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Article
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Abstract: To solve the limitation of easily getting trapped in local optima and slow convergence rates
of Red-billed Blue Magpie Optimization algorithm (RBMO), an enhanced RBMO algorithm (MRBMO)
was proposed. MRBMO was improved by integrating Good Nodes Set Initialization, an Enhanced
Search-for-food Strategy, a newly-designed Siege-style Attacking-prey Strategy and Lens-Imaging
Opposition-Based Learning (LIOBL). The experimental results show that MRBMO is superior to tradi-
tional algorithms in terms of convergence speed and solving accuracy, especially in high-dimensional
search space. This paper designs two types of simulation experiments to test the practicability of
MRBMO. First, MRBMO is used along with other heuristic algorithms to solve four engineering
design optimization problems, aiming to verify the applicability of MRBMO in engineering design
optimization. Then, to overcome the shortcomings of metaheuristic algorithms in antenna S-parameter
optimization problems, such as time-consuming verification processes, cumbersome operations, and
complex modes, this paper adopts a test suite specifically designed for antenna S-parameter optimiza-
tion, with the goal of efficiently validating the effectiveness of metaheuristic algorithms in antenna
S-parameter optimization. The results show that MRBMO demonstrates significant advantages in both
engineering design optimization and antenna S-parameter optimization.

Keywords: RBMO; HHO; good nodes set; LIOBL; levy flight

1. Introduction
In the field of optimization, metaheuristic algorithms have received widespread attention due

to their effectiveness and applicability in solving complex multimodal problems. Metaheuristic
algorithms are an improvement of heuristic algorithms and are a combination of random algorithms
and local search algorithms. These algorithms are used to solve complex optimization problems by
performing global search and local exploration to find the optimal or near-optimal solution. The core
of metaheuristic algorithms lies in exploration and exploitation. Exploration refers to the process
of thoroughly exploring the entire search space since the optimal solution may exist at any position
within the space. Exploitation, on the other hand, focuses on utilizing the available information as
much as possible. In most cases, there is a certain correlation between the optimal solutions, and by
exploiting these correlations, the algorithm can gradually adjust and evolve from an initial solution to
an optimal solution. The main advantage of metaheuristic algorithms is their ability to handle complex,
nonlinear problems without requiring assumptions about the specific model of the problem. Although
metaheuristic algorithms cannot guarantee a global optimal solution for an optimization problem, they
are capable of quickly finding or approximating the optimal solution within a given timeframe.

Over the past few decades, various metaheuristic algorithms have been developed. The Simulated
Annealing (SA) algorithm, proposed by Metropolis in 1953, is based on the analogy between the process
of solving an optimization problem and the thermal equilibrium problem in statistical thermodynamics.
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The aim is to find the global or near-optimal solution by simulating the annealing process of a high-
temperature object [24]. The Genetic Algorithm (GA), first proposed by John Holland in 1975, is
based on Darwin’s theory of evolution and Mendel’s genetics. It uses methods such as reproduction,
mutation, and competition among individuals in a population to exchange information and perform
a survival-of-the-fittest approach, gradually approaching the optimal solution [2]. The Ant Colony
Optimization (ACO) algorithm, proposed by Dorigo et al. in 1991, is a random search algorithm
that simulates the food foraging process of real ants in nature [3]. In 1995, American psychologist
Kennedy and electrical engineer Eberhart proposed the Particle Swarm Optimization (PSO) algorithm,
inspired by the foraging behavior of birds [1]. Due to their excellent optimization ability and versatility,
metaheuristic algorithms have been widely applied in various fields such as robot path planning,
job shop scheduling, neural network parameter optimization, and feature selection. However, many
traditional metaheuristic algorithms, such as PSO, GA, and ACO, often face issues such as getting
trapped in local optima and slow convergence when dealing with complex problems. To address
these challenges, researchers have attempted to integrate various improvement strategies into basic
metaheuristic algorithms, including hybrid algorithms, enhanced exploration-exploitation balance
methods, and the introduction of new biological behavior models.

In 2018, Guojiang Xiong et al. proposed the improved whale optimization algorithm (IWOA)
with a novel search strategy for solving solar photovoltaic model parameter extraction problems [36].
In 2019, Qiang Tu et al. introduced the Multi-strategy Ensemble Grey Wolf Optimizer (MEGWO) by
incorporating global best-guided strategies and adaptive collaborative strategies into the Grey Wolf
Optimizer (GWO), aiming to overcome the limitations of the single search strategy in traditional GWO
for solving various function optimization problems [37]. In 2023, Ya Shen et al. proposed an improved
whale optimization algorithm based on multi-population evolution (MEWOA). The algorithm divides
the population into three sub-populations based on individual fitness and assigns different search
strategies to each sub-population. This multi-population cooperative evolution strategy effectively
enhances the algorithm’s search capability [38]. In 2024, Ying Li et al. proposed the Improved Sand
Cat Swarm Optimization algorithm (VF-ISCSO) based on virtual forces and a nonlinear convergence
strategy. VF-ISCSO demonstrated significant advantages in enhancing the coverage range of wireless
sensor networks [39]. These outstanding algorithms, by integrating various novel improvement
strategies, offer new insights into the enhancement of metaheuristic algorithms.

The Red-Billed Blue Magpie Optimization (RBMO) algorithm is a novel metaheuristic algorithm
inspired by the foraging behavior and social cooperation characteristics of the red-billed blue mag-
pie [5]. RBMO demonstrates significant advantages in global search, population diversity, and ease
of implementation. However, it still exhibits limitations in solution accuracy and convergence speed,
particularly when dealing with complex multimodal problems, where it struggles to quickly approach
the optimal solution. To address these challenges, this paper proposes an enhanced RBMO algo-
rithm (MRBMO). MRBMO was improved by integrating Good Nodes Set Initialization, an Enhanced
Search-for-food Strategy a newly designed Siege-style Attacking-prey Strategy snd Lens-Imaging
Opposition-Based Learning (LIOBL). These strategies enhance the local search ability of RBMO and
accelerate its convergence speed.

