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Abstract: This study presents a probabilistic geotechnical analysis of the Visonta Keleti-III lignite
mining area, focusing on the statistical evaluation of soil parameters and their integration into slope
stability modeling. The objective was to provide a more accurate representation of the spatial
variability of geological formations and mechanical soil pro-perties, in contrast to traditional
deterministic approaches. The analysis was based on over 3,300 laboratory samples from 28
boreholes, processed through multi-stage outlier filtering and regression techniques. Strong
correlations were identified between physical soil parameters—such as wet and dry bulk density,
void ratio, and plasticity index—particularly in cohesive soils. The probabilistic slope stability
analysis applied the Bishop simplified method in combination with Latin Hypercube simulation.
Results demonstrate that traditional methods tend to underestimate slope failure risk, whereas the
probabilistic approach reveals failure probabilities ranging from 0% to 46.7% across different
sections. The use of tailored statistical tools—such as Python-based filtering algorithms and
distribution fitting via MATLAB—enabled more realistic modeling of geotechnical behavior. The
findings emphasize the necessity of statistical methodologies in mine design, particularly in
geologically heterogeneous, multilayered environments, where spatial uncertainty plays a critical
role in slope stability assessments.

Keywords: statistical analysis; complex geology; open pit mining; probabilistic slope stability
analysis

1. Introduction

The statistical evaluation of soil parameters is of fundamental importance in slope stability
analysis, as the physical and mechanical properties of soil exhibit significant spatial variability.
Traditional slope stability analysis methods, such as limit equilibrium approaches, cannot always
take into account these uncertainties. Modern approaches, such as Monte Carlo simulation, provide
an opportunity for the quantitative estimation and integration of these uncertainties into the design
process. [1,2] Uncertainties in shear strength parameters such as soil cohesion and internal friction
angle influence safety factors. Monte Carlo simulation enables the implementation of probabilistic
analyses, allowing the modeling of the effects of various soil parameters. [3,4]

The natural anisotropy of soils, which develops during particle deposition, fundamentally
influences slope stability. Traditional isotropic models may significantly overestimate safety factors,
whereas considering anisotropy allows for more accurate results. [4,5] Numerical methods, such as
the Finite Elements Method (FEM) and the Discrete Elements Method (DEM), can account for the
spatial variability of the mechanical properties of soil and rock. Probabilistic analysis techniques, such
as the Strength Reduction Techniques (SRT) method, enable a detailed investigation of slope
instability processes. [6,7] Statistically based evaluation techniques assist in determining optimal
design parameters, thereby reducing the risk of underestimated instability. These methods can be
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applied to the design of earth dams, mining slopes, as well as road and railway embankments. [3] [7]
Integrating these approaches into the engineering design process facilitates the development of safer
and more cost-effective solutions. It is necessary to understand the impact of soil parameter
variability and explore potential risk reduction strategies. Probabilistic modeling is a method that
accounts for the uncertainty associated with input parameters during analysis, yielding the statistical
distribution of the Factor of Safety (FS) instead of a single deterministic value. The resulting
probability of failure (PF) has become a widely accepted design criterion. [8 - 10] The basis of the
Probability of Failure (PF) concept is the determination of a statistical distribution (probability
density function) for each input parameter in a slope stability analysis. The statistical distribution of
the Factor of Safety (FS) can be established using a stochastic simulation process. PF quantifies the
percentage of cases where FS < 1, indicating potential failure. Soil mechanical analyses often
encounter the inherent uncertainty of soil parameters, which significantly impacts slope stability. To
account for uncertain soil parameters, researchers have applied a probabilistic approach that has
proven to be an effective tool when combined with Monte Carlo or Latin Hypercube simulation and
Bishop’s simplified method. The analysis examined critical slip surfaces and the factor of safety,
highlighting that probabilistic modeling of soil strength improvements and groundwater levels can
significantly reduce the risk of slope failure. [11] Natural soil deposition processes often lead to
strength anisotropy, which, if neglected, can result in inaccurate slope stability assessments. In the
study of He et al. (2022) [12] a generalized anisotropic model was applied to describe the directional
variations in the soil’s friction angle. The results indicate that ignoring anisotropy can overestimate
the stability factor by up to 32.9%, particularly in the case of gentler slopes. The study emphasizes
the importance of explicitly considering soil strength anisotropy to achieve more accurate stability
assessments. [12] The stability of mining slopes is of paramount importance due to safety, economic,
and environmental considerations. A Synthetic Rock Model (SRM) study aimed to simulate various
geological layers and discontinuities accurately. Discrete Elements Methods (DEM) and Strength
Reduction Techniques (SRT) enabled a detailed examination of sliding mechanisms. The results
confirmed that these numerical models effectively predict the stability of complex geological
environments, particularly in identifying slip surfaces and instability processes. [13] This study
presents a comprehensive statistical evaluation of soil parameters and a probabilistic slope stability
analysis of the Visonta lignite mining area in Hungary, highlighting how advanced data filtering,
distribution fitting, and Latin Hypercube simulations can effectively capture the uncertainty of
geotechnical parameters and provide a more realistic assessment of slope safety, ultimately revealing
an estimated failure probability for one of the critical mining sections.

2. Geological Settings and Geotechnical Parameters

2.1. Geographical Location

Visonta is located in North Hungary, at the southern foothills of the Northern Medium
Mountains, east of Gyongyos. (Figure 1) The Visonta mining site, based on lignite extraction, is
located on the northern edge of the Great Hungarian Plain, at the southern foothills of the Matra
Mountains (Figure 2). Since the 1970s, multiple open-pit mining operations have been carried out in
the region, utilizing the Visonta lignite deposit. The mining area is a key part of the Northern
Hungarian lignite region. Geological research conducted in the 1960s and 1970s indicated that the
Matra and Biikkalja regions contain hundreds of millions of tons of extractable mineral resources,
suitable for long-term energy utilization. Geomorphologically, the area is highly diverse and can be
classified as a low hill region. Its topography is characterized by decreasing slopes towards the south
and rising ridges towards the northwest. The highest part of the mining site, located in the
northeastern section, varies between 160 and 180 meters above sea level, while its lowest point lies at
an elevation of 115 meters above sea level in the valley of the Tarn6ca Creek.
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Figure 1. (a) Hungary in Europe. (b) Visonta lignite site in Hungary. (c) Location and sections of Keleti-III Lignite

Mine, in Visonta.

