Pre prints.org

Article Not peer-reviewed version

An Improved Soft Actor-Critic Task
Offloading and Edge Computing
Resource Allocation Algorithm for
Image Segmentation Tasks in the
Internet of Vehicles

Wei Zou, Haitao Yu, Boran Yang i , Aohui Ren, Wei Liu, Sergei Petrov, Alexander Grin,
Uladzimir Vishniakou

Posted Date: 18 April 2025
doi: 10.20944/preprints202504.1442.v1

Keywords: edge computing; image segmentation; task offloading; computation resource allocation; deep
reinforcement learning; soft actor-critic; prioritized experience replay

Preprints.org is a free multidisciplinary platform providing preprint service
that is dedicated to making early versions of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0
license, which permit the free download, distribution, and reuse, provided that the author
and preprint are cited in any reuse.

https://sciprofiles.com/profile/4385855
https://sciprofiles.com/profile/4533809
https://sciprofiles.com/profile/2997473
https://sciprofiles.com/profile/4311348

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

An Improved Soft Actor-Critic Task Offloading and
Edge Computing Resource Allocation Algorithm for
Image Segmentation Tasks in the Internet of Vehicles

Wei Zou !, Haitao Yu 2, Boran Yang L* Aohui Ren !, Wei Liu }, Sergei Petrov 3 Alexander Grin 4
and Uladzimir Vishniakou ®

School of Artificial Intelligence, ChongQing University of Technology, Chongging 401135, China

China Satellite Network Exploration CO., LTD., China

Department of System Programming and Computer Security, Yanka Kupala State University of Grodno,Grodno,Belarus
Department of Mathematical Analysis, Yanka Kupala State University of Grodno,Grodno,Belarus

Department of Infocommunication technologies, Belarusian State University of Informatics and
Radioelectronics,Minsk,Belarus

* Correspondence: yangbr@cqut.edu.cn

(& I O N N

Abstract: This paper investigates the offloading of image segmentation tasks and the allocation of
corresponding computing resources for the Internet of Vehicles (IoV) supported by edge intelligence.
With the convergence of 5G technology and artificial intelligence, the demand for high-precision
sensors and navigation in smart connected vehicles is growing. Image segmentation technology,
a crucial component of autonomous driving systems, requires substantial computing power and
communication bandwidth. Faced with the shortage of onboard computing power and rising costs,
edge computing offers a solution by offloading computing tasks to roadside servers close to the
data source, i.e., connected cars, thereby alleviating network bandwidth and power consumption
pressures and reducing system latency. This paper constructs an efficient edge computing resource
allocation system based on an improved model-free Soft Actor-Critic (iSAC) algorithm with maximum
entropy, and enhances the offloading efficiency by employing an integrated computing and networking
scheduling framework to minimize task completion time. By incorporating Prioritized Experience
Replay (PER), the iSAC algorithm accelerates the learning process while maintaining stability and
improving the efficiency and accuracy of computation offloading. Simulation experiments compare
the performance of iSAC with baseline algorithms, demonstrating its advantages in reducing error
rates and optimizing task completion time. Future research will investigate task diversity and priority
requirements in IoV.

Keywords: edge computing; image segmentation; task offloading; computation resource allocation;
deep reinforcement learning; soft actor-critic; prioritized experience replay

1. Introduction

Under the synergistic influence of 5G wireless and artificial intelligence (Al), transportation
systems are undergoing a profound transformation toward connected intelligence. The integration of
vehicle communication, the 5G technology and edge computing marks the paradigm shift of intelligent
transportation [1]. The high-speed and low-latency characteristics of 5G, when combined with A,
have driven the rapid development of heterogeneous vehicular networking technologies, endowing
smart vehicles with enhanced perception capabilities. Environment perception technology is the most
important part of driverless technology, and driverless vehicles need to realize decision planning and
control by virtue of perception feedback [2]. Connected cars rely on high-precision sensors to detect
and perceive external information, which, after fusion and analysis, provides a basis for subsequent
decision-making and control processes [3]. For instance, autonomous driving systems are the core of
smart vehicles, as they can detect lane, distance, and speed information through cameras, lidars, and

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

20f19

other sensors [4], creating two-dimensional or three-dimensional databases. Then vehicle terminal
algorithms analyze these image databases to guide the decision-making of the autonomous driving
systems. Image segmentation is one of the key technologies in autonomous driving,autonomous
driving require high-precision semantic image segmentation technology to identify and understand
the content of each pixel in the images [5]. It can separate different objects in an image, which is crucial
for understanding the environment around the vehicle, recognizing pedestrians, other vehicles, traffic
signs, etc.

The intelligent systems of vehicles rely on sustained and robust computing power. Image seg-
mentation, in particular, consumes a significant amount of computing and storage resources. Vehicles
generate hundreds of high-definition images per second through cameras and lidars. Although on-
board computing power is provided by powerful GPUs and processing chips, the increasing demand
for image segmentation and other intelligent applications will cause severe shortages in onboard
computing power and raise computing overheads and costs. For instance, automotive-grade chips
need to support the calculations and processing of massive sensor data by a vast array of intelligent
algorithms and application services [6], which leads to an increase in the costs of onboard computing
hardware. To reduce user costs while providing high-quality computing services, edge computing
[7] has emerged. Edge computing is the deployment of core cloud computing functions closer to the
data source, i.e., at the network edge. It is a new architecture that provides computational support for
vehicle-road interconnectivity and related compute-intensive computer vision applications. Unlike
cloud computing, which places user tasks on remote cloud servers, leading to significant service
latency, energy consumption, and poor real-time performance, edge computing offloads tasks to edge
servers, e.g., roadside units, close to the vehicle for computation, processing large amounts of data at
the network edge without uploading them to the cloud [8]. This greatly alleviates the pressure on core
networks and power consumption, significantly reducing service latency.

As the number of connected cars continues to grow, computing tasks exhibit salient characteristics
of significant diversity, large data volume, and resource demands.Nowadays, autonomous vehicles are
equipped with more than a hundred sensors, generating 1GB of data per second and up to 11TB of task
data daily [9]. Without an effective task scheduling strategy, it is impossible to achieve the goal of real-
time task processing by edge servers. To address this issue, we analyzed mainstream task allocation and
resource scheduling algorithms and constructed a more efficient edge computing resource allocation
system based on the model-free deep reinforcement learning algorithm with maximum entropy;, i.e.,
Soft Actor-Critic (SAC) [10]. Our proposed iSAC algorithm optimizes the allocation of computing
resources based on the principles of time priority and resource priority within the edge computing
network. Through an integrated computing and bandwidth scheduling framework, iSAC achieves
unified scheduling of the computing network, enhancing the rational allocation of resources. The main
contributions of this paper are as follows:

1) Computing resource allocation for connected cars involves decisions in discrete action spaces,
while the SAC algorithm is designed for continuous action spaces. To adapt the SAC algorithm for
discrete action spaces, we modified it to iSAC. Additionally, we introduced the Prioritized Experience
Replay (PER) [11] method to accelerate the learning process while maintaining stability, improving the
efficiency and accuracy of computation offloading, and enhancing the resource utilization rate of the
edge computing network for intelligent vehicles.