2. Research Work on Antenna Design
Adegboye et al. introduced the Honey Badger Algorithm (HBA) for antenna design optimization,

demonstrating the algorithm’s effectiveness in enhancing antenna performance through specific
cases [12]. The improvements were evident in key metrics such as gain and bandwidth. They compared
the performance of various algorithms in antenna design, highlighting the advantages of the new
algorithm in addressing particular design challenges. Park et al. proposed a method for optimizing
antenna placement in single-cell and dual-cell distributed antenna systems (DAS) to maximize the
lower bounds of expected signal-to-noise ratio (SNR) and expected signal-to-leakage ratio (SLR) [1].
The results indicated that the DAS using the proposed gradient ascent-based algorithm outperforms
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traditional centralized antenna systems (CAS) in terms of capacity, especially in dual-cell environments,
effectively reducing interference and improving system performance. Jiang et al. designed a multi-
band pixel antenna using genetic algorithms and N-port characteristic modal analysis, which operates
effectively across the 900 MHz, 1800 MHz, and 2600 MHz frequency bands [13]. The effectiveness of the
genetic algorithm in antenna design optimization was validated by monitoring changes in the objective
function. Yang Zhao et al. proposed an optimization design method for dual-band tag antennas
based on a multi-population genetic algorithm, overcoming the inefficiencies of traditional simulation
and parameter tuning experiments in determining optimal size parameters [14]. The optimized UHF
antenna achieved near-ideal input impedance at 915 MHz, resulting in good impedance matching
with the chip. The size of the optimized dual-band tag antenna was significantly reduced compared to
existing designs. Cai Jiaqi et al. presented a self-optimization method for base station antenna azimuth
and downtilt angles based on the Artificial Bee Colony algorithm [15]. Experimental results provided
the optimal azimuth and downtilt angles for base station antennas, improving coverage effectiveness
for user devices, particularly in weak coverage areas. Fengling Peng et al. developed an antenna
optimization framework based on Differential Evolution (DE), customized decision trees, and Deep
Q-Networks (DQN) [16]. Experimental results showed that this hybrid strategy-based framework
achieves superior antenna design solutions with fewer simulation iterations. Meta-heuristic algorithm
plays an important role in antenna design.

3. Research Work on Engineering Design Optimization
In early engineering design, the concept of "optimization" was typically absent. Engineering

design relied heavily on manual calculations and intuitive judgment. In the early 20th century, with the
development of mathematical optimization theory, optimization tools gradually began to be introduced
into engineering design. The initial optimization methods were based on classical mathematical
analysis, such as calculus, to derive the optimal solution through analytical reasoning. In the 1940s,
George Dantzig and others proposed Linear Programming (LP), which provided a mathematical
foundation for optimization and was widely applied in economics, transportation, and resource
allocation problems. With the emergence of nonlinear systems, engineering design faced more complex
optimization problems, necessitating new mathematical tools. Numerical methods, such as Newton’s
method and gradient descent, were introduced and applied to engineering optimization. However,
due to the lack of powerful computational tools, engineering design remained a time-consuming and
complex process, mostly relying on simplified assumptions to solve problems. From the 1950s to the
1970s, advancements in computers drove the computerization of engineering design optimization.
Engineers began to use computer programs, achieving breakthroughs particularly in Finite Element
Analysis (FEA) and Dynamic Programming (DP). The Finite Element Method (FEM) helped address
stress and deformation problems in complex structures, while Dynamic Programming was widely
applied in control and scheduling problems. Despite these advancements, early computer-aided design
still mainly used deterministic mathematical methods for solutions, which were applicable only to
specific types of problems. When facing large-scale, complex engineering problems, the computational
effort and difficulty of solving remained significant. By the 1980s, as the scale and complexity of
engineering design problems increased, traditional mathematical optimization methods gradually
became inadequate for handling high-dimensional, nonlinear, and complex-constrained optimization
issues. Researchers shifted towards metaheuristic algorithms (such as Simulated Annealing, Genetic
Algorithms, Particle Swarm Optimization, etc.). These algorithms could avoid local optima and offer
better optimization solutions, especially for complex, irregular, or high-dimensional problems. The
improvement in computer hardware performance also allowed these algorithms to handle larger-scale
optimization problems. In the 2010s, the development of Artificial Intelligence (AI) and Deep Learning
(DL) provided new options for engineering design optimization. Neural networks could assist design
optimization by learning from large amounts of historical data. However, AI has the disadvantage
of long training times and dependence on large datasets, which may yield poor results when data is

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2025 doi:10.20944/preprints202502.0188.v1

https://doi.org/10.20944/preprints202502.0188.v1


4 of 42

scarce. AI is also constrained by existing mathematical models, whereas metaheuristic algorithms, due
to their robustness, can maintain high optimization performance across various complex problems
without relying on mathematical models or derivative information, demonstrating strong adaptability.
Therefore, metaheuristic algorithms remain the primary solution method for engineering design
optimization.

4. Arrangement of the Rest of the Paper
Chapter 5 primarily presents the main contributions of this study. Chapter 6 introduces the specific

principles of the RBMO algorithm, along with its advantages and disadvantages. Chapter 7 introduces
the proposed MRBMO. In Chapter 8, we will test the performance of MRBMO through a series of
experiments. In Chapter 9, various metaheuristic algorithms and MRBMO will be simulated and tested
on different engineering design optimization problems and antenna S-parameter optimization suites
to verify the practicality of MRBMO.

5. contributions of This Study
By integrating Good Nodes Set Initialization, an Enhanced Search-for-food Strategy, a newly

designed Siege-style Attacking-prey Strategy and Lens-Imaging Opposition-Based Learning (LIOBL),
we proposed a novel optimizer MRBMO for solving real-world challenges. By performing a ablation
study, we evaluated the effectiveness of each strategy. By comparing MRBMO with other excellence
metaheuristic algorithms on the classical benchmark functions,we validated the outstanding perfor-
mance of MRBMO. In a subsequent series of simulation experiments, MRBMO demonstrated excellent
optimization ability and good convergence, proving that MRBMO can be used in the real world to
solve various numerical optimization problems.