2.2. Interburden and Overburden Layer Characteristics

The overburden above the uppermost coal seam and the interbeds between the individual coal
seams consist of loose sediments. The Late Pannonian formation, containing the lignite seams, is
overlain by a Quaternary overburden of varying thickness. This overburden consists primarily of
various materials, including dark brown, red, reddish brown, yellowish brown, grey, yellow and
black bentonite deposits, often with limestone concentrations and occasionally with limonite and
manganese content. In some areas, a sandy clayey gravel layer can be observed. Some clayey
materials have a mosaic structure, which breaks into small (walnut-sized) shiny-surfaced fragments
after the loss of the substrate. The thickness of the Quaternary overburden ranges from 5 to 50 m,
showing an increasing trend from north to south. The Cserhat-Matra—Biikkalja lignite-bearing
sequence is overlain by inland sand, silt and clay layers, occasionally interbedded with lignite seams.
The coal layers within the sequence are separated by clay and sand layers. In some places, sandstone
layers and compact marly silts represent significant resistance to mining.
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Figure 2. Geological Cross-Section from the Matra Mountains to the Great Hungarian Plain Across the Visonta
Mining Area after Horvath et al. (2005) [14].

2.3. Geological Structure of Lignite Layers

The lignite deposits are found in Pliocene formations, which are overlain by Quaternary cover
layers. (Figure 3) The structural setting of the area is basin-like, with a basement composed of
Miocene andesite formations of the Matra Mountains. Overlying this basement is a several hundred-
meter-thick Pliocene sedimentary sequence, with its Late Pannonian section containing the lignite
seams. The sedimentary sequence is characterized by relatively stable depositional conditions, with
a general dip direction of NW-SE at an average inclination of 2-3°. Due to variations in stratigraphic
dip, some lignite seams extend to the denuded surface of the Late Pannonian formations, where they
have been partially eroded. The individual coal seams show significant differences in thickness,
quality, and structural characteristics. These lignite seams belong to the Biikkalja Lignite Formation,
deposited during the Late Pannonian epoch of the Tertiary period. Sediments accumulated in a
shallow basin, fed by weathering products from surrounding mountains. Over time, delta slope facies
evolved into floodplain and fluvial-lacustrine deposits, filling the basin by the epoch's end. Swamps
and peatlands formed along basin margins, giving rise to lignite seams from Taxodium swamp
forests. [15]

Figure 4 displays two geological cross-sections from the Visonta Keleti-III lignite mining area,
showing stratigraphic layering based on borehole data. Multiple sedimentary units are represented,
including various clays (e.g., fat clay or high plasticity clay, medium plasticity clay, organic and
bentonitic clays), silts, silty clays, and lignite seams. Strata are shown with distinct colors. The lignite
seams are interbedded with fine-grained sediments and occur at varying depths across sections.
Upper layers are predominantly composed of fat clays and silts, while deeper units include high-
plasticity and organic clays. The aquifer units consist of granular soils, predominantly sandy layers.
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Figure 3. Geological structure of the Keleti-I mine (simplified, schematic stratigraphy) [14].
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Figure 4. Geotechnical Cross-Sections of the Visonta Keleti-III Mining Area.

2.4. Geotechnical Investigations and Stability Calculations

Several investigatory drillings have been made in the area. The geological logs were obtained,
containing the identified stratigraphic layers from individual boreholes, along with detailed sample
descriptions, age determinations, depth data, sample types, and corresponding sample numbers.
These reports contained information such as borehole name, layer name, soil sample color, material
characteristics, other relevant properties, layer depth, sample age, and sample number. For disturbed
samples, the following parameters were determined: liquid limit (wv), plastic limit (wr), relative
consistency index (Ic), plasticity index (Ip), and grain size frequency distribution characteristics —
percentage distribution of gravel, sand, silt, and clay, as well as characteristic grain diameter (Dm),
uniformity coefficient (Cu), and grain size parameters (D1, D20, Deo). For undisturbed samples, the
available data included water content (w), void ratio (e), degree of saturation (S:), dry bulk density
(ra), and wet bulk density (rn). Certain samples underwent shear testing, and results were provided
as average values measured on a horizontal shear plane. From these tests, the cohesion values, as
well as internal friction angles, were determined. A total of 28 boreholes, drilled between 1988 and
2008 in the Visonta Keleti-III mining area, were examined during the current research. The bore-holes
are documented with known drilling dates, EOV (X) and EOV (Y) coordinates, height above sea level,
and drilling depths. Table 1 shows the number of all the laboratory tests completed on soil samples
from Visonta mining area.

Table 1. Number of laboratory tests on samples from the Visonta mining area.

Borehole 28
Drilling Depth (m) 3305
Grain Size Distribution 1205

Shear Testing Internal Friction Angle f (deg) 237
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Cohesion c (kPa) 238

Residual Internal Friction fre: (deg) 264

Residual Cohesion cre- (kPPa) 265

Water Content W (%) 196

Saturated Bulk Density rs (g/cm?) 155

Void Ratio e 184

.. . Degree of Saturation St 188
Triaxial Compression Test Wet Bgulk Density 1 (g/cm?) 205
Dry Bulk Density r4 (g/cm?) 197

Internal Friction Angle f(deg) 166

Cohesion c (kPa) 166

Natural Water Content - Wn (%) 1265

Median Grain Size - Dm (mm) 1206
Coefficient of Uniformity - Cu 816

Grain Size Corresponding to 10% Finer - Dio(mm) 1206
Grain Size Corresponding to 20% Finer- D20 (mm) 1008
Grain Size Corresponding to 60% Finer (mm) 1171
Liquid Limit - Wt (%) 653

Plastic Limit - Wp (%) 654

Consistency Index I 360

Plasticity Index - Iy (%) 1046

Water Content - W (%) 1225

Void Ratio - e (-) 1258

Porosity -n (-) 121

Degree of Saturation - Sr (-) 1221

Dry Unit Weight - ra(g/cm?) 1286

Wet Unit Weight - r (g/cm?) 1291

Undrained Shear Strength (kPa) 471
Number of Samples 3307

3. Methodology

After examining the data of the 28 boreholes and more than 3300 samples from the Visonta
Keleti-III mining area, soil classification was performed based on plasticity index and grain size
distribution results. After the classification, statistical analyses were performed focusing on two main
categories: shear strength parameters, unit weight, and physical soil parameters. Ultimately, the
collected data were used for probabilistic slope stability analysis. The workchart for the investigation
is on Figure 5.
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Figure 5. Workflow of Soil Classification and Probabilistic Slope Stability Analysis in the Visonta Mining Area.

3.1. Methodology of Correlation Analysis

A total of thirteen soil types were analysed: clayey Sand (clSa), clayey Silt (clSi), Sand (Sa), sandy
Clay (saCl), sandy clayey Silt (saclSi), sandy Silt (saSi), sandy silty Clay (saclSi), sandy Gravel (saGr),
Silt (Si), silty Sand (siSa), high plasticity Clay, medium plasticity Clay, and low plasticity Clay.


https://doi.org/10.20944/preprints202505.0272.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2025

Relationships were examined between the following parameters: wet bulk density and void
ratio, dry bulk density and void ratio, wet bulk density and dry bulk density and plasticity index and
liquid limit. The study was conducted in three phases. The first phase served as a baseline, where all
available laboratory results for each parameter related to each soil type were included.

