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Abstract: In the first part of this article, we discuss and generalize the complete convergence

introduced by Hsu and Robbins (1947) to r-complete convergence introduced by Tartakovsky (1998).

We also establish its relation to the r-quick convergence first introduced by Strassen (1967) and

extensively studied by Lai (1976). Our work is motivated by various statistical problems, mostly in

sequential analysis. As we show in the second part, generalizing and studying these convergence

modes is important not only in probability theory but also to solve challenging statistical problems in

hypothesis testing and changepoint detection for general stochastic non-i.i.d. models.

Keywords: Complete convergence; r-quick convergence; sequential analysis; hypothesis testing;

changepoint detection

1. Introduction

In [1], Hsu and Robbins introduced the notion of complete convergence which is stronger than

almost sure (a.s.) convergence. Hsu and Robbins used this notion to discuss certain aspects of the Law

of Large Numbers (LLN). In particular, let X1, X2, . . . be independent and identically distributed (i.i.d.)

random variables with the common mean µ = E[X1]. Hsu and Robbins proved that, while in the

Kolmogorov Strong Law of Large Numbers (SLLN), only the first moment condition is needed for the

sample mean n−1 ∑
n
t=1 Xt to converge to µ as n → ∞, the complete version of the SLLN requires the

second-moment condition E|X1|
2 < ∞ (finiteness of variance). Later, Baum and Katz [2], working on

the rate of convergence in the LLN, established that the second-moment condition is not only necessary

but also sufficient for complete convergence. Strassen [3] introduced another mode of convergence,

the r-quick convergence. When r = 1, these two modes of convergence are closely related. In the case

of i.i.d. random variables and the sample mean n−1 ∑
n
t=1 Xt, they are identical. This fact and certain

statistical applications motivated Tartakovsky [4] (see also Tartakovsky [5] and Tartakovsky et al. [6])

to introduce a natural generalization of complete convergence – the r-complete convergence, which

turns out to be identical to the r-quick convergence in the i.i.d. case.

Section 2 discusses pure probabilistic issues related to r-complete convergence and r-quick

convergence. Section 3 explores statistical applications in sequential hypothesis testing and

changepoint detection. Section 4 outlines sufficient conditions for r-complete convergence for Markov

and hidden Markov models, which is needed to establish optimality properties of sequential hypothesis

tests and changepoint detection procedures. Section 5 concludes.

2. Modes of Convergence and the Law of Large Numbers

We begin by listing some standard definitions in probability theory. Let (Ω, F ) be a measurable

space, i.e., Ω is a set of elementary events ω and F is a sigma-algebra (a system of subsets of Ω

satisfying standard conditions). A probability space is a triple (Ω, F ,P), where P is a probability

measure (completely additive measure normalized to 1) defined on the sets from the sigma-algebra F .

More specifically, by Kolmogorov’s axioms, probability P satisfies: P(A) ≥ 0 for any A ∈ F ; P(Ω) = 1;

and P(∪∞
i=1Ai) = ∑

∞
i=1 P(Ai) for Ai ∈ F , Ai ∩Aj = ∅, i 6= j, where ∅ is an empty set.
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A function X = X(ω) defined on (Ω, F ) with values in X is called random variable if it is

F -measurable, i.e., {ω : X(ω) ∈ B} belongs to the sigma-algebra F . The function F(x) = P(ω :

X(ω) ≤ x) is the distribution function of X. It is also referred to as cumulative distribution function

(cdf). The real-valued random variables X1, X2, . . . are independent if the events {X1 ≤ x1}, {X2 ≤

x2}, . . . are independent for every sequence x1, x2, . . . of real numbers. In what follows, we shall deal

with real-valued random variables unless specified otherwise.

2.1. Standard Modes of Convergence

Let X be a random variable and let {Xn}n∈Z+
(Z+ = {0, 1, 2, . . . }) be a sequence of random

variables, both defined on the probability space (Ω, F ,P). We now give several standard definitions

and results related to the Law of Large Numbers.

Convergence in Distribution (Weak Convergence). Let Fn(x) = P(ω : Xn ≤ x) be the cdf of Xn and

let F(x) = P(ω : X ≤ x) be the cdf of X. We say that the sequence {Xn}n∈Z+
converges to X in

distribution (or in law or weakly ) as n → ∞ and write Xn
law

−−−→
n→∞

X if

lim
n→∞

Fn(x) = F(x)

at all continuity points of F(x).

Convergence in Probability. We say that the sequence {Xn}n∈Z+
converges to X in probability as

n → ∞ and write Xn
P

−−−→
n→∞

X if

lim
n→∞

P(|Xn − X| > ε) = 0 for every ε > 0.

Almost Sure Convergence. We say that the sequence {Xn}n∈Z+
converges to X almost surely (a.s.) or

with probability 1 (w.p. 1) as n → ∞ under probability measure P and write Xn
P−a.s.
−−−→

n→∞
X if

P

(
ω : lim

n→∞
Xn = X

)
= 1. (1)

It is easily seen that (1) is equivalent to the condition

lim
n→∞

P

(
ω :

∞

∑
t=n

|Xt − X| > ε

)
= 0 for every ε > 0,

and that the a.s. convergence implies convergence in probability, and the convergence in probability

implies convergence in distribution, while the converse statements are not generally true.

The following double implications that establish necessary and sufficient conditions (i.e.,

equivalences) for the a.s. convergence are useful:

Xn
a.s.

−−−→
n→∞

X ⇐⇒ P

(
sup
t≥n

|Xt − X| > ε

)
−−−→
n→∞

0 for all ε > 0. (2)

The following result is often useful.

Lemma 1. Let f (t) be a nonnegative increasing function, limt→∞ f (t) = ∞. If

Xn

f (n)
P−a.s.
−−−→
n→∞

0,
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then

lim
n→∞

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
= 0 for every ε > 0. (3)

Proof. For any ε > 0, n0 > 0 and n > n0, we have

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
≤ P

(
1

f (n)
max

0≤t≤n0

Xt > ε

)
+ P

(
1

f (n)
max

n0<t≤n
Xt > ε

)

≤ P

(
1

f (n)
max

0≤t≤n0

Xt > ε

)
+ P

(
max
t>n0

Xt

f (t)
> ε

)
.

Letting n → ∞ and taking into account that

lim
n→∞

P

(
1

f (n)
max

0≤t≤n0

Xt > ε

)
= 0,

we obtain

lim sup
n→∞

P

(
1

f (n)
max

0≤t≤n
Xt > ε

)
≤ P

(
sup
t>n0

Xt

f (t)
> ε

)
.

Since n0 can be arbitrarily large, we can let n0 → ∞ and since, by assumption Xn/ f (n)
a.s.

−−−→
n→∞

0, it

follows from (2) that the upper bound approaches 0 as n0 → ∞. This completes the proof.

Remark 1. The proof of Lemma 1 shows that the assertion (3) also holds under the one-sided condition

P

(
sup
t>n

Xt

f (t)
> ε

)
−−−→
n→∞

0 for all ε > 0. (4)

Random Walk. Let X0, X1, X2, . . . be i.i.d. random variables with mean E[Xn] = µ for n ≥ 1 and the

initial condition X0 = x. Then Sn = ∑
n
t=0 Xt is called a random walk with mean x + µ n.

In what follows, in the case where X1, X2, . . . are i.i.d. random variables and Sn = ∑
n
t=0 Xt, we

prefer to formulate the results in terms of the random walk {Sn}n∈Z+
(typically S0 = 0 while not

necessarily).

We now recall the two Strong Law of Large Numbers (SLLN). Write Sn = X0 + X1 + · · ·+ Xn for

the partial sum (X0 = S0 = 0), so that {Sn}n∈Z+
is a random walk with zero initial condition as long

as X1, X2, . . . are i.i.d. with mean µ.

Kolmogorov’s SLLN. Let {Sn}n∈Z+
be a random walk under probability measure P. If E[S1] exists,

then the sample mean Sn/n converges to the mean value E[S1] w.p. 1, i.e.,

n−1Sn
P−a.s.
−−−→

n→∞
E[S1]. (5)

Conversely, if n−1Sn
P−a.s.
−−−→

n→∞
µ, where |µ| < ∞, then E[S1] = µ.

Marcinkiewicz-Zygmund’s SLLN. Let {Sn}n∈Z+
be a zero-mean random walk under probability

measure P. The following two statements are equivalent:

(i) E |S1|
p
< ∞ for 0 < p < 2;

(ii) n−1/pSn
P−a.s.
−−−→

n→∞
0.

2.2. Complete and r-Complete Convergence

We begin with discussing the issue of rates of convergence in the LLN.
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Rates of Convergence. Let {Xn}n∈Z+
be a sequence of random variables and assume that Xn converges

to 0 w.p. 1 as n → ∞. The question is what the rate of convergence is? In other words, how fast

does the tail probability P(|Xn| > ε) decay to zero? This question can be answered by analyzing the

behavior of the sums

Σ(r, ε) :=
∞

∑
n=1

nr−1P(|Xn| > ε) for some r > 0 and all ε > 0.

More specifically, if Σ(r, ε) is finite for every ε > 0, then the tail probability P(|Xn| > ε) decays with

the rate faster than 1/nr, so that nrP(|Xn| > ε) → 0 for all ε > 0 as n → ∞.

To answer these questions we now consider modes of convergence that strengthen the almost sure

convergence, and therefore, help to determine the rate of convergence in the SLLN. Historically this

issue was first addressed in 1947 by Hsu and Robbins [1] who introduced the new mode of convergence

that they called Complete Convergence.

Complete Convergence. The sequence {Xn}n∈Z+
converges to 0 completely if

lim
n→∞

∞

∑
i=n

P(|Xt| > ε) = 0 for every ε > 0. (6)

Clearly, (6) is equivalent to

Σ(1, ε) =
∞

∑
n=1

P(|Xn| > ε) < ∞ for every ε > 0.

Also, (6) implies a.s. convergence Xn
a.s.

−−−→
n→∞

0, but converse is not generally true unless the variables

X1, X2, . . . are not independent.

Let {Sn}n∈Z+
be a random walk with mean E[Sn] = µ n. Kolmogorov’s SLLN (5) implies that

the sample mean Sn/n converges to µ w.p. 1. Hsu and Robbins [1] proved that under the same

assumptions (i.e., under the only first-moment condition E|S1| < ∞) the sequence {n−1Sn}n≥1 need

not converge to µ completely, but it will do so under the further second-moment condition E|S1|
2 < ∞.

So the finiteness of variance is a sufficient condition for complete convergence in the SLLN. They

conjectured that the second-moment condition is not only sufficient but also necessary for complete

convergence. Thus, it follows from these results that if the variance is finite, then the rate of convergence

in Kolmogorov’s SLLN is limn→∞ nP(|Sn/n − µ| > ε) = 0 for all ε > 0.

A further step towards this issue was done in 1965 by Baum and Katz [2]. In particular, the

following result follows from Theorem 3 in [2] for the random walk {Sn}n∈Z+
with mean E[S1] = µ.

