
Article Not peer-reviewed version

QuantumAIO-ChameleonGAN: An Angle

of Incidence Optimization Strategy for

Detecting Camouflaged and Mutating

Cyber Threats

Edward Fondo , Fullgence Mwakondo , Kevin Tole *

Posted Date: 14 August 2025

doi: 10.20944/preprints202508.0763.v1

Keywords: quantum computing; GAN; cybersecurity; camouflaged threats; AIO strategy

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/4594403
https://sciprofiles.com/profile/3717190
https://sciprofiles.com/profile/3603531


Article

Quantum AIO-ChameleonGAN: An Angle of
Incidence Optimization Strategy for Detecting
Camouflaged and Mutating Cyber Threats
Edward Fondo , Fullgence Mwakondo and Kevin Tole *

Computer Science and Information Technology, Institute of Computing and Informatics, Technical University of Mombasa,
Mombasa, Kenya
* Correspondence: eddyfondo@gmail.com; Tel.: +254723709130

Abstract

Conventional intrusion detection systems face significant challenges from increasingly sophisticated 
cyber threats, especially those capable of polymorphism or blending into legitimate network traffic. 
This paper introduces Quantum AIO-ChameleonGAN, a novel cybersecurity framework that inte-
grates quantum computing, chameleon-inspired adaptive perception, and the AIO (Angle of Incidence 
Optimization) strategy. The framework is designed to identify stealthy and polymorphic anomalies 
that evade detection by traditional systems. A quantum-enhanced generator creates evolving and 
camouflaged threats by using quantum superposition and entanglement to represent high-dimensional 
data. Simultaneously, a quantum discriminator with embedded AIO logic adjusts its detection re-
sponse to anomaly characterization and anomaly response severity anchoring its detection “gaze” to 
the detection response. This architecture adaptivity enables real-time detection of nuanced shifts in 
network behavior with contextual precision. The methodology is based on training the GAN (Gener-
ative Adversarial Network) using unlabeled cyber traffic datasets, implementing quantum circuits 
in Qiskit, and assessing the framework on detection gap, sensitivity to previously flagged anomalies, 
and the frequency of false negatives. Early simulation results demonstrate significant improvement in 
detecting both static and dynamic stealthy polymorphic cyber threats.

Keywords: quantum computing; GAN; cybersecurity; camouflaged threats; AIO strategy

1. Introduction
This study introduces a new framework for cyber threat detection using quantum computing,

chameleon-inspired perception, and the AIO strategy. The model enhances detection of camouflaged
and mutating stealth threats which often bypass systems built on traditional detection algorithms [1].
The system’s precision and anomaly sensitivity are achieved through quantum GAN stealth attack
simulations and detection via angular deviation metrics [2]. The Quantum AIO-ChameleonGAN con-
tributes a context-aware detection architecture with dynamic threat alignment calibrated to real-time
adaptivity. Validation against CM-GAN(Concave Matrix GAN) shows enduring precision and training
adaptability as well as resilience to adversarial hostile countermeasures [3]. This work integrates
biological, physical, and computational systems to advance AI-empowered cyber defense technologies.
The model shows promise for cloud, academic, and edge environment deployments [4]. This work
enhances proactive cyber defense in the domain of advanced persistent and evasive threat vectors.

The Quantum AIO-ChameleonGAN model offers a revolutionary synergy of quantum learning,
chameleon-inspired perception, and AIO logic which GAN-based detection systems traditionally lack,
making them incapable of stealth and mutating threat detection [5]. Unlike classical models that rely
on static feature mappings, this framework improves precision and lowers false negatives, adapting
dynamically to angle and context shifts [2]. A significant strength is its ability to polymorphically
simulate cyber threats through quantum superposition, aiding the processing of high-dimensional
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data. On the downside, this quantum model increases training complexity and necessitates distinct
quantum simulation domes [6].

In comparison to lightweight machine learning countermeasures, real-time implementation
might encounter issues with computational scalability. Regardless, the framework is high sensitivity
to anomalies and is behaviorally responsive, which is advantageous in confrontational scenarios,
positioning it beyond peers [4]. In summary, this model strengthens cyber resilience in more advanced
systems amidst evolving or camouflaged threats.

A Federated AIO-ChameleonGAN variant could further develop Quantum AIO-ChameleonGAN
aimed at decentralized mobile IoT ecosystem cybersecurity [7]. The model might also be furthered
to form a Lightweight Edge-EIO-AIO-GAN, allowing it to be implemented into edge devices such
as smart meters and smart routers [8]. Reinforcement-AIO-GAN could merge with policy learning
to autonomously adapt countermeasures in high-risk environments, such as financial networks [9].
Lastly, a Bio-AIOGAN variant could implement neuroadaptive camouflaging and biosignal inputs for
vital systems like the healthcare industry [10]. Each variant upholds the AIO principle, but uniquely
caters to distinct environmental or data factors, allowing for custom tailored cyber defense strategies.

