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Abstract: In the first part of this article, we discuss and generalize the complete convergence
introduced by Hsu and Robbins (1947) to r-complete convergence introduced by Tartakovsky (1998).
We also establish its relation to the r-quick convergence first introduced by Strassen (1967) and
extensively studied by Lai (1976). Our work is motivated by various statistical problems, mostly in
sequential analysis. As we show in the second part, generalizing and studying these convergence
modes is important not only in probability theory but also to solve challenging statistical problems in
hypothesis testing and changepoint detection for general stochastic non-i.i.d. models.

Keywords: Complete convergence; r-quick convergence; sequential analysis; hypothesis testing;
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1. Introduction

In [1], Hsu and Robbins introduced the notion of complete convergence which is stronger than
almost sure (a.s.) convergence. Hsu and Robbins used this notion to discuss certain aspects of the Law
of Large Numbers (LLN). In particular, let Xj, X5, ... be independent and identically distributed (i.i.d.)
random variables with the common mean y = E[X;]. Hsu and Robbins proved that, while in the
Kolmogorov Strong Law of Large Numbers (SLLN), only the first moment condition is needed for the
sample mean 7! Y1 | X; to converge to y as n — oo, the complete version of the SLLN requires the
second-moment condition E|X; |2 < oo (finiteness of variance). Later, Baum and Katz [2], working on
the rate of convergence in the LLN, established that the second-moment condition is not only necessary
but also sufficient for complete convergence. Strassen [3] introduced another mode of convergence,
the r-quick convergence. When r = 1, these two modes of convergence are closely related. In the case
of i.i.d. random variables and the sample mean n-1 Y.i—1 Xi, they are identical. This fact and certain
statistical applications motivated Tartakovsky [4] (see also Tartakovsky [5] and Tartakovsky et al. [6])
to introduce a natural generalization of complete convergence — the r-complete convergence, which
turns out to be identical to the r-quick convergence in the i.i.d. case.

Section 2 discusses pure probabilistic issues related to r-complete convergence and r-quick
convergence. Section 3 explores statistical applications in sequential hypothesis testing and
changepoint detection. Section 4 outlines sufficient conditions for r-complete convergence for Markov
and hidden Markov models, which is needed to establish optimality properties of sequential hypothesis
tests and changepoint detection procedures. Section 5 concludes.

2. Modes of Convergence and the Law of Large Numbers

We begin by listing some standard definitions in probability theory. Let (Q}, .%) be a measurable
space, i.e., () is a set of elementary events w and .% is a sigma-algebra (a system of subsets of ()
satisfying standard conditions). A probability space is a triple (Q),.#,P), where P is a probability
measure (completely additive measure normalized to 1) defined on the sets from the sigma-algebra ..
More specifically, by Kolmogorov’s axioms, probability P satisfies: P(A) > 0forany A € .%;P(Q)) = 1;
and P(U2, A;) = 12 P(A;) for A; € 7, AiNAj = 3, i # j, where & is an empty set.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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A function X = X(w) defined on (Q,.%) with values in 2" is called random variable if it is
Z-measurable, i.e., {w : X(w) € B} belongs to the sigma-algebra .#. The function F(x) = P(w :
X(w) < x) is the distribution function of X. It is also referred to as cumulative distribution function
(cdf). The real-valued random variables Xi, Xy, ... are independent if the events {X; < x1}, {X; <
x2},... are independent for every sequence x1, X, ... of real numbers. In what follows, we shall deal
with real-valued random variables unless specified otherwise.

2.1. Standard Modes of Convergence

Let X be a random variable and let { X, },cz, (Z+ = {0,1,2,...}) be a sequence of random
variables, both defined on the probability space (),.%, P). We now give several standard definitions
and results related to the Law of Large Numbers.

Convergence in Distribution (Weak Convergence). Let F,(x) = P(w : X, < x) be the cdf of X,, and
let F(x) = P(w : X < x) be the cdf of X. We say that the sequence {X},cz, converges to X in

distribution (or in law or weakly ) as n — co and write X, 1:—W> X if
n—oo

lim F,(x) = F(x)

n—oo

at all continuity points of F(x).
Convergence in Probability. We say that the sequence {X; },cz, converges to X in probability as

n — oo and write X, %Xif
nlgn P(|Xy — X| >€) =0 foreverye > 0.

Almost Sure Convergence. We say that the sequence { X, },cz, converges to X almost surely (a.s.) or
with probability 1 (w.p. 1) as n — co under probability measure P and write X, % Xif

P(w:lian:X)zl. )

n—o00
It is easily seen that (1) is equivalent to the condition

lim P (w: Yo IX: - X| >£> =0 foreverye >0,
t=n

n—oo

and that the a.s. convergence implies convergence in probability, and the convergence in probability
implies convergence in distribution, while the converse statements are not generally true.

The following double implications that establish necessary and sufficient conditions (i.e.,
equivalences) for the a.s. convergence are useful:

X, 25 X e P<sup|XtX| >g> —— 0 foralle > 0. 2)
n—00 n—00

t>n

The following result is often useful.

Lemma 1. Let f(t) be a nonnegative increasing function, lim; e f(t) = co. If

Xn_ Poas,

Fln) noee
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then

n—o0 n)o<t<n

lim P (f(l) max X; > s) =0 foreverye > 0. ®)

Proof. For any ¢ > 0,19 > 0 and n > 1y, we have

(e >e) <r (myemm o)+ (7 o>
< (mozen > ) +# (e 7> 9)

Letting n — oo and taking into account that

lim P <f(1) max X; >s) =0,

n—roo n) o<t<ng

we obtain

. 1 Xt
lim su P( max X >£)§P sup —— > €| .
et \f(11) 02120~ (P 0 )

Since ng can be arbitrarily large, we can let ny — oo and since, by assumption X,/ f(n) :—s> 0, it
n—oo

follows from (2) that the upper bound approaches 0 as 1y — co. This completes the proof. [J

Remark 1. The proof of Lemma 1 shows that the assertion (3) also holds under the one-sided condition

(sup 110] > e) —= 0 foralle > 0. 4)

t>n

Random Walk. Let Xy, X1, X3, ... be i.i.d. random variables with mean E[X,,| = u for n > 1 and the
initial condition Xy = x. Then S, = }_}' ; X; is called a random walk with mean x + y n.

In what follows, in the case where Xj, Xy, ... are ii.d. random variables and S, = }_}" ; X;, we
prefer to formulate the results in terms of the random walk {S, },cz, (typically So = 0 while not
necessarily).

We now recall the two Strong Law of Large Numbers (SLLN). Write S, = Xy + X1 + - - - + X, for
the partial sum (Xp = S = 0), so that {S; },cz, is a random walk with zero initial condition as long
as X1, Xp, ... areii.d. with mean p.

Kolmogorov’s SLLN. Let {S; },c7, be a random walk under probability measure P. If E[S;] exists,
then the sample mean S, /n converges to the mean value E[Sl] wp. 1, 1ie,

nls, - —— E[Si]. ®)

Conversely, if n -1g, P —> i, where |u| < oo, then E[S1] = p.

Marc1nk1ew1cz-Zygmund s SLLN. Let {S;},cz, be a zero-mean random walk under probability
measure P. The following two statements are equivalent:
() E|S1]F < cofor0 < p<2;

(i) n=1/7S, S22,

2.2. Complete and r-Complete Convergence

We begin with discussing the issue of rates of convergence in the LLN.
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Rates of Convergence. Let { X, },c7, be a sequence of random variables and assume that X;, converges
to 0 w.p. 1 asn — oco. The question is what the rate of convergence is? In other words, how fast
does the tail probability P(|X,| > €) decay to zero? This question can be answered by analyzing the
behavior of the sums

o

X(re) ==Y n"'P(|Xy| > ¢€) forsomer > 0andalle > 0.

n=1

More specifically, if X(7, ¢) is finite for every ¢ > 0, then the tail probability P(|X,,| > €) decays with
the rate faster than 1/#n", so that n"P(| X,,| > ¢) — O foralle > 0 as n — oo.

To answer these questions we now consider modes of convergence that strengthen the almost sure
convergence, and therefore, help to determine the rate of convergence in the SLLN. Historically this
issue was first addressed in 1947 by Hsu and Robbins [1] who introduced the new mode of convergence
that they called Complete Convergence.

Complete Convergence. The sequence {X; },c7, converges to 0 completely if
nlgl;)l:zn P(|X¢| >€) =0 foreverye > 0. (6)

Clearly, (6) is equivalent to

o)

2 (|Xu| > €) < oo foreverye > 0.

Also, (6) implies a.s. convergence X n:—soo> 0, but converse is not generally true unless the variables
X1, Xy, ... are not independent.

Let {Su},cz, be a random walk with mean E[S,] = pn. Kolmogorov’s SLLN (5) implies that
the sample mean S, /n converges to u w.p. 1. Hsu and Robbins [1] proved that under the same
assumptions (i.e., under the only first-moment condition E|S1| < c0) the sequence {n~'S, },>1 need
not converge to y# completely, but it will do so under the further second-moment condition E|S;|? < oo.
So the finiteness of variance is a sufficient condition for complete convergence in the SLLN. They
conjectured that the second-moment condition is not only sufficient but also necessary for complete
convergence. Thus, it follows from these results that if the variance is finite, then the rate of convergence
in Kolmogorov’s SLLN is limy, e 1 P(|S, /1 — p| > €) = 0 foralle > 0.

A further step towards this issue was done in 1965 by Baum and Katz [2]. In particular, the
following result follows from Theorem 3 in [2] for the random walk {S; },c7, with mean E[S{] = p.