Subsequently, outlier values were filtered for each soil type and for each studied soil parameter
using manual, basic filtering based on the Interquartile Range (IQR) method. The IQR filtering
method is used to remove data points that significantly differ from the rest, known as outliers. The
central part of the data is identified, and the range between the lower and upper quartiles is
measured. Based on this range, boundaries are determined, and any values falling outside these
limits are excluded, as they are considered unusual or potentially incorrect. This procedure can be
performed in Python, and from Microsoft Excel 2016 onwards, the quartile function is also supported
for this purpose.

The same procedure was later carried out using a more professional and efficient approach—
dynamical filtering—implemented through Python code. The Python program performs iterative
outlier detection and visualization on soil-related experimental data. It applies linear regression
within each soil type group and iteratively removes statistical outliers based on interquartile range
(IQR) analysis of residuals. Each iteration’s regression line is recorded: all intermediate fits are shown
as dashed grey lines, while the final fit is highlighted in bold. The tool facilitates reproducible and
transparent data cleaning for soil parameter analyses. Dashed grey lines represent earlier regression
fits, while the final regression model is shown as a solid blue line. This method allows for very
accurate data filtering but carries the risk of excessive data loss. The amount of data lost is shown in
Table 2. The simple filter called IQR filtering with MS Excel was used during the research, since too
much data loss can have negative consequences because it reduces the representativeness of the data.

Soil Tvpe: high plasticity Clay

14 L6 18 0

®  Culicr .

Figure 6. Regression Fit and Outlier Filtering (examples of dynamical filtering method).

The essential part of the Python script code has been highlighted below.
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def iterative_outlier_filtering(group):
group = group.copy()
all_outliers =[]
regression_lines =[]
num_iterations = 0
while True:
if len(group) < 2:
break
slope, intercept, _, _, _ = linregress(group['Valuel'], group['Value2'])
regression_lines.append((slope, intercept))
num_iterations += 1
group['Predicted_Value2'] = group['Valuel'] * slope + intercept
group['Residual'] = group[' Value2'] - group|Predicted_ Value2']
ql = group|['Residual'].quantile(0.25)
g3 = group|'Residual'].quantile(0.75)
igr=q3-ql
lower_bound =q1 - 1.5 *iqr
upper_bound =q3 + 1.5 *iqr
group|['Outlier'] = ~group['Residual'].between(lower_bound, upper_bound)
outliers = group[group['Outlier']]
if outliers.empty:
break
all_outliers.append(outliers)
group = group[~group|'Outlier']]
group|'Outlier'] = False
if all_outliers:
all_outliers_df = pd.concat(all_outliers)
all_outliers_df['Outlier'] = True
final_group = pd.concat([group, all_outliers_df])
else:
final_group = group
final_group = final_group.sort_index()
final_slope, final_intercept = regression_lines[-1] if regression_lines else (0, 0)

return final_group, final_slope, final_intercept, regression_lines, num_iterations

3.1. Methodology of the Statistical Analysis

In probabilistic slope stability analysis, accurately defining the statistical properties of input
parameters is essential. This includes determining the appropriate probability distribution, mean,
standard deviation, and range. These parameters ensure that variability is realistically captured in
the model. The analysis in this study uses Rocscience software, which limits inputs to seven
distribution types: Normal, Lognormal, Triangular, Gamma, Beta, Uniform, and Exponential. Hence,
selecting the most representative distribution for each parameter is critical. A custom MATLAB script
was developed specifically for this study. It focuses on the seven distributions supported by
Rocscience. By estimating parameters, the script fits multiple distributions: normal, lognormal,
exponential, gamma, beta, uniform, and triangular. Each model is evaluated using log-likelihood and
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the Akaike Information Criterion (AIC), which balances model fit with complexity. The best-fitting
model is identified based on the lowest AIC value. Visualization includes a histogram with overlaid
probability density functions (PDFs) for each distribution, each plotted in a distinct color.

The best-fitting model is emphasized with a thicker line and annotated with the distribution
name, AIC, mean, and standard deviation. For improved usability and validation, a parallel Python
implementation was created. It mirrors the MATLAB version but includes more robust error
handling and input validation.

03 Distribution Fitting and Comparison
[——Jpata Density Functions and Best Fit Distribution
Normal (AIC=1309.87) S Data
025} Lognormal (AIC=133542) Mean (W) 11.066 — normal (AIC=1304,21)
Exponantial (AIC=1444.59) S19Dev {0): 5,306 lognormal (AIC=1301.79)
| ——— Gamma (AIC=1307.99) — gamma (AIC=1300.25)
- Beta (AIC=Inf) cad | A uniform (AIC=1321.64)
02 | Triangular (AIC=lnf) h triangular (AIC=inf)
- Gamma (Best) — gxponential (AIC=1408.79)
2 | - : «+ Best: gamma (AIC=1300.25)
= aoe |
‘u.:': oast | -
o \ 3
a
0.1 oo
0.0
ok S
1] 5
Values
(a) (b)

Figure 7. Comparison of Probability Distribution Fits Using Matlab (a) and Python (b).

The left figure shows a Matlab result, while the right figure shows the same result calculated
using Python code. The two plots show the results of a distribution fitting of a dataset, comparing
several probability distributions based on the quality of the fit. In both plots, several distributions
(normal, lognormal, gamma, uniform, triangular, and exponential) are fitted to the histogram of the
data. The gamma distribution is the best fit, with the lowest AIC value. The gamma distribution
closely follows the shape of the histogram, indicating a good fit. In both plots, AIC (Akaike
Information Criterion) values were used to determine the fit: lower values indicate a better fit.

The MATLAB and Python code snippets both aim to identify the best-fitting statistical
distribution based on the Akaike Information Criterion (AIC), yet exhibit notable differences. The
MATLAB script employs a straightforward loop structure, normalizes data specifically for the Beta
distribution without parameter constraints, computes log-likelihood directly from fitted
distributions, and stores only the best-fitting model parameters and their AIC. In contrast, the Python
implementation utilizes explicit normalization parameters (floc, fscale) for Beta distributions,
separately manages the triangular distribution as a special case, computes additional statistics (mean,
standard deviation) for each fit, systematically captures fitting errors via structured warnings, and
returns comprehensive results for all distributions tested, including detailed statistical summaries.
Overall, the Python approach provides greater analytical depth, explicit error handling, and
enhanced result organization compared to the concise, more simplistic MATLAB methodology.

The essential parts of the codes have been highlighted below.