2) We designed and implemented a simulation environment that encompasses the random
variations of vehicles and tasks, communication links, and edge servers, achieving unified management
of global information variables. This simulation environment can simulate the transmission process
of tasks (transmission medium, path, and distance) and also the time that the tasks reside on servers
(queuing and computation time). To validate the reliability of the system, we also simulated the server
energy consumption and loads.

3) Within the simulation experimental environment, we tested and compared the performance of
the iSAC, PER-IiSAC, the original SAC, and several other offloading strategies using common DRL

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025

30f19

algorithms in terms of task offloading, and conducted an in-depth analysis and gave some insights
into the results.

2. Related Work

In recent years, numerous studies on resource scheduling have emerged across various fields.
These studies have provided some reference methods and inspiration for our research.

For instance, in power grid systems, [12] presents a novel optimization scheduling strategy using
the Improved Bare-Bones Multi-Objective Particle Swarm Optimization (IBBMOPSO) algorithm, ef-
fectively reducing charging costs for electric vehicles amidst uncertainties in wind and solar power
outputs, while enhancing the operational stability of microgrids. [13] proposed an online optimization
strategy for microgrids based on deep reinforcement learning, which can achieve a linear increase
in the number of neural network outputs with the addition of distributed battery storage systems,
demonstrating excellent scalability, performance, and capability of operating without relying on any
renewable energy and power load prediction method. Reference [14] presents an online scheduling
method for residential microgrids that is based on Monte Carlo Tree Search and a learning model.
This approach does not rely on predictive models to forecast future photovoltaic/wind power and
load sequences; instead, it employs reinforcement learning techniques to achieve economic opera-
tion of the microgrid. [15] proposed a smart grid demand response coordination method based on
ultra-reliable low-latency communications and the MuZero algorithm. This paper emphasizes the
importance of improving decision-making reliability and response time in the smart grid environment
for effective demand response planning. By accurately predicting power grid demand nearly in real
time, consumers can be better prepared to optimize the overall energy utilization.

In the field of computing task scheduling, [16] proposed a scheduling model based on goal
programming and linear programming to optimize the time and cost in job shops. The researchers
analyzed the case of Surabaya Container to discuss how to design regulatory activities to minimize
total time and distribution costs. The results indicate that through job shop scheduling, activities
can be formed more effectively and costs can be minimized compared to flow shop scheduling. [17]
proposes a new Hadoop scheduling model named the Adaptive Scheduler, which introduces Service
Level Agreements to standardize the agreements between vendors and consumers, thereby enhancing
the reliability of job completion and optimizing resource allocation.

In energy management, Li et al. [18] introduces a novel entropy-tuned soft actor-critic (SAC)
algorithm-based energy management system (EMS) for plug-in hybrid electric vehicles (PHEVs)
to enhance fuel economy by balancing energy efficiency and driving cycle adaptability. Liu et al.
[19] proposes a day-ahead optimization scheduling strategy for Integrated Energy Systems (IES)
considering virtual heat storage and electric vehicles, which is validated through case studies to
effectively improve the operational economy of IES and promote the consumption of renewable
energy.

In vehicular edge computing, Saleem et al. [20] addressed the impact of terminal device mobility
on task scheduling strategies in mobile edge computing scenarios and proposed an improved mobility-
aware algorithm, taking into account the influence of resource attributes and device distribution on
energy, achieving rational vehicular resource scheduling. Han et al. [21] proposed a task scheduling
method that considers the computing time of all tasks and their impacts on user experience, aiming
to minimize the weighted processing time of all tasks. Zhang et al. [22] conducted research on
the Energy-Efficient Computation Offloading (EECO) mechanism in 5G heterogeneous networks for
MEC, considering the energy consumption of task computation and file transfer, and proposed an
optimization method aimed at minimizing the energy consumption of the computational offloading
system. The designed EECO scheme for offloading and radio resource allocation leverages the multi-
access characteristics of 5G heterogeneous networks to achieve minimal energy consumption under
latency constraints. Li et al. [23] optimized the flight paths and computation resource allocation of
multiple unmanned aerial vehicles (UAVs) to minimize the energy consumption. Ullah et al. [24]

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

d0i:10.20944/preprints202504.1442.v1

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

40f19

aims to optimize task offloading and resource allocation in the edge-cloud computing environment
by using deep reinforcement learning and a Double Deep Q-Network (DDQN) algorithm, in order
to minimize latency and meet the demands for computation and communication, while dynamically
analyzing resource utilization, task constraints, and the current status of the edge-cloud network, to
achieve superior resource utilization, task offloading, and task rejection rates compared to traditional
heuristic methods.

The aforementioned studies have primarily focused on reducing time and energy consumption,
but they have not taken into account the accuracy rate of task and resource allocation. When tasks
are allocated to servers with high loads, it can lead to poor timing and execution efficiency, indicating
resource mismatches in task allocation. To address this issue, a task offloading system that integrates the
PER method and the iSAC algorithm has been designed in this paper. Experimental results demonstrate
that PER-iSAC can achieve better resource utilization rates compared to baseline offloading strategies,
ensuring the full utilization of computing resources and a lower error rate.

3. System Architecture
3.1. Computing Power Network

With the widespread deployment of edge computing servers and intelligent roadside units, it
has become more convenient and accessible for connected cars to utilize these vast distributed com-
puting resources.Edge computing has witnessed remarkable advancements in recent years, enabling
users to access a wide range of applications and services on their mobile devices [25]. However, an
individual edge server has limited computing power, and for compute-intensive tasks, this can lead to
increased computational loads and prolonged task processing time. Moreover, the lack of an effective
collaborative mechanism between edge nodes and cloud computing nodes results in low efficiency
and utilization of computing resources. How to more efficiently utilize these computing resources
has become an urgent problem to solve. Consequently, the computing power network [26] emerges,
connecting distributed edge nodes to form a much more powerful network and allocating resources
through a unified scheduling algorithm. The research presented in this paper is set within the scenario
of a computing power network, utilizing scheduling algorithms to enable image segmentation tasks to
better acquire computing resources.