Theorem 1. Let r > 0 and a > 1/2. If {Sy} ez, is a random walk with mean E[S1] = p, then the following
statements are equivalent:

E[151]0*1/%] < 0 = ) n’lP{nla|Sn —un| > s} < oo foralle >0
n=1

@)
1P ! k Il
) n supk—lx|Sk—y | >ep < oo foralle > 0.

n=1 k>n

Setting ¥ = 1 and & = 1 in (7), we obtain the following equivalence

E[[S1]?] < o0 <= Y P{|Su/n—p| > e} foralle >0,
n=1
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which shows that the conjecture of Hsu and Robbins is correct — the second-moment condition
E|S1|? < o0 is both necessary and sufficient for complete convergence
1’1_1 S, P —completely
n—oo

Furthermore, if for some r > 0 the (r + 1)-th moment is finite, E|S;|"*! < oo, then the rate of
convergence in the SLLN is lim,, 0o 1" P(|S,/n — u| > €) = 0foralle > 0.

Previous results suggest that it is reasonable to generalize the notion of complete convergence
into the following mode of convergence that we will refer to as r-Complete Convergence, which is also
related to the so-called -Quick Convergence that we will discuss later on (see Subsection 2.3).

Definition 1 (r-Complete Convergence). Let v > 0. We say that the sequence of random
variables {Xy},cz, converges to X r-completely as n — oo under probability measure P and write

P-r-completel .,
X, L, x if
(o]

n—

S(re) =Y n"'P(|Xy — X| >¢€) < oo foreverye > 0. (8)

n=1

Note that the a.s. convergence of {X, } to X can be equivalently written as

n—oo

lim P (Z |X; — X| > 8) =0 foreverye >0,

i=n

so that the r-complete convergence with r > 1 implies the a.s. convergence, but the converse is not
true in general.
Suppose that X;, converges a.s. to X. If 2(r, €) is finite for every ¢ > 0, then

lim ) = IP(|X; — X| >€) =0 foreverye >0
t=n

n—oo

and probability P(| X, — X| > ¢) goes to 0 as n — oo with the rate faster than 1/n". Hence, as already
mentioned above, the r-complete convergence allows one to determine the rate of convergence of X,
to X, i.e., to answer the question on how fast the tail probability P(| X, — X| > ¢€) decays to zero.

The following result provides a very useful implication of complete convergence.

Theorem 2. Let { X}z, and {Yy}yez, be two arbitrary, possibly dependent sequences of random variables.
Assume that there are positive and finite numbers yy and yy such that

d 1
ZP<anH1 >€)<oo for every e > 0 )
n=1
and
i 1
ZP( —Yu = >s> < oo foreverye >0, (10)
n=1
. 1 P —completely 1 P —completely s
ie, n Xy Sos and n=Yy, — o h If w1 > wyp, then for any random time T

P(Xr<b, Yri1 >b(1+46)) — 0 asb—co foranyd > 0. (11)
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Proof. Fix 6 > 0, ¢ € (0,6) and let N, = [1+c)b/uz| be the smallest integer that is larger than or
equal to (14 c)b/puy. Observe that

P(XT<b, YT+1 Zb(l—f—(;)) < P(XTSb, TZNb)+P(YT+1 > (1+5)b, T<Nh)

<P(Xr<b T>N,)+P Y, > (14+6)b).
<P(Xr < > Np) + <1513)§vb"—(+))

Thus, to prove (11) it suffices to show that the two terms on the right-hand side go to 0 as b — oo.
For the first term, we notice that for any n > N,

b b H2 H1
— < — < <
n_Nb_1+c_1+c<‘u1'
so that
e} e} Xn b
P(Xr<b,T>Ny)= ) P(Xy<bT=n)< ) P(="<-
n:Nb l’l:Nb n n

ad X H1 ) ad <Xn c >
< P2t < FL )= P22 -y <— ,
_n:ZI:\/b <n ~1+4c n;:\]b n #1= 1Jrc]/l1
Since N — o0 as b — oo the upper bound goes to 0 as b — oo due to condition (9).
Next, since ¢ € (0,6) there exists ¢ > 0 such that
(1+0)b (149)b

Ny  [b(1+o)/ma] 2 (14

As a result,

1
> <P > !
P <1$i>1<\]an > (1+5)b) <P (Nh 1;}2(%1/,1 > (1—|—e)y2),

where the upper bound goes to 0 as b — oo by condition (10) (see Lemma 1). O

Remark 2. The proof suggests that the assertion (11) of Theorem 2 holds under the following one-sided
conditions

-1 _ s 1y _ _
P (n 1I£S§>(n Ys — pp > s) — 0, 11;1 P (n Xn—p < e) < o0.
Complete convergence conditions (9) and (10) guarantee both these conditions.

Remark 3. Theorem 2 can be applied to the overshoot problem. Indeed, if X, = Y, = Z,, and the random time
T is the first time n when Z, exceeds the level b, T = inf{n > 1: Z,, > b}, then Theorem 2 shows that the
relative excess of boundary crossing (overshoot) (Z1 — b) /b converges to 0 in probability as b — oo when Z, /n
converges completely as n — oo to a positive number .

2.3. r-Quick Convergence

In 1967, Strassen [3] introduced the notion of r-quick limit points of a sequence of random
variables. The r-quick convergence has been further addressed by Lai [7,8], Chow and Lai [9], Fuh and
Zhang [10], and Tartakovsky [4,5] (see certain details in Subsection 2.4).

We define r-quick convergence in a way suitable for this paper. Let { X, },cz, be a sequence of
real-valued random variables and let X be a random variable defined on the same probability space
(Q,.7,P).
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Definition 2 (r-Quick Convergence). Let r > 0 and for ¢ > 0 let
Le=sup{n>1:|X,—X| >¢} (sup{@}=0)

be the last entry time of Xy, in the region (X +¢,00) U (—oco, X —¢). We say that the sequence {Xy},cz.,

P —r-quickl
converges to X r-quickly as n — oo under probability measure P and write X, % X if, and only if,
n—oo

E[L]] < co foreverye > 0, (12)
where E is the operator of expectation under probability P.

This definition can be of course generalized to random variables X, { X, },cz. taking values in a

r-quickl .
T, X if

metric space (2, d) with distance d: X,

n—oo
E[(sup{n >1:d(X,X,) >¢})"| <oo foreverye>D0.

Note that the a.s. convergence X, — u (|pt| < o) as n — oo to a constant y can be expressed as
P(L¢(p) < o0) = 1, where L¢(p) = sup{n > 1:|X, — u| > €} . Therefore, the r-quick convergence
implies the convergence w.p. 1 but not conversely.

Note also that in general r-quick convergence is stronger than r-complete convergence. Specifically,
the following lemma shows that

r—completel r—quickl r—completel
max Xy peey = X, e, = X peey (13)
1<i<n Nn—00 n—co n—»c0

Lemma 2. Let {X; },c7, be asequence of random variables. Let f(t) be a nonnegative increasing function,
f(0) =0, lim¢_e0 f(t) = 400, and let for e > 0

Le(f) =sup{n >1:[Xu| > ef(n)} (sup{@} =0)

be the last time Xy, leaves the interval [—¢f (n), +¢ef (n)].
(i) For any r > 0 and any € > 0 the following inequalities hold:

0 o0 X
r Y 0 P {|Xu| > ef(n)} SE[Le(f)] <r Y n'P supM >ep. (14)
n=1 n=1 t>n f(t)
Therefore,
d r—1 |Xt| r-quickly
Y n"PSsup ot >ep <oo foralle >0 = X, —— 0.
n=1 t>n f(t) n—reo
(ii) If f(t) is a power function, f(t) =t7, v > 0, then finiteness of
) n1p { max X; > sn”}
=1 1<t<n
for some r > 0 and every € > 0 implies r-quick convergence of X, to 0:
{Z n~tp <1r£1ta<x Xy > snY) <ooVe> 0} = {E[L¢(7)"] <o Ve>0}, (15)
n=1 Sisn

where Le(y) =sup{n >1:|X,| >en"}.
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Proof. (i) Obviously,

P{IXu| > ef(n)} < P{L(f) > n} <P {s;ggfgt) X }

from which the inequalities (14) follow immediately.
(ii) Write My, = max; <, <[, | Xn|, where [u] is an integer part of u. We have the following chain
of inequalities and equalities:

E[La(7)] < r/ rlp {suqu | Xy | > 25} dt
0

u>t

< r/ #=1p {sup[|Xu| —eu’| > st7} dt
0

u>t

u>0

< r/ #=1p {sup[|Xu| —eu’] > st7} dt
0

<r) / t’_lP{ sup [| Xy| — eu?] > et7} dt
n=1"0 (

211 1) Y <u¥ < (21 —1)#7

el oo
<r 2/ t”P{ sup |Xy,| > 2"1st7} dt
n=170 ur<2MEY
=71 Z /0 tr_lp {Mzn/'yu > Zn_lgtly} dt

n=1

=r [i 2”/7] /Ooo P {M, > (e/2)u"} du.
n=1

It follows that

E[Lac(7)] <r(@V/7-1)7" /0 WP {My > (e/2)u"} du < (16)
<r(2"7-1) - ng:lnr*lP {fgtagxn X, > srﬂ} (17)

which yields the implication (15) and completes the proof. O

The following theorem shows that, in the i.i.d. case, the implications in (13) become equivalences.