Matlab code for selecting best fit distribution:
% Fit each distribution and compute AIC
for i = 1:size(distributions, 1)

distName = distributions{i, 1};

distFunc = distributions{i, 2};

try
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if stremp(distName, 'Beta')
normalized_data = (data - min(data)) / (max(data) -
min(data));
pd = distFunc(normalized_data);
else
pd = distFunc(data);
end
logL = sum(log(pdf(pd, data)));
k =length(pd.ParameterValues);
AIC=2*k-2*logL;
AIC_values(i) = AIC;
if AIC <bestAIC
bestAIC = AIC;
bestDist = distName;

bestParam = pd.ParameterValues;

bestPD = pd;
end
catch ME
fprintf('Error fitting %s distribution: %s\n', distName,
ME.message);
end
end

Python code or selecting best fit distribution:
def fit_and_compare_distributions(data):
results =[]
for name, dist in distributions.items():
try:
if name == "beta™:

data_min, data_max = np.min(data), np.max(data)
normalized_data = (data - data_min) / (data_max -

data_min)
params = dist.fit(normalized_data, floc=0, fscale=1)
Il = np.sum(dist.logpdf(normalized_data, *params))
mean, var = dist.stats(*params, moments="mv"
mean = mean * (data_max - data_min) + data_min
std = np.sqrt(var) * (data_max - data_min)

elif name == "triangular":

a, ¢ =np.min(data), np.max(data)
b = np.mean(data)
loc=a
scale=c-a
params = ((b - a) / scale, loc, scale)

Il = np.sum(dist.logpdf(data, *params))
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mean, var = dist.stats(*params, moments="mv")
std = np.sqrt(var)
else:
params = dist.fit(data)
Il = np.sum(dist.logpdf(data, *params))
mean, var = dist.stats(*params, moments="mv")
std = np.sqrt(var)
k = len(params)
aic=2%k-2*1l
results.append({
"distribution": name,
"params": params,
"log_likelihood": 11,
"aic": aic,
"mean": mean,
"std": std,
)

except Exception as e:

"

warnings.warn(f"Error fitting {name} distribution: {e}")
if results:
return results, min(results, key=lambda x: x["aic"])
else:
warnings.warn("No distributions successfully fitted to the
data.")

return [], None

4. Statistical Analysis Results for Soil Physical and Strength Parameters

4.1. Correlation Analysis of Soil Physical Parameters

The three plots of the Figure 8 show the coefficient of determination (R?) values obtained for
three different regression models for different soil types. Each plot shows the R? values for three data
treatment approaches: basic, dynamical filtering, and simple filtering. Higher R? values indicate
stronger model fit. Filtering methods, especially dynamical filtering, consistently produce higher R?
values for most soil types, suggesting that model performance improves when outliers are removed.
High-plasticity clays and medium-plasticity clays generally yield the highest R? values, especially in
the dynamical filtered model, indicating that these soil types allow for more predictable relationships
between the variables under study. In contrast, sandy silt (saSiS) and Silt (Si) show lower R? values
in the basic model, especially for the wet-dry bulk density relationship, suggesting greater data
variability or nonlinear behavior in these soils. Predictive relationships between variables are
significantly improved when filtering techniques are used. The choice of soil type plays a critical role
in the strength of the regression model, with cohesive soils (e.g. clays) providing more reliable results.
For practical applications of geotechnical modeling, data filtering is recommended to improve the
robustness of regression-based predictions, especially for granular soils with higher natural
variability.

Different data filtering methods produce different results, primarily because they remove
outliers from the data set to different degrees. Basic filtering removes less data, resulting in more
outliers entering the model and lower correlation (R?) values. Simple filtering removes outliers to a
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moderate extent, improving the model but retaining most of the data. On the other hand, dynamical
filtering treats outliers iteratively and much more strictly, significantly increasing correlation values
but causing a large amount of data loss. The result depends largely on the tested soil type and its
natural variability. Cohesive soils, such as clays, have a lower natural variance, so more stringent
filtering effectively improves the quality of the model while reducing the amount of data. In contrast,
granular soils (e.g. sandy silts, sands) have greater natural variability, so overly strict filtering may
result in the loss of a lot of data and lead to an overly simplified, idealized model. Results for each
filtering method are shown in Figure 8, while the amount of data loss is presented in Table 2.

R? [wet bulk density - void ratio]

1.3000
0.9332
.8614
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0.9849 0.982 0.9508 0.9552
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(saSi) So(ﬁlf’}%e plasticity plasticity Clay
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Figure 8. (a) Correlation analysis of wet bulk density — void ratio (b) Correlation analysis of dry bulk density -
void ratio (c) Correlation analysis of wet bulk density — dry bulk density.
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Table 2 presents the number of samples used in three different regression analyses—wet bulk
density vs. void ratio, dry bulk density vs. void ratio, and wet bulk density vs. dry bulk density —
across various soil types and data filtering approaches (basic, simple filtered, and dynamical filtered).
For all soil types and relationships, a reduction in sample size is observed as data filtering is applied,
particularly in the dynamical filtered approach. This indicates that outliers or influential data points
have been systematically removed to improve model quality. Minimal sample loss is observed in
fine-grained soils (e.g., clays), suggesting that these datasets contain fewer extreme outliers, whereas
coarser soils (e.g., silty sand) show a more noticeable drop in sample size post-filtering. Data filtering
significantly affects the available sample size, but it is necessary to enhance model accuracy, as
supported by the higher R? values observed in the filtered datasets.

Table 2. Data loss during data filtering on Visonta samples.

Wet bulk density -  Dry bulk density-  Wet bulk density -
Soil type void ratio void ratio dry bulk density

S5¢3 $5ES 3 SSESFEESGE G G

Sand (Sa) 60 58 56 59 57 28 59 57 56
sandy Silt (saSi) 206 197 164 206 197 159 206 196 195
Silt (5i) 67 64 63 67 65 56 67 65 64

silty Sand (siSa) 113 107 99 113 108 91 113 105 100
high plasticity Clay 429 413 396 428 414 374 428 421 396
medium plasticity Clay 189 186 175 188 185 179 188 186 176
low plasticity Clay 68 64 65 68 64 59 68 62 61

Clays, especially those with high plasticity, are more stable in terms of data quality, making
them preferable for regression-based modeling. Granular soils, due to their higher natural variability,
may require more aggressive filtering and careful interpretation to ensure reliable predictions. Thus,
the filtering process is justified despite the reduction in sample size, as it contributes to more
statistically sound models. The dynamical filtering overestimates the true correlation. Where many
values have been filtered out, the difference between the R2 values in the diagram is more significant.