The computing power network consists of three layers: cloud, edge, and terminal. The terminal
devices are at the bottom layer, closest to the users, and are primarily responsible for data collection
and preprocessing. Edge servers are in the middle edge layer, situated between the cloud and the
terminal layers, and are responsible for processing the computational tasks uploaded from terminal
devices. Cloud servers are at the top layer. Edge servers are close to the vehicles at the terminal layer,
resulting in small transmission delays, but their storage capacity and computing power are less than
those of the cloud layer. Cloud servers have strong computing capabilities and large storage capacities,
enabling them to efficiently handle computing tasks. However, cloud servers are far from the terminal
layer, leading to significant data transmission delays [27]. The three-tier architecture of the computing
power network is shown in Figure 1.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025

d0i:10.20944/preprints202504.1442.v1

(®) (®

Figure 1. System Architecture.

3.2. Computing Power Allocation System

50f19

Given the high real-time requirements and huge computational demands of image segmentation
tasks in smart vehicles, coupled with the insufficiency of terminal computing power, this study has
designed a computing power allocation system within the computing power network. The system
composition is shown in Figure 2. This computing power allocation system is not only highly adaptable
and compatible but also stable and reliable. Through this system, it is possible to significantly enhance
edge computing efficiency, reduce the energy consumption of connected cars, ensure the timeliness
of task completion, and improve the overall capability of edge computing in various IoV computing

power allocation scenarios.

4

Agent

Environment
Cloud < A
Rt+1
—_—
o — St+1
— ~
~
7 N —
(Edge §) \ S
\ - /
~ P e
(’)) ((EA’)) ((()))
Terminal q E - i‘ é

Server

Database

Channel

Base station

task

Figure 2. Computing Power Allocation System.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

6 of 19

Each server acts as both a computing node and a computing power allocation model. The
computing power allocation system is deployed on edge servers. As shown in Figure 2, the overall
architecture of the system consists of several key components, each designed to enhance the efficiency
and rational allocation of computing power. First, the system initializes and manages environmental
parameters, which include server performance metrics, communication line performance metrics, and
the size of task data, among other specific simulation settings. This is to ensure the rationality of
resource allocation, enabling our proposed PER-iSAC to function more effectively in the real world.
Second, in this paper, we simulate a real-world cloud-edge network architecture. Its role is to mimic
the actual network environment to generate environmental parameter data. Specifically, it simulates
the working scenarios of vehicles, tasks, servers, and communication links. In this environment,
PER-iSAC can dynamically obtain parameter data, forming a state space. The vehicular and roadside
agents make decisions based on the state space and action space parameters, and PER-iSAC provides
agents with rewards and states for the next time slot based on the actions taken by them. Additionally,
the agent is the core of decision-making. It is designed to accommodate various algorithms and this
paper takes the PER-iISAC algorithm as an example, which can generate the optimal allocation strategy
through experience replay and environmental state analysis, thereby reducing time consumption
and ensuring that vehicle demands are met, while also enhancing edge computing power. Moreover,
PER-iSAC can also perceive the changes in the environment after an agent makes a move. Finally, the
agent adjusts the allocation strategy in real time based on the rewards returned by the environment,
gradually improving the overall optimization effect of PER-iSAC.

The allocation of computing power is essentially a data transfer process, which involves reasonably
assigning tasks to various edge servers and cloud servers based on task requirements. Taking image
segmentation tasks as an example, the specific process is as follows. First, the vehicle collects a
certain batch of images through its sensing devices (such as cameras and lidars for 3D point clouds)
and performs preliminary processing. Since the vehicle has some computing power, it can handle
preliminary processing tasks such as image denoising and cropping. The size of the preprocessed
image data, selected model, and computing power requirements are then uploaded to the nearest
edge server as the task parameter information. Second, after receiving the task parameters, the edge
server converts it with the server information into state space data. Third, the agent makes the current
optimal edge server selection strategy based on the current state. Fourth, the system returns the
optimal strategy to the vehicle, and the vehicle sends the batch of image data to the edge server
determined by the computing power allocation strategy for image segmentation. Fifth, the edge server
executes the image segmentation task and returns the results to the vehicle. Finally, the system rewards
or punishes the PER-iSAC agent based on the reward mechanism.

4. Model Establishment
4.1. Problem Formulation

The actual edge computing power network scenario is as follows. First, each image segmentation
task requires computing resources on the edge nodes (GPU and memory resources), and the allocated
tasks must not affect the normal operation of other tasks on the same edge node. Second, due to the
uniqueness of the vehicle and edge server, e.g., the different geographical locations and communication
bandwidths of each vehicle, the time cost and energy expenditures for each task vary. Third, the
requirements for each task are diverse. Factors like the task type and image data size lead to varying
demands on computing resources. Therefore, the task allocation scheme should ensure that each task
receives the optimal computing resources, thereby reducing the completion time and costs of image
segmentation tasks.

This paper views the task allocation problem as a classic resource scheduling optimization
problem. Tasks can be considered as image data that need processing, and edge and cloud servers are
the computational resources that handle these tasks. The main objective is to find the optimal task

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

7 of 19

allocation strategy so that the distribution of computational resources among tasks across various
servers is optimized.

4.2. Computing Power Model

Computing power is defined as the capability required to accomplish certain tasks, including
logical/parallel computing, neural network acceleration, etc. The main hardware for computing
includes Central Processing Units (CPUs), Graphics Processing Units (GPUs), Tensor Processing Units
(TPUs), Neural Processing Units (NPUs), etc. CPUs are suitable for logical calculations/operations
and general-purpose computing hardware with poor parallel processing capabilities, and struggling
with large-scale high-definition image data. In contrast, GPUs have a large number of computing
units and a pipeline-style workflow, offering strong parallel processing capabilities and is well-suited
for graphic and image processing. The basic unit of measurement for computing power is FLOPS!,
which stands for the number of floating-point operations per second. Considering an actual computing
power network, the most widely used combination of computing hardware is CPU plus GPU, with
GPUs excelling in image processing and matrix operations. Therefore, this paper considers GPUs as
the hardware for computing power modeling.

4.3. Objective Function

(1)To achieve the rational allocation of computing power in the edge computing power network
for IoV, it is necessary to consider entities such as vehicles, servers, tasks, and network links. Let the set
of servers be S, the set of tasks be T, and the set of network links be L. Let Qs denote the set of tasks in
the computation queue at server s. To minimize task completion time, minimize energy consumption,
and maximize resource utilization, the comprehensive optimization objective function is:

. L & , ,
min «-) T+) (B-E%—y-U%) (1)
=1 i=1

where «, B, and -y are weights to balance latency, energy consumption, and computational resource
utilization. This objective function encapsulates the goals of optimizing the allocation of computing
resources in such a way that it balances the efficiency of task completion, the conservation of energy,
and the maximization of the use of available resources within the network.