Biologically inspired camouflage in AI has been studied, for instance, the chameleon skin
nanocrystal lattice mimicry for adaptive detection systems [11]. This perception from nature en-
hances responsiveness to stimuli, but lacks the ability to scale in computation. Quantum computing
has been used in cybersecurity to model multidimensional attacks using quantum superposition
and entanglement [12], but early quantum models still struggle with classical systems integration.
Learning models in physics, like reflection-optimized detection which use geometric principles like
angle of incidence to align threat vectors, overlook adversarial changes [13].

The common adaptive threat detection enhancement is a shared strength in these works. However,
most of these implementations approach the problem of camouflage, quantum logic, and geometric
alignment as independent layers, lacking collaboration between them. Moreover, many succumb
to the problem of real-time performance, or dealing with threats that subtly change across many
dimensions [14]. Addressing these challenges need hybridization, which is the combining of biologi-
cally adaptive, quantum-sensitive frameworks, and AIO into a cohesive single framework based on
GANs. This would allow real-time detection based on the threat’s orientation and rate of evolution,
enhancing robustness and interpretability.

Recent work incorporates post-quantum cryptography and GANs into fusion architectures for
resilient threat detection [15]. Bio-inspired neural networks have additionally evolved to process
temporal camouflage through dynamic sensory adaptation [16].Angle-aware adversarial learning
reported in 2023 has improved fidelity to detection in adversarial simulations [17]. More GANs, which
have been enhanced through quantum entanglement encoding, outperform classical models in stealthy
anomaly detection within encrypted traffic [18]. Real-time cross-domain integration techniques now
enable the mapping of geometric and behavioral threat features into latent spaces [19]. These trends
reinforce the need for multi-paradigm models such as QuantumAIO-ChameleonGAN. A fusion of
these models has the potential to create next-generation transparent and explainable infrastructures
for active and adaptive cybersecurity.

The proposed study, QuantumAIO-ChameleonGAN: An Angle of Incidence Optimization Strat-
egy for Detecting Camouflaged and Mutating Cyber Threats, seeks to develop a new integrated
approach which merges quantum computing, biologically inspired adaptive perception and geometry-
driven alignment form a novel framework for advanced cyber threat detection. This framework uses a
quantum augmented GAN capable of polymorphic and stealthy attack simulation through quantum
superposition. Detection is performed through an angle-sensitive discriminator based on the AIO
principle which improves the model’s capability to identify threats that are designed to be stealthy
and evade detection.

The principal outcomes of this research consists of the following:

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2025 doi:10.20944/preprints202508.0763.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.0763.v1
http://creativecommons.org/licenses/by/4.0/


3 of 17

I. Fusion of quantum computing and chameleon-inspired camouflage behaviors: This therefore
allows adaptive perception and threat modeling in high dimensions, making the system more
agile in response to complex, deceptive attack scenarios.

II. Geometric AIO for the Discriminator’s Sensitivity: The introduction of AIO as a form of
regularization enables the discriminator to evaluate and apportion threat vectors with a
geometric frame of reference which boosts precision for detecting subtle deviations.

The model is capable of high precision and robustness in detecting even the smallest deviations
from baseline behavior, especially in the presence of adversarial or changing conditions. It has been
experimentally validated with the CIC-UNSW-NB15 dataset against a baseline CM-GAN [20] and is
therefore granted the name QuantumAIO-ChameleonGAN has emerged as a leader in performance
metrics, including accuracy, recall, and sensitivity to anomalies, as compared to other existing tech-
niques. One of the main contributions of this work is the design of an interpretable and context-aware
framework that integrates biological mimicry, quantum physics, and geometric modeling in the field
of cybersecurity.

The rest of the paper is organized as follows. In section two, we present the problem formulation
and in section three, the proposed algorithms are discussed in detail. Then, in section four, the results
and the corresponding analyses are presented. Lastly, section five provides the concluding remarks
and outlines the directions for future work.

2. Problem Formulation
In this part, the problem is defined in detail along with the assumptions of the Quantum AIO-

ChameleonGAN, an adversarial framework that aims to detect camouflaged and evolving cyber threats.
The model revolves around three main paradigms: quantum-based generation, chameleon-inspired
adaptive perception, and the AIO strategy. This model has been developed in the hope of overcoming
the deficiencies of the existing detection systems that are mostly incapable of recognizing adaptive and
stealthy threats due to the reliance on static, predefined algorithmic rigid heuristics and fixed scales of
decision thresholds.

In conjunction with the architectural and operational logics of the model, an explanation is
provided on the formal notation and the most important components of the model in Table 1. It
specifies the inputs and outputs of the data processing adversarial learning systems like latent vectors,
real data samples, and transformation matrices on the data. It also describes the construction of
representational attack, defend, response matrices and also the behavioral and the vulnerability
metrics which together enable the model to classify anomalies and generate responses to the anomalies.
Some geometric parameters needed to be defined which includes angle of incidence (θ) and concavity
matrices (M) which will describe the spatial and curvature relationships in the feature space. These
definitions are useful in the model optimization and in the detection framework ensuring interpetability
di ascribable to these definitions.
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Table 1. Variables and Descriptions.