4.1.1. Wet density —void ratio

Figure 9 illustrates the relationship between wet bulk density (horizontal axis) and void ratio
(vertical axis) for various soil types, each represented by a distinct color. A negative correlation is
clearly observed: as wet bulk density increases, the void ratio decreases. Denser soils typically contain
less pore space. The distribution of data points suggests that the strength of this relationship varies
among soil types. Clayey soils (e.g., high plasticity clay, clayey sand) are associated with higher void
ratios at lower wet bulk densities, showing greater variability and a wider spread. The low wet bulk
density values for the high plasticity clays are related to high organic content, since the organic
content reduces the density of the clays. Some clay layers contain different amounts of organic
materials. Sands and silts (e.g., sand, sandy silt, silty sand) are clustered at higher densities and lower
void ratios, indicating more compacted and less compressible structures. A few outliers can be
identified, particularly among clayey sands, suggesting that some variability remains unexplained
and may be due to heterogeneity in sample properties or measurement inconsistencies.

d0i:10.20944/preprints202505.0272.v1
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Figure 9. Correlation Between Wet Bulk Density and Void Ratio Across Various Soil Types in the Visonta Mining
Area.

4.1.2. Dry density — void ratio

Figure 10 displays the relationship between dry bulk density (horizontal axis) and void ratio
(vertical axis) for a variety of soil types, each indicated by a different color. A clear inverse
relationship is observed: as dry bulk density increases, the void ratio decreases. This trend is
consistent with fundamental soil mechanics, where denser soils contain less void space. The data
points corresponding to high plasticity clays show a wider spread and are concentrated toward lower
dry bulk densities and higher void ratios, indicating a more porous and compressible structure. In
contrast, granular soils (e.g., sand, silty sand) are distributed toward the higher density-lower void
ratio region, reflecting more compacted conditions with less variability. The tight clustering of points
for medium plasticity clays and sands suggests more consistent behavior and potentially better
predictability in modeling efforts. A few outliers are present, primarily among clay-rich soils,
suggesting heterogeneity in sample characteristics or testing conditions. Low dry bulk density values
indicate organic matter content. The higher the organic matter content, the lower the dry bulk density
as it is mentioned above.
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2.00 Dry bulk density - void ratio
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Figure 10. Relationship Between Dry Bulk Density and Void Ratio for Various Soil Types in the Visonta Mining
Area.

4.1.3. Wet bulk density — dry bulk density

Figure 11 displays the relationship between dry bulk density (x-axis) and wet bulk density (y-
axis) for various soil types, each marked with a different color. A strong positive linear relationship
is observed: as dry bulk density increases, wet bulk density also increases. This aligns with
expectations, as wet bulk density includes both the solid particles and the water content, while dry
bulk density considers only the solids. Most soil types follow this linear trend closely, particularly
sands, silts, and clays with medium or low plasticity, indicating a consistent relationship across a
wide range of soils. High plasticity clays are more widely spread and appear at lower dry bulk
densities with correspondingly lower wet bulk densities. This suggests greater variability in water
content and structure, which is typical of such fine-grained, compressible soils. The reason for that is
the high organic content of some of the high plasticity clay samples, as mentioned before. The tight
clustering of sands and silts near the trend line indicates more predictable and uniform behavior. The
relationship between dry and wet bulk densities can be reliably modeled with a linear regression,
particularly for non-cohesive and low-plasticity soils.
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Figure 11. Correlation Between Dry and Wet Bulk Density for Various Soil Types in the Visonta Mining Area.

4.1.4. Plasticity Index — Liquid Limit

Figure 12 shows the relationship between the liquid limit and the plasticity index for different
soil samples. A reference line—Line A, defined by the equation I;=0.73(wt-20) —is also included to
assist in classification, following the widely used Casagrande plasticity chart method. A positive
correlation is clearly observed: as the liquid limit increases, the plasticity index also increases,
indicating that soils with higher water content at the liquid limit tend to have greater plasticity
ranges. The data points are color-coded by soil type, with dark red points representing high plasticity
clays, while cyclamen, grey and green points representing lower-plasticity silts and clays. Most of the
points lie around the A-line, except some of the high plasticity clays, mainly with very high liquid
limit. Based on the analysis of the Casagrande diagram, it can be determined that some of the high
plasticity clays are located below the A-line, which typically indicates an increased organic matter
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of the samples.
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Figure 12. Plasticity Index vs. Liquid Limit.

4.1. Statistical Analysis of Shear Strength Parameters

The boxplot on Figure 13 presents the distribution of friction angle (¢) values for the investigated

soil types, providing insight into their shear strength characteristics. Sands (Sa), sandy silts (saSi),

and silty sands (siSa) show relatively higher median ¢ values, generally ranging between 25° and

30°, with some values extending above 35°.
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This is expected, as granular soils typically exhibit higher friction angles. Silts (Si) and clays
(high, medium, and low plasticity) demonstrate lower ¢ values, with medians between 10° and 25°,
indicating more compressible, less frictional behavior. High plasticity clays have the lowest median
and minimum ¢ values. Variation is higher among fine-grained soils, particularly clays, as seen from
the larger interquartile ranges and whiskers, implying greater heterogeneity. These findings
highlight the importance of soil classification and testing for proper geotechnical evaluation and
design safety.

Phi [deg]

B Sand (Sa) sandy Silt (saSi) W Silt (Si)
"1 silty Sand (siSa) M high plasticity Clay B medium plasticity Clay
low plasticity Clay

40.0
35.0
30.0 }
25.0 _
15.0
10.0

5.0

0.0

Figure 13. Boxplot of Internal Friction Angle (f) for Different Soil Types.

The boxplot on Figure 14 illustrates the cohesion values (in kPa) for the investigated soil types.
It can be observed that sands (Sa), sandy silts (saSi), silts (Si), and silty sands (siSa) exhibit relatively
low cohesion values. In contrast, clays, particularly those with high and medium plasticity,
demonstrate significantly higher cohesion, with values extending beyond 200 kPa in some cases. Low
plasticity clay also shows moderately high cohesion, though with a wider variability. These results
indicate that cohesion is strongly influenced by the soil's plasticity and composition.
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Figure 14. Boxplot of Cohesion (kPa) for Different Soil Types.

5. Application of the Statistical Analyses of the Investigated Soils for
Probabilistic Slope Stability Calculations

5.1. Input Data

5.1.1. Characteristic Soil Properties

The investigatory drillings determined the stratum of the investigated area. Sections for the
calculations were determined according to the determined layers. Example sections can be seen in
Figure 4. Based on the laboratory results, the characteristic properties (unit weight, cohesion and
angle of friction) were determined for each layer, which are in Table 3. The characteristic values were
used for deterministic stability calculations and for some layers in the probabilistic stability
calculations, where not enough data was available for the probabilistic approach.

Table 3. Characteristic soil properties.