Theorem 1. Let r > 0 and α > 1/2. If {Sn}n∈Z+
is a random walk with mean E[S1] = µ, then the following

statements are equivalent:

E[|S1|
(r+1)/α] < ∞ ⇐⇒

∞

∑
n=1

nr−1P

{
1

nα
|Sn − µn| > ε

}
< ∞ for all ε > 0

⇐⇒
∞

∑
n=1

nr−1P

{
sup
k≥n

1

kα
|Sk − µk| > ε

}
< ∞ for all ε > 0.

(7)

Setting r = 1 and α = 1 in (7), we obtain the following equivalence

E[|S1|
2] < ∞ ⇐⇒

∞

∑
n=1

P {|Sn/n − µ| > ε} for all ε > 0,
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which shows that the conjecture of Hsu and Robbins is correct – the second-moment condition

E|S1|
2 < ∞ is both necessary and sufficient for complete convergence

n−1Sn
P−completely
−−−−−−−−→

n→∞
µ.

Furthermore, if for some r > 0 the (r + 1)-th moment is finite, E|S1|
r+1 < ∞, then the rate of

convergence in the SLLN is limn→∞ nr P(|Sn/n − µ| > ε) = 0 for all ε > 0.

Previous results suggest that it is reasonable to generalize the notion of complete convergence

into the following mode of convergence that we will refer to as r-Complete Convergence, which is also

related to the so-called r-Quick Convergence that we will discuss later on (see Subsection 2.3).

Definition 1 (r-Complete Convergence). Let r > 0. We say that the sequence of random

variables {Xn}n∈Z+
converges to X r-completely as n → ∞ under probability measure P and write

Xn
P-r-completely
−−−−−−−→

n→∞
X if

Σ(r, ε) :=
∞

∑
n=1

nr−1P(|Xn − X| > ε) < ∞ for every ε > 0. (8)

Note that the a.s. convergence of {Xn} to X can be equivalently written as

lim
n→∞

P

(
∞

∑
i=n

|Xt − X| > ε

)
= 0 for every ε > 0,

so that the r-complete convergence with r ≥ 1 implies the a.s. convergence, but the converse is not

true in general.

Suppose that Xn converges a.s. to X. If Σ(r, ε) is finite for every ε > 0, then

lim
n→∞

∞

∑
t=n

tr−1P(|Xt − X| > ε) = 0 for every ε > 0

and probability P(|Xn − X| > ε) goes to 0 as n → ∞ with the rate faster than 1/nr. Hence, as already

mentioned above, the r-complete convergence allows one to determine the rate of convergence of Xn

to X, i.e., to answer the question on how fast the tail probability P(|Xn − X| > ε) decays to zero.

The following result provides a very useful implication of complete convergence.

Theorem 2. Let {Xn}n∈Z+
and {Yn}n∈Z+

be two arbitrary, possibly dependent sequences of random variables.

Assume that there are positive and finite numbers µ1 and µ2 such that

∞

∑
n=1

P

(∣∣∣∣
1

n
Xn − µ1

∣∣∣∣ > ε

)
< ∞ for every ε > 0 (9)

and
∞

∑
n=1

P

(∣∣∣∣
1

n
Yn − µ2

∣∣∣∣ > ε

)
< ∞ for every ε > 0, (10)

i.e., n−1Xn
P−completely
−−−−−−−→

n→∞
µ1 and n−1Yn

P−completely
−−−−−−−→

n→∞
µ2. If µ1 ≥ µ2, then for any random time T

P (XT < b, YT+1 ≥ b(1 + δ)) −→ 0 as b → ∞ for any δ > 0. (11)
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Proof. Fix δ > 0, c ∈ (0, δ) and let Nb = ⌈1 + c)b/µ2⌉ be the smallest integer that is larger than or

equal to (1 + c)b/µ2. Observe that

P (XT < b, YT+1 ≥ b(1 + δ)) ≤ P (XT ≤ b, T ≥ Nb) + P (YT+1 ≥ (1 + δ)b, T < Nb)

≤ P (XT ≤ b, T ≥ Nb) + P

(
max

1≤n≤Nb

Yn ≥ (1 + δ)b

)
.

Thus, to prove (11) it suffices to show that the two terms on the right-hand side go to 0 as b → ∞.

For the first term, we notice that for any n ≥ Nb,

b

n
≤

b

Nb
≤

µ2

1 + c
≤

µ1

1 + c
< µ1,

so that

P (XT ≤ b, T ≥ Nb) =
∞

∑
n=Nb

P (Xn ≤ b, T = n) ≤
∞

∑
n=Nb

P

(
Xn

n
≤

b

n

)

≤
∞

∑
n=Nb

P

(
Xn

n
≤

µ1

1 + c

)
=

∞

∑
n=Nb

P

(
Xn

n
− µ1 ≤ −

c

1 + c
µ1

)
.

Since Nb → ∞ as b → ∞ the upper bound goes to 0 as b → ∞ due to condition (9).

Next, since c ∈ (0, δ) there exists ε′ > 0 such that

(1 + δ)b

Nb
=

(1 + δ)b

⌈b(1 + c)/µ2⌉
≥ (1 + ε′)µ2.

As a result,

P

(
max

1≤n≤Nb

Yn ≥ (1 + δ)b

)
≤ P

(
1

Nb
max

1≤n≤Nb

Yn ≥ (1 + ǫ′)µ2

)
,

where the upper bound goes to 0 as b → ∞ by condition (10) (see Lemma 1).

Remark 2. The proof suggests that the assertion (11) of Theorem 2 holds under the following one-sided

conditions

P

(
n−1 max

1≤s≤n
Ys − µ2 > ε

)
−−−→
n→∞

0,
∞

∑
n=1

P

(
n−1Xn − µ1 < −ε

)
< ∞.

Complete convergence conditions (9) and (10) guarantee both these conditions.

Remark 3. Theorem 2 can be applied to the overshoot problem. Indeed, if Xn = Yn = Zn and the random time

T is the first time n when Zn exceeds the level b, T = inf{n ≥ 1 : Zn > b}, then Theorem 2 shows that the

relative excess of boundary crossing (overshoot) (ZT − b)/b converges to 0 in probability as b → ∞ when Zn/n

converges completely as n → ∞ to a positive number µ.

2.3. r-Quick Convergence

In 1967, Strassen [3] introduced the notion of r-quick limit points of a sequence of random

variables. The r-quick convergence has been further addressed by Lai [7,8], Chow and Lai [9], Fuh and

Zhang [10], and Tartakovsky [4,5] (see certain details in Subsection 2.4).

We define r-quick convergence in a way suitable for this paper. Let {Xn}n∈Z+
be a sequence of

real-valued random variables and let X be a random variable defined on the same probability space

(Ω, F ,P).
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Definition 2 (r-Quick Convergence). Let r > 0 and for ε > 0 let

Lε = sup{n ≥ 1 : |Xn − X| > ε} (sup{∅} = 0)

be the last entry time of Xn in the region (X + ε, ∞) ∪ (−∞, X − ε). We say that the sequence {Xn}n∈Z+

converges to X r-quickly as n → ∞ under probability measure P and write Xn
P−r-quickly
−−−−−−→

n→∞
X if, and only if,

E[Lr
ε] < ∞ for every ε > 0, (12)

where E is the operator of expectation under probability P.

This definition can be of course generalized to random variables X, {Xn}n∈Z+
taking values in a

metric space (X , d) with distance d: Xn
r-quickly
−−−−−→

n→∞
X if

E
[
(sup{n ≥ 1 : d(X, Xn) > ε})r]

< ∞ for every ε > 0.

Note that the a.s. convergence Xn → µ (|µ| < ∞) as n → ∞ to a constant µ can be expressed as

P(Lε(µ) < ∞) = 1, where Lε(µ) = sup{n ≥ 1 : |Xn − µ| > ε} . Therefore, the r-quick convergence

implies the convergence w.p. 1 but not conversely.

Note also that in general r-quick convergence is stronger than r-complete convergence. Specifically,

the following lemma shows that

max
1≤i≤n

Xt
r−completely
−−−−−−−→

n→∞
µ =⇒ Xn

r−quickly
−−−−−→

n→∞
µ =⇒ Xn

r−completely
−−−−−−−→

n→∞
µ. (13)

Lemma 2. Let {Xn}n∈Z+
be a sequence of random variables. Let f (t) be a nonnegative increasing function,

f (0) = 0, limt→∞ f (t) = +∞, and let for ε > 0

Lε( f ) = sup {n ≥ 1 : |Xn| > ε f (n)} (sup{∅} = 0)

be the last time Xn leaves the interval [−ε f (n),+ε f (n)].

(i) For any r > 0 and any ε > 0 the following inequalities hold:

r
∞

∑
n=1

nr−1P {|Xn| ≥ ε f (n)} ≤ E
[
Lε( f )r

]
≤ r

∞

∑
n=1

nr−1P

{
sup
t≥n

|Xt|

f (t)
≥ ε

}
. (14)

Therefore,
∞

∑
n=1

nr−1P

{
sup
t≥n

|Xt|

f (t)
≥ ε

}
< ∞ for all ε > 0 =⇒ Xn

r-quickly
−−−−→

n→∞
0.

(ii) If f (t) is a power function, f (t) = tγ, γ > 0, then finiteness of

∞

∑
n=1

nr−1P

{
max

1≤t≤n
Xt ≥ εnγ

}

for some r > 0 and every ε > 0 implies r-quick convergence of Xn to 0:

{
∞

∑
n=1

nr−1P

(
max

1≤t≤n
Xt ≥ εnγ

)
< ∞ ∀ ε > 0

}
=⇒ {E[Lε(γ)

r] < ∞ ∀ ε > 0} , (15)

where Lε(γ) = sup {n ≥ 1 : |Xn| > ε nγ}.
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Proof. (i) Obviously,

P {|Xn| ≥ ε f (n)} ≤ P
{

Lε( f ) ≥ n
}
≤ P

{
sup
t≥n

1
f (t) |Xt| ≥ ε

}

from which the inequalities (14) follow immediately.

(ii) Write Mu = max1≤n≤⌈u⌉ |Xn|, where ⌈u⌉ is an integer part of u. We have the following chain

of inequalities and equalities:

E
[
L2ε(γ)

r
]
≤ r

∫ ∞

0
tr−1P

{
sup
u≥t

u−γ |Xu| ≥ 2ε

}
dt

≤ r
∫ ∞

0
tr−1P

{
sup
u≥t

[
|Xu| − εuγ

]
≥ εtγ

}
dt

≤ r
∫ ∞

0
tr−1P

{
sup
u>0

[
|Xu| − εuγ

]
≥ εtγ

}
dt

≤ r
∞

∑
n=1

∫ ∞

0
tr−1P

{
sup

(2n−1−1)tγ<uγ≤(2n−1)tγ

[|Xu| − εuγ] ≥ εtγ

}
dt

≤ r
∞

∑
n=1

∫ ∞

0
tr−1P

{
sup

uγ≤2ntγ
|Xu| ≥ 2n−1εtγ

}
dt

= r
∞

∑
n=1

∫ ∞

0
tr−1P

{
M2n/γu ≥ 2n−1εtγ

}
dt

= r

[
∞

∑
n=1

2−n/γ

] ∫ ∞

0
ur−1P {Mu ≥ (ε/2)uγ} du.