Theorem 3. Let {S, },cz, be the random walk with mean E[S,] = un. The following statements are equivalent

— letel
E|S1*! < 00 = n 15, Y, szpo:tey 1, (18)
—quickl,
B[S [ < o0 e 1S, g, (19)
= 1
E|Si*! <= Y_n""'P {sup 7 |Sk —u| > e} < oo foralle > 0. (20)
n=1 k>n

Proof. By Theorem 1, in the i.i.d. case,

o 1
EISi T <o = Y n"'P <n|Sn—y| >s> <o Ye>0 (21)

n=1

doi:10.20944/preprints202305.0904.v1
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and
ISt <o = Y nlP sup1|Sk—y|>£ <o Ve>0, (22)
n=1 k>n k
so that assertion (18) follows from (21) and (20) from (22).
Next, let
Le=sup{n>1:|S, —nu| >ne} (sup@=0).
By Lemma 2(i),
E[L]] ngn’_lP {sup(|Styt|/t) 28} Ve > 0, (23)
n=1 t>n

which along with (22) implies (19). O

2.4. Further Remarks on r-Complete Convergence, r-Quick Convergence and Rates of Convergence in SLLN

Let {Sy}uecz, be a random walk. Without loss of generality let So = 0 and E[S1] = 0.
1. Strassen [3] proved, in particular, that if f(1n) = (2nlogn)!/? in Lemma 2, then for r > 0

n—oo

lim sup \/Z:YW =/rE[S3] r— quickly (24)

whenever E|[S1|P < oo for p > (2r + 1). He also proved the functional form of the law of the iterated
logarithm.

2. Lai [7] improved this result showing that Strassen’s moment condition E|S;|¥ < oo for p >
(2r + 1) can be relaxed. Specifically, he showed that a weaker condition

E [|sl|2<f+1)(1og+ 1S1] + 1)-““))} <o forr>0 (25)
is the best one can do (i.e., both necessary and sufficient):

E [|51|2(r+1)(log+ |S1] + 1)7(”1)} < 00 <= limsup _Sn < oo r — quickly,

n—oo y/2nlogn

in which case equality (24) holds.
Note, however, that for ¥ = 0 in terms of the a.s. convergence

S
2 : n —./ 2
E {|Sl| } < 00 <= limsup SnToglog E[|S1]?] as.

n—oo

but under condition (25) for all ¥ > 0

. Sn
lim sup

n—eo +/2nloglogn

3. Leta > 1/2 and r > 0. Chow and Lai [9] established the following one-sided inequality for tail

= o0 1 — quickly.

probabilities:
0 /(2a—1)
r—1 St < +\(r+1)/a 21\"

n;ln P (1@% S >n ) < Cra {E [(s1 ) ] + (E[sl]) (26)
whenever E|S;|2 < co. Under the same hypotheses, this one-sided inequality implies the two-sided
one: -

© r/(2a—1

Y wlp (max IS¢ > n"‘) < Cra {E [|sl|(’”)/"‘] + (E[s%]) } . 27)

=1 1<t<n


https://doi.org/10.20944/preprints202305.0904.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 May 2023 doi:10.20944/preprints202305.0904.v1

10 of 32

The upper bound in (27) turns out to be sharp since the lower bound also holds:

Z Z1p (max 1Sy > n"‘) > 1+ B, {E |:|Sl|(7’+1)/06:| I (E[S%])r/(le)}'
n=1

1<t<n

Here the constants C; 4 and B, 4 are universal depending only on 7, .

The results of Chow and Lai [9] provide one-sided analogues of the results of Baum and Katz [2] as
well as extend their results. Indeed, the one-sided inequality (26) implies that the following statements
are equivalent for the zero-mean random walk:

() E[(S)" /1] < oo;

(i) o0 n" " IP (7S, > €) < oo foralle > 0;

(iii) Y00, n" 1P (supk>n k=28, > S) < oo foralle >0,
where o > 1/2.

Clearly, the two-sided inequality (27) yields the assertions of Theorem 1 if u = 0.

4. The Marcinkiewicz-Zygmund SLLN states that for « > 1/2 the following implications hold:

E[$1]* < 00 <= n7%S, 225 0. (28)
n—oo

The strengthened r-quick equivalent of this SLLN is: For any r > 0 and & > 1/2 the following
statements are equivalent,

E[|S1]0F1/%] < 00 = lgnrlP{nla|Sn| > s} < oo foralle >0

n=1 k>n
r—quickl
q y

= Zn’lP{supkla|Sk > s} < oo foralle >0 (29)

<~ n*S, 0.

n—oo

Implications (29) follow from Theorem 1, Theorem 3 and inequality (27). The proof is almost obvious
and omitted.

3. Applications of r-Complete and r-Quick Convergences in Statistics

In this section, we outline certain statistical applications which show the usefulness of r-complete
and r-quick versions of the SLLN.

3.1. Sequential Hypothesis Testing

We begin with formulating the following multihypothesis testing problem for a general non-i.i.d
stochastic model. Let (Q),.%,.%,,P), n € Z; = {0,1,2,...}, be a filtered probability space with
standard assumptions about the monotonicity of the sub-c-algebras .%,. The sub-c-algebra .%, = o(X")
of .7 is assumed to be generated by the sequence X" = {X;, 1 <t < n} observed up to time 1, which is
defined on the space (Q,.%#). The hypotheses are H;: P =P;,i=0,1,...,N, where Py, Py, ..., Py are
given probability measures assumed to be locally mutually absolutely continuous, i.e., their restrictions
Pi{”} and P]{n} to #, are equivalent forall1 < n < o andalli,j =0,1,...,N,i # j. Let Q" be a
restriction to .%, of a o-finite measure Q on (2, .#). Under P; the sample X" = (Xj, ..., X;) has a joint
density p; ,(X") with respect to the dominating measure Q" for all n € Z, which can be written as

pin(X") = [T fir(Xel X, (30)
t=1

where f; ,(X,|X""1), n > 1 are corresponding conditional densities.
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Define the likelihood ratio (LR) process between the hypotheses H; and H i

dp{n} (Xﬂ) _ Pi,n(xn) _ n fi,t(Xt|Xt71)
p].{"} Pia(X") 7 fi (X [XIT)

Az]( )

and the log-likelihood ratio (LLR) process

(XX

Aij(n) =log Ajj(n) = Zlo W

where we set A;;(0) = 1 and A;;(0) = 0.

A multihypothesis sequential test is a pair 6 = (d, T), where T is a stopping time with respect to
the filtration {.%, },cz, and d = d(X7) is an .#7-measurable terminal decision function with values
in the set {0,1,..., N}. Specifically, d = i means that the hypothesis H; is accepted upon stopping,
ie,{d=i} ={T < oo, Jaccepts H;}. Leta;j(6) = P;(d =j),i #j,i,j =0,1,..., N, denote the error
probabilities of the test J, i.e., the probabilities of accepting the hypothesis H; when H; is true.

Introduce the class of tests with probabilities of errors a;;(J) that do not exceed the prespecified
numbers 0 < a;; < 1:

oc):{(5:041-]-(5)gaijfori,jzo,l,...,N,i;éj}, (31)

where & = (a;;) is a matrix of given error probabilities that are positive numbers less than 1.

Let E; denote the expectation under the hypothesis H; (i.e., under the measure P;). The goal of
a statistician is to find a sequential test that would minimize the expected sample sizes E;[T] for all
hypotheses H;, i = 0,1, ..., N at least approximately, say asymptotically for small probabilities of
errors, i.e., as njj — 0.

3.1.1. Asymptotic Optimality of Walds’s SPRT

Assume first that N = 1, i.e,, that we are dealing with two hypotheses Hp and H;. In the mid
1940s, Wald [11,12] introduced the Sequential Probability Ratio Test (SPRT) for the sequence of i.i.d.
observations X1, Xy, ..., in which case f; ;(X¢|X!71) = £;(X;) in (30) and the LR A1 (1) = A, is

After n observations have been made Wald’s SPRT prescribes for each n > 1:

Stop and accept H; if A, > Aj.
Stop and accept Hy if A, < Ao.
Continue sampling if Ag < Ay < Aj.

where Ay < 1 < Aj are two thresholds.
Let Z; = log[f1(X¢)/ fo(X¢)] be the LLR for the observation X;, so the LLR for the sample X" is
the sum

/\10 n—ZZt, n=1 ,,...

Letag = —log Ap < 0 and a; = log A; > 0. The SPRT 4, (ap, a1) = (d«, Tx) can be represented in the
form

1 if Ar, >a
Ti(ag,a1) =inf{n >1: A, & (—ag,a1)}, d«(ap,a1) = . =" (32)
0 if Ar, < —ay.

doi:10.20944/preprints202305.0904.v1
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In the case of two hypotheses, the class of tests (31) is of the form
Cag,a1) = {0 :a0(0) < pand ay1(8) < e},

i.e., it upper-bounds the probabilities of errors of Type 1 (false positive) ag(d) = ag1(4) and Type 2
(false negative) a1 (8) = a1,(d), respectively.

Wald’s SPRT has an extraordinary optimality property: it minimizes both expected sample
sizes Eo[T] and E;[T] in the class of sequential (and non-sequential) tests C(«, &1) with given error
probabilities as long as the observations are i.i.d. under both hypotheses. More specifically, Wald and
Wolfowitz [13] proved, using a Bayesian approach, that if «g + a7 < 1 and thresholds —ap and a; can
be selected in such a way that a(d«) = &g and a7 (J,) = ay, then the SPRT 4, is strictly optimal in class
C(wp, 7). A rigorous proof of this fundamental result is tedious and involves several delicate technical
details. Alternative proofs can be found in [14-19].