Unit Weight (kN/m?) C‘zllz;sa‘)"“ Phi (°)
Quarternary Fat clay (high plasticity Clay) 19.1 103 13
Quarternary clayey Silt (clSi) 20.0 56 22
Quaternary Pannonian sandstone formation 20.0 30 33
Silt (Silt) (Si) 20.0 45 22
silty Clay (clayey Silt) (cISi) 20.0 67 16
Lignite seam 13.0 100 26
Silt (Silt) (Si) 20.0 42 23
sandy Clay (low plasticity Clay) 19.5 56 22
cover fat Clay (high plasticity Clay) 19.5 103 13
intermediate orgamé 1f:;c’ )Clay (high plasticity 20.0 g7 7

clayey Silt (cISi) 20.0 56 22
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organic silty fat Clay (high plasticity Clay) 20.3 87 7
medium Clay (medium plasticity Clay) 20.0 56 23
bentonite fat Clay (high plasticity Clay) 20.0 103 13
sandy Silt (saSi) 20.3 42 23
aquifer (Sand) (Sa) 20.3 20 20
waste material 17.3 11 28

5.1.2.  Probabilistic Soil Properties

On Figure 15 the best-fitting statistical distributions for unit weight of various soil types can be
seen, determined using multiple methods: CumFreq (MAE), EasyFit (Kolmogorov-Smirnov,
Anderson-Darling, Chi-Squared), and Akaike Information Criterion (AIC) via Matlab and Python.
Lognormal, Normal, Gamma, and Beta distributions are predominantly identified. Lognormal and
Normal distributions are frequently favored, especially by MAE and AIC-based evaluations. For
example, low plasticity clay and silty sand are consistently best described by the Lognormal
distribution across most methods. Beta distributions are commonly associated with high plasticity
clays. Table 4 show the results of the probabilistic analyses.

high low
clayey Sand sandy clayey  sandy Silt  Silt  silty Sand medium
plasticity plasticity
Sand (c1Sa)  (Sa) Silt (saclSi) (saSi) (5i) (siSa) plasticity Clay
Clay Clay

CumFreq

[Mean Absolute

Error (MAE)]
EasyFit e 5 g < .
) 5 g 5 = s g 8 g it
[Kolmogorov - g = E 2 E & = &
=) = =) [} [}
Smirnov] =

EasyFit
[Anderson

Darling]

EasyFit

[Chi Squared]

Matlab
[Akaike
information
criterion (AIC)]
Python
[Akaike

information

criterion (AIC)]

Figure 15. Best-Fitting Probability Distributions for Unit Weight Across Soil Types Using Multiple Statistical
Methods.

Table 4. Probabilitic values of Unit weight (kN/m?).
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£ 5 5 5 £ g
£ = & 2 ¥ 2 ¢z
A
Quarternary Fat clay (high plasticity Clay) Normal 1857 148 2190 3.33 1490  3.67
Quarternary clayey Silt (clSi) 20.00
Quaternary Pannonian sandstone formation 20.00
Silt (Silt) (Si) Normal 1956 083 21.64 208 1754  2.02
silty Clay (clayey Silt) (clSi) 20.00
Lignite seam 13.00
Silt (Silt) (Si) Normal 1956 083 21.64 208 1754  2.02
sandy Clay (low plasticity Clay) Lognormal 1978 062 2140 1.62 1860  1.18
cover fat Clay (high plasticity Clay) Normal 1857 148 2190 3.33 1490  3.67
intermediate organic fat Clay (high plasticity Clay) Normal 1857 148 2190 333 1490  3.67
clayey Silt (clISi) 20.00
organic silty fat Clay (high plasticity Clay) Normal 18.57 1.48 21.90 3.33 14.90 3.67
medium Clay (medium plasticity Clay) Lognormal 1970 088 2199 229 1736 234
bentonite fat Clay (high plasticity Clay) Normal 1857 148 2190 333 1490  3.67
sandy Silt (saSi) Normal 19.04 070 2070 166 1734 1.70
aquifer (Sand) (Sa) Lognormal 18.99 0.68 20.33 1.34 17.56 1.43
waste material 17.30

Figure 16 summarizes the best-fit probability distributions for shear strength parameters of the
investigated soil types, using several goodness-of-fit methods: CumFreq (MAE), EasyFit
(Kolmogorov—Smirnov, Anderson-Darling, Chi-Squared), and Akaike Information Criterion (AIC)
applied via Matlab and Python. Gamma and Normal distributions are most frequently selected,
particularly for clay soils. Uniform and Triangular distributions are more often associated with sandy
and silty soils, especially in EasyFit methods. Lognormal and Exponential distributions are mainly
linked to Silt and Silty Sand for phi, especially in AIC-based evaluations. Table 5 and 6 show the
results of the analysis for the cohesion and angle of friction.

high medium low
sandy Silt silty Sand
plasticity  plasticity  plasticity Silt (Si) Sand (Sa)
(saSi) (siSa)
Clay Clay Clay

phi ¢ phi ¢ phi ¢ phi ¢ phi ¢ phi ¢ phi c
[deg [kpa [deg [kPa [deg [kPa [deg [kPa [deg [kPa [deg [kPa [deg [kPa
1 1 1 1 1 1 1 1 1 1 1 1 1 1

CumFreq
[Mean
Absolute
Error (MAE)]

Lognormal
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EasyFit

Beta
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Figure 16. Best-Fitting Probability Distributions for Shear Strength Parameters (¢, c) by Soil Type and
Statistical Method.
Table 5. Probabilistic Cohesion (kPa) values.
g
ot = I o <
— (<] > o] - —
2 § ¥ & g8 B %
- L] — —
: 0 & 2 ¥ 2 2
)
Quarternary fat clay (high plasticity Clay) Normal 914 431 2074 116 1.7 897
Quarternary clayey Silt (clSi) 56.0
Quaternary Pannonian sandstone formation 30.0
Silt (Silt) (Si) Gamma 46.1 31 871 41 6.6 395
silty Clay (clayey Silt) (clSi) 67.0
Lignite seam 100.0
Silt (Silt) (Si) Gamma 46.1 31 871 41 6.6 395
sandy Clay (low plasticity Clay) Normal 583 287 1106 523 109 474
cover fat Clay (high plasticity Clay) Normal 914 431 2074 116 1.7 897
intermediate organic fat Clay (high plasticity Clay) Normal 914 431 2074 116 17 897
clayey Silt (cISi) 56.0
organic silty fat Clay (high plasticity Clay) Normal 914 431 2074 116 17 897
medium Clay (medium plasticity Clay) Gamma 863 499 207 1207 1.7 846
bentonite fat Clay (high plasticity Clay) Normal 914 431 2074 116 1.7 897
sandy Silt (saSi) Normal 30.9 17.2 70 39.1 1.3 296
aquifer (Sand) (Sa) Lognormal 21.3 84 323 11 135 7.8
waste material 11.0
Table 6. Probabilistic values of internal friction angle Phi (deg) values.
g
= % ] = =
= =1 2 ] [ ju | —
: o5 0§ o F oo
£ = % £ 2 2 2