1) The total latency is the total time from when the task data is sent from the vehicle terminal,
processed by the roadside edge server, and the result is returned to the vehicle. It includes transmission
delay, queuing delay, and processing delay. The transmission delay includes the task upload delay
and the task download delay, where the sizes of data uploaded and downloaded are different, and the
links they traverse also differ. The transmission delay is defined as:

t t lkrtj lk,tj
th N thzsk rizsult + uplaod + Ldownload)
trans — lk/tj Blkrt]‘ v ’
upload download

where Dy, is the size of task data, and B, ;0,4 is the bandwidth of the link from the vehicle j to the
server i. Dyoq,1; is the size of the task result, and Bjypni0qq is the bandwidth overheads of downloading
the task result from the server to the vehicle. L, ;o4 represents the link length for task uploading,
Liownioad Tepresents the link length for the return of task completion results, and v is the propagation
speed of the signal. The processing delay is the time costs for the edge server to provide computing
resources based on the task requirements, denoted as Ppyocessing (unit: ms, milliseconds), defined as
follows. Ry, is the task’s computing resource requirement and Cseryr is the total computing power of
the edge server.

1 Computing Power Units:1 KFLOPS = 10° FLOPS, IMFLOPS = 10° FLOPS, 1GFLOPS = 10° FLOPS, 1TFLOPS = 10"
FLOPS,1PFLOPS = 10'®> FLOPS, 1EFLOPS = 10!8 FLOPS

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

8 of 19

t.
) R’
PtJ _ task (3)

processing Cg(ierver

Due to hardware limitations, edge servers have a maximum limit on the number of computing
tasks they can handle. Assuming that an edge server receives a task and finds that it has reached the
maximum number of tasks, the task will enter a queue, potentially increasing the task’s latency. The
queuing delay is recorded using system time steps: if a system time step is set to 0.001 seconds, then
queuing delay W is equivalent to the number of time steps the task waits in the queue.

To ensure the reliability of the computing power scheduling model, we consider an edge com-
puting power network scenario where servers are fully loaded when modeling the extended task
processing time. The total time is then given by:
Tl,‘t;]"ans + Pt]

ti t
Ty processing + Wi (4)

total —

2) Energy consumption is determined by the power of the edge server during task processing and
the time spent on processing the task. The power of the edge server varies between idle and loaded
states; the higher the power, the greater the energy consumption and the higher the costs incurred by
the server. This paper uses Py, to denote the power consumption in the idle state, Py, to denote the
power under full loads, and p° to denote the resource utilization rate (ranging from 0 to 1). The energy
consumption for computing task ¢t on edge server s is defined as follows:

t:
roc ®)

where the current power per unit time of the edge server is given by:

EV* = (Pige + (P = Piage) 1) - T,

i Si Si Si i
P* = Pigre + (Prus = Pgge) - 1° (6)

1 1

3) The resource utilization rate is used to measure the current usage of the edge server, including
the weighted average of the utilization rates of computing power and memory:

Ui = wy - U + w, - Uy 7)

The computing power utilization rate is determined by the total computing power demand of all
tasks currently allocated to server s divided by the total computing power of s under full load, which
is defined as follows:

fj

h
. Z]':1 Rtask

Ué ’ t] S QS,‘ (8)

Cslizrver
Similarly, let My, denote the size of memory occupied by the task, and let Mg,ryer denote the
total memory capacity of the edge server. The memory utilization rate is then given by:

h fj
- ijl Mtusk

Si
Mserver

Then the comprehensive resource utilization rate can be obtained by:

L1 Ry, Y M,
Uk = wy - ! sli fosk +ws - ! 15,» task’ t]' € Qsi (10)
CSEYUET MSEV'UET’
The weights for each type of resource must respect
w+wy =1 (11)

(2) Constraints are as follows:

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

90f19

In the computing power network, let x;s denote task t allocated to edge server s, where S is the
set of servers. For task t and server s, it is necessary to ensure that the total computing power and
memory requirements of the tasks allocated to the server do not exceed the server’s total computing
power and memory capacity. These constraints can be expressed as:

T
t .
Z Xts - Rt;sk < Céhroers Si €S (12)
t=1
T
t .
Z Xts * Mtﬁzsk < Mgérver/ si€S (13)
t=1

Each task can only be assigned to one server. To ensure that this constraint is met, the scheduling
algorithm must be designed to prevent any task from being duplicated across multiple servers. This is
crucial for maintaining the integrity of the system and ensuring that resources are allocated efficiently.
This approach helps to avoid conflicts and ensures that each server operates at its maximum potential
without overloading, which could lead to decreased performance or system failures.

m
Y xs=1, VteT (14)
s=1

The transmission time for each task must not exceed the predetermined maximum latency:

t .
]
Ttmns

< Trfax (15)

Adhering to this constraint is essential for ensuring that tasks are completed within the required
timeframes, which is particularly important in IoVs where real-time processing is often a critical factor.
Exceeding the maximum latency can lead to delays in task execution, which may have cascading
effects on downstream processes and ultimately impact the overall performance of the IoV system.
Therefore, the scheduling algorithm must efficiently manage the allocation of tasks to edge servers,
taking into account the bandwidth limitations and the current network conditions. This optimization
not only helps in meeting the latency requirements of IoV but also enhances the responsiveness of the
computing power network, which is vital for maintaining the quality of service and user satisfaction
in time-sensitive IoV applications. The physical distance between the vehicle and the edge server must
not exceed the coverage range of the link, and the distance from the vehicle to the server must be less
than the length of the transmission link as follows:

d < Lk (16)

This constraint ensures that the communications between the vehicle and the edge server is
feasible. The distance limitation is crucial for maintaining signal integrity and reducing the potential
for data loss or corruption that can occur over long transmission distances. Additionally, this constraint
helps ensure that edge servers are strategically placed to service the vehicles within their coverage
area and that the overall network remains efficient and scalable. The total completion time for task T
must not exceed the maximum completion time allowed for the task, i.e., its deadline, as follows:
< Tihax 17)

t,
]
Ttotul

The resource utilization rate of an edge server must be less than 1:

usi <1 (18)

This constraint ensures that no edge server is overloaded beyond its capacity, which is crucial for
preventing system crashes and maintaining the stability and performance of the computing power
network.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

10 of 19

5. Improved SAC (iSAC) Algorithm
5.1. Algorithm Architecture

In deep reinforcement learning, an agent must learn the optimal policy through interactions with
the environment. During this process, the agent faces two main tasks: exploration and exploitation.
Exploration refers to the agent’s attempt to try different actions to discover new, potentially better
strategies, whereas exploitation refers to the agent’s selection of actions based on the currently known
optimal policy. The SAC algorithm balances these two tasks by maximizing an entropy.