Regardless of the strict optimality of SPRT which holds if, and only if, thresholds are selected
so that the probabilities of errors of SPRT are exactly equal to the prescribed values ag, 1, which is
usually impossible, suppose that thresholds ag and a; are so selected that

ag ~log(1/a1) and a; ~log(1/ap) as amax — 0. (33)
Then | |
E[T.] ~ |°;57“0|, Eo[T.] ~ |o}°,7a1| as tmax — 0, (34)
1 0

where [} = E{[Z1] and [y = Eg[—Z;] are Kullback-Leibler (K-L) information numbers so that the
following asymptotic lower bounds for ESS are attained by SPRT:
|log a1 |

inf  Eq[T] > —2— +0(1), inf  Ep[T| > —2—+0(1) as «a —0
56@(0{0,0{1) 1[ ]_ Il ( ) 56@(0&0,0&1) O[ ] I[) ( ) max

(cf. [6]). Hereafter amax = max(ag, «1). The following inequalities for the error probabilities of the
SPRT hold in the most general non-i.i.d. case

w1(6,) < exp{—ao}[1 — a0(6.)], o(6,) < exp{—a1}[1 — a1 (4y)]. (35)

These bounds can be used to guarantee asymptotic relations (33).
In the ii.d. case, by the SLLN, the LLR A, has the following stability property

Pi—as. Po—a.s.

n A, L, n Y (=Ay) Io. (36)

n—oo

This allows one to conjecture that if in the general non-i.i.d. case the LLR is also stable in the sense
that the almost sure convergence conditions (36) are satisfied with some positive and finite numbers
I; and Iy, then the asymptotic formulas (34) still hold. In the general case, these numbers represent
the local K-L information in the sense that often (while not always) I; = lim; n~1E;[A,] and
Ip = limy, 0o 1 Ey [—Ayu]. Note, however, that in the general non-i.i.d. case the SLLN does not even
guarantee the finiteness of the expected sample sizes E;[T] of the SPRT, so some additional conditions
are needed, such as a certain rate of convergence in the strong law, e.g., complete or quick convergence.

In 1981, Lai [8] was the first who proved asymptotic optimality of Wald’s SPRT in a general
non-i.i.d. case as amax = max(ag,a1) — 0. While the motivation was near optimality of invariant
SPRTs with respect to nuisance parameters, Lai proved a more general result using the r-quick
convergence concept. Specifically, fori = 0,1 and 0 < I; < oo, define

Li(e) =sup{n>1:|A, —L| >¢e} and Lo(e) =sup{n >1:|A,+ Iy > ¢}

doi:10.20944/preprints202305.0904.v1
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(sup{@} = 0) and suppose that E;[L;(¢)"] < co for some r > 0 and every ¢ > 0, i.e., that the normalized
LLR converges r-quickly to I; under P; and to —Iy under Py:

Py —r—quickl _ Po—r—quickl
1 q Y I] and n 1)\71 0 q Y o

n—o00 n—oo

n A, Io. (37)
Strengthening the a.s. convergence (36) into the r-quick version (37), Lai [8] established first-order
asymptotic optimality of Wald’s SPRT for moments of the stopping time distribution up to order r: If
thresholds a;(ag, #1), i = 0,1 in the SPRT are so selected that d,(ag,a1) € C(ap, 1) and asymptotics
(33) hold, then as amax — 0,

.
inf  E[T7] ~ (“"g“‘”> ~E[T7],
56@(0{0,0{1) 1

) logoc1|>r
f  Eo[T" ~ |7 ~ Eo[T7].
56@1&0%1) olT’] ( Ip olT:]

(38)

Wald'’s ideas have been generalized in many publications to construct sequential tests of composite
hypotheses with nuisance parameters when these hypotheses can be reduced to simple ones by
the principle of invariance. If M, is the maximal invariant statistic and p;(M,,) is the density of
this statistic under hypothesis H;, then the invariant SPRT is defined as in (32) with the LLR A,, =
log[p1(My)/po(My)]. But even if the observations Xy, X, . .. arei.i.d. the invariant LLR statistic A,
is not a random walk anymore and Wald’s methods cannot be applied directly. Lai [8] has applied
the asymptotic optimality property (38) of Wald’s SPRT in the non-i.i.d. case to investigate optimality
properties of several classical invariant SPRTs such as the sequential t-test, the sequential T?-test, and
Savage’s rank-order test.

In the sequel, the case where the a.s. convergence in the non-i.i.d. model (36) holds with the rate
1/n we will call asymptotically stationary. Assume now that (36) is generalized to

A/ () S22 1, (=Aa) /() T2 g, (39)

where (1) is a positive increasing function. If 1(¢) is not linear, then this case will be referred to as the
asymptotically non-stationary. A simple example where this generalization is needed is testing Hy versus
H; regarding the mean of the normal distribution:

Xn:isn““:n; T’ZEZ+, i:O/]-/

where {{,},>1 is a zero-mean i.i.d. standard Gaussian sequence N (0,1) and S, = Z;'{:o cjnj is a

polynomial of order k > 1. Then
n 1 n
A=Y SiXi =5 Y SF,
n ; tAL 2 ,5:21

E1[An] = —Eo[M] = %Z’le S? ~ c,%nZk for large 1, so (n) = n* and I} = Iy = C%/Z in (39). This
example is of interest for certain practical applications, in particular, for the recognition of ballistic
objects and satellites [19].

Tartakovsky et al. [6, Sec 3.4] generalized Lai’s results for the asymptotically non-stationary case.
Write ¥ (t) for the inverse function for i (f).

Theorem 4. Assume that there exist finite positive numbers Iy and Iy and an increasing nonnegative
function y(t) such that the r-quick convergence conditions
Ay Pi—r—quickly —An  Po—r—quickly
1

Py o gin) o

0
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hold. If thresholds ag(ag, a1 ) and a1 (x, a1) are selected so that 5, (ag,a1) € C(wg, a1) and ag ~ | logay | and
a1 ~ |logwg|, then, as amax — 0,

inf  Eq[T"] ~ [‘I’ ('k’g%)]r ~ E[TI],

seCagm) ’ L e (40)
inf  Eo[T] ~ |¥ Og‘“)]NE 7).
56@(“0/“]) 0[ } |: < IO 0[ ]

This theorem implies that the SPRT asymptotically minimizes the moments of the stopping time
distribution up to the order r.

The proof of this theorem is performed in two steps which are related to our previous discussion
of the rates of convergence in Section 2. The first step is to obtain the asymptotic lower bounds in class
C (060 st ) : ) . . .

liming infsec(ugny) E1[T7] S 1 liminf infsec(ug,ny) EolT"] >
amax—0 [¥ ([logao|/11)]" amax—0 [¥ ([logas|/Io)]"

These bounds hold whenever the following right-tail conditions for the LLR are satisfied:

i — > =
A}IgnooPl {l/)(M) 12%)5\4)\,1 > (1—1—8)11} 1,

I\}Iiinoo Po {1,0(1]\/1) 12?%)5\/1(_)\") > (1 +£)Io} =1
Note that by Lemma 1 these conditions are satisfied when the SLLN (39) holds so that the almost
sure convergence (39) is sufficient. However, as we already mentioned, the SLLN for the LLR is not
sufficient to guarantee even the finiteness of the SPRT stopping time.
The second step is to show that the lower bounds are attained by the SPRT. To do so, it suffices to
impose the following additional left-tail conditions:

[e9)

Y0P (< (L= g} < 00, 30 P (= < (I~ ()} < e
n=1

n=1

for all 0 < ¢ < min(lp, ). Since both right-tail and left-tail conditions hold if the LLR converges
r-completely to [,
2 s}

i 1Py { A

n=1 ll](n)
and since r-quick convergence implies r-complete convergence (see (13)), we conclude that the
assertions (40) hold.

— Il

>ef <o prno{fgeh

n=1

Remark 4. In the i.i.d. case, Wald’s approach allows us to establish asymptotic equalities (40) with Iy =
E1[A1] and Iy = —Eg[A1] being K-L information numbers under the only condition of finiteness I;. However,
Wald’s approach breaks down in the non-i.i.d. case. Certain generalizations in the case of independent but
non-identically and substantially non-stationary observations, extending Wald’s ideas, have been considered in
[19-22]. Theorem 4 covers all these non-stationary models.

Fellouris and Tartakovsky [23] extended previous results on asymptotic optimality of the SPRT to
the case of multistream hypothesis testing problem when the observations are sequentially acquired
in multiple data streams (or channels or sources). The problem is to test the null hypothesis Hy that
none of the N streams is affected against the composite hypothesis Hg that a subset B C {1,...,N}
is affected. Two sequential tests were studied in [23] — the Generalized Sequential Likelihood Ratio
Test and the Mixture Sequential Likelihood Ratio Test. It has been shown that both tests are first-order
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asymptotically optimal, minimizing moments of the sample size Ey[T"] and Eg[T"] for all B € & up to
order r as max(ag, 1) — 0 in the class of tests

(Cg(ao,oq) = {(5 : Po(d = 1) <y and %na}fPB(d :0) < 061}, 0<a; <1,
EK/

where Pp is the distribution of observations under hypothesis Hg and & is a class of subsets of
{1,..., N} that incorporates prior information which is available regarding the subset of affected
streams, e.g., not more than K < N streams can be affected.! The proof is essentially based on the
concept of r-complete convergence of LLR with the rate 1/n. See also Chapter 1 in [5].