It follows that

E
[
L2ε(γ)

r
]
≤ r
(
21/γ − 1

)−1
∫ ∞

0
ur−1P {Mu ≥ (ε/2)uγ} du ≤ (16)

≤ r
(
21/γ − 1

)−1
∞

∑
n=1

nr−1P

{
max

1≤t≤n
Xn ≥ εnγ

}
(17)

which yields the implication (15) and completes the proof.

The following theorem shows that, in the i.i.d. case, the implications in (13) become equivalences.

Theorem 3. Let {Sn}n∈Z+
be the random walk with mean E[Sn] = µn. The following statements are equivalent

E|S1|
r+1

< ∞ ⇐⇒ n−1Sn
r−completely
−−−−−−−→

n→∞
µ, (18)

E|S1|
r+1

< ∞ ⇐⇒ n−1Sn
r−quickly
−−−−−→

n→∞
µ, (19)

E|S1|
r+1 ⇐⇒

∞

∑
n=1

nr−1P

{
sup
k≥n

1

k
|Sk − µ| > ε

}
< ∞ for all ε > 0. (20)

Proof. By Theorem 1, in the i.i.d. case,

E|S1|
r+1

< ∞ ⇐⇒
∞

∑
n=1

nr−1P

(
1

n
|Sn − µ| > ε

)
< ∞ ∀ε > 0 (21)
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and

E|S1|
r+1

< ∞ ⇐⇒
∞

∑
n=1

nr−1P

(
sup
k≥n

1

k
|Sk − µ| > ε

)
< ∞ ∀ε > 0, (22)

so that assertion (18) follows from (21) and (20) from (22).

Next, let

Lε = sup {n ≥ 1 : |Sn − n µ| ≥ n ε} (sup∅ = 0).

By Lemma 2(i),

E[Lr
ε] ≤ r

∞

∑
n=1

nr−1P

{
sup
t≥n

(|St − µ t|/t) ≥ ε

}
∀ε > 0, (23)

which along with (22) implies (19).

2.4. Further Remarks on r-Complete Convergence, r-Quick Convergence and Rates of Convergence in SLLN

Let {Sn}n∈Z+
be a random walk. Without loss of generality let S0 = 0 and E[S1] = 0.

1. Strassen [3] proved, in particular, that if f (n) = (2n log n)1/2 in Lemma 2, then for r > 0

lim sup
n→∞

Sn√
2n log n

=
√

r E[S2
1] r − quickly (24)

whenever E|S1|
p < ∞ for p > (2r + 1). He also proved the functional form of the law of the iterated

logarithm.

2. Lai [7] improved this result showing that Strassen’s moment condition E|S1|
p < ∞ for p >

(2r + 1) can be relaxed. Specifically, he showed that a weaker condition

E

[
|S1|

2(r+1)(log+ |S1|+ 1)−(r+1))
]
< ∞ for r > 0 (25)

is the best one can do (i.e., both necessary and sufficient):

E

[
|S1|

2(r+1)(log+ |S1|+ 1)−(r+1)
]
< ∞ ⇐⇒ lim sup

n→∞

Sn√
2n log n

< ∞ r − quickly,

in which case equality (24) holds.

Note, however, that for r = 0 in terms of the a.s. convergence

E

[
|S1|

2
]
< ∞ ⇐⇒ lim sup

n→∞

Sn√
2n log log n

=
√

E [|S1|2] a.s.

but under condition (25) for all r > 0

lim sup
n→∞

Sn√
2n log log n

= ∞ r − quickly.

3. Let α > 1/2 and r > 0. Chow and Lai [9] established the following one-sided inequality for tail

probabilities:

∞

∑
n=1

nr−1P

(
max

1≤t≤n
St ≥ nα

)
≤ Cr,α

{
E

[
(S+

1 )(r+1)/α
]
+
(
E[S2

1]
)r/(2α−1)

}
(26)

whenever E|S1|
2 < ∞. Under the same hypotheses, this one-sided inequality implies the two-sided

one:
∞

∑
n=1

nr−1P

(
max

1≤t≤n
|St| ≥ nα

)
≤ Cr,α

{
E

[
|S1|

(r+1)/α
]
+
(
E[S2

1]
)r/(2α−1)

}
. (27)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0904.v1

https://doi.org/10.20944/preprints202305.0904.v1


10 of 32

The upper bound in (27) turns out to be sharp since the lower bound also holds:

∞

∑
n=1

nr−1P

(
max

1≤t≤n
|St| ≥ nα

)
≥ 1 + Br,α

{
E

[
|S1|

(r+1)/α
]
+
(
E[S2

1]
)r/(2α−1)

}
.

Here the constants Cr,α and Br,α are universal depending only on r, α.

The results of Chow and Lai [9] provide one-sided analogues of the results of Baum and Katz [2] as

well as extend their results. Indeed, the one-sided inequality (26) implies that the following statements

are equivalent for the zero-mean random walk:

(i) E[(S+
1 )(r+1)/α] < ∞;

(ii) ∑
∞
n=1 nr−1P (n−αSn ≥ ε) < ∞ for all ε > 0;

(iii) ∑
∞
n=1 nr−1P

(
supk≥n k−αSk ≥ ε

)
< ∞ for all ε > 0,

where α > 1/2.

Clearly, the two-sided inequality (27) yields the assertions of Theorem 1 if µ = 0.

4. The Marcinkiewicz-Zygmund SLLN states that for α > 1/2 the following implications hold:

E|S1|
1/α

< ∞ ⇐⇒ n−αSn
a.s.

−−−→
n→∞

0. (28)

The strengthened r-quick equivalent of this SLLN is: For any r > 0 and α > 1/2 the following

statements are equivalent,

E[|S1|
(r+1)/α] < ∞ ⇐⇒

∞

∑
i=1

nr−1P

{
1

nα
|Sn| > ε

}
< ∞ for all ε > 0

⇐⇒
∞

∑
n=1

nr−1P

{
sup
k≥n

1

kα
|Sk| > ε

}
< ∞ for all ε > 0

⇐⇒ n−αSn
r−quickly
−−−−−→

n→∞
0.

(29)

Implications (29) follow from Theorem 1, Theorem 3 and inequality (27). The proof is almost obvious

and omitted.

3. Applications of r-Complete and r-Quick Convergences in Statistics

In this section, we outline certain statistical applications which show the usefulness of r-complete

and r-quick versions of the SLLN.

3.1. Sequential Hypothesis Testing

We begin with formulating the following multihypothesis testing problem for a general non-i.i.d

stochastic model. Let (Ω, F , Fn,P), n ∈ Z+ = {0, 1, 2, . . .}, be a filtered probability space with

standard assumptions about the monotonicity of the sub-σ-algebras Fn. The sub-σ-algebra Fn = σ(Xn)

of F is assumed to be generated by the sequence Xn = {Xt, 1 ≤ t ≤ n} observed up to time n, which is

defined on the space (Ω, F ). The hypotheses are Hi : P = Pi, i = 0, 1, . . . , N, where P0,P1, . . . ,PN are

given probability measures assumed to be locally mutually absolutely continuous, i.e., their restrictions

P
{n}
i and P

{n}
j to Fn are equivalent for all 1 ≤ n < ∞ and all i, j = 0, 1, . . . , N, i 6= j. Let Q{n} be a

restriction to Fn of a σ-finite measure Q on (Ω, F ). Under Pi the sample Xn = (X1, . . . , Xn) has a joint

density pi,n(X
n) with respect to the dominating measure Q(n) for all n ∈ Z+, which can be written as

pi,n(X
n) =

n

∏
t=1

fi,t(Xt|X
t−1), (30)

where fi,n(Xn|Xn−1), n ≥ 1 are corresponding conditional densities.
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Define the likelihood ratio (LR) process between the hypotheses Hi and Hj

Λij(n) =
dP

{n}
i

dP
{n}
j

(Xn) =
pi,n(X

n)

pj,n(Xn)
=

n

∏
t=1

fi,t(Xt|Xt−1)

f j,t(Xt|Xt−1)

and the log-likelihood ratio (LLR) process

λij(n) = log Λij(n) =
n

∑
t=1

log

[
fi,t(Xt|Xt−1)

f j,t(Xt|Xt−1)

]
,

where we set Λij(0) = 1 and λij(0) = 0.

A multihypothesis sequential test is a pair δ = (d, T), where T is a stopping time with respect to

the filtration {Fn}n∈Z+
and d = d(XT) is an FT-measurable terminal decision function with values

in the set {0, 1, . . . , N}. Specifically, d = i means that the hypothesis Hi is accepted upon stopping,

i.e., {d = i} = {T < ∞, δ accepts Hi}. Let αij(δ) = Pi(d = j), i 6= j, i, j = 0, 1, . . . , N, denote the error

probabilities of the test δ, i.e., the probabilities of accepting the hypothesis Hj when Hi is true.

Introduce the class of tests with probabilities of errors αij(δ) that do not exceed the prespecified

numbers 0 < αij < 1:

C(α) =
{

δ : αij(δ) ≤ αij for i, j = 0, 1, . . . , N, i 6= j
}

, (31)

where α = (αij) is a matrix of given error probabilities that are positive numbers less than 1.

Let Ei denote the expectation under the hypothesis Hi (i.e., under the measure Pi). The goal of

a statistician is to find a sequential test that would minimize the expected sample sizes Ei[T] for all

hypotheses Hi, i = 0, 1, . . . , N at least approximately, say asymptotically for small probabilities of

errors, i.e., as αij → 0.

3.1.1. Asymptotic Optimality of Walds’s SPRT

Assume first that N = 1, i.e., that we are dealing with two hypotheses H0 and H1. In the mid

1940s, Wald [11,12] introduced the Sequential Probability Ratio Test (SPRT) for the sequence of i.i.d.

observations X1, X2, . . . , in which case fi,t(Xt|Xt−1) = fi(Xt) in (30) and the LR Λ1,0(n) = Λn is

Λn =
n

∏
t=1

f1(Xt)

f0(Xt)
.

After n observations have been made Wald’s SPRT prescribes for each n ≥ 1:

Stop and accept H1 if Λn ≥ A1.

Stop and accept H0 if Λn ≤ A0.

Continue sampling if A0 < Λn < A1.

where A0 < 1 < A1 are two thresholds.

Let Zt = log[ f1(Xt)/ f0(Xt)] be the LLR for the observation Xt, so the LLR for the sample Xn is

the sum

λ10(n) = λn =
n

∑
t=1

Zt, n = 1, 2, . . .