Symbol / Variable Description

z Latent variable vector sampled from prior distribution Pz ; input to generator
Ŷ Generated output from the generator: Ŷ = G(z, θ, I , T )
x Real sample drawn from true network traffic distribution Preal
I Independent variable matrix derived from input features: protocol metadata, byte rates, flags, and system attributes
T Intervening variable matrix representing latent outputs such as camouflage confidence, mutation entropy, QLA
Y Dependent output variables capturing detection confidence, class label, and auto-response triggers
θ Angle of incidence; represents deviation between observed behavior vector and benign baseline in feature space
λ Regularization coefficient controlling the tradeoff between adversarial loss and AIO loss sensitivity
o⃗ Observed traffic vector (real-time feature profile)
b⃗ Baseline benign behavior vector (historical average or known good profile)
A Attack feature matrix (e.g., port usage, flow duration, protocol types)
D Defense feature matrix (e.g., protocol flags, firewall rules)
R Response feature matrix (e.g., quarantine, blocking, notification)
U User behavior metrics (e.g., inter-arrival time, session variance)
N Network load indicators (e.g., packets/sec, bandwidth consumption)
V System vulnerability indicators (e.g., CVEs, service states)
M Concave degree matrix encoding structural relationships between I and T

Mij Entry of matrix M, computed as Mij = α · ln(1 + β∥Ii − Tj∥2)
α Scaling factor used to adjust concavity strength in matrix M
β Sensitivity parameter influencing how strongly distance affects Mij

g(·) Activation function (e.g., sigmoid, ReLU) applied to the detection mapping

This research addresses the issues of detecting camouflaged and mutating cyber threats, proposing
to resolve it with a generative adversarial model based on the principle of angular deviation. The model
is described in detail as Quantum AIO-ChameleonGAN, which combines quantum-inspired learning
paradigms with angle-of-incidence optimization to improve the detection in multi-layered networks.

A latent vector with a prior distribution is a vector sampled from z ∼ Pz and in this case is
fed to the generator G. The generator function is defined as Ŷ = G(z, θ, I, T), where I signifies the
independent feature matrix composed of protocol, traffic, and system metrics and T signifies hidden
latent features such as camouflage entropy and mutation traits. Also, θ is the angle of incidence which
represents the change between the current and baseline behaviors.

The discriminator function is expressed as D(x, θ) = σ(h(x, θ)), where x ∼ Preal is a real input
sample and σ is the activation function. The goal is to train G and D in an adversarial configuration
such that the detection sensitivity to stealth and mutating attacks is maximized.

The overall objective function is given by:

min
G

max
D

LAIO-ChameleonGAN = Ex∼Preal [log D(x, θ)] +Ez∼Pz [log(1 − D(G(z, θ)))] + λ · LAIO(G),

where λ is a regularization coefficient, and LAIO(G) = ∑i ∥∇θG(zi)∥2 is a penalty term to enforce
angular sensitivity in the generator output.

The angle of incidence θ is given by,

θ = cos−1

(
o⃗ · b⃗

∥⃗o∥∥⃗b∥

)
,

where o⃗ is the current observation vector and b is the baseline behavior vector. This captures angle of
deviation and dynamically adapts the threat classification alongside the system response.

The generator output Ŷ consists of a detection confidence score, a threat classification label, and
the recommended response. The system takes action based on the computed angle of incidence, θ. If
0◦ ≤ θ ≤ 10◦, a silent alert is initiating, indicating high camouflage. If 10◦ < θ ≤ 30◦, a quarantine or
alert is triggered. If θ > 30◦, the system disables the compromised service and initiates retraining.

The model further incorporates the attack (A), defense (D), and response (R) profiles, as well as
user behavior (U), network load (N), and vulnerability (V) matrices. A concave degree matrix M is
also computed as:

Mij = α · ln(1 + β∥Ii − Tj∥2),

where α and β are scaling and sensitivity parameters.
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The overarching goal is to improve threat detection by minimizing adversarial loss. This is done
while increasing sensitivity to angular deviation for the classification of normal, stealth, and mutating
super-attacks in real-time.

3. Proposed Method
In this part, we discuss the architectural layout and the optimization techniques of Quantum

AIO-ChameleonGAN, which is a devised cybersecurity framework for the detection of camouflaged
and mutating cyber attacks. This framework incorporates quantum learning principles, adaptive
perception mechanisms, and angle-based detection alignment. In this case, the quantum portion is
associated with quantum-inspired concepts, which includes superposition and entanglement.

The AIO applies adaptive optimization strategies, tracking the detection and mitigation of threat
vectors as the adaptive optimization processes the angle to the threat [21–25]. The chameleon paradigm
reflects the form and manner of the system’s real-time detection modulation as driven by changing
data behavior, thus, dynamic concealment, context-sensitive adaptability.

The framework is based on the GAN, which serves the dual purpose for generation of synthetic
attack traffic as well as the discrimination of legitimate and anomalous traffic. These paradigms are
integrated so that the AIO improves the operation of the quantum generator and the discriminator,
responsive chameleon, developing adaptability and enhancing contextual detection precision.