3.1.2. Asymptotic Optimality of the Multihypothesis SPRT

We now return to the multihypothesis model with N > 1 that we started to discuss at the
beginning of this section (see (30) and (31)). The problem of sequential testing of many hypotheses
is substantially more difficult than that of testing two hypotheses. For multiple-decision testing
problems, it is usually very difficult, if even possible, to obtain optimal solutions. Finding an optimal
non-Bayesian test in the class of tests (31) that minimizes ESS E;[T] for all hypotheses H;, i = 0,1,..., N
is not manageable even in the i.i.d. case. For this reason, a substantial part of the development of
sequential multihypothesis testing in the 20th century has been directed towards the study of certain
combinations of one-sided sequential probability ratio tests when observations are i.i.d. (see, e.g.,
[24-29]).

We will focus on the following first-order asymptotic criterion: Find a multihypothesis test
0x(a) = (d«(&), Tx(a)) such that for some r > 0

inf E;[T"
lim NI5eC(a) 1[ ]

amax_)owzl foralli =0,1,...,N, (41)

where max = maxo<; j<N,i%j ij-

In 1998, Tartakovsky [4] was the first who considered the sequential multiple hypothesis testing
problems for general non-i.i.d. stochastic models following Lai’s idea of exploiting the r-quick
convergence in the SLLN for two hypotheses. The results have been obtained for both discrete
and continuous-time scenarios and for the asymptotically non-stationary case where the LLR processes
between hypotheses converge to finite numbers with the rate 1/9(t). Two multihypothesis tests were
investigated: (1) The Rejecting test which rejects the hypotheses one by one and the last hypothesis,
which is not rejected, is accepted, and (2) The Matrix Accepting test that accepts a hypothesis for
which all component SPRTs that involve this hypothesis vote for accepting it. We now proceed with
introducing this accepting test which we will refer to as the Matrix SPRT (MSPRT). In the present
article, we do not consider the continuous-time scenarios. Those who are interested in continuous time
we refer to [4,6,20,22,30].

Write V' = {0,1,..., N}. For a threshold matrix (A;;); jcx7, with A;; > 0 and the A;; are immaterial
(say 0), define the Matrix SPRT 6 = (TN,dY), built on (N + 1)N/2 one-sided SPRTs between the
hypotheses H; and H;, as follows:

Stop at the first n > 1 such that, for some i, Ai]-(n) > Aji forall j # i, 42)

and accept the unique H; that satisfies these inequalities. Note that for N = 1 the MSPRT coincides
with Wald’s SPRT.

1 In many practical problems, K is substantially smaller than the total number of streams N, which can be very large.
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In the following, we omit the superscript N in 6¥ = (TN, dl) for brevity. Obviously, with

aji = log Aj;, the MSPRT in (42) can be written as
T, =inf{n >1: Ajj(n) > aj forallj# iand somei}, (43)
d. =i for which (43) holds. (44)

Introducing the Markov accepting times for the hypotheses H; as

Ty =inf ¢ n > 1: Ajp(n) > max[Aj(n) +a;] o, i=0,1,...,N, (45)

1<j<N

J#
the test in (43)—(44) can be also written in the following form:

T, = min T;, dy=i if T,=T,. (46)
0<j<N

Thus, in the MSPRT, each component SPRT is extended until, for some i € N, all N SPRTs involving

H; accept H;.
Using Wald's likelihood ratio identity, it is easily shown that a;;(6.) < exp(—a;j) fori,j € N,
i # j, so selecting aj; = |loga;;| implies . € C(a). These inequalities are similar to Wald’s ones in the

binary hypothesis case and are very imprecise. In his ingenious paper, Lorden [28] showed that with a
very sophisticated design that includes accurate estimation of thresholds accounting for overshoots,
the MSPRT is nearly optimal in the third-order sense, i.e., it minimizes ESS for all hypotheses up to an
additive disappearing term: infscc(q) Ei[T] = E;[T«] +0(1) as @max — 0. This result holds only fori.i.d.
models with the finite second moment E;[A;;(1)%] < co. In non-i.i.d. cases (and even for i.i.d. for higher
moments r > 1), there is no way to obtain such a result, so we focus on the first-order optimality (41).

The following theorem establishes asymptotic operating characteristics and optimality of MSPRT
under the r-quick convergence of A;;(1)/¢(n) to finite K-L-type numbers I;;, where (1) is a positive
increasing function, i(co) = oo.

Theorem 5 (MSPRT asymptotic optimality). Assume that there exist finite positive numbers ljj, i,j =
0,1,...,N,i # jand an increasing nonnegative function y(t) such that for some r > 0

)Lz‘j (1’1) P;—r—quickly

w00 . Lij forall i,j=0,1,...,N,i #J. 47)
Then the following assertions are true.
(i) Fori=0,1,...,N,
;
as:
E[T!] ~ [¥ | max -~ as minaj; — oo. (48)
°§;§.N Lij jji
j#i

(ii) If the thresholds are so selected that a;j(6*) < a;j and aj; ~ |logaj;|, in particular as aj; = [log |, then
foralli=0,1,...,N

r

log ajj
inf E[T"]~ |¥ x| B4
deC(a) 0<j<N ij
j#

~ Ei[Tl] as amax — 0. (49)

Assertion (ii) implies that the MSPRT minimizes asymptotically the moments of the stopping
time distribution up to order r for all hypotheses Ho, Hy, ..., Hy in the class of tests C(«).
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Remark 5. Both assertions of Theorem 5 are correct under the r-complete convergence

/\i]'(Tl) P;—r—complete

L forall i,j=0,1,...,N,i #],

p(n)  noeo
i.e., whenever
© 1
nrlp,{ Aii(n) — I > g} < oo foralle > 0.
ngl 1 lp(n)‘ l]( ) l]} f

While this statement was not proved anywhere so far, it can be easily proved using the methods developed for
multistream hypothesis testing and changepoint detection [5, Ch 1, Ch 6].

Remark 6. As the example given in Subsection 3.4.3 of [6] shows, the r-quick convergence conditions in
Theorem 5 (or corresponding r-complete convergence conditions for LLR processes) cannot be generally relaxed
into the almost sure convergence

/\,']'(1’[) Pi—as. ii= . .
o0 o i forall i =01 N,i#] (50)

However, the following weak asymptotic optimality result holds for the MSPRT under the a.s. convergence: if the
a.s. convergence (50) holds with the power function (t) = t*, k > 0, then for every 0 < e < 1,

inf P;(T>eTy) =1 as amax — 0 forall i=0,1,...,N (51)
6eC(a)

whenever thresholds aj; are selected as in Theorem 5(ii).

Note that several interesting statistical and practical applications of these results to invariant
sequential testing and multisample slippage scenarios are discussed in Sections 4.5 and 4.6 of
Tartakovsky et al. [6] (see Mosteller [31] and Ferguson [16] for terminology regarding multisample
slippage problems).

3.2. Sequential Changepoint Detection

Sequential changepoint detection (or quickest disorder detection) is an important branch of
Sequential Analysis. In the sequential setting, one assumes that the observations are made successively,
one at a time, and as long as their behavior suggests that the process of interest is in a normal state, the
process is allowed to continue; if the state is believed to have become anomalous, the goal is to detect the
change in distribution as rapidly as possible. Quickest change detection problems have an enormous
number of important applications, e.g., object detection in noise and clutter, industrial quality control,
environment surveillance, failure detection, navigation, seismology, computer network security,
genomics, epidemiology (see, e.g., [32—41]). Several challenging application areas are discussed
in the books by Tartakovsky, Nikiforov, and Basseville [6, Ch 11] and Tartakovsky [5, Ch 8].

3.2.1. Changepoint Models

The probability distribution of the observations X = { X, },cz, , which are acquired sequentially
in time, is subject to a change at an unknown point in time v € {0,1,2,...}, so that Xy,..., X, are
generated by one stochastic model and X, 1, X, 42, ... by another model. A sequential detection rule is
a stopping time T for an observed sequence { Xy, },,>1, i.e., T is an integer-valued random variable, such
that the event {T = n} belongs to the sigma-algebra .7, = 0(Xj, ..., X) generated by observations
X1, Xn.

Let P« denote the probability measure corresponding to the sequence of observations {X },,>1
when there is never a change (v = o0) and, for k = 0,1, ..., let Py denote the measure corresponding
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to the sequence {X; },,>1 when v =k < 0. By He, : v = 00 we denote the hypothesis that the change
never occurs and by Hy : v = k — the hypothesis that the change occurs at time 0 < k < oo.

Consider first a general non-i.i.d. model assuming that the observations may have a very general
stochastic structure. Specifically, if we let as before X" = (X, ..., X,;) denote the sample of size 1, then
when v = oo (there is no change) the conditional density of X, given X"—1ig en(Xn |X"’1) foralln > 1
and when v = k < oo, then the conditional density of X, given X" ! is g, (X,|X""1) for n < k and
fu(Xu|X"~1) for n > k. Thus, for the general non-i.i.d. changepoint model, the joint density p(X"|Hy)
under hypothesis Hy can be written as follows

[T g Xe X1 for v="k>n,

k t—1 n t—1 f —k (52)
[Ti—q (X[ XIT0) XTI ey fr(Xe X0 for v =k <mn,

p(X"|Hy) = {

where ¢,(X,|X"!) is the pre-change conditional density and f,(X,|X""1) is the post-change
conditional density which may depend on v, f,,(X,|X"1) = fy(lv) (Xn|X"1), but we will omit the
superscript v for brevity.

The classical changepoint detection problem deals with the i.i.d. case where there is a sequence
of observations Xj, X, ... that are identically distributed with a probability density function (pdf)
g(x) for n < v and with a pdf f(x) for n > v. That s, in the i.i.d. case, the joint density of the vector
X" = (X, ..., Xu) under hypothesis Hy in (52) is simplified as

i1 8(Xt) forv=k>n,

k n - (53)
ITiq 8(Xt) x TTigyq f(Xi) forv =k < n.

p(X"|Hg) = {

Note that, as discussed in [5,6], in applications, there are two different kinds of changes — additive
and non-additive. Additive changes lead to a change in the mean value of the sequence of observations.
Non-additive changes are typically produced by a change in variance or covariance, i.e., these are
spectral changes.