Entropy, a measure of the uncertainty or randomness of a system, is also used in information
theory to gauge the uncertainty of information. In reinforcement learning algorithms that maximize
entropy, the goal is not only to maximize accumulated rewards but also to maximize the entropy of the
policy. This means that the algorithm is encouraged to explore a variety of different actions, even if
these actions do not appear to be the optimal choice at the current moment.

The original SAC algorithm achieves the maximization of the entropy by introducing an entropy
term in the objective function. Specifically, the objective function of SAC consists of two parts: one
is the expectation of accumulated rewards, and the other is the expectation of the policy entropy. By
adjusting the weights of these two parts, SAC can maximize accumulated rewards while maintaining
the randomness of the policy, thus avoiding the premature convergence to local optima. The following
equation represents the overall maximization goal of SAC,where v is the discount factor, and « is
the hyperparameter that balances the trade-off between rewards and the entropy, also known as the
temperature coefficient.

Y A'r(sear)

maxE;
T t=0

+ “E(s,a)wn[log 7'((61|S)] (19)

In the SAC algorithm, the policy network is responsible for generating the probability distribution
of actions, while the value network is responsible for estimating the state-action value function. The
agent interacts with the environment according to the current policy, collecting information such as
states, actions, rewards, and new states, which are used to update the value network and the policy
network. When updating the policy network, SAC considers not only maximizing the expected reward
but also maximizing the policy entropy, as shown in Figure 3. This is achieved by computing the policy
gradient and updating the weights of the policy network.

Actor Network Critic
Loss=E[axlog(m) - q]
Update Actor
-—
Q Net 1 Q Net 2
Update Q Net Soft update

Target Q Net
Loss=(q - rty x[target_q - axlog()])2

2 208 e P8 Pe PG

Target Q Net 1 Target Q Net 2

l]\S[
e (SurSte1)

a]
save(s,ag, M, Sy1) sample
‘ Replay Buffer

Figure 3. iSAC Algorithm Architecture.

N*(sy,aM,St1)

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

11 of 19

An important feature of the SAC algorithm lies in its ability to adaptively adjust the entropy
weight. During the training process, entropy weight a is automatically adjusted by another parameter,
which allows SAC to automatically balance exploration and exploitation in different tasks and envi-
ronments without manual interventions. Additionally, SAC is off-policy, which means it can utilize
past data through a replay buffer for repeated training. This off-policy updating method offers greater
stability compared to online algorithms like A3C.

The improvements made in this study to the SAC algorithm mainly involve the following aspects:

1) Since the SAC algorithm is a reinforcement learning algorithm suitable for continuous action
spaces, and the task offloading problem in IoV belongs to discrete space decision-making, we proposed
iSAC, which is applicable to discrete space decisions. As shown in Figure 3, the original actor network
only had fully connected layers and ReLU activation functions. We have added normalization layers
and softmax activation functions. The normalization layer standardizes the output, thereby enhancing
the model’s representing power. The main reason for using a normalization layer in the output is to
prevent the softmax function’s output from being singular.

softmax(z;) = ;xp# (20)
Zj:l exp(z j)

The softmax activation function transforms the policy output by SAC into a probability distribu-
tion vector, and then edge servers can be sampled randomly according to these probabilities.

2) Based on the characteristics of the computing power network and the purpose of computation
offloading in IoV, the state space and reward function are redefined. The state space mainly includes
the remaining resources and the load status of edge servers. Since it is necessary to obtain the time
tasks spend on edge servers, rewards may be delayed. Therefore, the reward function is divided into
immediate decision rewards and deferred rewards.

3) Introducing Prioritized Experience Replay (PER). The traditional experience replay mechanism
uses uniform sampling and thus may overlook some critical samples, and not all samples contribute
equally to the update of the value function. The core idea of PER is to prioritize the sampling of
experiences with larger Temporal Difference (TD) errors. The TD error is a measure of the deviation
between the current value estimate and the target value, defined as:

6 =r+9Q(s"a') — Q(s,a) (21)

where 7 is the immediate reward, v is the discount factor, Q(s,) is the current value estimate,
and Q(s’,a’) is the value estimate of the next state. The priority P; of a sample is related to the TD
error:

P, = |51| +€ (22)

€ is a positive number that approaches 0 and samples with higher priority are more likely to be
sampled.

5.2. MDP Engineering

Since Deep reinforcement learning (DRL) methods possess stronger generalization capabilities
and applicability, for the optimization of computing resource allocation problems addressed in this
paper, applying Markov Decision Process (MDP) modeling enables the more efficient discovery of
optimal solutions.

5.2.1. State Description

In the context of IoV, a computing power allocation process encompasses the processes of task
offloading, task queuing, task computing, and result returning. In the preset scenario, the state
space consists of six scores: {0, 0, 0, 0, 0, 0}, corresponding to the six servers in the action space.
Initially, the system needs to collect server load and task information. Then, a score is assigned. If

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

12 of 19

the remaining storage capacity of the server is greater than the storage requirement of the task, add 1
to the corresponding position in the state space set, otherwise do not add. If the server’s remaining
computing power is greater than the task’s computing power requirement, add 1 to the corresponding
position in the state space set, otherwise do not add. Finally, the system will calculate the transmission
time and computation time overhead (excluding task queuing time and communication delay) of
the computing task to each server, and select the server with the minimum time cost to add 1 to its
score. Such a state space not only expresses the size of the task, the computing power requirements,
the server load, and the task time components, but also reduces the dimensionality of the state space,
thereby accelerating the convergence of the algorithm.Therefore, state space S can be represented as:

s(tj) = {scoreg, score, scorey, scores, scorey, scores } (23)

5.2.2. Action Description

The agent in iSAC will make a decision to select an edge server based on the current state and task
requirements. In the IoV in this paper, a total of 6 edge servers with different performance parameters
are set up, so the action space consists of all the optional edge servers.

action(s,t) = {so,51,52,53,54,55 } (24)

5.2.3. Reward Engineering

The core objective of designing the reward function for image segmentation tasks in the IoV is to
optimize task allocation to achieve a comprehensive optimum in terms of task completion time and
allocation error rate. Integrating the previous optimization objectives and constraints, the following
reward function can be designed:

1) Reward function. iSAC will estimate the total computation and transmission time for image
segmentation tasks on each edge server by synthesizing global information and selecting the server
with the shortest task completion time as the reference edge server. If the selection matches well, the
agent will receive a reward of 0.5.

Rr=1 if si=sp (25)

2) Penalty factor. If the total time T}, exceeds the maximum completion time Tyyax_completion. it
will affect the performance of the computing power network for IoV and be deemed as an incorrect
allocation by the resource and task allocation system.