Incorporating all three synergistic components makes up the proposed method:

1. Simulating polymorphic and stealthy attack patterns enabled by the Quantum Enhanced Genera-
tor.

2. Threat signature deviations detection by Quantum Discriminator integrated with AIO logic modules.
3. The Responsive Anomaly Alignment Regularization AIO Engine: An AIO Regularization En-

gine adjusting detection vectors and framework responsively to observed anomaly trajectories
and angles.

Using the CIC-UNSW-NB15- Augmented Dataset, the model is trained to extract features of
different cyber threats, normal behaviors and network activities. Validation of the approach is done
using the CM-GAN framework to measure robustness and stability in detection, provocation under
adversarial variation, and adaptability under changing conditions of threats.

As seen in figure 1, the Quantum AIO-ChameleonGAN model’s operational workflow illustrates
how cyber traffic is ingested and subsequently goes through feature extraction from relevant indi-
cators to behavior the system captures and processes through the quantum GAN (generator and
discriminator) to model complex threat dynamics.

An important part of the workflow is to calculate the angle of incidence (θ) which captures the
distance between the observation and the behavior that is considered normal (baseline profiles). This
geometric measure assists the model in making decisions such as in accurately identifying anomalies
and triggering the context-sensitive adaptive changes.

The system contains a feedback loop model that allows for the refining of the model in real time as
well as learning continuously. This loop ensures that the accuracy of detection improves over time with
the introduction of new traffic or patterns and even new threat behaviors and activities. The process is
completed once a set threshold is achieved or is reset based on the traffic being analyzed continuously.
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Figure 1. QuantumAIO-ChameleonGAN Workflow.

3.1. Adversarial Learning Objective for the Validating Method

The complex and camouflaged cyber threats are detected using the CM-GAN model which uses
an adversarial learning framework to generate coherent synthetic attack patterns. It Usess a generator
G and a discriminator D, which are trained using real samples x ∼ Preal and latent inputs z ∼ Pz,
which are taken from a prior distribution.The main goal is to address the conflict of realism versus
structural fidelity and generate data, with the following given objective:

min
G

max
D

LCM-GAN = −Ex∼Preal
[log D(x, M)] +Ez∼Pz [log(1 − D(G(z, M,L, T )))] + λ · R(G, M)

Here, G(z, M,L, T ) represents the generator’s output and M, denotes the attack matrix, where the
attack matrix is concavely mapped, latent structural patterns represented by L, and system reactions
represented by T . The discriminator D(x, M) evaluates realism of the structural norms in M, relative
to the inputs, while the regularization function R(G, M) applies penalties for loss of matrix coherence.
The scalar λ governs the intensity of this penalty, enforcing a balance between generative precision
and structural fidelity. This is how CM-GAN is able to model adversarial behavior in a data-driven
fashion and in a contextually system-structured manner.

3.2. Detection Mapping and Structural Encoding

Through, CM-GAN, T and M refer to input and output perceptions of detection awareness,
respectively.

Y = g(M · T + I)

where g(·) is a non-linear transformation function (e.g., ReLU or (sigmoid)to influence detection
within a system.
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3.3. Cybersecurity Camouflaging Threats

Such threats to cybersecurity represent a class of sophisticated attacks constructed to avoid
detection by merging with seamless layers of legitimate digital activity. Camouflaging threats exploit
the gaps found within conventional security measures like those based on fixed rules or reliant on
signatures. One of the most common examples is polymorphic malware, which changes its signature
or code structure continuously. relying solely on tools like PowerShell or WMI (Windows Management
Instrumentation) to execute its functions without ever saving anything on the disk to aid in detection.

Advanced Persistent Threats (APTs), expands the scope of the previous ones by being more
dangerous. They are defined by observed persistent stealthy long-term intrusions by expert malicious
actors. These are often executed in multi-stage processes that require silence to sustain access to
vital resources.

Other avoidance techniques involve the use of encrypted or obfuscation, where malicious content
delivers payloads beneath the content inspection mechanisms and hidden from the scrutiny of content
inspection mechanisms. Steganographic malware extends this by embedding the malicious payloads
in files perceived to be harmless, like images or videos, making it impossible for file-based scanners.
Furthermore, the risk posed by zero-day exploits also greatly concerns absolutely identifying these
vulnerabilities as their exploits are unknown.

The insider threat’s taciturn nature greatly poses a risk, particularly because the user has the
privilege of being a legitimate user and therefore, works with his given access, often exhibiting behavior
that mimics performing routine activity. Another notable form is Living off the Land (LotL) attacks
that use pre-installed administrative tools to perform malicious activities without the use of external
software. Also, Domain Generation Algorithms (DGAs) create domain names for command-and-
control communications in a resilient manner, effectively bypassing blacklist filter-based blockers.

Finally, supply chain attacks introduced threats by compromised third-party software or hardware
components, often hidden in updates or trusted integrations. These different threat vectors depend
on concealment, adaptability, and the mimicry of the environment which makes it necessary to use
advanced detection frameworks such as Quantum AIO-ChameleonGAN.