6. Red-Billed Blue Magpie Optimization Algorithm
The red-billed blue magpie is a bird that lives mainly in Asia and is common in China, India, and

Myanmar, as shown in Figure 1, which depicts the red-billed blue magpie, which is characterized by its
large size, bright blue plumage, and distinctive red beak. The red-billed blue magpie feeds mainly on
insects, small vertebrates, plants, etc., and has relatively abundant hunting behavior. When foraging,
red-billed blue magpies use a combination of jumping, ground walking and searching for food on
branches.

Red-billed blue magpies show high activity levels in the early morning and evening, often
gathering in small groups of 2-5 or even more than 10 individuals. They are involved in co-operative
hunting. For example, a magpie may find fruit or an insect which it will then attract other members to
share. This allows them to co-operate in catching large insects or small vertebrates, and group action
can help them overcome the defence mechanisms of their prey. Magpies also store some food for later
use. To prevent other birds or animals from stealing it, they hide food in places such as tree holes,
branches and rock crevices.

Overall, red-billed blue magpies are flexible predators that acquire and store food in a variety
of ways, as well as showing sociality and cooperation in their hunting behaviour. Inspired by this,
Shengwei Fu et al. proposed a new metaheuristic algorithm, the Red-billed Blue Magpie Optimization
algorithm (RBMO) in 2024 [4]. When RBMO deals with complex problems, each optimization problem
has its own objective function, the solution space consists of the values of an objective function. The
mission for RBMO is to search the optimal or suboptimal solution in the solution space. In each
iteration, RBMO will randomly generate N individuals in the solution space. The individuals are
called search agents, and they will move by imitating the behavior of the red-billed blue magpie in
searching for prey, attacking prey or storing food. Meanwhile, they will update their position and the
position is called a solution or the fitness of an objective function. After many iterations, they can find
the optimal or suboptimal solution in the solution space.
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Figure 1. a red-billed blue magpie

6.1. Search for Food

In red-billed blue magpies’ search-for-food stage, they use a variety of methods such as hopping
on the ground, walking or searching for food resources in trees. The whole flock will be devided into
small groups of 2-5 individuals or in clusters of 10 or more to search for food.

RBMO imitates their search-for-food behavior in small groups as follows,

Xi(t + 1) = Xi(t) + (
1
p
·

p

∑
m=1

Xm(t)− Xrs(t)) · Rand1 (1)

where t represents the current iteration number; Xi(t) represents the location of tth new search agent;
p is a random integer between 2 and 5, representing the number of red-billed blue magpies in a
population of 2 to 5 randomly selected from all searched individuals; XM represents the mth randomly
selected individual; Xi represents the ith individual; and Xrs represents the randomly selected search
agent in the current iteration; Rand1 is a random number range from [0,1].

Also, RBMO imitates their search-for-food behavior in clusters as follows,

Xi(t + 1) = Xi(t) + (
1
q
·

q

∑
m=1

Xm(t)− Xrs(t)) · Rand2 (2)

where q is a random integer between 10 and n, representing the number of red-billed blue magpies in
a population of 10 to n randomly selected from all searched individuals; Rand2 is a random number
range from [0,1].

The whole Search-for-food Strategy is modeled below.

Xi(t + 1) = Xi(t) + (
1
p
·

p

∑
m=1

Xm(t)− Xrs(t)) · Rand1, rand < ε (3)

Xi(t + 1) = Xi(t) + (
1
q
·

q

∑
m=1

Xm(t)− Xrs(t)) · Rand2, rand ≥ ε (4)

6.2. Attacking Prey

When attacking prey, red-billed blue magpies show a high degree of hunting proficiency and
co-operation. Red-billed blue magpies use tactics such as rapid pecking, jumping to catch prey or
flying to catch insects, and they usually move in small groups of 2-5 or in clusters of 10 or more to
increase hunting efficiency.

RBMO imitates red-billed blue magpies’ attacking-prey behavior in small groups as follows,

Xi(t + 1) = X f ood(t) + CF · ( 1
p
·

p

∑
m=1

Xm(t)− Xi(t)) · Randn1 (5)
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where Xi(t) represents the location of tth new search agent; X f ood represents the position of the food,
which indicates the current optimal solution; p is a random integer between 2 and 5, representing
the number of red-billed blue magpies in a population of 2 to 5 randomly selected from all searched
individuals; Randn1 denotes the random number used to generate the standard normal distribution
(mean 0, standard deviation 1); CF is the step control factor, calculated as in Eq 6.

CF =

(
1 − t

T

)(2· t
T )

(6)

where t represents the current number of iterations; T represents the maximum number of iterations.
RBMO imitates red-billed blue magpies’ attacking-prey behavior in clusters as follows,

Xi(t + 1) = X f ood(t) + CF · (1
q
·

q

∑
m=1

Xm(t)− Xi(t)) · Randn2 (7)

where q is a random integer between 10 and n, representing the number of red-billed blue magpies in
a population of 10 to n randomly selected from all searched individuals; Randn2 denotes the random
number used to generate the standard normal distribution (mean 0, standard deviation 1).

The Attacking prey is modeled below.

Xi(t + 1) = X f ood(t) + CF · ( 1
p
·

p

∑
m=1

Xm(t)− Xi(t)) · Randn1, rand < ε (8)

Xi(t + 1) = X f ood(t) + CF · (1
q
·

q

∑
m=1

Xm(t)− Xi(t)) · Randn2, rand ≥ ε (9)

6.3. Food Storage

As well as searching for food and attacking food, red-billed blue magpies store excess food in
tree holes or other hidden places for future consumption, ensuring a steady supply of food in times of
shortage.