Let a0 = − log A0 < 0 and a1 = log A1 > 0. The SPRT δ∗(a0, a1) = (d∗, T∗) can be represented in the

form

T∗(a0, a1) = inf {n ≥ 1 : λn /∈ (−a0, a1)} , d∗(a0, a1) =

{
1 if λT∗ ≥ a1

0 if λT∗ ≤ −a0.
(32)
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In the case of two hypotheses, the class of tests (31) is of the form

C(α0, α1) = {δ : α0(δ) ≤ α0 and α1(δ) ≤ α1} ,

i.e., it upper-bounds the probabilities of errors of Type 1 (false positive) α0(δ) = α0,1(δ) and Type 2

(false negative) α1(δ) = α1,0(δ), respectively.

Wald’s SPRT has an extraordinary optimality property: it minimizes both expected sample

sizes E0[T] and E1[T] in the class of sequential (and non-sequential) tests C(α0, α1) with given error

probabilities as long as the observations are i.i.d. under both hypotheses. More specifically, Wald and

Wolfowitz [13] proved, using a Bayesian approach, that if α0 + α1 < 1 and thresholds −a0 and a1 can

be selected in such a way that α0(δ∗) = α0 and α1(δ∗) = α1, then the SPRT δ∗ is strictly optimal in class

C(α0, α1). A rigorous proof of this fundamental result is tedious and involves several delicate technical

details. Alternative proofs can be found in [14–19].

Regardless of the strict optimality of SPRT which holds if, and only if, thresholds are selected

so that the probabilities of errors of SPRT are exactly equal to the prescribed values α0, α1, which is

usually impossible, suppose that thresholds a0 and a1 are so selected that

a0 ∼ log(1/α1) and a1 ∼ log(1/α0) as αmax → 0. (33)

Then

E1[T∗] ∼
| log α0|

I1
, E0[T∗] ∼

| log α1|

I0
as αmax → 0, (34)

where I1 = E1[Z1] and I0 = E0[−Z1] are Kullback-Leibler (K-L) information numbers so that the

following asymptotic lower bounds for ESS are attained by SPRT:

inf
δ∈C(α0,α1)

E1[T] ≥
| log α0|

I1
+ o(1), inf

δ∈C(α0,α1)
E0[T] ≥

| log α1|

I0
+ o(1) as αmax → 0

(cf. [6]). Hereafter αmax = max(α0, α1). The following inequalities for the error probabilities of the

SPRT hold in the most general non-i.i.d. case

α1(δ∗) ≤ exp{−a0}[1 − α0(δ∗)], α0(δ∗) ≤ exp{−a1}[1 − α1(δ∗)]. (35)

These bounds can be used to guarantee asymptotic relations (33).

In the i.i.d. case, by the SLLN, the LLR λn has the following stability property

n−1λn
P1−a.s.
−−−−→

n→∞
I1, n−1(−λn)

P0−a.s.
−−−−→

n→∞
I0. (36)

This allows one to conjecture that if in the general non-i.i.d. case the LLR is also stable in the sense

that the almost sure convergence conditions (36) are satisfied with some positive and finite numbers

I1 and I0, then the asymptotic formulas (34) still hold. In the general case, these numbers represent

the local K–L information in the sense that often (while not always) I1 = limn→∞ n−1E1[λn] and

I0 = limn→∞ n−1E0[−λn]. Note, however, that in the general non-i.i.d. case the SLLN does not even

guarantee the finiteness of the expected sample sizes Ei[T∗] of the SPRT, so some additional conditions

are needed, such as a certain rate of convergence in the strong law, e.g., complete or quick convergence.

In 1981, Lai [8] was the first who proved asymptotic optimality of Wald’s SPRT in a general

non-i.i.d. case as αmax = max(α0, α1) → 0. While the motivation was near optimality of invariant

SPRTs with respect to nuisance parameters, Lai proved a more general result using the r-quick

convergence concept. Specifically, for i = 0, 1 and 0 < Ii < ∞, define

L1(ε) = sup {n ≥ 1 : |λn − I1| ≥ ε} and L0(ε) = sup {n ≥ 1 : |λn + I0| ≥ ε}
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(sup{∅} = 0) and suppose that Ei[Li(ε)
r] < ∞ for some r > 0 and every ε > 0, i.e., that the normalized

LLR converges r-quickly to I1 under P1 and to −I0 under P0:

n−1λn
P1−r−quickly
−−−−−−−−→

n→∞
I1 and n−1λn

P0−r−quickly
−−−−−−−−→

n→∞
−I0. (37)

Strengthening the a.s. convergence (36) into the r-quick version (37), Lai [8] established first-order

asymptotic optimality of Wald’s SPRT for moments of the stopping time distribution up to order r: If

thresholds ai(α0, α1), i = 0, 1 in the SPRT are so selected that δ∗(a0, a1) ∈ C(α0, α1) and asymptotics

(33) hold, then as αmax → 0,

inf
δ∈C(α0,α1)

E1[T
r] ∼

(
| log α0|

I1

)r

∼ E1[T
r
∗],

inf
δ∈C(α0,α1)

E0[T
r] ∼

(
| log α1|

I0

)r

∼ E0[T
r
∗].

(38)

Wald’s ideas have been generalized in many publications to construct sequential tests of composite

hypotheses with nuisance parameters when these hypotheses can be reduced to simple ones by

the principle of invariance. If Mn is the maximal invariant statistic and pi(Mn) is the density of

this statistic under hypothesis Hi, then the invariant SPRT is defined as in (32) with the LLR λn =

log[p1(Mn)/p0(Mn)]. But even if the observations X1, X2, . . . are i.i.d. the invariant LLR statistic λn

is not a random walk anymore and Wald’s methods cannot be applied directly. Lai [8] has applied

the asymptotic optimality property (38) of Wald’s SPRT in the non-i.i.d. case to investigate optimality

properties of several classical invariant SPRTs such as the sequential t-test, the sequential T2-test, and

Savage’s rank-order test.

In the sequel, the case where the a.s. convergence in the non-i.i.d. model (36) holds with the rate

1/n we will call asymptotically stationary. Assume now that (36) is generalized to

λn/ψ(n)
P1−a.s.
−−−−→

n→∞
I1, (−λn)/ψ(n)

P0−a.s.
−−−−→

n→∞
I0, (39)

where ψ(t) is a positive increasing function. If ψ(t) is not linear, then this case will be referred to as the

asymptotically non-stationary. A simple example where this generalization is needed is testing H0 versus

H1 regarding the mean of the normal distribution:

Xn = i Sn + ξn, n ∈ Z+, i = 0, 1,

where {ξn}n≥1 is a zero-mean i.i.d. standard Gaussian sequence N (0, 1) and Sn = ∑
k
j=0 cjn

j is a

polynomial of order k > 1. Then

λn =
n

∑
t=1

StXt −
1

2

n

∑
t=1

S2
t ,

E1[λn] = −E0[λn] =
1
2 ∑

n
t=1 S2

t ∼ c2
kn2k for large n, so ψ(n) = n2k and I1 = I0 = c2

k/2 in (39). This

example is of interest for certain practical applications, in particular, for the recognition of ballistic

objects and satellites [19].

Tartakovsky et al. [6, Sec 3.4] generalized Lai’s results for the asymptotically non-stationary case.

Write Ψ(t) for the inverse function for ψ(t).

Theorem 4. Assume that there exist finite positive numbers I0 and I1 and an increasing nonnegative

function ψ(t) such that the r-quick convergence conditions

λn

ψ(n)

P1−r−quickly
−−−−−−−→

n→∞
I1,

−λn

ψ(n)

P0−r−quickly
−−−−−−−→

n→∞
I0
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hold. If thresholds a0(α0, α1) and a1(α0, α1) are selected so that δ∗(a0, a1) ∈ C(α0, α1) and a0 ∼ | log α1| and

a1 ∼ | log α0|, then, as αmax → 0,

inf
δ∈C(α0,α1)

E1[T
r] ∼

[
Ψ

(
| log α0|

I1

)]r

∼ E1[T
r
∗],

inf
δ∈C(α0,α1)

E0[T
r] ∼

[
Ψ

(
| log α1|

I0

)]r

∼ E0[T
r
∗].

(40)

This theorem implies that the SPRT asymptotically minimizes the moments of the stopping time

distribution up to the order r.

The proof of this theorem is performed in two steps which are related to our previous discussion

of the rates of convergence in Section 2. The first step is to obtain the asymptotic lower bounds in class

C(α0, α1):

lim inf
αmax→0

infδ∈C(α0,α1)
E1[T

r]

[Ψ (| log α0|/I1)]r
≥ 1, lim inf

αmax→0

infδ∈C(α0,α1)
E0[T

r]

[Ψ (| log α1|/I0)]r
≥ 1.

These bounds hold whenever the following right-tail conditions for the LLR are satisfied:

lim
M→∞

P1

{
1

ψ(M)
max

1≤n≤M
λn ≥ (1 + ε)I1

}
= 1,

lim
M→∞

P0

{
1

ψ(M)
max

1≤n≤M
(−λn) ≥ (1 + ε)I0

}
= 1.

Note that by Lemma 1 these conditions are satisfied when the SLLN (39) holds so that the almost

sure convergence (39) is sufficient. However, as we already mentioned, the SLLN for the LLR is not

sufficient to guarantee even the finiteness of the SPRT stopping time.

The second step is to show that the lower bounds are attained by the SPRT. To do so, it suffices to

impose the following additional left-tail conditions:

∞

∑
n=1

nr−1P1 {λn ≤ (I1 − ε)ψ(n)} < ∞,
∞

∑
n=1

nr−1P0 {−λn ≤ (I0 − ε)ψ(n)} < ∞

for all 0 < ε < min(I0, I1). Since both right-tail and left-tail conditions hold if the LLR converges

r-completely to Ii,

∞

∑
n=1

nr−1P1

{∣∣∣∣
λn

ψ(n)
− I1

∣∣∣∣ ≥ ε

}
< ∞,

∞

∑
n=1

nr−1P0

{∣∣∣∣
λn

ψ(n)
+ I0

∣∣∣∣ ≥ ε

}

and since r-quick convergence implies r-complete convergence (see (13)), we conclude that the

assertions (40) hold.

Remark 4. In the i.i.d. case, Wald’s approach allows us to establish asymptotic equalities (40) with I1 =

E1[λ1] and I0 = −E0[λ1] being K-L information numbers under the only condition of finiteness Ii. However,

Wald’s approach breaks down in the non-i.i.d. case. Certain generalizations in the case of independent but

non-identically and substantially non-stationary observations, extending Wald’s ideas, have been considered in

[19–22]. Theorem 4 covers all these non-stationary models.