3.4. Quantum AIO-ChameleonGAN Detection Mechanism and Anomaly Trigger Mechanism

The quantum AIO-chameleonGAN detection mechanism incorporates the quantum computing
and stealth behavior disguise principles to enhance the detection of stealthy cybersecurity breaches.
The core of the mechanism the Discriminator D(x, θ) learns to distinguish real traffic samples from
synthetic ones using quantum optimized parameters θ to encode interactions of complex features
like entropy patterns, timing deviations, and protocol anomalies. These settings give the model the
capability to detect camouflaged threats that blend into normal traffic, similar to the way a chameleon
perceives its surroundings.

The Generator G(z, θ) simulates the corresponding attack behavior using the same parameters
θ, producing highly realistic attack simulations, which allows the model to evolve its attack patterns
to mimic benign behavior. A critical component is the Angle of Incidence Optimization function
LAIO(G), which punishes the generator when the camouflaging features become too complex. This
regularization guarantees that the generator does not produce traffic which is utterly unobtainable to
even the most advanced systems.

An anomaly occurs when the confidence of the discriminator for a real input D(x, θ) drops below
a confidence threshold δ1. With the same behavior, if the discriminator accepts G(z, θ) as a threat
crafted by a generator with too much confidence (greater than δ2), the model shows a gap in its
detection capability. Besides, if the LAIO(G) surpasses a set threshold of λmax, this means that the
threat generated has too much camouflage which should raise an alarm.

The self-calibrating cyber-security framework is created using quantum-boosted feature detection,
adversarial learning, and camouflage modeling by the Quantum AIO-ChameleonGAN model. This
makes it capable of identifying both previously documented and undocumented threats, especially
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those which use concealment, privilege abuse or legitimate system tools to bypass detection. This
makes it a critical development in next generation intrusion detection systems.

3.5. Angle of Incidence Optimization Strategy

From its name, the ChameleonGAN model, draws its core concept from the classical Law of
Reflection. It claims that the angle of incidence is equal to the angle of reflection. Cyber threats can be
thought of as incident rays, and baseline threat behavior as the normal vector to a reflective surface.
Thus, the deviation from the baseline threat behavior is the reflected vector which analogously is the
system’s perception of threat intensity.

In this formulation, the angle of incidence θi is used to quantify how significantly an observed
threat vector O⃗ deviates from the baseline threat vector B⃗. This is calculated using the inverse cosine of
the dot product between the two vectors, expressed mathematically as:

θi = cos−1

(
B⃗ · O⃗

∥B⃗∥∥O⃗∥

)

The excerpt describes a system that recognizes and mimics observing behavior which helps in avoiding
detection. On the contrary, a greater angle signifies much deviation, which could signify some
abnormal or malicious behavior.

In Figure (2 a), the classical reflection concept is illustrated, depicting rays as different types of
threats. The incident ray is the incoming cyber threat, the normal vector is the expected baseline
behavior, and the reflected ray is the observed anomaly. In Figure (2 b), the same concept is modi-
fied and applied in visualization of threat detection. The vertical axis shows the Observed Threat
Level and the horizontal axis shows the Baseline Threat Level, with the angle as the most important
detection metric.

Figure 2. Calculating the angle of incidence.

If the computed angle θi is less than 20◦, the threat is classified as camouflaged. This means the
activity is very close to normal activity, which means detection is sensitive. If θi ranges between 0◦ and
20◦, the activity is classified as stealthy and shows moderate drift. Angles greater than 25◦ suggests
behavior deviation is erratic give rise to mutating threats and becomes easier to detect through standard
anomaly detection algorithms. This approach is useful because it allows adaptive optimization of
threat perception thresholds. As θi increases, the system automatically lowers the detection sensitivity
thresholds, reducing the chances of false negatives. This enhances detection accuracy, and allows for
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more intelligent and context-aware responses. Essentially, the model emulates a reflective surface
which accentuates anomalies of threats by quantifying behavioral deviations from the set baselines
and norms.

The introduction of physical constraints alongside intelligent systems gives rise to the QuantumAIO-
ChameleonGAN, a new paradigm for cybersecurity. Instead of static classification, it approaches threat
detection with active and intelligent systems viewing the threat as a dynamically changing geometry
of behavior. This geometry of behavior allows for the optimization to be angle-based which aids in
the efficient identification of camouflaged, stealthy, or mutating threats and improves accuracy and
resilience in adversarial detection environments.

Algorithm 1 Quantum AIO-ChameleonGAN Optimization.

1: Input: CIC-UNSW-NB15 Augmented Dataset (benign and attack samples)
2: Output: Trained Generator G, Discriminator D, and optimized angle-aligned detection pipeline
3: Initialize Quantum Generator G and Quantum Discriminator D
4: Extract independent variables I from packet metadata and system attributes
5: Calculate intervening variables T: Camouflage Confidence, Mutation Entropy, Quantum Latent

Angle

6: Compute the angle of incidence θ = cos−1
(
− a⃗·⃗b

∥⃗a∥∥⃗b∥

)
7: Generate synthetic threat instance Ŷ = G(z, θ, I, T)
8: Evaluate discriminator confidence score D(Ŷ, θ)
9: Formulate AIO-based adversarial loss and update parameters of G and D

10: Repeat until convergence or early stopping based on F1-score
11: return Trained G, D, and optimized angle-aligned detection pipeline

This algorithm starts by configuring quantum generator and discriminator components. As a
first step, it obtains the input features, then computes the angle of incidence (θ). Finally, the synthetic
threats go through the discriminator to be assessed for the likelihood of being anomalies. Computation
of the AIO-based loss enables the model’s parameters to be iteratively optimized until the detection
accuracy targets the predefined goals.