We now proceed with discussing the models for the change point v. The change point v may be
considered either as an unknown deterministic number or as a random variable. If the change point
is treated as a random variable, then the model has to be supplied with the prior distribution of the
change point. There may be several changepoint mechanisms and, as a result, a random variable v
may be partially or completely dependent on the observations or independent of the observations. To
account for these possibilities at once, let 7_1 = Pr(v < 0) and 7ty = Pr(v = k|X¥), k > 0, and observe
that ry, k = 1,2, ... are #-adapted. That is, the probability of a change occurring at the time instant
v = k depends on X, the observations’ history accumulated up to and including the time k > 1. The
probability 71_; 4+ 719 = Pr(v < 0) represents the probability of the “atom” associated with the event
that the change already took place before the observations became available. With the so-defined prior
distribution, one can describe very general changepoint models, including those that assume v to be a
{Z, }-adapted stopping time (see Moustakides [42]). In this article, we will not discuss Moustakides’s
concept by allowing the prior distribution to depend on some additional information available to
“Nature” (see [5] for a detailed discussion); rather when considering a Bayesian approach we will
assume that the prior distribution of the unknown change point is independent of the observations.

3.2.2. Popular Changepoint Detection Procedures

Before formulating criteria of optimality in the next subsection, we begin with defining the three
most popular and common change detection procedures, which are either optimal or nearly optimal in
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different settings. To define these procedures we need to introduce the partial likelihood ratio and the
corresponding log-likelihood ratio

fe(Xe X1 fi(Xe X1

LRy = ————-%, Z;=1
'T g (X Xy P08

It is worth iterating that for general non-i.i.d. models the post-change density often depends on the
point of change, f;(X;|X!~1) = £ (X;|Xt"1), so in general LR, = LR!") and Z; = Z{") also depend on
the change point v. However, this is not the case for the i.i.d. model (53).

The CUSUM Procedure

We now introduce the Cumulative Sum (CUSUM) algorithm, which was first proposed by Page [43]
for the i.i.d. model (53). Recall that we consider the changepoint detection problem as a problem of
testing two hypotheses: H, that the change occurs at a fixed point 0 < v < co against the alternative
He that the change never occurs. The LR between these hypotheses is A}, = [Ti_, . LR; forv < n
and 1 for v > n. Since the hypothesis H, is composite, we may apply the generalized likelihood ratio
(GLR) approach maximizing the LR A}, over v to obtain the GLR statistic

n

Vio=max [] LR, n>1
Osvemy i

It is easy to verify that this statistic follows the recursion
Vi =max{1,V,_1}LR,, n>1, V=1 (54)

as long as the partial LR LR, does not depend on the change point, i.e., the post-change conditional
density f,(X,|X""!) does not depend on v. This is always the case for i.i.d. models (53) when
fn(Xu|X"1) = f(X,). However, as we already mentioned, for non-i.i.d. models often f, (X, |X"~1) =
f,S”) (X |X"~1) depends on the change point v, so LR, = LRSIV), in which case recursion (54) does not
hold.

The logarithmic version of V,;, W,, = log V,, is related to Page’s CUSUM statistic G, introduced
by Page [43] in the i.i.d. case as G, = max(0, W,,). In fact, the statistic G, can also be obtained via the
GLR approach by maximizing the LLR A}, = log A}, over 0 < v < co. However, since the hypotheses
Heo and Hy are indistinguishable for v > #n the maximization over v > n does not make too much sense.
Note also that in contrast to Page’s CUSUM statistic G, the statistic W, may take values smaller than 0,
so the CUSUM procedure

Tes=inf{n>1:W, >a} (55)

makes sense even for negative values of the threshold a. Thus, it is more general than Page’s CUSUM.
Note the recursions
W, = W

n—1

+Zy, n>1, Wy=0 (56)

and
Gu=(Gu1+Zy)", n>1, Gy=0

in case where Z,, = log[fu(Xu|X"~1)/gn(Xu|X"1)] does not depend on v.
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Shiryaev’s Procedure

In the ii.d. case and for the zero-modified geometric prior distribution of the change point,
Shiryaev [44] introduced the change detection procedure that prescribes thresholding of the posterior
probability P(v < n|X"). Introducing the statistic

Py <n|xm)
 1-P(v < n|Xn)

Si

one can write the stopping time of the Shiryaev procedure in the general non-i.i.d. case and for an
arbitrary prior 7t as
TSH = inf{n 2 1: 57711 2 A}, (57)

where A is a threshold controlling for the false alarm risk. Write 7_1 = P(v < 0) = p, p € [0,1). The
statistic SF can be written as

T 14 0 1 (= k
ST R

I—-p
(58)
P TR+ o ni [T R, n>1 si=-7
- t B < .\ 7Tk ts n-=1, - T
l=pig Plv=n) = " o 1y

where the product ]_[{: ; LRt = 1 for j < i. Threshold A has to be set larger than p/(1 — p) to avoid
triviality, since otherwise Tgy = 0 w.p. 1.

Often (following Shiryaev’s assumptions) it is supposed that the change point v is distributed
according to the zero-modified geometric distribution Geometric(p, 0)

Plv<0)=n_41=p and P(v="k) = (1—-p)o(l1—o)* fork=0,1,2,..., (59)
where p € [0,1) and 0 € (0,1).

If LR;; does not depend on the change point v and the prior distribution is zero-modified geometric
(59) then the statistic S, = S/F/ o can be rewritten in the recursive form

_ _ LR _
Sh=(1+54) T 2l 8= gt (60)

However, as mentioned above, this may not be the case for non-i.i.d. models since often LR, depends
onv.

Shiryaev-Roberts Procedure

The generalized Shiryaev-Roberts (SR) change detection procedure is based on thresholding of
the generalized SR statistic

n—1 n n—-1 n
RO =roA2+ Y AL =g TTLR: + LRy, n>1, (61)
n n
k=0 t=1 k=0 t=k+1

with a non-negative head-start Ry = rq, 79 > 0, i.e., the stopping time of the SR procedure is given by

T, =inf{n>1:RY>A}, A>0. (62)
This procedure is usually referred to as the SR-r detection procedure in contrast to the standard SR
procedure Tsg = TrSOR, ro = 0 that starts with a zero initial condition ry = 0. In the i.i.d. case (53), this
modification of the SR procedure was introduced and studied in detail in [45,46].
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If LR, does not depend on the change point v, then the SR-r detection statistic satisfies the
recursion
R;O = (1 + Rzoil)LRn, n> 1, Rgo = ro.

Note that as the parameter of the geometric prior distribution ¢ — 0, the Shiryaev statistic Sy,
converges to the SR-r statistic R}?.

3.2.3. Optimality Criteria

The goal of online change detection is to detect the change as soon as possible after it occurs
controlling a false alarm rate at a given level. Tartakovsky et al. [6, Sec. 6.3] suggested five changepoint
problem settings — the Bayesian approach, the generalized Bayesian approach, the minimax approach,
the uniform (pointwise) approach, and the approach related to multicyclic detection of a change in a
stationary regime. In this article, we discuss only a single-run case and two main settings — Bayesian
and uniform pointwise optimality, which are tightly related.

Let E; denote the expectation with respect to the measure P, when the change occurs at v = k < oo
and E, with respect to P, when there is no change.

In 1954, Page [43] suggested measuring the risk associated with a false alarm by the mean time to
false alarm E[T] and the risk associated with a true change detection by the mean time to detection
Eo[T] when the change occurs at the very beginning. He called these performance characteristics the
Average Run Length (ARL). Page also introduced the now most famous change detection procedure —
CUSUM procedure — and analyzed it using these operating characteristics.

While the false alarm rate is reasonable to measure by the ARL to false alarm

ARL2FA(T) = Eo[T],

as Figure 1 suggests, the risk associated with a true change detection is reasonable to measure by the
conditional average delay to detection

CEDD,(T) =E,[T—v|[T>v], v=0,1,...,

but not necessarily by the ARL to detection Eo[T] = CEDDg(T). A good detection procedure should
guarantee small values of the expected detection delay CEDD, (T) for all change points v > 0 when
ARL2FA(T) is fixed at a certain level. However, if the false alarm risk is measured in terms of the ARL
to false alarm, i.e., it is required that ARL2FA(T) > -y for some 7 > 1, then a procedure that minimizes
the conditional average delay to detection CEDD, (T) uniformly over all v does not exist. For this
reason, we have to resort to different optimality criteria, e.g., to Bayesian and minimax criteria.
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Figure 1. Illustration of single-run sequential changepoint detection. Two possibilities in the detection
process: false alarm (left) and correct detection (right).
Minimax Changepoint Optimization Criteria
There are two popular minimax criteria. The first one was introduced by Lorden [47]:

il%fsup esssupEy[T—v | T > v, %] subjectto ARL2FA(T) > 1.

v>0

It requires minimizing the conditional expected delay to detection E,[T —v | T > v,.%,] in the
worst-case scenario with respect to both the change point v and the trajectory (Xi,...,Xy) of the
observed process in the class of detection procedures

CarL(7) = {T: ARL2FA(T) > v}, 7 2>1,

for which the ARL to false alarm exceeds the prespecified value v € [1,00). Let ESADD(T) =
sup,~gesssupEy[T —v | T > v,.%,] denote Lorden’s speed detection measure. Under Lorden’s
minimax approach the goal is to find a stopping time Topt € Carr(7y) such that