Fellouris and Tartakovsky [23] extended previous results on asymptotic optimality of the SPRT to

the case of multistream hypothesis testing problem when the observations are sequentially acquired

in multiple data streams (or channels or sources). The problem is to test the null hypothesis H0 that

none of the N streams is affected against the composite hypothesis HB that a subset B ⊂ {1, . . . , N}

is affected. Two sequential tests were studied in [23] – the Generalized Sequential Likelihood Ratio

Test and the Mixture Sequential Likelihood Ratio Test. It has been shown that both tests are first-order
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asymptotically optimal, minimizing moments of the sample size E0[T
r] and EB[T

r] for all B ∈ P up to

order r as max(α0, α1) → 0 in the class of tests

CP (α0, α1) =

{
δ : P0(d = 1) ≤ α0 and max

B∈P
PB(d = 0) ≤ α1

}
, 0 < αi < 1,

where PB is the distribution of observations under hypothesis HB and P is a class of subsets of

{1, . . . , N} that incorporates prior information which is available regarding the subset of affected

streams, e.g., not more than K < N streams can be affected.1 The proof is essentially based on the

concept of r-complete convergence of LLR with the rate 1/n. See also Chapter 1 in [5].

3.1.2. Asymptotic Optimality of the Multihypothesis SPRT

We now return to the multihypothesis model with N > 1 that we started to discuss at the

beginning of this section (see (30) and (31)). The problem of sequential testing of many hypotheses

is substantially more difficult than that of testing two hypotheses. For multiple-decision testing

problems, it is usually very difficult, if even possible, to obtain optimal solutions. Finding an optimal

non-Bayesian test in the class of tests (31) that minimizes ESS Ei[T] for all hypotheses Hi, i = 0, 1, . . . , N

is not manageable even in the i.i.d. case. For this reason, a substantial part of the development of

sequential multihypothesis testing in the 20th century has been directed towards the study of certain

combinations of one-sided sequential probability ratio tests when observations are i.i.d. (see, e.g.,

[24–29]).

We will focus on the following first-order asymptotic criterion: Find a multihypothesis test

δ∗(α) = (d∗(α), T∗(α)) such that for some r > 0

lim
αmax→0

infδ∈C(α) Ei[T
r]

Ei[T∗(α)r]
= 1 for all i = 0, 1, . . . , N, (41)

where αmax = max0≤i,j≤N,i 6=j αij.

In 1998, Tartakovsky [4] was the first who considered the sequential multiple hypothesis testing

problems for general non-i.i.d. stochastic models following Lai’s idea of exploiting the r-quick

convergence in the SLLN for two hypotheses. The results have been obtained for both discrete

and continuous-time scenarios and for the asymptotically non-stationary case where the LLR processes

between hypotheses converge to finite numbers with the rate 1/ψ(t). Two multihypothesis tests were

investigated: (1) The Rejecting test which rejects the hypotheses one by one and the last hypothesis,

which is not rejected, is accepted, and (2) The Matrix Accepting test that accepts a hypothesis for

which all component SPRTs that involve this hypothesis vote for accepting it. We now proceed with

introducing this accepting test which we will refer to as the Matrix SPRT (MSPRT). In the present

article, we do not consider the continuous-time scenarios. Those who are interested in continuous time

we refer to [4,6,20,22,30].

Write N = {0, 1, . . . , N}. For a threshold matrix (Aij)i,j∈N , with Aij > 0 and the Aii are immaterial

(say 0), define the Matrix SPRT δN
∗ = (TN

∗ , dN
∗ ), built on (N + 1)N/2 one-sided SPRTs between the

hypotheses Hi and Hj, as follows:

Stop at the first n ≥ 1 such that, for some i, Λij(n) ≥ Aji for all j 6= i, (42)

and accept the unique Hi that satisfies these inequalities. Note that for N = 1 the MSPRT coincides

with Wald’s SPRT.

1 In many practical problems, K is substantially smaller than the total number of streams N, which can be very large.
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In the following, we omit the superscript N in δN
∗ = (TN

∗ , dN
∗ ) for brevity. Obviously, with

aji = log Aji, the MSPRT in (42) can be written as

T∗ = inf
{

n ≥ 1 : λij(n) ≥ aji for all j 6= i and some i
}

, (43)

d∗ = i for which (43) holds. (44)

Introducing the Markov accepting times for the hypotheses Hi as

Ti = inf





n ≥ 1 : λi0(n) ≥ max
1≤j≤N

j 6=i

[λj0(n) + aji]





, i = 0, 1, . . . , N, (45)

the test in (43)–(44) can be also written in the following form:

T∗ = min
0≤j≤N

Tj, d∗ = i if T∗ = Ti. (46)

Thus, in the MSPRT, each component SPRT is extended until, for some i ∈ N , all N SPRTs involving

Hi accept Hi.

Using Wald’s likelihood ratio identity, it is easily shown that αij(δ∗) ≤ exp(−aij) for i, j ∈ N ,

i 6= j, so selecting aji = | log αji| implies δ∗ ∈ C(α). These inequalities are similar to Wald’s ones in the

binary hypothesis case and are very imprecise. In his ingenious paper, Lorden [28] showed that with a

very sophisticated design that includes accurate estimation of thresholds accounting for overshoots,

the MSPRT is nearly optimal in the third-order sense, i.e., it minimizes ESS for all hypotheses up to an

additive disappearing term: infδ∈C(α) Ei[T] = Ei[T∗] + o(1) as αmax → 0. This result holds only for i.i.d.

models with the finite second moment Ei[λij(1)
2] < ∞. In non-i.i.d. cases (and even for i.i.d. for higher

moments r > 1), there is no way to obtain such a result, so we focus on the first-order optimality (41).

The following theorem establishes asymptotic operating characteristics and optimality of MSPRT

under the r-quick convergence of λij(n)/ψ(n) to finite K-L-type numbers Iij, where ψ(n) is a positive

increasing function, ψ(∞) = ∞.

Theorem 5 (MSPRT asymptotic optimality). Assume that there exist finite positive numbers Iij, i, j =

0, 1, . . . , N, i 6= j and an increasing nonnegative function ψ(t) such that for some r > 0

λij(n)

ψ(n)

Pi−r−quickly
−−−−−−−→

n→∞
Iij for all i, j = 0, 1, . . . , N, i 6= j. (47)

Then the following assertions are true.

(i) For i = 0, 1, . . . , N,

Ei[T
r
∗] ∼


Ψ


max

0≤j≤N

j 6=i

aji

Iij







r

as min
j,i

aji → ∞. (48)

(ii) If the thresholds are so selected that αij(δ
∗) ≤ αij and aji ∼ | log αji|, in particular as aji = | log αji|, then

for all i = 0, 1, . . . , N

inf
δ∈C(α)

Ei[T
r] ∼


Ψ


max

0≤j≤N

j 6=i

| log αji|

Iij







r

∼ Ei[T
r
∗] as αmax → 0. (49)

Assertion (ii) implies that the MSPRT minimizes asymptotically the moments of the stopping

time distribution up to order r for all hypotheses H0,H1, . . . ,HN in the class of tests C(α).
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Remark 5. Both assertions of Theorem 5 are correct under the r-complete convergence

λij(n)

ψ(n)

Pi−r−complete
−−−−−−−−→

n→∞
Iij for all i, j = 0, 1, . . . , N, i 6= j,

i.e., whenever
∞

∑
n=1

nr−1Pi

{
1

ψ(n)

∣∣λij(n)− Iij

∣∣ > ε

}
< ∞ for all ε > 0.

While this statement was not proved anywhere so far, it can be easily proved using the methods developed for

multistream hypothesis testing and changepoint detection [5, Ch 1, Ch 6].

Remark 6. As the example given in Subsection 3.4.3 of [6] shows, the r-quick convergence conditions in

Theorem 5 (or corresponding r-complete convergence conditions for LLR processes) cannot be generally relaxed

into the almost sure convergence

λij(n)

ψ(n)

Pi−a.s.
−−−−→

n→∞
Iij for all i, j = 0, 1, . . . , N, i 6= j. (50)

However, the following weak asymptotic optimality result holds for the MSPRT under the a.s. convergence: if the

a.s. convergence (50) holds with the power function ψ(t) = tk, k > 0, then for every 0 < ε < 1,

inf
δ∈C(α)

Pi (T > ε T∗) → 1 as αmax → 0 for all i = 0, 1, . . . , N (51)

whenever thresholds aji are selected as in Theorem 5(ii).

Note that several interesting statistical and practical applications of these results to invariant

sequential testing and multisample slippage scenarios are discussed in Sections 4.5 and 4.6 of

Tartakovsky et al. [6] (see Mosteller [31] and Ferguson [16] for terminology regarding multisample

slippage problems).

3.2. Sequential Changepoint Detection

Sequential changepoint detection (or quickest disorder detection) is an important branch of

Sequential Analysis. In the sequential setting, one assumes that the observations are made successively,

one at a time, and as long as their behavior suggests that the process of interest is in a normal state, the

process is allowed to continue; if the state is believed to have become anomalous, the goal is to detect the

change in distribution as rapidly as possible. Quickest change detection problems have an enormous

number of important applications, e.g., object detection in noise and clutter, industrial quality control,

environment surveillance, failure detection, navigation, seismology, computer network security,

genomics, epidemiology (see, e.g., [32–41]). Several challenging application areas are discussed

in the books by Tartakovsky, Nikiforov, and Basseville [6, Ch 11] and Tartakovsky [5, Ch 8].

3.2.1. Changepoint Models

The probability distribution of the observations X = {Xn}n∈Z+
, which are acquired sequentially

in time, is subject to a change at an unknown point in time ν ∈ {0, 1, 2, . . . }, so that X1, . . . , Xν are

generated by one stochastic model and Xν+1, Xν+2, . . . by another model. A sequential detection rule is

a stopping time T for an observed sequence {Xn}n≥1, i.e., T is an integer-valued random variable, such

that the event {T = n} belongs to the sigma-algebra Fn = σ(X1, . . . , Xn) generated by observations

X1, . . . , Xn.

Let P∞ denote the probability measure corresponding to the sequence of observations {Xn}n≥1

when there is never a change (ν = ∞) and, for k = 0, 1, . . . , let Pk denote the measure corresponding

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 May 2023                   doi:10.20944/preprints202305.0904.v1

https://doi.org/10.20944/preprints202305.0904.v1


18 of 32

to the sequence {Xn}n≥1 when ν = k < ∞. By H∞ : ν = ∞ we denote the hypothesis that the change

never occurs and by Hk : ν = k – the hypothesis that the change occurs at time 0 ≤ k < ∞.

Consider first a general non-i.i.d. model assuming that the observations may have a very general

stochastic structure. Specifically, if we let as before Xn = (X1, . . . , Xn) denote the sample of size n, then

when ν = ∞ (there is no change) the conditional density of Xn given Xn−1 is gn(Xn|Xn−1) for all n ≥ 1

and when ν = k < ∞, then the conditional density of Xn given Xn−1 is gn(Xn|Xn−1) for n ≤ k and

fn(Xn|Xn−1) for n > k. Thus, for the general non-i.i.d. changepoint model, the joint density p(Xn|Hk)

under hypothesis Hk can be written as follows

p(Xn|Hk) =

{
∏

n
t=1 gtXt|Xt−1) for ν = k ≥ n,

∏
k
t=1 gt(Xt|Xt−1)× ∏

n
t=k+1 ft(Xt|Xt−1) for ν = k < n,

(52)

where gn(Xn|Xn−1) is the pre-change conditional density and fn(Xn|Xn−1) is the post-change

conditional density which may depend on ν, fn(Xn|Xn−1) = f
(ν)
n (Xn|Xn−1), but we will omit the

superscript ν for brevity.