Algorithm 2 AIO-Based Anomaly Detection and Response.

1: Input: Test sample x, AIO-threshold τ, and AIO response map R(θ)
2: Output: Anomaly classification and corresponding automated response
3: Compute angle of incidence θ from current feature vector and benign baseline
4: Pass x through discriminator: s = D(x, θ)
5: if s < τ then
6: Classify as anomaly
7: Trigger AIO-aligned response:
8: if θ ∈ [0◦, 10◦] then
9: Send silent alert (high camouflage risk)

10: else if θ ∈ [10◦, 30◦] then
11: Isolate software and notify admin
12: else
13: Disable access, log event, and retrain
14: end if
15: else
16: Classify as normal and log timestamp
17: end if
18: return Anomaly status and executed response

The flow starts by calculating θ for a test input and passes the sample through the trained
discriminator to get a confidence score. If the score is below a threshold, the system classifies it as
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an anomaly and applies angle-specific automated responses ranging from silent alerts to full system
lockdowns. Normal traffic is logged without response.

Algorithm 3 Validation Using CM-GAN.

1: Input: CIC-UNSW-NB15 Augmented Dataset, CM-GAN baseline metrics
2: Output: Validation of detection performance
3: Train CM-GAN using the same dataset and extracted variable matrices (A, D, R, T)
4: Evaluate CM-GAN detection accuracy, precision, recall, and loss convergence
5: Train Quantum AIO-ChameleonGAN under identical conditions
6: Compare both models on:

• F1-score
• Generator and Discriminator Loss Stability
• Anomaly Detection Rate
• Camouflage and Mutation Sensitivity

7: Validate if AIO-ChameleonGAN outperforms CM-GAN in detecting subtle, adaptive threats
8: Return: Detection validation comparison results

This algorithm trains a baseline CM-GAN using the same dataset and matrix structure as the
proposed model. It then compares performance metrics (F1-score, loss, anomaly rate) between
CM-GAN and Quantum AIO-ChameleonGAN. The goal is to validate that AIO-ChameleonGAN
outperforms CM-GAN in detecting subtle, mutating threats.

3.6. Advantages of Proposed Method

The AIO-ChameleonGAN incorporates quantum superposition and entanglement for enhanced
polymorphic threat simulation, introduces AIO loss to encode context-aware detection aligned with
the behavior of evolving attacks, demonstrates superior anomaly sensitivity on camouflaged and
mutating threats, validated against CM-GAN and enables automated, angle-aligned mitigation
strategies based on the nature and confidence of the detected anomaly.

4. Experimental Setup for CM-GAN and Quantum AIO-ChameleonGAN Models
This section outlines the experimental configurations used to train and evaluate the CM-GAN [26]

and Quantum AIO-ChameleonGAN models. Both models were trained using the CIC-UNSW-NB15
Augmented Dataset, a comprehensive network intrusion benchmark that includes diverse attack
categories and benign traffic flows. The experiments were conducted to validate the models’ capability
to detect camouflaged and mutating cyber threats with high accuracy and contextual awareness.

4.1. Experimental Environment

The models were implemented using Python 3.10 and trained on a hybrid computational infras-
tructure combining classical and quantum simulation environments:

Table 2. Experimental Environment for CM-GAN and AIO-ChameleonGAN

Project Requirements Properties

OS Windows 10 Pro
CPU Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz
GPU NVIDIA GTX 1080 Ti
TPU Google Colab v5e-1 TPU (Gemini Environment)
Memory 12 GB RAM
Disk 500 GB HDD
Framework TensorFlow 2.16.1, Qiskit (for quantum simulation)
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4.2. Dataset Preprocessing

The CIC-UNSW-NB15 Augmented Dataset was used for both training and validation. Fea-
tures were normalized and categorized into; Independent variables (I) consisting of attack, defense,
and response vectors; Intervening variables (T) consisting of user behavior, network load, and vul-
nerability metrics and Dependent outputs (Y) comprising detection confidence, class labels, and
mitigation triggers.

Data was split into training (70%) and testing (30%) partitions. Missing values were handled via
imputation, and categorical variables were encoded appropriately.