RBMO imitates the storing-food behavior of red-billed blue magpies. And the formula for storing
food is shown in Eq 10.

Xi(t + 1) =

Xi(t) if f itnessi
old > f itnessi

new

Xi(t + 1) else
(10)

where f itnessi
old and f itnessi

new denote the fitness values before and after the position update of the ith

red-billed blue magpie respectively.

6.4. Initialization

Like most metaheuristic algorithms, RBMO uses Pseudo-random number initialization for popu-
lation initialization. This approach, while simple and direct, often results in poor diversity and uneven
distribution of solutions, which can lead to inefficiency in the search process. Figure 2 is the population
initialized by Pseudo-random number method.

Xi,j = (ub − lb) · Rand + lb (11)

where Xi,j is randomly produced population; ub and lb are the upper limit and lower limit of the
problem; Rand is a random number between 0 and 1.
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Figure 2. Pseudo-random number initialization (N=150)

6.5. Workflow of RBMO and Its Analysis

The workflow of RBMO is provided in Figure 3.
As a new biologically metaheuristic algorithm, RBMO has significant advantages in global search,

population diversity and simplicity of implementation.The update mechanism of RBMO increases the
breadth and diversity of the search by randomly selecting the mean values of multiple individuals
for updating, which enables it to cover a larger search space, thus effectively avoiding falling into a
local optimum. Secondly, the algorithm structure of RBMO is simple and easy to implement, which
is suitable for the rapid solution of different fields and problems. In addition, by randomly selecting
individuals and mean updating strategies, RBMO is able to adapt to different types and sizes of
optimization problems, showing good stability and adaptability.

However, RBMO also has some limitations, especially in the local search ability and convergence
speed. As the attacking-prey strategy of RBMO is relatively monotonous, which leads to its insufficient
local search ability when facing complex and multi-peak problems, it is difficult to approach the
optimal solution quickly. In addition, the convergence speed of RBMO is relatively slow, and more
iterations are needed to find a better solution in the optimization process. These shortcomings limit
the effectiveness and efficiency of RBMO application to some extent. In order to solve these problems,
enhance the local search capability of RBMO and accelerate the convergence speed, we propose an
enhance RBMO, which is called MRBMO.
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NY
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locations and storing 

food by Eg.10

return best solution End

Figure 3. Workflow of RBMO

7. MRBMO
7.1. Good Nodes Set Initialization

The original RBMO uses pseudo-random number method to initialize the population, this method
is simple, direct and random, but there are some drawbacks. the randomly generated population, as
shown in Figure 2, is not uniformly distributed throughout the solution space, it is very aggregated in
some areas and scattered in some areas, which leads to the algorithm’s poor exploitation of the whole
search space and low diversity of the population. Therefore, some experts proposed to use chaotic
mapping, random wandering, Gaussian distribution and other methods to initialize the population.
Later some scholars proposed to use the good nodes set initialization.

The theory of Good Nodes Set was first proposed by the famous Chinese mathematician Loo-keng
Hua. Good Nodes Set is a method used to cover a multidimensional space uniformly, aiming to
improve the quality of initialized populations. Compared with the traditional initialization method,
Good Nodes Set initialization, as shown in Figure 4, can better distribute the nodes and improve the
diversity of the population, thus providing better initial conditions for the optimization algorithm.
This method is also effective in high dimensional spaces.

Assuming that UD is a unit cube in the D dimensional Euclidean space, and assuming that r is a
parameter, the set of canonical nodes PM

r has the form shown in Eq 12:

PM
r = {p(k) = ({kr}, {kr2}, . . . , {krD})|k = 1, 2, . . . , M} (12)

where {x} represents the fractional part of x; M is the number of points; r is a deviation parameter
greater than zero; the constant C(r, ε) is associated only with r and ε is related to and is a constant
greater than zero.

This set PM
r is called Good Nodes Set and each node p(k) in it is called a Good Node. Assume

that the upper and lower bounds of the ith dimension of the search space xi
max are and xi

min, then the
mapping formula for mapping the Good Nodes Set to the actual search space is:

xi
k = xi

min + pi(k) · (xi
max − xi

min) (13)
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Figure 4. Good Nodes Set initialization (N=150)

7.2. Enhanced Search-for-food Strategy

In the original RBMO, the Search-for-food phase relies on the random number and lacks dynamic
adjustment, which results in large random fluctuations between the population individuals. Partic-
ularly in the later stages of iteration, individuals may still explore with large step sizes, leading to
a decrease in search efficiency and affecting convergence accuracy. Therefore, this paper introduces
a nonlinear factor k, which enables more thorough exploration in the early stages and more refined
development in the later stages. The variation process of k is shown in Figure 5. And the calculation of
the nonlinear factor k is as follows:

k = 1 −
(

t
T

)2
(14)

where t represents the current number of iterations; T represents the maximum number of iterations.
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Figure 5. The variation process of k

In the early iterations, the value of k is close to 1, which enhances the large step movements
between the population individuals, thus improving global exploration ability. In the later iterations,
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the value of k approaches 0, limiting the movement range of individuals and gradually transitioning
towards local exploitation. By introducing the nonlinear factor k, the search intensity of RBMO
dynamically decays, naturally balancing exploration and exploitation, thereby improving convergence
stability. The Enhanced Search-for-food Strategy addresses the issue of excessive randomness in the
search phase of the original algorithm. The Enhanced Search-for-food Strategy is modeled below.

Xi(t + 1) = Xi(t) + k · ( 1
p
·

p

∑
m=1

Xm(t)− Xrs(t)), rand < ε (15)

Xi(t + 1) = Xi(t) + k · (1
q
·

q

∑
m=1

Xm(t)− Xrs(t)), rand ≥ ε (16)

7.3. Siege-Style Attacking-prey Strategy
7.3.1. HHO

The original RBMO algorithm is prone to getting stuck in local optima because the average position
induces a contraction effect on the dynamic range of the population, limiting further exploration of
the search space. Furthermore, in the original RBMO algorithm, the strategy for attacking prey relies
on the average position of the red-billed blue magpie individuals. This updating mechanism may
lead to a decrease in population diversity, resulting in slower convergence and reduced accuracy and
efficiency of the search, thus hindering further optimization. Therefore, inspired by the Harris Hawk
Optimization (HHO) algorithm, this paper introduces the concept of HHO into the prey attack phase
of RBMO, proposing the Siege-style Attacking-prey Strategy.