The classical changepoint detection problem deals with the i.i.d. case where there is a sequence

of observations X1, X2, . . . that are identically distributed with a probability density function (pdf)

g(x) for n ≤ ν and with a pdf f (x) for n > ν. That is, in the i.i.d. case, the joint density of the vector

Xn = (X1, . . . , Xn) under hypothesis Hk in (52) is simplified as

p(Xn|Hk) =

{
∏

n
t=1 g(Xt) for ν = k ≥ n,

∏
k
t=1 g(Xt)× ∏

n
t=k+1 f (Xt) for ν = k < n.

(53)

Note that, as discussed in [5,6], in applications, there are two different kinds of changes – additive

and non-additive. Additive changes lead to a change in the mean value of the sequence of observations.

Non-additive changes are typically produced by a change in variance or covariance, i.e., these are

spectral changes.

We now proceed with discussing the models for the change point ν. The change point ν may be

considered either as an unknown deterministic number or as a random variable. If the change point

is treated as a random variable, then the model has to be supplied with the prior distribution of the

change point. There may be several changepoint mechanisms and, as a result, a random variable ν

may be partially or completely dependent on the observations or independent of the observations. To

account for these possibilities at once, let π−1 = Pr(ν < 0) and πk = Pr(ν = k|Xk), k ≥ 0, and observe

that πk, k = 1, 2, . . . are Fk-adapted. That is, the probability of a change occurring at the time instant

ν = k depends on Xk, the observations’ history accumulated up to and including the time k ≥ 1. The

probability π−1 + π0 = Pr(ν ≤ 0) represents the probability of the “atom” associated with the event

that the change already took place before the observations became available. With the so-defined prior

distribution, one can describe very general changepoint models, including those that assume ν to be a

{Fn}-adapted stopping time (see Moustakides [42]). In this article, we will not discuss Moustakides’s

concept by allowing the prior distribution to depend on some additional information available to

“Nature” (see [5] for a detailed discussion); rather when considering a Bayesian approach we will

assume that the prior distribution of the unknown change point is independent of the observations.

3.2.2. Popular Changepoint Detection Procedures

Before formulating criteria of optimality in the next subsection, we begin with defining the three

most popular and common change detection procedures, which are either optimal or nearly optimal in
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different settings. To define these procedures we need to introduce the partial likelihood ratio and the

corresponding log-likelihood ratio

LRt =
ft(Xt|Xt−1)

gt(Xt|Xt−1)
, Zt = log

ft(Xt|Xt−1)

gt(Xt|Xt−1)
, t = 1, 2, . . .

It is worth iterating that for general non-i.i.d. models the post-change density often depends on the

point of change, ft(Xt|Xt−1) = f
(ν)
t (Xt|Xt−1), so in general LRt = LR

(ν)
t and Zt = Z

(ν)
t also depend on

the change point ν. However, this is not the case for the i.i.d. model (53).

The CUSUM Procedure

We now introduce the Cumulative Sum (CUSUM) algorithm, which was first proposed by Page [43]

for the i.i.d. model (53). Recall that we consider the changepoint detection problem as a problem of

testing two hypotheses: Hν that the change occurs at a fixed point 0 ≤ ν < ∞ against the alternative

H∞ that the change never occurs. The LR between these hypotheses is Λν
n = ∏

n
t=ν+1 LRt for ν < n

and 1 for ν ≥ n. Since the hypothesis Hν is composite, we may apply the generalized likelihood ratio

(GLR) approach maximizing the LR Λν
n over ν to obtain the GLR statistic

Vn = max
0≤ν<n

n

∏
t=ν+1

LRt, n ≥ 1.

It is easy to verify that this statistic follows the recursion

Vn = max{1, Vn−1}LRn, n ≥ 1, V0 = 1 (54)

as long as the partial LR LRn does not depend on the change point, i.e., the post-change conditional

density fn(Xn|Xn−1) does not depend on ν. This is always the case for i.i.d. models (53) when

fn(Xn|Xn−1) = f (Xn). However, as we already mentioned, for non-i.i.d. models often fn(Xn|Xn−1) =

f
(ν)
n (Xn|Xn−1) depends on the change point ν, so LRn = LR

(ν)
n , in which case recursion (54) does not

hold.

The logarithmic version of Vn, Wn = log Vn, is related to Page’s CUSUM statistic Gn introduced

by Page [43] in the i.i.d. case as Gn = max(0, Wn). In fact, the statistic Gn can also be obtained via the

GLR approach by maximizing the LLR λν
n = log Λν

n over 0 ≤ ν < ∞. However, since the hypotheses

H∞ and Hν are indistinguishable for ν ≥ n the maximization over ν ≥ n does not make too much sense.

Note also that in contrast to Page’s CUSUM statistic Gn the statistic Wn may take values smaller than 0,

so the CUSUM procedure

TCS = inf{n ≥ 1 : Wn ≥ a} (55)

makes sense even for negative values of the threshold a. Thus, it is more general than Page’s CUSUM.

Note the recursions

Wn = W+
n−1 + Zn, n ≥ 1, W0 = 0 (56)

and

Gn = (Gn−1 + Zn)
+ , n ≥ 1, G0 = 0

in case where Zn = log[ fn(Xn|Xn−1)/gn(Xn|Xn−1)] does not depend on ν.
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Shiryaev’s Procedure

In the i.i.d. case and for the zero-modified geometric prior distribution of the change point,

Shiryaev [44] introduced the change detection procedure that prescribes thresholding of the posterior

probability P(ν < n|Xn). Introducing the statistic

Sπ
n =

P(ν < n|Xn)

1 − P(ν < n|Xn)

one can write the stopping time of the Shiryaev procedure in the general non-i.i.d. case and for an

arbitrary prior π as

TSH = inf {n ≥ 1 : Sπ
n ≥ A} , (57)

where A is a threshold controlling for the false alarm risk. Write π−1 = P(ν < 0) = p, p ∈ [0, 1). The

statistic Sπ
n can be written as

Sπ
n =

p

1 − p
Λ0

n +
1

P(ν ≥ n)

n−1

∑
k=0

πkΛk
n

=
p

1 − p

n

∏
t=1

LRt +
1

P(ν ≥ n)

n−1

∑
k=0

πk

n

∏
t=k+1

LRt, n ≥ 1, Sπ
0 =

p

1 − p
,

(58)

where the product ∏
j
t=i LRt = 1 for j < i. Threshold A has to be set larger than p/(1 − p) to avoid

triviality, since otherwise TSH = 0 w.p. 1.

Often (following Shiryaev’s assumptions) it is supposed that the change point ν is distributed

according to the zero-modified geometric distribution Geometric(p, ̺)

P(ν < 0) = π−1 = p and P(ν = k) = (1 − p)̺(1 − ̺)k for k = 0, 1, 2, . . . , (59)

where p ∈ [0, 1) and ̺ ∈ (0, 1).

If LRn does not depend on the change point ν and the prior distribution is zero-modified geometric

(59) then the statistic S̃
̺
n = Sπ

n /̺ can be rewritten in the recursive form

S̃
̺
n =

(
1 + S̃

̺
n−1

)
LRn

1 − ̺
, n ≥ 1, S̃

̺
0 =

p

(1 − p)̺
. (60)

However, as mentioned above, this may not be the case for non-i.i.d. models since often LRn depends

on ν.

Shiryaev–Roberts Procedure

The generalized Shiryaev–Roberts (SR) change detection procedure is based on thresholding of

the generalized SR statistic

R
r0
n = r0Λ0

n +
n−1

∑
k=0

Λk
n = r0

n

∏
t=1

LRt +
n−1

∑
k=0

n

∏
t=k+1

LRt, n ≥ 1, (61)

with a non-negative head-start R0 = r0, r0 ≥ 0, i.e., the stopping time of the SR procedure is given by

T
r0
SR

= inf
{

n ≥ 1 : Rr0
n ≥ A

}
, A > 0. (62)

This procedure is usually referred to as the SR-r detection procedure in contrast to the standard SR

procedure TSR ≡ T
r0
SR

, r0 = 0 that starts with a zero initial condition r0 = 0. In the i.i.d. case (53), this

modification of the SR procedure was introduced and studied in detail in [45,46].
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If LRn does not depend on the change point ν, then the SR-r detection statistic satisfies the

recursion

R
r0
n = (1 + R

r0
n−1)LRn, n ≥ 1, R

r0
0 = r0.

Note that as the parameter of the geometric prior distribution ̺ → 0, the Shiryaev statistic S̃
̺
n

converges to the SR-r statistic R
r0
n .

3.2.3. Optimality Criteria

The goal of online change detection is to detect the change as soon as possible after it occurs

controlling a false alarm rate at a given level. Tartakovsky et al. [6, Sec. 6.3] suggested five changepoint

problem settings – the Bayesian approach, the generalized Bayesian approach, the minimax approach,

the uniform (pointwise) approach, and the approach related to multicyclic detection of a change in a

stationary regime. In this article, we discuss only a single-run case and two main settings – Bayesian

and uniform pointwise optimality, which are tightly related.

Let Ek denote the expectation with respect to the measure Pk when the change occurs at ν = k < ∞

and E∞ with respect to P∞ when there is no change.

In 1954, Page [43] suggested measuring the risk associated with a false alarm by the mean time to

false alarm E∞[T] and the risk associated with a true change detection by the mean time to detection

E0[T] when the change occurs at the very beginning. He called these performance characteristics the

Average Run Length (ARL). Page also introduced the now most famous change detection procedure –

CUSUM procedure – and analyzed it using these operating characteristics.

While the false alarm rate is reasonable to measure by the ARL to false alarm

ARL2FA(T) = E∞[T],

as Figure 1 suggests, the risk associated with a true change detection is reasonable to measure by the

conditional average delay to detection

CEDDν(T) = Eν[T − ν|T > ν], ν = 0, 1, . . . ,

but not necessarily by the ARL to detection E0[T] ≡ CEDD0(T). A good detection procedure should

guarantee small values of the expected detection delay CEDDν(T) for all change points ν ≥ 0 when

ARL2FA(T) is fixed at a certain level. However, if the false alarm risk is measured in terms of the ARL

to false alarm, i.e., it is required that ARL2FA(T) ≥ γ for some γ ≥ 1, then a procedure that minimizes

the conditional average delay to detection CEDDν(T) uniformly over all ν does not exist. For this

reason, we have to resort to different optimality criteria, e.g., to Bayesian and minimax criteria.
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Figure 1. Illustration of single-run sequential changepoint detection. Two possibilities in the detection

process: false alarm (left) and correct detection (right).

Minimax Changepoint Optimization Criteria

There are two popular minimax criteria. The first one was introduced by Lorden [47]:

inf
T

sup
ν≥0

ess supEν[T − ν | T > ν, Fν] subject to ARL2FA(T) ≥ γ.