4.3. Model-Specific Training Pipelines
4.3.1. CM-GAN Training Pipeline

The CM-GAN was trained on the structured matrix mappings:

Mij = α · ln(1 + β∥Ii − Tj∥2)

Generator input: G(z, M, I, T)
Discriminator evaluates: D(x, M)

Final objective:

min
G

max
D

L = −E[log D(x, M)] +E[log(1 − D(G(z, M, I, T)))] + λR(G, M)

4.3.2. Quantum AIO-ChameleonGAN Training Pipeline

The model integrates quantum-enhanced components:

G(z, θ, I, T) : Quantum generator with angle-aware threat synthesis

D(x, θ) : Quantum discriminator with AIO-aligned judgment

Angle of incidence:

θ = cos−1

(
o⃗ · b⃗

∥⃗o∥∥⃗b∥

)
AIO Regularization Loss:

LAIO(G) = ∑ ∥∇θi G(zi)∥2

Combined Objective:

min
G

max
D

L = E[log D(x, θ)] +E[log(1 − D(G(z, θ)))] + λ · LAIO(G)

4.4. Training Loss Graphs

This section discusses Loss Graphs and Pipeline Analysis for CM-GAN and Quantum AIO-
ChameleonGAN Models
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Graphs Overview

Figure 3. 3D Generator Loss Surfaces for CM-GAN and Quantum AIO-ChameleonGAN under Binary and
Multiclass Classification

Color Interpretation:

• Red/Orange Hues → Higher loss values (early epochs or poor convergence)
• Blue/Purple Shades → Lower loss values (improved training, good convergence)

1. CM-GAN Binary Classification (Top-Left): The loss trend starts moderately high (∼0.67), drops
toward 0.61. The surface is smooth, indicating stability and gradual convergence. Warm (red-
dish) colors dominate early epochs; cooler tones emerge, indicating improvement. Confidence
sensitivity is flat along the confidence axis → CM-GAN is less sensitive to confidence variation in
binary tasks.

2. Quantum AIO-ChameleonGAN Binary Classification (Top-Right): Loss trend lower base (∼0.62
to 0.60), shows sharp dips and bumps reflecting quantum entanglement effect. Deep reds with
blue colour depressions implies AIO strategy induces angular anomaly corrections. Confidence
sensitivity is highly fluctuating implies Quantum logic makes model extremely responsive to
input shifts.

3. CM-GAN Multiclass Classification (Bottom-Left): Loss trend is generally higher than binary
version (due to task complexity). Surface is still relatively smooth. Dominantly warm colours
→ indicates challenge in stabilizing across multiple classes. Confidence Sensitivity shows slight
undulation along the confidence axis indicating moderate sensitivity to class separation.

4. Quantum AIO-ChameleonGAN Multiclass Classification (Bottom-Right): Loss trend shows
high variability due to multiclass + AIO complexity. Shows rapid slope changes and nonlinear
curvature.Mixed bands of red and blue colours; reflects dynamic behavior with angular loss
guidance.Confidence Sensitivity show very sensitive;model dynamically adapts based on angular
deviation across threat types.
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4.5. Comparative Insight

Table 3. Comparative Behavior of CM-GAN vs Quantum AIO-ChameleonGAN.

Feature CM-GAN Quantum AIO-ChameleonGAN

Binary Loss Behavior Smooth, gradually declining Dynamic, lower loss with angular spikes
Multiclass Loss Behavior Slower convergence, steady Responsive with nonlinear dips
Confidence Sensitivity Low to moderate High (AIO-dependent)
Visual Slope/Contours Flat or gently curved Highly fluctuating
Color Spread Predictable gradient Complex, with rapid transitions
Training Implication Interpretable and stable Precision-focused but oscillatory

4.6. Training Pipeline Diagrams

Figure 4. 3D Training Pipeline Surface Plots of Generator Loss for CM-GAN and Quantum AIO-Chameleon under
Binary and Multiclass Classification Tasks.

The attached image contains 3D surface plots illustrating the generator loss for two different
models, CM-GAN and Quantum AIO-ChameleonGAN under two settings; binary classification and
multiclass classification.

The color scheme in these surface plots reflects variations in the generator loss values across the
plotted dimensions (epochs, confidence, and confidence scale).

Dark blue or black regions represent lower loss values—indicative of better model performance,
meaning the generator is learning effectively. In contrast, red or orange regions indicate higher loss
values reflecting poorer generator performance, possibly due to instability or ineffective learning in
that region of the parameter space.
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In the top-left plot (CM-GAN Generator Loss for Binary Classification), the color is relatively
uniform from red to pale blue. This suggests a stable loss surface with minimal variation. CM-GAN’s
generator maintains a relatively consistent performance in binary classification tasks, without major
degradation or improvement.

The top-right plot (Quantum AIO-Chameleon Generator Loss for Binary Classification) shows
more color variability, ranging from red to deep blue or black. This implies higher sensitivity to
confidence and confidence scale, with regions of both strong and weak performance. It indicates that
this model may adapt better to varying data confidence but is more complex or unstable.

In the bottom-left plot (CM-GAN Generator Loss for Multiclass Classification), there is a moderate
gradient from red to light blue. This suggests gradual improvement or adjustment across epochs
and confidence scale. It indicates that CM-GAN struggles more with multiclass classification but still
improves over time.