Quarternary fat clay (high plasticity Clay) Gamma 11.00 580 2350 1250 0.00 11.00

Quarternary clayey Silt (clSi) 22.00

Quaternary Pannonian sandstone formation 33.00
Silt (Silt) (Si) Lognormal 1520 1040 3600 20.80 1.60  13.60

silty Clay (clayey Silt) (clSi) 16.00

Lignite seam 26.00
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Silt (Silt) (Si) Lognormal 1520 1040 36.00 20.80 1.60  13.60
sandy Clay (low plasticity Clay) Lognormal 2271 1.72 2580 3.09 2110 1.61
cover fat Clay (high plasticity Clay) Gamma 11.00 5.80 2350 1250 0.00 11.00
intermediate Orgamélf:;)day (highplasticity . ma 1100 580 2350 1250 000  11.00
clayey Silt (cISi) 22.00
organic silty fat Clay (high plasticity Clay) Gamma 11.00 5.80 2350 1250 0.00 11.00
medium Clay (medium plasticity Clay) Normal 1770 6.69 3330 1560 4.00 13.70
bentonite fat Clay (high plasticity Clay) Gamma 11.00 5.80 2350 1250 0.00 11.00
sandy Silt (saSi) Normal 2622 352 3000 3.78 20.00 6.22
aquifer (Sand) (Sa) Normal 2580 310 2880 3.00 2150 @ 4.30
waste material 28.00

5.2. Results of the Slope Stability Analysis

The introduced statistical data processing were used in practice to determine the stability of the
slopes of the open pit lignite mine. Both deterministic and probabilistic slope stability calculations
were done using the Slide2 software on the 7 sections, which are shown in Figure 1. The results
demonstrate the difference between the two methods and the importance of the probabilistic
approach.

5.2.1. Deterministic Calculation Results

The results of the deterministic analysis are encouraging, the slope proved to be stable for all
sections. Due to the minimum safety factor of 1.35, slope optimization was later performed on
Sections 3, Section 4 and Section 7, but this is not discussed in this study.

Table 7. Deterministic test results of all Sections.

Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7
FS [-] 1.951 1.379 1.305 1.226 1.653 1.583 1.334

Figure 17 shows the deterministic calculation result of the Section 1. The Factor of Safety
(FS=1.951) is above the desired value, the slope is stable according to the result.

_—"]res1

ke S S S : e =

‘i‘g' S0 135 180 225 2?"0 315 &0 405 450 485 540 585 630 675 720 765 810 855 900

Figure 17. Deterministic test result of Section 1.

5.1.2. Probabilistic Calculation Results

Table 8 presents the results of the probabilistic slope stability study of the Visonta Keleti-III
lignite mine. The FS (Factor of Safety), PF (Probability of Failure), and RI (Reliability Index) values in
the table were determined for the different sections based on the Bishop simplified method and Latin
Hypercube simulation. Latin Hypercube analysis is an advanced version of Latin Hypercube
simulation that samples the entire set of input parameter values in a structured manner, thus
increasing the efficiency and accuracy of the simulation. FS is the result of a deterministic calculation
run with the Mean values of the parameters. FS (mean) is the expected FS value obtained from the
results of 1000 runs, where the Mean value takes on a different value in each run. Based on the FS
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values, Section 3 (FS = 2,060) is the most stable section, while Section 2 (FS =1,207) is the most critical.
In terms of PF, i.e. the probability of failure, Section 2 is particularly risky, as it shows a 46.7% failure
probability. The results of the research confirm that traditional deterministic models cannot reliably
handle the spatial uncertainty of geotechnical parameters in the Visonta mine area. The probabilistic
approach using Latin Hypercube simulation provides a more detailed and realistic assessment of
slope stability, which is essential for safe mine design.

Table 8. Probabilistic test results of all Sections.

Section1 Section?2 Section3 Section4 Section5 Section6 Section?7

FS[-] 2.025 1.207 2.060 1.647 1.729 1.583 1.334
FS (mean) 1.523 1.019 1.542 1.216 1.243 1.579 1.334
PF [%] 11.1% 46.7% 9.0% 28.6% 23.3% 0.0% 0.0%
RI (normal) 1.327 0.063 1.411 0.61 0.745 41.571 -
RI (lognormal) 1.526 -0.079 1.643 0.542 0.714 51.781 -

After the statistical analysis was completed and the statistical parameters were obtained, the
practical implementation followed. In addition to the statistical parameters, there was a need for
characteristic values. The Visonta mining area was very densely stratified, as shown in the Figure 4,
so for several layers there were only characteristic input data. For the rest, we calculated with
probabilistic values. The interpretation of the results of the probabilistic slope stability calculation is
presented on Section 1 of the Visonta mining area. Figure 18 displays a probabilistic analysis of slope
stability of this section using the Bishop simplified method.

2.025

Overall Slope Results
\ F5 (mean) = 1.523
\ PF = 11.100%

\ RI (normal)
RI (lognormal)

Figure 18. Probabilistic test result of Section 1.

Figure 19 shows a histogram of the Factor of Safety (FS) with relative frequency on the y-axis.The
distribution is right-skewed, indicating a larger concentration of simulations resulting in FS values
between approximately 1.3 and 1.7, with a peak near 1.5.The orange bars on the left (FS < 1.0)
represent failure cases, where the slope is not considered stable. The blue bars correspond to stable
conditions (FS = 1.0). A fitted probability density function (PDF) curve is overlaid in grey,
approximating the distribution trend.
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Figure 19. Histogram of Factor of Safety (FoS) from Probabilistic Analysis Using Bishop Simplified Method
(Section 1).

The results indicate that while the majority of simulations show a stable slope, a non-negligible
probability of failure exists. This probabilistic approach highlights the variability and uncertainty in
slope stability due to input parameter distributions.

Figure 20 illustrates the Cumulative Distribution Function (CDF) of the Factor of Safety (FS)
calculated using the Bishop simplified method. The x-axis represents the Factor of Safety, and the y-
axis shows the corresponding cumulative probability. The curve exhibits a typical sigmoidal shape,
characteristic of cumulative distributions. At FS = 1.0, the cumulative probability is approximately
0.11, indicating a 11% probability of failure.
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Figure 20. Cumulative Distribution Function of Factor of Safety (FoS) from Probabilistic Analysis Using the
Bishop Simplified Method (Section 1).