It requires minimizing the conditional expected delay to detection Eν[T − ν | T > ν, Fν] in the

worst-case scenario with respect to both the change point ν and the trajectory (X1, . . . , Xν) of the

observed process in the class of detection procedures

CARL(γ) = {T : ARL2FA(T) ≥ γ} , γ ≥ 1,

for which the ARL to false alarm exceeds the prespecified value γ ∈ [1, ∞). Let ESADD(T) =

supν≥0 ess supEν[T − ν | T > ν, Fν] denote Lorden’s speed detection measure. Under Lorden’s

minimax approach the goal is to find a stopping time Topt ∈ CARL(γ) such that

ESADD(Topt) = inf
T∈CARL(γ)

ESADD(T) for any γ ≥ 1.

In the classical i.i.d. scenario (53), Lorden [47] proved that the CUSUM detection procedure (55) is

asymptotically first-order minimax optimal as γ → ∞, i.e.,

inf
T∈CARL(γ)

ESADD(T) = ESADD(TCS)(1 + o(1)), γ → ∞.

Later on, Moustakides [48], using optimal stopping theory, in his ingenious paper established the exact

optimality of CUSUM for any ARL to false alarm γ ≥ 1.

Another popular, less pessimistic minimax criterion is due to Pollak [49]:

inf
T

sup
ν≥0

CEDDν(T) subject to ARL2FA(T) ≥ γ,
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which requires minimizing the conditional expected delay to detection CEDDν(T) = Eν[T − ν | T > ν]

in the worst-case scenario with respect to the change point ν in class CARL(γ). Under Pollak’s minimax

approach the goal is to find a stopping time Topt ∈ CARL(γ) such that

sup
ν≥0

CEDDν(Topt) = inf
T∈CARL(γ)

sup
ν≥0

CEDDν(T) for any γ ≥ 1.

For the i.i.d. model (53), Pollak [49] showed that the modified SR detection procedure that starts

from the quasi-stationary distribution of the SR statistic (i.e., the head-start r0 in the SR-r procedure is

a specific random variable) is third-order asymptotically optimal as γ → ∞, i.e., the best one can attain

up to an additive term o(1):

inf
T∈CARL(γ)

sup
ν≥0

CEDDν(T) = sup
ν≥0

CEDDν(T
r0
SR

) + o(1), γ → ∞,

where o(1) → 0 as γ → ∞. Later Tartakovsky et al. [50] proved that this is also true for the SR-r

procedure (62) that starts from the fixed but specially designed point r0 = r0(γ) that depends on γ,

which was first introduced and thoroughly studied by Moustakides et al. [45]. See also Polunchenko

and Tartakovsky [51] on the exact optimality of the SR-r procedure.

Bayesian Changepoint Optimization Criterion

In Bayesian problems, the point of change ν is treated as random with a prior distribution

πk = Pr(ν = k), −∞ < k < +∞. Define the probability measure on the Borel σ-algebra B in R∞ ×N

as

Pπ(A×K) = ∑
k∈K

πkPk (A) , A ∈ B(R∞), K ∈ N.

Under measure Pπ the change point ν has distribution π = {πk} and the model for the observations is

given in (52). From the Bayesian point of view, it is reasonable to measure the false alarm risk with the

Weighted Probability of False Alarm (PFA), defined as

PFAπ(T) := Pπ(T ≤ ν) =
∞

∑
k=−∞

πkPk(T ≤ k) =
∞

∑
k=0

πkP∞(T ≤ k). (63)

The summation in (63) is over k ∈ Z+ = {0, 1, 2, . . . } since P∞(T < 0) = 0. Also, the last equality

follows from the fact that Pk(T ≤ k) = P∞(T ≤ k) because the event {T ≤ k} depends on the first k

observations which under measure Pk correspond to the no-change hypothesis H∞. Thus, for α ∈ (0, 1),

introduce the class of changepoint detection procedures

Cπ(α) = {T : PFAπ(T) ≤ α} (64)

for which the weighted PFA does not exceed a prescribed level α. Let Eπ denote expectation with

respect to measure Pπ .

Shiryaev [18,44] introduced the Bayesian optimality criterion

inf
T∈Cπ(α)

Eπ [(T − ν)+],

which is equivalent to minimizing the conditional average detection delay EDDπ(T) = Eπ [T− ν|T > ν]

inf
T

EDDπ(T) subject to PFAπ(T) ≤ α.
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Under the Bayesian approach, the goal is to find a stopping time Topt ∈ Cπ(α) such that

EDDπ(Topt) = inf
T∈Cπ(α)

EDDπ(T) for any α ∈ (0, 1). (65)

For the i.i.d. model (53) and under the assumption that the changepoint ν has the zero-modified

geometric prior distribution Geometric(p, ̺) (59), this problem was solved by Shiryaev [18,44].

Shiryaev [18,44,52] proved that the optimal detection procedure is based on comparing the posterior

probability of a change currently being in effect with a certain detection threshold, which is equivalent

to the stopping time TSH(A) (57). To guarantee its strict optimality the detection threshold A = Aα

should be set to guarantee that the PFA is exactly equal to the selected level α. Thus, if A = Aα can be

selected in such a way that PFAπ(TSH(Aα)) = α, then it is strictly optimal in class Cπ(α),

inf
T∈Cπ(α)

EDDπ(T) = EDDπ(TSH(Aα)) for any 0 < α < 1 − p.

Uniform Optimality Under Local Probabilities of False Alarm

While the Bayesian and minimax formulations are reasonable and can be justified in many

applications, it would be most desirable to guarantee small values of the conditional expected detection

delay CEDDν(T) = Eν[T − ν|T ≥ ν] uniformly for all ν ∈ Z+ when the false alarm risk is fixed at

a certain level. However, as we already mentioned, if the false alarm risk is measured in terms of

the ARL to false alarm, i.e. if it is required that ARL2FA(T) ≥ γ for some γ ≥ 1, then a procedure

that minimizes CEDDν(T) for all ν does not exist. More importantly, as discussed in [5, Sec 2.3], the

requirement of having large values of the ARL2FA(T) generally does not guarantee small values of the

maximal local probability of false alarm MLPFA(T) = sup
ℓ≥0 P∞(T ≤ ℓ+ m|T > ℓ) in a time window

of a length m ≥ 1, while the opposite is always true (see Lemmas 2.1-2.2 in [5]). Hence, the constraint

MLPFA(T) ≤ β is more stringent than ARL2FA(T) ≥ γ.

Yet another reason for considering the MLPFA constraint instead of the ARL to false alarm

constraint is that the latter one makes sense, if and only if, the P∞-distribution of stopping times is

geometric or at least close to geometric, which is often the case for many popular detection procedures

such as CUSUM and SR in the i.i.d. case. However, for general non-i.i.d. models this is not necessarily

true (see [5, Sec 2.3] and [53] for a detailed discussion).

For these reasons, introduce the most stringent class of change detection procedures for which the

MLPFA(T) is upper-bounded by the prespecified level β ∈ (0, 1):

CPFA(m, β) =

{
T : sup

ℓ≥0

P∞(T ≤ ℓ+ m|T > ℓ) ≤ β

}
. (66)

The goal is to find a stopping time Topt ∈ CPFA(m, β) such that

CEDDν(Topt) = inf
T∈CPFA(m,β)

CEDDν(T) for all ν ∈ Z+ and any 0 < β < 1. (67)

3.2.4. Asymptotic Optimality for General Non-i.i.d. Models via r-Quick and r-Complete Convergence

Complete Convergence and General Bayesian Changepoint Detection Theory

Consider first the Bayesian problem assuming that the change point ν is a random variable

independent of the observations with a prior distribution π = {πk}. Unfortunately, in the general

non-i.i.d. case and for an arbitrary prior π, the Bayesian optimization problem (65) is intractable for

arbitrary values of PFA α ∈ (0, 1). For this reason, we will consider the following first-order asymptotic

problem assuming that the given PFA α approaches zero: Find a change detection procedure T∗ such
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that it minimizes the expected detection delay EDDπ(T) asymptotically to first order as α → 0. That is,

the goal is to design such a detection procedure T∗ that

inf
T∈Cπ(α)

EDDπ(T) = EDDπ(T∗)(1 + o(1)) as α → 0, (68)

where o(1) → 0 as α → 0. It turns out that in the asymptotic setting, it is also possible to find

a procedure that minimizes the conditional expected detection delay EDDk(T) = Ek [T − k | T > k]

uniformly for all possible values of the change point ν = k ∈ Z+, i.e.,

lim
α→0

infT∈Cπ(α) EDDk(T)

EDDk(T∗)
= 1 for all k ∈ Z+. (69)

Note that if the change occurs before the observations become available, i.e., ν = k ∈ {−1,−2, . . . },

then EDDk(T) ≡ E0[T] since T ≥ 0 w.p. 1.

Furthermore, asymptotic optimality results can be also established for higher moments of the

detection delay of order r > 1

Ek [(T − k)r | T > k] and Eπ [(T − ν)r | T > ν] .

Since the Shiryaev procedure TSH(A) defined in (57)-(58) is optimal for the i.i.d. model and

Geometric(p, ̺) prior, it is reasonable to assume that it is asymptotically optimal for the more general

prior and the non-i.i.d model. However, to study asymptotic optimality we need certain constraints

imposed on the prior distribution and on the asymptotic behavior of the decision statistics as the

sample size increases, i.e., on the general stochastic model (52).

Assume that the prior distribution {πk} is fully supported, i.e., πk > 0 for all k ∈ Z+ and π∞ = 0

and that the following conditions hold:

lim
n→∞

1

n

∣∣∣∣∣log
∞

∑
k=n+1

πk

∣∣∣∣∣ = µ for some 0 ≤ µ < ∞; (70)

∞

∑
k=0

πk| log πk|
r
< ∞ for some r ≥ 1 if µ = 0. (71)

Note that if µ > 0, then by condition (70) the prior distribution has an exponential right tail.

Distributions such as geometric and discrete versions of gamma and logistic distributions, i.e., models

with bounded hazard rates, belong to this class. In this case, condition (71) holds automatically. If

µ = 0, the distribution has a heavy tail, i.e., belongs to the model with a vanishing hazard rate.

However, we cannot allow this distribution to have a too-heavy tail, which is guaranteed by condition

(71).

Define the LLR of the hypotheses Hk and H∞

λk
n = log

dP
(n)
k

dP
(n)
∞

=
n

∑
t=k+1

ft(Xt|Xt)

gt(Xt|Xt)
, n > k

(λk
n = 0 for n ≤ k). To obtain asymptotic optimality results the general non-i.i.d. model for observations

is restricted to the case that the normalized LLR n−1λk
k+n obeys the SLLN as n → ∞ with a finite and

positive number I under the probability measure Pk and its r-complete strengthened version

∞

∑
n=1

nr−1 sup
k∈Z+

Pk

{
|n−1λk

k+n − I| > ε
}
< ∞ for every ε > 0. (72)
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By Lemma 7.2.1 in [6],

PFAπ(TSH(A)) ≤ 1/(1 + A) for every A > p/(1 − p),

and therefore, setting A = Aα = (1 − α)/α guarantees that TSH(Aα) ∈ Cπ(α).