ESADD(Topt) = Te(Cinf o) ESADD(T) foranyy > 1.
ARL

In the classical i.i.d. scenario (53), Lorden [47] proved that the CUSUM detection procedure (55) is
asymptotically first-order minimax optimal as ¢y — oo, i.e,,

inf  ESADD(T) = ESADD(T¢s)(1+0(1)), 7y — co.
TeCare(7)
Later on, Moustakides [48], using optimal stopping theory, in his ingenious paper established the exact
optimality of CUSUM for any ARL to false alarm y > 1.
Another popular, less pessimistic minimax criterion is due to Pollak [49]:

irT1fsup CEDD,(T) subject to ARL2FA(T) > v,
>0
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which requires minimizing the conditional expected delay to detection CEDD,(T) = E,[T —v | T > v]
in the worst-case scenario with respect to the change point v in class Cagy. (7). Under Pollak’s minimax
approach the goal is to find a stopping time Topt € Cary () such that

sup CEDD,(Topt) = inf  sup CEDDy(T) foranyy > 1.
v>0 TeCaArL(Y) v>0

For the i.i.d. model (53), Pollak [49] showed that the modified SR detection procedure that starts
from the quasi-stationary distribution of the SR statistic (i.e., the head-start r( in the SR-r procedure is
a specific random variable) is third-order asymptotically optimal as y — o, i.e., the best one can attain
up to an additive term o(1):

inf  sup CEDD,(T) =sup CEDD,(T&) +o0(1), 7 — oo,
T€CARL(Y) v>0 v>0

where 0(1) — 0 as v — oo. Later Tartakovsky et al. [50] proved that this is also true for the SR-r
procedure (62) that starts from the fixed but specially designed point ryp = ry(y) that depends on v,
which was first introduced and thoroughly studied by Moustakides et al. [45]. See also Polunchenko
and Tartakovsky [51] on the exact optimality of the SR-r procedure.

Bayesian Changepoint Optimization Criterion

In Bayesian problems, the point of change v is treated as random with a prior distribution
e = Pr(v = k), —o0 < k < +o00. Define the probability measure on the Borel o-algebra % in R® x N
as

PTAXK) =) mPi(A), Ac BR”), KeN.
kek

Under measure P” the change point v has distribution 77 = {77} } and the model for the observations is
given in (52). From the Bayesian point of view, it is reasonable to measure the false alarm risk with the
Weighted Probability of False Alarm (PFA), defined as

PFA™(T):=P™(T<v)= Y mP(T<k) =) mPow(T <k). (63)
k=—o0 k=0
The summation in (63) is over k € Z4 = {0,1,2,...} since Po(T < 0) = 0. Also, the last equality
follows from the fact that Py (T < k) = P (T < k) because the event {T < k} depends on the first k
observations which under measure P correspond to the no-change hypothesis Heo. Thus, for « € (0,1),
introduce the class of changepoint detection procedures

Crla) = {T: PFA™(T) < a} (64)

for which the weighted PFA does not exceed a prescribed level a. Let E™ denote expectation with
respect to measure P”.
Shiryaev [18,44] introduced the Bayesian optimality criterion

inf E"[(T—v)"],
o BT =v)7

which is equivalent to minimizing the conditional average detection delay EDD™(T) = E™[T —v|T > v|

irj}f EDD™(T) subject to PFA™(T) < a.
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Under the Bayesian approach, the goal is to find a stopping time Topt € C(a) such that

EDD™(Topt) = inf EDD™(T) foranya € (0,1). (65)
TeCr(a)

For the i.i.d. model (53) and under the assumption that the changepoint v has the zero-modified
geometric prior distribution Geometric(p,0) (59), this problem was solved by Shiryaev [18,44].
Shiryaev [18,44,52] proved that the optimal detection procedure is based on comparing the posterior
probability of a change currently being in effect with a certain detection threshold, which is equivalent
to the stopping time Tgy(A) (57). To guarantee its strict optimality the detection threshold A = A,
should be set to guarantee that the PFA is exactly equal to the selected level a. Thus, if A = A, can be
selected in such a way that PFA™(Tgy(Ay)) = g, then it is strictly optimal in class Cr(a),

inf EDD™(T) = EDD"(Tgy(Ay)) forany 0 <a <1—p.
TeCxr(a)

Uniform Optimality Under Local Probabilities of False Alarm

While the Bayesian and minimax formulations are reasonable and can be justified in many
applications, it would be most desirable to guarantee small values of the conditional expected detection
delay CEDD,(T) = E,[T — v|T > v| uniformly for all v € Z, when the false alarm risk is fixed at
a certain level. However, as we already mentioned, if the false alarm risk is measured in terms of
the ARL to false alarm, i.e. if it is required that ARL2FA(T) > < for some ¢ > 1, then a procedure
that minimizes CEDD, (T for all v does not exist. More importantly, as discussed in [5, Sec 2.3], the
requirement of having large values of the ARL2FA(T) generally does not guarantee small values of the
maximal local probability of false alarm MLPFA(T) = sup;~,Pe(T < £+ m|T > £) in a time window
of a length m > 1, while the opposite is always true (see Lemmas 2.1-2.2 in [5]). Hence, the constraint
MLPFA(T) < f is more stringent than ARL2FA(T) > 1.

Yet another reason for considering the MLPFA constraint instead of the ARL to false alarm
constraint is that the latter one makes sense, if and only if, the Po-distribution of stopping times is
geometric or at least close to geometric, which is often the case for many popular detection procedures
such as CUSUM and SR in the i.i.d. case. However, for general non-i.i.d. models this is not necessarily
true (see [5, Sec 2.3] and [53] for a detailed discussion).

For these reasons, introduce the most stringent class of change detection procedures for which the
MLPFA(T) is upper-bounded by the prespecified level g € (0,1):

Cppa(m, B) = {T:supPoo(T<€+m|T>€) <ﬁ} (66)
>0

The goal is to find a stopping time Topt € Cppa (1, B) such that

CEDDy (Topt) = Tecggf(m 5 CEDD,(T) forallv € Z; andany0 < B < 1. (67)

3.2.4. Asymptotic Optimality for General Non-i.i.d. Models via r-Quick and r-Complete Convergence

Complete Convergence and General Bayesian Changepoint Detection Theory

Consider first the Bayesian problem assuming that the change point v is a random variable
independent of the observations with a prior distribution 77 = {7, }. Unfortunately, in the general
non-i.i.d. case and for an arbitrary prior 7, the Bayesian optimization problem (65) is intractable for
arbitrary values of PFA « € (0,1). For this reason, we will consider the following first-order asymptotic
problem assuming that the given PFA « approaches zero: Find a change detection procedure T* such
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that it minimizes the expected detection delay EDD™(T) asymptotically to first order as « — 0. That is,
the goal is to design such a detection procedure T* that

inf EDD”(T) = EDD™(T*)(1+0(1)) asa — 0, (68)
TeCxr(a)

where 0(1) — 0as a — 0. It turns out that in the asymptotic setting, it is also possible to find

a procedure that minimizes the conditional expected detection delay EDDy(T) = E [T — k| T > k]
uniformly for all possible values of the change pointv =k € Z, ie,,

. infrec, (n) EDDk(T)
lim

lim EDD(T7) =1 forallk e Z,;. (69)

Note that if the change occurs before the observations become available, ie., v =k € {-1,-2,...},
then EDDy(T) = Eo[T] since T > 0 w.p. 1.

Furthermore, asymptotic optimality results can be also established for higher moments of the
detection delay of order » > 1

E[(T—k)|T>K and ET[(T—v)"|T>1].

Since the Shiryaev procedure Tgy(A) defined in (57)-(58) is optimal for the i.i.d. model and
Geometric(p, ¢) prior, it is reasonable to assume that it is asymptotically optimal for the more general
prior and the non-i.i.d model. However, to study asymptotic optimality we need certain constraints
imposed on the prior distribution and on the asymptotic behavior of the decision statistics as the
sample size increases, i.e., on the general stochastic model (52).

Assume that the prior distribution {71, } is fully supported, i.e., 1, > O forall k € Z and 7 = 0
and that the following conditions hold:

1 (e )
lim = [log ) 7| =p forsome0 < p < oo; (70)
noeen k=n+1
Y millog my|” < oo forsomer>1 if u=0. (71)
k=0

Note that if u > 0, then by condition (70) the prior distribution has an exponential right tail.
Distributions such as geometric and discrete versions of gamma and logistic distributions, i.e., models
with bounded hazard rates, belong to this class. In this case, condition (71) holds automatically. If
u = 0, the distribution has a heavy tail, i.e., belongs to the model with a vanishing hazard rate.
However, we cannot allow this distribution to have a too-heavy tail, which is guaranteed by condition
(71).

Define the LLR of the hypotheses Hy and Heo

dP (XX
Mo=log —k - = Yy IESEOL sk
" & dPg) t:;—i-l g (X¢[X)

(Ak = 0 for n < k). To obtain asymptotic optimality results the general non-i.i.d. model for observations
is restricted to the case that the normalized LLR n_l)\ﬁ 4 Obeys the SLLN as n — oo with a finite and
positive number I under the probability measure Py and its r-complete strengthened version

Y n"! sup Py {|n_1)\£+n —1I| > e} < oo foreverye > 0. (72)
n=1 keZy
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By Lemma 7.2.1 in [6],
PFA™(Tsy(A)) <1/(1+A) forevery A > p/(1—p),

and therefore, setting A = A, = (1 — «)/a guarantees that Tgy(Ay) € Cr(a).