The Harris Hawk Optimization (HHO), introduced by Ali Asghar Heidari et al. in 2019, is a novel
bio-inspired optimization algorithm. The HHO algorithm simulates the diverse hunting strategies
of Harris hawks, allowing HHO to perform efficient global search in a larger solution space while
reducing the likelihood of falling into local optima. At the development stage, the HHO algorithm
fine-tunes the position of prey to perform local search, thereby finding better solutions in the local
regions of the solution space. We draw inspiration from the following position updating strategy of
HHO.

X(t + 1) = ∆X(t)− E · |J · Xrabbit(t)− X(t)| (17)

∆X(t) = Xrabbit(t)− X(t) (18)

where X is the positions of the Harris hawk at the tth iteration; E is the energy of the prey; J is a prey’s
random step while escaping; and Xrabbit represents the position of the food, which indicates the current
optimal solution.

The Siege-style Attacking-prey Strategy integrates the ideas of HHO, introducing the absolute
difference between the prey’s position X f ood and the red-billed blue magpie individual’s current
position Xi(t), combined with the step size CF to directly adjust the individual’s position update step
size. This mechanism helps to guide the red-billed blue magpie individuals more rapidly toward
better solutions, refining the local development capability of RBMO in later stages, thereby improving
solution accuracy and accelerating convergence speed. Additionally, through the combination of a
random factor and nonlinear scaling, the Siege-style Attacking-prey Strategy maintains population
diversity during the development phase. With the dynamically adjusted step size CF, the attacking
behavior of the red-billed blue magpie individuals can adapt to the different search demands at various
stages of iteration, enhancing exploration in the early stages and reinforcing exploitation in the later
stages. This avoids premature convergence to a single solution and improves the robustness of the
algorithm.
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7.3.2. Levy Flight

The concept of Levy flight originates from the work of mathematician Paul Levy in the 1920s.
Inspired by foraging behavior observed in nature and jump phenomena in complex systems, Levy
flight combines short-range exploration with long-range jumps, resembling the foraging paths of
predators such as sharks, birds, and insects. Levy flight is a stochastic walk model based on the Levy
distribution, with a key characteristic of combining short-distance small steps and long-distance large
jumps. This search pattern helps prevent individuals from getting trapped in local dead ends while
maintaining the ability to explore the global space. The long jumps in Levy flight allow algorithms to
quickly escape local regions, significantly improving the issue of local optima in complex problems.
The higher proportion of short-distance small steps enables precise searching within local regions.
Figure 6 shows a simulation of Levy flight. The step length L(s) of Levy flight follows the Levy
distribution, calculated as follows:

L(s) =
u

|ν|
1
β

(19)

where u and ν are normally distributed; β=1.5.

u ∼ N (0, σ2
u) (20)

v ∼ N (0, 1) (21)

The calculation of σu is given by:

σu =

Γ(1 + β) · sin
(

πβ
2

)
Γ
(

1+β
2

)
· β · 2

β−1
2


1
β

(22)
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Figure 6. Simulation of Levy Flight

One of the Siege-style Attacking-prey Strategy is modeled in Eq 23.

Xi(t + 1) = ∆X(t)− CF · |r1 · X f ood(t)− Xi(t)| · L(s) (23)

where X f ood represents the position of the food, which indicates the current optimal solution; CF is the
step control factor, calculated as in Eq 6; r1 is a the random number between [0, 1]; ∆X(t) is calculated
in Eq 18; L(s) is the step size of Levy flight.

7.3.3. Prey-Position-Based Enhanced Guidance

In the original attacking-prey phase, the movement of the red-billed blue magpie individuals
relies on both the position of the prey and the average position of the randomly selected red-billed blue
magpies. This movement strategy introduces some randomness and bias, which causes individuals
to become trapped near suboptimal solutions and prevents them from fully utilizing information
about the global optimum, hindering the local exploitation of the RBMO. Therefore, we propose
Prey-position-based Enhanced Guidance. In this approach, we replace the average position of the
randomly selected red-billed blue magpies with the position of the prey, directly guiding the red-billed
blue magpie individuals towards the prey. This helps to reduce the gap between the individuals and
the optimal solution. Prey-position-based Enhanced Guidance strengthens the dependency on the
optimal position, mitigates the degradation of solution quality due to randomness, and enhances the
concentration of local exploitation. Therefore, Prey-position-based Enhanced Guidance, one of the
Siege-style Attacking-prey Strategy, is modeled in Eq 24.

Xi(t + 1) = X f ood(t) + CF · (X f ood(t)− Xi(t)) · r2 (24)
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where X f ood represents the position of the food, which indicates the current optimal solution; CF is
the step control factor, calculated as in Eq 6; r2 is a the random number between [0, 1]. The whole
Siege-style Attacking-prey Strategy is modeled below.