The bottom-right plot (Quantum AIO-Chameleon Generator Loss for Multiclass Classification)
has the highest contrast in color, ranging from bright red to deep blue or black. This shows significant
variation in loss across the plotted dimensions. It indicates that the Quantum AIO-Chameleon model is
highly dynamic and likely capable of learning complex patterns; better adapting to multiclass scenarios
but may require careful tuning.

In summary, the CM-GAN model shows more stable but limited performance in both binary
and multiclass tasks, whereas the Quantum AIO-Chameleon model displays higher variability and
adaptability, suggesting stronger potential for complex classification scenarios.

CM-GAN Pipeline:

Figure 5. Architectural Pipelines for CM-GAN and Quantum AIO-ChameleonGAN.

Real Subject → Discriminator → Generator
The pipeline is a basic GAN structure designed for benchmark interpretability and stability. Suitable
for context-aware threat modeling.

Quantum AIO-ChameleonGAN Pipeline:

Figure 6. Architectural Pipelines for CM-GAN and Quantum AIO-ChameleonGAN.

Real Subject → Encoder → Quantum Module → Generator → Discriminator

Components:
The Quantum AIO-ChameleonGAN Pipeline comprises of the encoder which converts real input

into latent quantum-compatible format, the Quantum Module that applies AIO logic, superposition,
and entanglement to simulate complex threat patterns, the Discriminator that evaluates both synthetic
and real traffic using angular deviation scoring and an optional Decoder that reconstructs or interprets
latent outputs for feedback learning.
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4.7. Training Interpretation

CM-GAN offers stable, interpretable training ideal for general anomaly detection and awareness
enhancement. Quantum AIO-ChameleonGAN demonstrates highly sensitive, precision-aware training
behavior, optimally tuned for mutating and camouflaged cyber threats. Color variation and slope
in the 3D graphs validate the strength of AIO-driven angular optimization and quantum-based
representation in complex classification tasks.

4.8. Evaluation Metrics

Both models were evaluated on Accuracy, Precision, Recall, F1-Score, Anomaly Rate, Anomaly
Score, Generator Loss and Discriminator Loss.

4.9. Comparative Results and Observations

Table 4. Comparative Test Results for CM-GAN and Quantum AIO-ChameleonGAN

Metric CM-GAN (Bi-
nary)

CM-GAN (Multi-
class)

Quantum-AIO-
ChameleonGAN(Binary)

Quantum-AIO-
ChameleonGAN(Multiclass)

F1-Score 99.72% 99.65% 99.81% 99.74%
Accuracy 99.78% 99.99% 99.85% 99.91%
Precision 99.69% 99.60% 99.79% 99.70%
Recall 99.76% 99.70% 99.84% 99.80%
Generator Loss Trend Gradual De-

cline
Slower-
Convergence

Sharp Decline High Variability

Discriminator Loss Trend Gradual In-
crease

Stable Angular Sensitivity Nonlinear Curvature

Training Stability High High High(Quantum-Regularized) High (AIO-Regularized)
Confidence Sensitivity Low– Moderate Moderate High Very High
Camouflage Sensitivity Moderate Moderate High High
Anomaly Detection Rate 98.9% 98.7% 99.4% 99.2%
Anomaly Score Range 0.31–0.74 0.28–0.77 0.45–0.98 0.40–0.97

CM-GAN exhibited robust learning under matrix-based concavity constraints, while the Quantum
AIO-ChameleonGAN showed higher sensitivity to subtle angle-based deviations, particularly in
detecting polymorphic and camouflaged cyber threats.

5. Conclusions and Future Directions
The research introduces Quantum AIO-ChameleonGAN as a multi-paradigm cybersecurity

framework that unites quantum computing with chameleon-inspired adaptive perception and Angle
of Incidence Optimization (AIO) to detect stealthy and camouflaged cyber threats that mutate. The
experimental findings show that the model achieves better anomaly sensitivity and detection accuracy
than traditional and matrix-based GAN variants when identifying evasive behaviors. The framework
will be deployed in real-world high-risk environments such as cloud infrastructures and academic
network systems during future research. The main priority involves improving model interpretability
through AIO-visualization layers and explainable artificial intelligence (XAI) techniques to build user
trust in automated threat decision-making. The framework will integrate post-quantum cryptographic
layers to protect against quantum-capable adversaries.

The framework demonstrates potential for implementation in edge computing systems because
lightweight context-aware anomaly detection becomes increasingly important in these environments.
The integration of reinforcement learning will enable dynamic policy evolution and real-time threat
mitigation. These future directions aim to develop intelligent adaptive proactive cyber defense systems
which can handle modern digital ecosystem complexities.
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The following abbreviations are used in this manuscript:

AIO Angle of Incidence Optimization
GAN Generative Adversarial Network
CM-GAN Concave Matrix Generative Adversarial Network
QLA Quantum Latent Angle
CVE Common Vulnerabilities and Exposures
MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of Open Access Journals
TLA Three Letter Acronym
LD Linear Dichroism
TPU Tensor Processing Unit
CPU Central Processing Unit
GPU Graphics Processing Unit
OS Operating System
NIDS Network Intrusion Detection System
ReLU Rectified Linear Unit (activation function)
PST Privacy, Security and Trust (Conference)
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