Rr=Rr—1 if Ttotul > Tmax (26)

If the edge server is overloaded and unable to accommodate the current task, it will result in an
allocation error and the system will immediately impose a penalty as follows:

Ry =-1 (27)

Finally, the overall reward function can be obtained as:

R=Rr+Rpm (28)

5.3. Algorithm Implementation

First, the environment, deep neural network, and experience pool are initialized. Hyperparame-
ters are set, and the deep neural network adopts He initialization for parameters. When the experience
buffer is empty, the default priority of experiences is set to 1.0. Before the experience pool reaches
the batch size, random actions are obtained using the actor network for decision-making, and states,
actions, rewards, and the next states are stored in the experience pool. Once the experience pool

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

13 of 19

reaches the batch size, every task will sample n experiences based on the priority of the samples in the
experience pool, and then train the samples, updating the policy network and value network. Finally,
temperature coefficient « and the priority of the sampled n experiences are updated.

Algorithm 1 PER-iSAC

Input: discount factor v, temperature coefficient a, soft update coefficient 7, batch size #, learning rate
Output: policy

1: Initialize Actor and Q Net 1, Q Net 2, Target Q Net 1, Target Q Net 2, hyper parameters

2: Initialize Replay Buffer

3: for each episode € [1, M] do

4: Initialize environment

5. foreacht € [1,T] do
6: vector = Actor(t)
7
8
9

p(t) = softmax(vector)
a(t) = sampling from action space based on p(t)
: s(t+1),r(t) = environment exec a(t)
10: save (s(t),a(t),r(t),s(t+ 1)) in Replay Buffer
11: compute the priority p in Replay Buffer
12: if len(ReplayBuf fer) > n then

13: sample n samples from Replay Buffer according to p
14: train with n samples

15: update Q Net 1, Q Net 2, Actor with «

16: update Target Q Net 1, Target Q Net 2

17: update o, p

18: end if

19: end for

20: end for

6. Experiment Results
6.1. Simulation Settings

Based on the cloud-edge-terminal network structure, a simulation environment is constructed.
In this study, all experiments are implemented using the Python language and Gym and PyTorch
frameworks. The Python version is 3.8, the PyTorch version is 2.4.0, and the Gym version is 0.26.1. The
simulation environment runs on a computer equipped with an Intel Core i9-14900K processor, 32GB of
memory, and an NVIDIA RTX 4090 graphics card. The simulation experiments include 6 servers {SO,
S1, S2, S3, 54, S5} and multiple vehicle terminals. Each vehicle terminal has at least one communication
link connected to an edge server. Since image segmentation is related to image processing, handling
image data with GPUs is much faster than with CPU computations, so GPU is the most important
hardware component for measuring the algorithms in this paper. The main performance indicators of
the edge servers are shown in Table 1.

Table 1. Main performance indicators of the edge servers.

Servers GPU Computing GPU Idle Load Full Load

Power(TFLOPS) Storage(GB) Power(W) Power(W)

S0 200~250 32 300~500 500~1000
S1 140~160 24 150~350 350~500
S2 130~150 24 150~300 300~500
S3 100~120 16 50~150 200~450
S4 110~130 16 50~150 200~500
S5 100~120 8 50~100 150~300

In addition to edge server parameters, we also consider task information and communication
link parameters. Task information describes the algorithm models used by tasks and the sizes of

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

14 of 19

task data; communication link parameters include length and bandwidth, mainly for calculating the
transmission time of tasks. They are all necessary in an IoV system, as shown in Table 2.

For image segmentation tasks, the computing resource requirements mainly depend on the deep
learning models used. The task offloading of smart vehicles has very high requirements for network
latency; typically, an image captured by a vehicular camera is directly transmitted to the edge server
for computation. With each vehicle equipped with 6 to 8 cameras, a total of 6 to 8 images are generated
at the same time. The floating-point operations required (in FLOPs) for processing a single image
by deep learning models (such as U-Net, DeepLabV3+) multiplied by the number of images serves
as the task’s computing power requirement. The computing power required for a task, which is the
computational capability needed during the task execution, depends on factors such as the number of
input images for the task and the computational load per image.

R

tas

= Nii x R} (29)

image

Table 2. Simulation Parameters.

Parameters Values
Computing Power Requirement 200~4000 GFLOPs
Image Data Size 4.8~160 MB
Model Data Size 10~500 MB
Task Result Coefficient! 0.1~0.3
Completion Time Coefficient? 1.2~1.5

5G: 100 Mbps~10 Gbps

Link Speed Optical Fiber Network: 200~400 Gbps
Communication Range 10~500 m
Communication Delay 1~2ms

! The task result is 0.1 to 0.3 times the original task data size. ? the task deadline is 1.2 to 1.5 times the task completion time.

For the parameter settings in the iSAC algorithm, the actor network has 2 hidden layers with
512 and 256 neurons respectively, the critic network has 2 hidden layers with 256 and 128 neurons
respectively, the gradient descent optimizer is the Adam optimizer, the learning rate is set to 0.0001,
the target network uses soft updates, update parameter tau is set to 0.005, the size of the experience
replay buffer is 10,000, the initial entropy « is 1.5, and the reward discount factor -y is 0.99.

6.2. Experimental Results

To simulate real-world IoV scenarios, the simulation data used in the experiments are randomly
generated within a specified range, and multiple simulations are conducted to avoid random errors.
In the simulation environment, each experiment will randomly generate a total of 100,000 tasks, with a
task arrival rate of 10,000 tasks per second. The results are compared and analyzed using the following
3 scheduling strategies:

Method 1. The scheduling strategy using the PER-iSAC algorithm.

Method 2. The scheduling strategy using the SAC algorithm.

Method 3. The scheduling strategy using the PPO algorithm [28].

According to Figure 4. Through the reward value curve in (a), it can be observed that PER-iSAC’s
total rewards rise rapidly in the initial phase just as quickly as those of Method 2, then level off. This
indicates that both methods quickly improve performance during the early learning stage. Moreover,
both algorithms converge faster, with smaller and more stable fluctuations. Method 3’s total rewards
increase slowly at first and with greater fluctuations, but begin to grow steadily after the 10th episode,
eventually reaching a relatively stable state. According to (b), (c), and (d), the average queue rate, error
rate, and completion time for all algorithms decrease rapidly in the initial phase. This suggests that the
algorithms quickly refine their allocation strategy through the system’s reward mechanism during the
early learning stage. Overall, Method 1 is faster than Methods 2 and 3 in terms of reducing time and

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

15 0f 19

decreasing error rates. The main reason for this phenomenon is the introduction of the PER skill in
Method 1, which enhances iSAC’s utilization of experiences that are of particularly high value but
have a small sample size, thereby enabling Method 1 to explore actions that yield greater value earlier.

