and distribution fitting) provide a reproducible, scalable workflow for similar 

geotechnical investigations. 
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