The graph in Figure 21 illustrates the convergence behavior of the Probability of Failure (PF)
calculated via the Bishop simplified method as a function of the number of Latin Hypercube samples.
The x-axis represents the number of samples, while the y-axis shows the corresponding PF (%). Initial


https://doi.org/10.20944/preprints202505.0272.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2025 d0i:10.20944/preprints202505.0272.v1

28 of 32

estimates (<100 samples) show high variability and instability, as expected with low sample sizes.
Around 200-300 samples, the PF begins to stabilize, with fluctuations decreasing progressively. From
approximately 600 samples onwards, the PF converges around 11-12%, indicating statistical stability
of the estimated probability of failure. This behavior confirms that at least several hundred samples
are required for reliable PF estimation in slope stability analysis using probabilistic methods. This
plot is essential for validating the adequacy of amount of samples in probabilistic geotechnical
modeling.

18
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Probability of Failure % - Bishop simplified

0 100 200 300 400 500 600 700 8OO 900 1000
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Figure 21. Convergence of Probability of Failure with Increasing Sample Size in Latin Hypercube Simulation
(Section 1).

6. Discussion

The probability of failure (PF) results from the probabilistic stability study conducted in the
Keleti III part of the Visonta mining area highlight the risk assessment limitations of traditional
deterministic methods and confirm the need for a probabilistic approach. The effectiveness of
probabilistic slope stability studies is also supported by other research, especially studies using
metaheuristic methods, such as Zeng et al. [52], where hybrid optimization algorithms were used to
assess slope safety more reliably. The spatial variability of physical soil parameters fundamentally
affects the reliability of slope stability studies. Therefore, probabilistic analyses complementing
deterministic approaches are necessary for safe planning.

The acceptability of failure probability is a widely discussed issue. There is no agreed consensus,
only recommendations and tables [10][16-28]. Numerous interpretations of PF are apparent after
reviewing several articles related to PSSA from the past decades. In their article, Ng and Kok Shein
[29] considered a value below 5% safe, while above 25% they considered it a high risk. Penalba et al.
[30] in their work considered a 6% failure probability acceptable. Bi et al. [31] is quite permissive,
stating that slopes below 50% are safe. Moradi et al. [32] maximized the allowable failure probability
at 5%. In their case study in Taiwan, Wang et al. [33] considered the failure probability of 17.3% to be
too high. Hamedifar et al. [34] considered 30% to be dangerous. According to Kulatilake et al. [35],
5% is the permissible limit, and Chaulagai [36] had the same opinion. Mandal et al. [37] said that the
slope was not considered safe for a PF=15%. Nerman et al. [38] in 2018 set a PF value of 10% as the
upper limit. However, Obregon [39] determined the maximum at 20%. Sitharam [40] quotes Sjoberg
[41], meaning that the PF obtained of 7.5% is acceptable, but close to the 10% limit. Rafiei [42] claimed
that PF should be below 10-15%. Mathe & Ferentinou [43] and Sachpazis [44] capped the maximum
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allowable value of PF at 5% . Sdvyzhkova et al. [45] assessed a PF value of 12.55% as a significant
slip hazard. Do et al. [46] recommend a 10-20% allowable PF. However, Li et al. [47] wrote that a PF
greater than 5-10% is no longer acceptable. Nguyen et al.'s [48] is even more stringent, according to
their results, PF=2.2% cannot be considered safe. Abhijith et al. [49] interpret a PF greater than 17%
as a potential danger zone, and this was based on the recommendation of the US Army Corps of
Engineers (1997) [50].

These studies show no final consistent agreement on the maximum value of PF. It is important
to keep in mind Ferreira's [51] statement, after Wesseloo & Read (2009) [21], that the minimum FS
and maximum PF requirements must be evaluated simultaneously.

The calculated FS and PF of the slope of the Visonta lignite mine also show that it is not easy to
evaluate the long-term stability according to the results. When the FS was around 1.50, which was
considered stable, the PF was between 0 - 11%, which can be stable but bigger than the 5% limit,
which was considered the upper limit of the safe zone in some of the above-mentioned studies. When
the SF was 1.33 at section 7, then the PF was 0%, so it can be considered stable.

For a more exact evaluation of the PF results, it should take into account the consequence of a
failure as well as it is determined by Gibson [10] and Adams [23]. When a failure can cause serious
problems, damages in valuables or endanger human life then the limit of the PF should be small,
other case it could be bigger. In this case study according to Adams [23] the accepted risk can be
moderate so the upper limit of the PS should be 10%

7. Conclusions

The paper presents a comprehensive probabilistic geotechnical study of the Visonta Keleti-III
lignite mining area in Hungary, emphasizing the statistical evaluation of soil parameters and their
integration into probabilistic slope stability analysis. The Visonta mine is situated in a geologically
complex basin with Pliocene lignite seams overlain by Quaternary sediments. Thirteen distinct soil
types were classified based on plasticity index and grain size distribution, including various clays,
silts, sands, and their mixtures. The deposit is stratified, with considerable heterogeneity in layer
composition, thickness, and geotechnical behavior. Over 3,300 lab samples from 28 boreholes were
processed using a multi-phase outlier filtering method (manual, IQR-based, and dynamical filtering
via Python), improving model fit and regression robustness. Relationships between parameters like
bulk densities, void ratio, and plasticity were modeled with strong correlation, especially in cohesive
soils. Best-fit distributions for unit weight and shear strength parameters (¢ and c) were identified
using various tools (CumkFreq, EasyFit, Matlab, Python). Gamma, Normal, and Lognormal
distributions were most frequently selected, with variability across soil types and parameters. The
Bishop simplified method combined with Latin Hypercube simulation was employed. A histogram
of FS showed a right-skewed distribution, with most results between 1.3-1.7, but with ~20%
probability of failure (FS < 1.0). The CDF plot validated this, and the PF convergence plot indicated
stability after ~600 simulations, suggesting adequacy of the sample size. This study demonstrates the
necessity and effectiveness of probabilistic approaches in slope stability evaluation within a mining
context. Traditional deterministic models often overlook the spatial and statistical variability of soil
properties, leading to potential underestimation or overestimation of slope safety. The integration of
advanced filtering techniques, tailored distribution fitting, and Latin Hypercube simulation allows
for realistic modeling of geotechnical behavior. Importantly, the application of such methods
highlights the value of data quality and parameter uncertainty, especially in stratified and variable
geological formations like Visonta. The use of custom Python and Matlab tools optimized for
compatibility with engineering software (e.g., Rocscience) presents a practical contribution to
geotechnical data processing and modeling workflows. The probabilistic method outperforms
traditional approaches by quantifying uncertainty and providing realistic estimates of failure
probability. Cohesive soils, particularly clays, showed more predictable relationships and better
model fit after filtering. The estimated 11-12% probability of failure in section 1 indicates that while
the slope is mostly stable, design mitigation may be warranted. Tools and techniques developed (e.g.,
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Python filtering and distribution fitting) provide a reproducible, scalable workflow for similar
geotechnical investigations.
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