5000 { —#- PER-SAC 0.030
- SAC

—4— PPO

—m— PER-SAC
o SAC
—— PPO

4000 0025

£ 0.020
3000

Rate (ms)

| Reward

§ 0015
2000 3

Tot:
ge Q

0010
1000 z

0.005

0.000

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Episode Episode

(a) Convergence of Rewards for DRL Methods (b) Average Queuing Rates

0401 o —=— PER-ISAC - PER-ISAC
\ —e— SAC —e— SAC
035 —&— PPO 800 —&— PPO

g
g

Average Finish Time (ms)
=
H
H

3
8

010
0.05
0.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Episode Episode

(c) Allocation Error Rates (d) Average Completion Time

Figure 4. Training Convergence Plot.

According to Figure 5, all methods select servers in descending order of performance, with
higher-performing servers being chosen more frequently, which aligns with the server performance
settings in the predefined scenario. However, Method 3 has a significantly higher number of selections
on Server 0 compared to the other algorithms, likely due to its better performance on that server and
the acquisition of more rewards. This also implies that Method 3 tends to select specific servers and
does not distribute its selections as evenly across all servers as the other algorithms do. This could be
due to Method 3’s preference for certain servers during the learning process or its insufficient learning
of how to effectively utilize all servers. The reason for Method 3’s fluctuation could be that it has not
achieved the optimal balance between exploring new strategies and exploiting known strategies. This
could lead to it not fully utilizing all servers or not making the most optimal scheduling decisions in
certain situations, resulting in instability during the training process.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

16 of 19

Server Selected Times by Algorithm

35000
BN PER-iSAC
SAC
30000 - mEm PPO
25000 -
[%2]
[
£
'_
3 20000 -
O
Q
]
Y 15000 -
[}
2
[0)
%]
10000 -
5000 -
0 -
0 1 2 3 4 5

Servers

Figure 5. Server Selection Frequency Statistics.

Figure 6 presents a comparison of the average task completion times for three methods under
varying task sizes. It is evident that as the task size increases, the average completion times for all three
algorithms also rise. At smaller task sizes (20MB to 80MB), the average completion times for all three
algorithms are relatively low and the growth is gradual. When the task size reaches 80MB, the average
completion time for Method 3 begins to increase significantly, while Methods 1 and 2 exhibit a slower
rate of increase. At the largest task size (150MB), Method 3 has the highest average completion time,
nearing 500ms, whereas Methods 1 and 2 have average completion times of approximately 200ms and
300ms, respectively. With smaller task sizes, there is minimal difference in performance among the
three algorithms. As the task size grows, Method 3 experiences the most rapid decline in performance,
with the most significant increase in completion time. Method 1 demonstrates superior performance
across all task sizes, with the lowest average completion time.

—m— PER-SAC
—~e— SAC
—— PPO

500 -

400 4

300 -

2004

Average Finish Time (ms)

100 4

T v T v T T T
20 40 60 80 100 120 140
Task Size (MB)

Figure 6. Average Completion Time for Different Task Sizes.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

17 of 19

7. Conclusions and Futrue Works

This paper primarily investigates the offloading and allocation of image segmentation tasks for
connected cars in IoVs supported by computing power networks. The experiments take into account
the task transmission delays under varying link bandwidths and transmission distances in 5G and
optical networks, as well as the computational delays and queuing delays of servers. Additionally, the
data size and model size of image segmentation tasks on smart vehicles, along with their computing
power requirements, are considered. We designed a PER-iSAC algorithm to implement server selection
so as to optimize task completion time while maintaining a low error rate in decision-making. The
simulation experiments confirm that PER-iSAC is effective and more efficient than the PPO and
standard SAC algorithms. A limitation of PER-iSAC lies in its lack of task diversity and priority
requirements, which may not meet the needs of diverse applications in future IoVs.

Concluding our analysis, we arrived at a fundamental insight: the true value of edge servers
within the Internet of Vehicles (IoV) context extends far beyond mere computational acceleration
through task offloading. Their pivotal role lies in enabling the infrastructure for cooperative vehicle
behavior, actualized via V2X (Vehicle-to-Everything) communications. These servers act as local
coordination and computation hubs, providing the ultra-low latency essential for exchanging safety-
critical information between vehicles (V2V), infrastructure (V2I), pedestrians (V2P), and the network
(V2N).

This facilitates a paradigm shift from a model where each vehicle relies solely on its onboard
sensors and processing power to one of collective intelligence. Data aggregation at the edge servers
fuses information (video streams, LIDAR /radar data, GPS coordinates, vehicle status) from numerous
road users and infrastructure elements. Based on this enriched, comprehensive view of the traffic
environment (akin to a “digital twin” of the local road segment), movement coordination becomes
feasible: synchronizing speeds for platooning, optimizing intersection passage, warning about beyond-
line-of-sight hazards, and enabling collaborative maneuver planning.

Consequently, an integrated transport network (or grid) is formed, where decisions are made
not just at the individual vehicle level, but also at a system level to optimize overall performance.
This leads to significant enhancements in safety (reducing collision probability through extended
awareness) and traffic efficiency (mitigating congestion, optimizing routes, reducing fuel/energy
consumption). Within this complex ecosystem, video information processing, whether performed
locally or at the edge, serves as a crucial but not solitary component — it is one data stream feeding the
larger process of cooperative transport system management orchestrated by the edge infrastructure.

Author Contributions: Conceptualization, B.Y., W.Z.; methodology, W.Z.; software, W.Z.; validation, W.Z., B.Y.;
formal analysis, W.Z.; investigation, B.Y., W.Z.; resources, B.Y.; data curation, W.Z., A.R.; writing—original draft
preparation, W.Z. and B.Y.; writing—review and editing, W.Z., B.Y., U.V,, A.G. and S.P,; funding acquisition, H.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Science and Technology Research Program of Chongqing Municipal
Education Commission (Grant No. KJ202301165), the Innovation and Development Joint Fund of Natural
Science Foundation of Chongqing (CSTB2024NSCQ-LMX0010), the Scientific Research Foundation of Chongging
University of Technology (Grant No. 0121230236), and the Higher Education Research Project of Chongqing
University of Technology (Grant No. 2024YB09). The APC was funded by the Innovation and Development Joint
Fund of Natural Science Foundation of Chongqing (CSTB2024NSCQ-LMX0010).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article;further inquiries can be directed to the
corresponding author.