Xi(t + 1) = ∆X(t)− CF · |r1 · X f ood(t)− Xi(t)| · L(s), rand < ε (25)

Xi(t + 1) = X f ood(t) + CF · (X f ood(t)− Xi(t)) · r2, rand ≥ ε (26)

7.4. Lens-Imaging Opposition-Based Learning

The food storage mechanism in RBMO passively retains better individuals, which may cause
the algorithm to hover around local optima. However, the Lens-Imaging Opposition-Based Learning
(LIOBL) strategy is more forward-looking. Therefore, we introduce the idea of LIOBL into the food
storage mechanism of RBMO. LIOBL increases the diversity of solutions by generating multiple
opposite solutions, thereby improving the exploration capability of RBMO in the later stages and
enabling it to find solutions closer to the global optimum more quickly. The fundamental idea of
Opposition-Based Learning (OBL) is to generate not only neighboring solutions of the current solution
during the search process but also its opposite solutions, and then compare the current solution with
the opposite solutions to select the better solution. The LIOBL strategy extends OBL by incorporating
the concept of reflection, which is shown in Figure 7, where the opposite solutions generated by
reflection are used to enhance the coverage of the solution space and improve the global exploration
capability of the algorithm [30]. The opposite solutions generated by LIOBL are not only the opposites
of the current solution but also include the reflected positions of the opposite solutions in the solution
space. The opposition solutionis calculated by Eq 27.

X′
i =

ub + lb
2

+
ub + lb

2η
− Xi

η
(27)

where Xi is the given solution; ub and lb are the upper and lower bounds of domain of definition
respectively; η is the scaling factor of len imaging, which is set to 0.5.

Then we need to retain the better individuals through greedy meritocracy to the next generation
of the population, increasing the proportion of elite individuals in the population and is shown in
Eq 28.

Xi+1 =

Xi, if f itness(Xi) > f itness(X′
i)

X′
i , if f itness(Xi) < f itness(X′

i)
(28)

where f itness(Xi) indicates the fitness value of Xi.
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Figure 7. The concept of lens imaging

7.5. Time Complexity Analysis

Assume that the time complexity of initialization in RBMO is O(ND). During each iteration,
the time complexity of food storage is O(ND), and the total time complexity of position updates is
O(ND). Therefore, the total time complexity per iteration is O(ND). If the algorithm iterates T times,
the total time complexity of RBMO is calculated as:

Total Time Complexity 1 = Initialization + T * (the total time complexity per iteration) = O(ND) +
T * O(ND) = O(T ∗ ND)

Assume that the time complexity of initialization in MRBMO is O(ND). During each iteration,
the time complexity of food storage is O(ND), the time complexity of LIOBL is O(ND), and the total
time complexity of position updates is O(ND). Therefore, the total time complexity per iteration is
O(ND). If the algorithm iterates T times, the total time complexity of MRBMO is calculated as:

Total Time Complexity 2 = Initialization + T * (the total time complexity per iteration) =O(ND) +
T * O(ND) = O(T ∗ ND)

In summary, the time complexity of MRBMO and RBMO are the same, both are O(T ∗ ND).

7.6. Worflow of MRBMO

The worflow of MRBMO is provided in Figure 8.
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Figure 8. Workflow of MRBMO

8. Performance Test
The experimental environment for experiments was Windows 11 (64bit), Intel(R) Core(TM) i5-

8300H CPU @ 2.30GHz, 8GB running memory and the simulation platform is Matlab R2023a.
In order to validate the performance and effectiveness of MRBMO, the following two experiments

are designed to test the algorithms on 23 classical benchmark functions and simulation experiment
for engineering design optimization and antenna S-parameter optimization will be performed in next
chapter:

• Each of the four improvement strategies is removed from MRBMO and an ablation study is
performed on the 23 classical benchmark functions in Table 1;

• A qualitative analysis experiment was performed by applying MRBMO on the benchmark func-
tions to comprehensively evaluate the performance, robustness and exploration-exploitation
balance of MRBMO in different types of problems, by assessing convergence behavior, population
diversity and exploration-exploitation capability;

• MRBMO, traditional RBMO and other outstanding metaheuristic algorithms are examined on the
classical benchmark functions.
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Table 1. Classical Benchmark Functions

Function Function’s Name Type Dimension Best Value

F1 Sphere Uni-modal 30 0
F2 Schwefel’s Problem 2.22 Uni-modal 30 0
F3 Schwefel’s Problem 1.2 Uni-modal 30 0
F4 Schwefel’s Problem 2.21 Uni-modal 30 0
F5 Generalized Rosenbrock’s Function Uni-modal 30 0
F6 Step Function Uni-modal 30 0
F7 Quartic Function Uni-modal 30 0
F8 Generalized Schwefel’s Function Multi-modal 30 -12569.5
F9 Generalized Rastrigin’s Function Multi-modal 30 0
F10 Ackley’s Function Multi-modal 30 0
F11 Generalized Griewank’s Function Multi-modal 30 0
F12 Generalized Penalized Function 1 Multi-modal 30 0
F13 Generalized Penalized Function 2 Multi-modal 30 0
F14 Shekel’s Foxholes Function Multi-modal 2 0.998
F15 Kowalik’s Function Multi-modal 4 0.0003075
F16 Six-Hump Camel-Back Function Composite 2 -1.0316
F17 Branin Function Composite 2 0.398
F18 Goldstein-Price Function Composite 2 3
F19 Hartman’s Function 1 Composite 3 -3.8628
F20 Hartman’s Function 2 Composite 6 -3.32
F21 Shekel’s Function 1 Composite 4 -10.1532
F22 Shekel’s Function 2 Composite 4 -10.4029
F23 Shekel’s Function 3 Composite 4 -10.5364

8.1. Ablation Study

This paper designs an ablation study to evaluate the effectiveness of various improvement
strategies on RBMO. We define the following variants: MRBMO1 is the MRBMO removes the Good
Nodes Set initialization. MRBMO2 is the MRBMO which removes Enhanced Search-for-prey Strategy.
MRBMO3 is the MRBMO which removes Siege-style Attacking-prey Strategy. And MRBMO4 is the
MRBMO which removes LIOBL. To fairly compare the effectiveness of each strategy, we test these
improved algorithms on 23 benchmark functions. We set the maximum iteration as T=500 and the
population size as N=30. We run each algorithm on the 23 functions for 30 times and the results are
shown in Figure 9.