The following theorem that can be deduced from Theorem 3.7 in [5] shows that the Shiryaev

detection procedure is asymptotically optimal if the normalized LLR n−1λk
k+n converges r-completely

to a positive and finite number I and the prior distribution satisfies conditions (70)-(71).

Theorem 6. Let r ≥ 1. Let the prior distribution of the change point satisfy conditions (70)-(71). Assume that

there exists some number 0 < I < ∞ such that the LLR process n−1λk
k+n converges to I uniformly completely

as n → ∞ under Pk, i.e., condition (72) holds. If threshold A = Aα in the Shiryaev procedure is so selected that

PFAπ(TSH(Aα)) ≤ α and log Aα ∼ | log α| as α → 0, e.g., as A = (1 − α)/α, then as α → 0

inf
T∈Cπ(α)

Ek [(T − k)r | T > k] ∼

(
| log α|

I + µ

)r

∼ Ek [(TSH − k)r |TSH > k] for all k ∈ Z+

and

inf
T∈Cπ(α)

Eπ [(T − ν)r | T > ν] ∼

(
| log α|

I + µ

)r

∼ Eπ [(TSH − ν)r |TSH > ν] .

Therefore, the Shiryaev procedure TSH(Aα) is first-order asymptotically optimal as α → 0 in class Cπ(α),

minimizing moments of the detection delay up to order r whenever the r-complete version of the SLLN (72) holds

for the LLR process.

For r = 1, the assertions of this theorem imply asymptotic optimality of the Shiryaev procedure

for the expected detection delays (68) and (69) as well as asymptotic approximations for the expected

detection delays.

Remark 7. The results of Theorem 6 can be generalized to the asymptotically non-stationary case where

λk
k+n/ψ(n) converges to I uniformly completely as n → ∞ under Pk with a non-linear function ψ(n) similarly

to the hypothesis testing problem discussed in Section 3.1. See also the recent paper [54] for the minimax change

detection problem with independent but substantially non-stationary post-change observations.

It is also interesting to see how two other most popular changepoint detection procedures – the

SR and CUSUM – perform in the Bayesian context.

Consider the SR-r procedure defined by (61)-(62). It follows from Lemma 3.4 (page 100) in [5] that

PFAπ(Tr0
SR

(A)) ≤
r0 ∑

∞
k=1 πk + ∑

∞
k=1 kπk

A
for every A > 0,

and therefore, setting A = Aα = α−1(r0 + ∑
∞
k=1 kπk) implies Tr0

SR
(Aα) ∈ Cπ(α). Let threshold A = Aα

in the SR-r procedure is so selected that PFAπ(T
r0
SR

(Aα)) ≤ α and log Aα ∼ | log α| as α → 0, e.g., as

Aα = α−1(r0 + ∑
∞
k=1 kπk), then as α → 0

Ek

[
(Tr0

SR
− k)r |Tr0

SR
> k

]
∼

(
| log α|

I

)r

for all k ∈ Z+ (73)

and

Eπ
[
(Tr0

SR
− ν)r |Tr0

SR
> ν

]
∼

(
| log α|

I

)r

(74)

whenever the uniform r-complete convergence condition (72) holds. Therefore, the SR-r procedure

T
r0
SR

(Aα) is first-order asymptotically optimal as α → 0 in class Cπ(α), minimizing moments of the

detection delay up to order r, when the prior distribution π is heavy-tailed (i.e., when µ = 0) and
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the r-complete version of the SLLN holds. In the case where µ > 0 (i.e., the prior distribution has an

exponential tail) the SR-r procedure is not optimal. This can be expected since it uses the improper

uniform prior in the detection statistic.

The same asymptotic results (73)-(74) are true for the CUSUM procedure TCS(a) defined in (55) if

threshold a = aα is so selected that PFAπ(TCS(aα)) ≤ α and aα ∼ | log α| as α → 0 and the uniform

r-complete convergence condition (72) holds.

Hence, the r-complete convergence of the LLR process is the sufficient condition for uniform

asymptotic optimality of several popular change detection procedures in class Cπ(α).

Complete Convergence and General Non-Bayesian Changepoint Detection Theory

Consider now the non-Bayesian problem assuming that the change point ν is an unknown

deterministic number. We focus on the most interesting for applications uniform optimality criterion

(67) that requires minimizing the conditional expected delay to detection CEDDν(T) = Eν[T − ν|T > ν]

for all values of the change point ν ∈ Z+ in the class of change detection procedures CPFA(m, β) defined

in (66). Recall that this class includes change detection procedures with the maximal local probability

of false alarm in the time window m,

MLPFA(T) = sup
ℓ≥0

P∞(T ≤ ℓ+ m|T > ℓ),

which does not exceed the prescribed value β ∈ (0, 1). However, the exact solution to this challenging

problem is unknown even in the i.i.d. case.

So instead consider the following asymptotic problem assuming that the given MLPFA β goes to

zero: Find a change detection procedure T⋆ which minimizes the expected detection delay Eν[T− ν|T >

ν] asymptotically to first order as β → 0. That is, the goal is to design such a detection procedure T⋆

that

inf
T∈CPFA(m,β)

Eν[T − ν|T > ν] = Eν[T
⋆ − ν|T⋆

> ν](1 + o(1)) for all ν ∈ Z+ as β → 0.

More generally, we may focus on the asymptotic problem of minimizing moments of the detection

delay of order r ≥ 1:

inf
T∈CPFA(m,β)

Eν[(T − ν)r|T > ν] = Eν[(T
⋆ − ν)r|T⋆

> ν](1 + o(1)) for all ν ∈ Z+ as β → 0.

To solve this problem we need to assume that the window length m = mβ is a function of the

MLPFA constraint β and that mβ goes to infinity as β → 0 with a certain appropriate rate. Using [55]

the following results can be established.

Let r ≥ 1 and assume that the complete version of the SLLN holds with some number 0 < I < ∞,

i.e., n−1λν
ν+n converges to I uniformly completely as n → ∞ under Pν. If mβ = O(| log β|2) as

β → ∞ and threshold A = Aβ in the SR procedure is so selected that MPFA(TSR(Aβ)) ≤ β and

log Aβ ∼ | log β| as β → 0, e.g., as defined in [55], then as β → 0

inf
T∈CPFA(mβ ,β)

Eν [(T − ν)r | T > ν] ∼

(
| log β

I

)r

∼ Eν [(TSR − ν)r |TSR > ν] for all ν ∈ Z+.

A similar result also holds for the CUSUM procedure TCS(a) if threshold a = aβ is so selected

that MPFA(TCS(aβ)) ≤ β and aβ ∼ | log β| as β → 0 and the complete version of the SLLN holds for

the normalized LLR n−1λν
ν+n as n → ∞.

Hence, the r-complete convergence of the LLR process is the sufficient condition for uniform

asymptotic optimality of SR and CUSUM change detection procedures with respect to moments of the

detection delay of order r in class CPFA(mβ, β).
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4. Quick and Complete Convergence for Markov and Hidden Markov Models

Usually, in particular problems, verification of the SLLN for the LLR process is relatively easy.

However, in practice, verifying strengthened r-complete or r-quick versions of the SLLN, i.e., checking

condition (72) can cause some difficulty. Many interesting examples where this verification was

performed can be found in [5,6]. However, it is interesting to find sufficient conditions for r-complete

convergence for a relatively large class of stochastic models.

In this section, we outline this issue for Markov and hidden Markov models based on the results

obtained by Pergamenchtchikov and Tartakovsky [55] for ergodic Markov processes and by Fuh and

Tartakovsky [56] for hidden Markov models (HMM). See also Tartakovsky [5, Ch 3].

Let {Xn}n∈Z+
be a time-homogeneous Markov process with values in a measurable space (X , B)

with the transition probability P(x, A). Let Ex denote the expectation with respect to this probability.

Assume that this process is geometrically ergodic, i.e., there exist positives constants 0 < R < ∞, κ > 0,

probability measure κ on (X , B) and the Lyapunov X → [1, ∞) function V with κ(V) < ∞, such

that

sup
n∈Z+

eκn sup
0<ψ≤V

sup
x

1

V(x)
|Ex[ψ(Xn)]−κ(ψ)| ≤ R.

In the change detection problem, the sequence {Xn}n∈Z+
is a Markov process, such that

{Xn}1≤n≤ν is a homogeneous process with the transition density g(y|x) and {Xn}n>ν is homogeneous

positive ergodic with the transition density f(y|x) and the ergodic (stationary) distribution κ. In this

case, the LLR process λk
n can be represented as

λk
n =

n

∑
t=k+1

G(Xt, Xt−1), n > k,

where G(y, x) = log[ f (y|x)/g(y|x)].

Define

I =
∫

X

{∫

X

G(y, x) f (y|x)dy

}
κ(dx).

Under a set of quite sophisticated sufficient conditions the LLR λn
k+n/n converges r-completely to I

(cf. [55]). We omit the details and only mention that the main condition is the finiteness of (r + 1)-th

moment of the LLR increment, E0[(G(X1, X0))
r+1] < ∞.

Consider now the HMM with finite state space. Then again, as in the pure Markov case, the main

condition for r-complete convergence of λn
k+n/n to I , where I is specified in Fuh and Tartakovsky [56],

is E0[(λ
0
1)

r+1] < ∞. Further details can be found in [56].

Similar results for Markov and hidden Markov models hold for the hypothesis testing problem

considered in Section 3.1. Specifically, if in the Markov case we assume that the observed Markov

process {Xn}n∈Z+
is a time-homogeneous geometrically ergodic with transition density fi(y|x) under

hypothesis Hi (i = 0, 1, . . . , N) and invariant distribution κi, then the LLR processes are

λij(n) =
n

∑
t=1

Gij(Xt, Xt−1), i, j = 0, 1, . . . , N, i 6= j,

where Gij(y, x) = log[ fi(y|x)/ f j(y|x)]. If Ei[(Gij(X1, X0))
r+1] < ∞ then the LLR n−1λij(n) converges

r-completely to a finite number

Iij =
∫

X

{∫

X

Gij(y, x) fi(y|x)dy

}
κi(dx).
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5. Conclusion

We show that the strengthened versions of the SLLN, specifically the r-quick and r-complete

versions, are useful tools for many statistical problems for general non-i.i.d. stochastic models. In

particular, r-quick and r-complete convergences for log-likelihood ratio processes are sufficient for

near optimality of sequential hypothesis tests and changepoint detection procedures for models with

dependent and non-identically distributed observations. Such non-i.i.d. models are typical for modern

large-scale information and physical systems that produce Big Data in numerous practical applications.

Readers interested in specific applications may find detailed discussions in [4–6,8,19,22,23,34,36,38,54,

55,55–59].
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