The following theorem that can be deduced from Theorem 3.7 in [5] shows that the Shiryaev
detection procedure is asymptotically optimal if the normalized LLR n’l/\i ., converges r-completely
to a positive and finite number I and the prior distribution satisfies conditions (70)-(71).

Theorem 6. Let r > 1. Let the prior distribution of the change point satisfy conditions (70)-(71). Assume that
there exists some number 0 < I < co such that the LLR process n_l)xi . converges to I uniformly completely
as n — oo under Py, i.e., condition (72) holds. If threshold A = A, in the Shiryaev procedure is so selected that
PFA™ (Tsy(Aw)) < wandlog Ay ~ |loga|asa — 0,e.g.,as A= (1 —a)/a, thenasa — 0

: loga|\"
P BT T K~ ~ E[(Tsn— k) | Top > k ke
int BT T >~ () (Taw = [ Ton > K forarke 2.

and
| log «|

inf  E"[(T—v)"|T>v]~ < T+

r
~ET [(Tep — ) | T .
TECr (x) ) [(Top —v)" | Toy > v]

Therefore, the Shiryaev procedure Tsy(Ay) is first-order asymptotically optimal as « — 0 in class Cr(«),
minimizing moments of the detection delay up to order v whenever the r-complete version of the SLLN (72) holds
for the LLR process.

For r = 1, the assertions of this theorem imply asymptotic optimality of the Shiryaev procedure
for the expected detection delays (68) and (69) as well as asymptotic approximations for the expected
detection delays.

Remark 7. The results of Theorem 6 can be generalized to the asymptotically non-stationary case where
AK </ W(n) converges to I uniformly completely as n — oo under Py with a non-linear function y(n) similarly
to the hypothesis testing problem discussed in Section 3.1. See also the recent paper [54] for the minimax change
detection problem with independent but substantially non-stationary post-change observations.

It is also interesting to see how two other most popular changepoint detection procedures — the
SR and CUSUM - perform in the Bayesian context.
Consider the SR-r procedure defined by (61)-(62). It follows from Lemma 3.4 (page 100) in [5] that

10 ey Tk + Ly K7ty
A

PFAT(TdR(A)) < for every A >0,

and therefore, setting A = A, = a1 (rg + X321 k) implies T (Aq) € Cr(a). Let threshold A = A,
in the SR-r procedure is so selected that PFA;(Tdg(As)) < & and log Ay ~ [loga|asa — 0, e.g., as
Ag =a Y ro+ X5, ki), thenasa — 0

.
Ei (TS — k) [ TQ > k] ~ ('10;5”"> forallk € Z (73)
and | .
og
£ (TG~ | T > 0] ~ (1254 2z

whenever the uniform r-complete convergence condition (72) holds. Therefore, the SR-r procedure
TR (Ay) is first-order asymptotically optimal as & — 0 in class Cr(«), minimizing moments of the
detection delay up to order r, when the prior distribution 7 is heavy-tailed (i.e., when y = 0) and
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the r-complete version of the SLLN holds. In the case where y > 0 (i.e., the prior distribution has an
exponential tail) the SR- procedure is not optimal. This can be expected since it uses the improper
uniform prior in the detection statistic.

The same asymptotic results (73)-(74) are true for the CUSUM procedure Tcg(a) defined in (55) if
threshold a = a, is so selected that PFA;(Tcs(ax)) < a and a, ~ |loga| as « — 0 and the uniform
r-complete convergence condition (72) holds.

Hence, the r-complete convergence of the LLR process is the sufficient condition for uniform
asymptotic optimality of several popular change detection procedures in class Cr («).

Complete Convergence and General Non-Bayesian Changepoint Detection Theory

Consider now the non-Bayesian problem assuming that the change point v is an unknown
deterministic number. We focus on the most interesting for applications uniform optimality criterion
(67) that requires minimizing the conditional expected delay to detection CEDD, (T) = E, [T —v|T > v]
for all values of the change point v € Z in the class of change detection procedures Cpga (m, B) defined
in (66). Recall that this class includes change detection procedures with the maximal local probability
of false alarm in the time window m,

MLPFA(T) = sup Peo(T < £+ m|T > ),
>0

which does not exceed the prescribed value g € (0,1). However, the exact solution to this challenging
problem is unknown even in the i.i.d. case.

So instead consider the following asymptotic problem assuming that the given MLPFA j goes to
zero: Find a change detection procedure T* which minimizes the expected detection delay E, [T —v|T >
v] asymptotically to first order as § — 0. That is, the goal is to design such a detection procedure T*
that

inf E T—v|T>v]=E/[T"—v|T* >v](14+0(1)) forallveZ,asp— 0.
T€Cppa(m,B)

More generally, we may focus on the asymptotic problem of minimizing moments of the detection
delay of order r > 1:

inf  EJ(T—v)'|T>v]=E[(T"—v)|T" >v](14+0(1)) forallveZ,asp — 0.
TECpga (m,B)

To solve this problem we need to assume that the window length m = mg is a function of the
MLPFA constraint  and that mg goes to infinity as  — 0 with a certain appropriate rate. Using [55]
the following results can be established.

Let » > 1 and assume that the complete version of the SLLN holds with some number 0 < [ < oo,
ie, n~!AY,, converges to I uniformly completely as n — oo under P,. If mg = O(] log B|?) as
p — oo and threshold A = Ag in the SR procedure is so selected that MPFA(Tsgr(Ag)) < B and
log Ag ~ |log B| as B — 0, e.g., as defined in [55], then as § — 0

1 r
inf  E[(T—v)|T>v]~ (")gﬁ) ~Ey[(Tsr =) | Tog >v] forallv € Z,.
T€Cppa (mpg,p) I

A similar result also holds for the CUSUM procedure Tcs(a) if threshold a = ag is so selected
that MPFA(Tcs(ag)) < Band ag ~ |log B| as B — 0 and the complete version of the SLLN holds for
the normalized LLR n1AY, asn — oo.

Hence, the r-complete convergence of the LLR process is the sufficient condition for uniform
asymptotic optimality of SR and CUSUM change detection procedures with respect to moments of the
detection delay of order 7 in class Cpga (4, B).
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4. Quick and Complete Convergence for Markov and Hidden Markov Models

Usually, in particular problems, verification of the SLLN for the LLR process is relatively easy.
However, in practice, verifying strengthened r-complete or r-quick versions of the SLLN, i.e., checking
condition (72) can cause some difficulty. Many interesting examples where this verification was
performed can be found in [5,6]. However, it is interesting to find sufficient conditions for r-complete
convergence for a relatively large class of stochastic models.

In this section, we outline this issue for Markov and hidden Markov models based on the results
obtained by Pergamenchtchikov and Tartakovsky [55] for ergodic Markov processes and by Fuh and
Tartakovsky [56] for hidden Markov models (HMM). See also Tartakovsky [5, Ch 3].

Let { X1 },cz, be atime-homogeneous Markov process with values in a measurable space (27, %)
with the transition probability P(x, A). Let E, denote the expectation with respect to this probability.
Assume that this process is geometrically ergodic, i.e., there exist positives constants 0 < R < o0,k > 0,
probability measure s on (27, #) and the Lyapunov 2" — [1, ) function V with (V) < oo, such
that

sup ¢ sup sup o [E$(X0)] —(9)| < R
neZy 0<y<V x V(x)
In the change detection problem, the sequence {X;},cz, is a Markov process, such that
{Xn }1<n<v is a homogeneous process with the transition density ¢(y|x) and {X, },~, is homogeneous
positive ergodic with the transition density f(y|x) and the ergodic (stationary) distribution 5. In this
case, the LLR process AX can be represented as

n
A=Y G(X,Xi1), n>k
t=k+1

where G(y, %) = loglf(y|x)/g(y1)].
Define
1= [ {/, 6 sl ay <t

Under a set of quite sophisticated sufficient conditions the LLR A}, | /n converges r-completely to [

(cf. [55]). We omit the details and only mention that the main condition is the finiteness of (r + 1)-th
moment of the LLR increment, Eq[(G (X1, Xo)) 1] < oco.

Consider now the HMM with finite state space. Then again, as in the pure Markov case, the main
condition for r-complete convergence of Aj, | /n to I, where I is specified in Fuh and Tartakovsky [56],
is Eg[(A9)" 1] < co. Further details can be found in [56].

Similar results for Markov and hidden Markov models hold for the hypothesis testing problem
considered in Section 3.1. Specifically, if in the Markov case we assume that the observed Markov
process { Xy } ez, is a time-homogeneous geometrically ergodic with transition density f;(y|x) under
hypothesis H; (i = 0,1, ..., N) and invariant distribution s¢;, then the LLR processes are

n
)Ll']'(i’l) = ZGij(XtrXt—l)/ i,j:O,l,...,N, 175],
t=1

where Gjj(y, x) = log[fi(y|x)/ fi(y[x)]. If E;[(Gj(X1, Xo))" 1] < o then the LLR n’l/\i]'(n) converges
r-completely to a finite number

= [, { [ Gitwx) vl dy )
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5. Conclusion

We show that the strengthened versions of the SLLN, specifically the r-quick and r-complete
versions, are useful tools for many statistical problems for general non-i.i.d. stochastic models. In
particular, r-quick and r-complete convergences for log-likelihood ratio processes are sufficient for
near optimality of sequential hypothesis tests and changepoint detection procedures for models with
dependent and non-identically distributed observations. Such non-i.i.d. models are typical for modern
large-scale information and physical systems that produce Big Data in numerous practical applications.
Readers interested in specific applications may find detailed discussions in [4-6,8,19,22,23,34,36,38,54,
55,55-59].
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