Experimental results show that each improvement strategy significantly enhances RBMO’s per-
formance. The Good Nodes Set Initialization distributes the population evenly in the solution space,
improving quality and aiding in solving high-dimensional multi-modal functions like F5, F8, F12 and
F13. As shown in F6, F7 and F13, the Enhanced Search-for-food Strategy sacrifices a slight reduction in
convergence speed but improves the optimization ability for handling complex multi-modal functions.
As shown in F1-F4 and F9-F13, the Siege-style Attacking-prey Strategy strengthens the exploitation
phase, enhancing local search capability and convergence speed. Replacing the Food Storage mecha-
nism with LIOBL allows population updates post-development, increasing diversity while preserving
elite individuals, which boosts exploration and reduces local optima entrapment.
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Figure 9. Iteration curves for MRBMOs in Ablation Study

8.2. Qualitative Analysis Experiment

In qualitative analysis experiment, we applied MRBMO on the benchmark functions recorded
the search history of the red-billed blue magpie individuals, the exploration-exploitation percentage
of MRBMO during the iterations and the polulation diversity of MRBMO. So that we could compre-
hensively evaluate the performance, robustness and exploration-exploitation balance of MRBMO in
different types of problems.

In this experiment, the maximum number of iterations was set to T=500 and the population size
was N=30. The search history of the red-billed blue magpie individuals, the proportions of exploration
and exploitation, population diversity, and iteration curves were recorded and are presented in
Figure 10–13. From the figures, it is evident that the red-billed blue magpie individuals in MRBMO
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demonstrate a well-distributed search within the solution space, indicating the effectiveness of the
Good Nodes Set Initialization. For the F8, the global optimal solution is located in the upper-right
corner of the solution space, posing significant challenges for the algorithm’s ability to escape local
optima. The Siege-style Attacking-prey Strategy facilitates detailed exploration around the region with
potential solution, ultimately leading to the identification of the optimal solution for F8. Additionally,
the introduction of Levy flight allows MRBMO to consistently escape local optima and maintain high
population diversity, even when addressing complex combinatorial problems such as F15-F23. For
uni-modal functions, the results show that the exploitation proportion of MRBMO increases rapidly
during the iterative process, demonstrating strong exploitation capabilities. For complex functions
like F7, F8 and F15, the exploration proportion decreases gradually in the early iterations, reflecting
MRBMO’s robust global exploration ability. In the later stages of the iterations, the exploitation
proportion increases significantly, indicating strong local exploitation capabilities.

Figure 10. Performance of MRBMO in Qualitative analysis experiment (F1-F6)
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Figure 11. Performance of MRBMO in Qualitative analysis experiment (F7-F12)
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Figure 12. Performance of MRBMO in Qualitative analysis experiment (F13-F18)
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Figure 13. Performance of MRBMO in Qualitative analysis experiment (F19-F23)

8.3. Superiority Comparative Test

To further verify the superiority of MRBMO, we selected Attraction-Repulsion Optimization
Algorithm (AROA) [35], Harris Hawks Optimization (HHO) [7], Grey Wolf Optimizer (GWO) [10],
Whale Optimization Algorithm (WOA) [21] and RBMO for superiority comparative experiments. The
tests were conducted on 23 benchmark functions. The parameter settings for each algorithm are shown
in Table 2. We set population size as N=30, the number of iterations as T=500 and each algorithm
is run independently 30 times. And the average fitness (Ave), standard deviation (Std), p-values of
Wilcoxon rank-sum test, and Friedman values of 30 runs were recorded for performance analysis. And
we will evaluate the overall effectiveness (OE) of MRBMO. The experimental results are presented in
Figure 14, Table 3, Table 3 and Table 4.

From the experiment results, it can be seen that MRBMO converges to the optimal value on
most functions, with a standard deviation of zero or close to zero, demonstrating strong stability,
robustness and optimization capabilities. For problems like F5-F8 and F20-F23, which are prone to
local optima, the Good Nodes Set initialization allows population of MRBMO to be evenly distributed
in the solution space, significantly improving the population quality. As a result, MRBMO can escape
local optima and achieve better solutions for these types of problems. The incorporation of Enhanced
Search-for-food Strategy and Siege-style Attacking-prey Atrategy contributes to higher accuracy with
solving complex problem like F5-F6 and F12-F13. Siege-style Attacking-prey Strategy helps MRBMO
achieve higher convergence speed and accuracy, enabling MRBMO to find the optimal solutions for
F1-F4 and F9-F11 within a limited number of iterations.

In non-parametric tests, the statistical results, as is shown in Table 4, indicate that most p-values
from Wilcoxon rank-sum tests are less than 0.05, suggesting significant differences between the
optimization results of MRBMO and the five comparison algorithms. On F9-F11, there is no significant
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difference between MRBMO and HHO, because they all found the optimal solutions within a limited
number of iterations. There is no significant difference between MRBMO and RBMO on F16, F17, and
F19, because MRBMO not only found the optimal solutions for these functions every time but also
had a standard deviation equal to or slightly smaller than that of RBMO. This indicates that MRBMO,
while maintaining RBMO’s ability to solve complex functions, also achieved faster convergence speed
and higher accuracy. And there is a significant difference between MRBMO and the rest algorithms.
This experiment further corroborates the reliability of Superiority Test. The average Friedman values
for these six algorithms are 5.2985, 3.4449, 3.3703, 3.8087, 3.7580, and 1.3196 respectively. According to
these results, MRBMO ranks first in terms of the average Friedman value among the six algorithms,
indicating its superior performance. This consistent performance across multiple functions highlights
the effectiveness and robustness of MRBMO.