Acknowledgments: We would like to express our sincere appreciation to the anonymous reviewers for their
insightful comments, which have greatly aided us in improving the quality of the paper.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

18 of 19

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

SAC Soft Actor-Critic

PER Prioritized Experience Replay

A3C Asynchronous Advantage Actor Critic
PPO Proximal Policy Optimization

TD Temporal Difference

References

1. Merzougui, S.E.; Limani, X.; Gavrielides, A.; Palazzi, C.E.; Marquez-Barja, J. Leveraging 5G Technology to
Investigate Energy Consumption and CPU Load at the Edge in Vehicular Networks. World Electr. Veh.].
2024, 15, 171.

2. Huo, Y;; Zhang, C. A Review of Key Technologies for Environment Sensing in Driverless Vehicles. World
Electr. Veh. |. 2024, 15, 290.

3. Ministry of Industry and Information Technology. Vehicle Network (Intelligent Connected Vehicles) Industry
Development Action Plan. Vehicle Network (Intelligent Connected Vehicles) Industry Development Action Plan.
2018, December 25, 2018.

4. Dai, Z.; Guan, Z.; Chen, Q.; Xu, Y.; Sun, F. Enhanced Object Detection in Autonomous Vehicles through
LiDAR—Camera Sensor Fusion. World Electr. Veh.]. 2024, 15, 297.

5. Cui, H; Lei, J. An Algorithmic Study of Transformer-Based Road Scene Segmentation in Autonomous
Driving. World Electr. Veh.]. 2024, 15, 516.

6. Lu,S.; Shi, W. Vehicle Computing: Vision and Challenges. Journal of Information and Intelligence. 2022

7. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet of Things
Journal. 2018, 5, 450—465.

8. Chougule, S.B.; Chaudhari, B.S.; Ghorpade, S.N.; Zennaro, M. Exploring Computing Paradigms for Electric
Vehicles: From Cloud to Edge Intelligence, Challenges and Future Directions. World Electr. Veh.]. 2024, 15,
39.

9. Lu,S,; Yao, Y.; Shi, W. CLONE: Collaborative Learning on the Edges. IEEE Internet of Things Journal 2021, 8,
10222-10236.

10. Haarnoja, T.; Zhou, A.; Abbeel, P,; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforce-
ment Learning with a Stochastic Actor. ArXiv. 2018, abs/1801.01290.

11. Schaul, T;; Quan, J.; Antonoglou, L; Silver, D. Prioritized Experience Replay. CoRR. 2015, abs/1511.05952.

12. Pang, X,; Jia, W,; Li, H.; Gao, Q.; Liu, W. A Bi-Objective Optimal Scheduling Method for the Charging
and Discharging of EVs Considering the Uncertainty of Wind and Photovoltaic Output in the Context of
Time-of-Use Electricity Price. World Electr. Veh.]. 2024, 15, 398.

13. Shuai, H.; Li. EE; Pulgar-Painemal, H.; Xue, Y. Branching Dueling Q-Network-Based Online Scheduling of a
Microgrid With Distributed Energy Storage Systems. IEEE Transactions on Smart Grid. 2021, 12, 5479-5482.

14. Shuai, H.; He, H. Online Scheduling of a Residential Microgrid via Monte-Carlo Tree Search and a Learned
Model. IEEE Transactions on Smart Grid. 2020, 12, 1073-1087.

15. Hossain, M.B.; Pokhrel, S.R.; Choi,]. Orchestrating Smart Grid Demand Response Operations With URLLC
and MuZero Learning. IEEE Internet of Things Journal. 2024, 11, 6692-6704.

16. Meidyani, B.; Sarno, R.; Nurlaili, A.L. Time and cost optimization using scheduling job shop and linear goal
programming model. 2018 International Conference on Information and Communications Technology (ICOIACT).
2018, 555-560.

17. Nayak, D.; Martha, V.S.; Threm, D.; Ramaswamy, S.; Prince, S.; Fahrnberger, G. Adaptive scheduling in the
cloud - SLA for Hadoop job scheduling. 2015 Science and Information Conference (SAI). 2015, 832-837.

18. Li, T,; Cui, W.; Cui, N. Soft Actor-Critic Algorithm-Based Energy Management Strategy for Plug-In Hybrid
Electric Vehicle. World Electr. Veh. . 2022, 13, 193.

19. Liu, Y; Zhu, Y; Yu, S.; Wang, Z.; Li, Z.; Chen, C.; Yang, L.; Lin, Z. Optimal Scheduling of Integrated Energy
System Considering Virtual Heat Storage and Electric Vehicles. World Electr. Veh.]. 2024, 15, 461.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: Posted: 18 April 2025 d0i:10.20944/preprints202504.1442.v1

19 of 19

20. Saleem, U, Liu, Y,; Jangsher, S.; Li, Y.; Jiang, T. Mobility-Aware Joint Task Scheduling and Resource Allocation
for Cooperative Mobile Edge Computing. IEEE Transactions on Wireless Communications. 2021, 20, 360-374.

21. Han, Z,; Tan, H,; Li, X,; Jiang, S.H.; Li, Y; Lau, F. OnDisc: Online Latency-Sensitive Job Dispatching and
Scheduling in Heterogeneous Edge-Clouds. IEEE/ACM Transactions on Networking. 2019, 27, 2472-2485.

22. Zhang, K; Mao, Y,; Leng, S.; Zhao, Q.; Li, L.; Peng, X.; Pan, L.; Maharjan, S.; Zhang, Y. Energy-Efficient
Offloading for Mobile Edge Computing in 5G Heterogeneous Networks. IEEE Access. 2016, 4, 5896-5907.

23. Li, Y.Y; Fang, Y,; Qiu, L. Joint Computation Offloading and Communication Design for Secure UAV-Enabled
MEC Systems. In 2021 IEEE Wireless Communications and Networking Conference (WCNC). IEEE Press. 2021,
1-6.

24. Ullah, I; Lim, HK,; Seok, Y]. Optimizing task offloading and resource allocation in edge-cloud networks: a
DRL approach. | Cloud Comp. 2023, 12, 112.

25. Nam, D. H. A Comparative Study of Mobile Cloud Computing, Mobile Edge Computing, and Mobile Edge
Cloud Computing. Proceedings of CSCE 60160. 2023, doi: 10.1109/CSCE60160.2023.00204.

26. Tang, X.; Cao, C.; Wang, Y; Zhang, S.; Liu, Y,; Li, M.; He, T. Computing power network: The architecture
of convergence of computing and networking towards 6G requirement. China Communications 2021, 18,
175-185.

27. Andriulo, F.C.; Fiore, M.; Mongiello, M.; Traversa, E.; Zizzo, V. Edge Computing and Cloud Computing for
Internet of Things: A Review. Informatics 2024, 11, 71.

28. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms.
ArXiv. 2017, abs/1707.06347.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202504.1442.v1
http://creativecommons.org/licenses/by/4.0/