Table 2. Parameter setting for different algorithms

Algorithm Parameters Value

AROA Attraction factor c 0.95
Local search scaling factor 1 0.15
Local search scaling factor 2 0.6

Attraction probability 1 0.2
Local search probability 0.8

Expansion factor 0.4
Local search threshold 1 0.9
Local search threshold 2 0.85
Local search threshold 3 0.9

HHO Threshold 0.5

GWO Convergence factor a 2 decreasing to 0

WOA Spiral factor b 1
Convergence factor a 2 decreasing to 0

RBMO Balance coefficient ε 0.5

MRBMO Balance coefficient ε 0.5
Nonlinear factor k 1 decreasing to 0
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Figure 14. Iteration curves for each algorithm in Superiority comparative test
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Table 3. Comparative results of each algorithm in Superiority test

Function Index AROA HHO GWO WOA RBMO MRBMO

F1 Ave 3.3576E+00 1.1262E-74 1.4069E-27 3.1494E-72 2.5905E-03 0.0000E+00
Std 2.1713E+00 4.1597E-74 2.4825E-27 1.7144E-71 4.0092E-03 0.0000E+00

F2 Ave 6.8236E-01 2.5359E-37 1.3021E-16 1.2999E-50 2.1738E-02 0.0000E+00
Std 2.1966E-01 1.0551E-36 1.1792E-16 6.6296E-50 3.8140E-02 0.0000E+00

F3 Ave 2.3645E+02 1.7888E-70 3.8304E-05 4.5910E+04 2.0398E+02 0.0000E+00
Std 2.4624E+02 9.2604E-70 1.3114E-04 1.3447E+04 1.5643E+02 0.0000E+00

F4 Ave 1.7294E+00 6.2931E-38 7.9187E-07 4.8866E+01 2.5584E+00 0.0000E+00
Std 9.7121E-01 2.6195E-37 8.3113E-07 2.9838E+01 8.9898E-01 0.0000E+00

F5 Ave 7.6060E+01 1.6391E+01 2.6973E+01 2.7940E+01 7.4743E+01 2.6145E-04
Std 3.7781E+01 1.4343E+01 6.6554E-01 4.9444E-01 6.8196E+01 2.6787E-04

F6 Ave 1.1738E+01 1.5028E-01 7.1766E-01 4.1328E-01 2.1586E-03 3.0078E-07
Std 7.1777E+00 2.1271E-01 4.0762E-01 1.8796E-01 3.4735E-03 4.2633E-07

F7 Ave 2.8401E-02 1.1149E-04 1.6559E-03 3.8330E-03 1.8395E-02 9.1647E-05
Std 1.8619E-02 1.4140E-04 9.3640E-04 3.7850E-03 7.9486E-03 7.5072E-05

F8 Ave -4.5790E+03 -12569.3437 -5.9321E+03 -1.0617E+04 -8.5147E+03 -12569.4593
Std 7.0213E+02 7.0213E+02 7.1362E+02 1.9688E+03 7.0735E+02 6.3822E-02

F9 Ave 5.6853E+01 0.0000E+00 3.9727E+00 3.7896E-15 4.7421E+01 0.0000E+00
Std 6.9642E+01 0.0000E+00 4.2612E+00 1.4422E-14 1.4926E+01 0.0000E+00

F10 Ave 7.3713E-01 4.4409E-16 1.0075E-13 3.6415E-15 8.9531E-01 4.4409E-16
Std 3.2507E-01 0.0000E+00 1.2260E-14 2.1580E-15 7.2365E-01 0.0000E+00

F11 Ave 1.0157E+00 0.0000E+00 4.6852E-03 2.3941E-02 1.8804E-02 0.0000E+00
Std 6.9128E-02 0.0000E+00 7.4903E-03 7.5689E-02 2.1627E-02 0.0000E+00

F12 Ave 1.2551E+00 4.1197E-04 4.8043E-02 3.3640E-02 3.7537E-01 2.3563E-09
Std 2.8262E-01 9.3011E-04 1.9237E-02 5.1397E-02 6.6152E-01 6.4604E-09

Table 3. Comparative results of each algorithm in Superiority test (Continued)

Function Index AROA HHO GWO WOA RBMO MRBMO

F13 Ave 3.8771E+00 6.1086E-02 6.2003E-01 4.8201E-01 5.2915E-02 3.6628E-04
Std 6.5630E-01 7.3467E-02 2.3731E-01 2.7243E-01 1.2411E-01 2.0060E-03

F14 Ave 4.7883E+00 1.6255E+00 5.4308E+00 3.1247E+00 1.0311E+00 9.9800E-01
Std 4.1083E+00 1.1462E+00 4.6220E+00 3.3469E+00 1.8148E-01 8.2465E-17

F15 Ave 5.1259E-03 4.0325E-04 3.1023E-03 1.0325E-03 3.7112E-03 3.0755E-04
Std 7.9967E-03 1.1820E-04 6.8916E-03 2.1999E-03 7.5779E-03 2.0577E-07

F16 Ave -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00 -1.0316E+00
Std 5.5337E-05 9.5165E-07 3.4423E-08 1.3538E-09 6.1849E-16 6.1158E-16

F17 Ave 3.9836E-01 3.9803E-01 3.9804E-01 3.9789E-01 3.9789E-01 3.9789E-01
Std 1.6755E-03 6.1247E-04 8.2333E-04 9.5891E-06 0.0000E+00 0.0000E+00

F18 Ave 3.0025E+00 5.7004E+00 3.0000E+00 3.9001E+00 3.0000E+00 3.0000E+00
Std 1.0330E-02 8.2387E+00 5.9458E-05 4.9295E+00 1.3848E-15 8.6883E-16

F19 Ave -3.8577E+00 -3.7476E+00 -3.8619E+00 -3.8571E+00 -3.8628E+00 -3.8628E+00
Std 9.2577E-03 2.6794E-01 1.8003E-03 9.7964E-03 2.7101E-15 2.7101E-15

F20 Ave -3.2076E+00 -2.6245E+00 -3.2662E+00 -3.1990E+00 -3.2784E+00 -3.3180E+00
Std 8.7053E-02 4.6584E-01 7.9583E-02 1.0112E-01 5.8273E-02 2.1707E-02

F21 Ave -5.7049E+00 -2.9608E+00 -9.2237E+00 -9.1946E+00 -9.4044E+00 -1.0153E+01
Std 3.3741E+00 1.6463E+00 2.1476E+00 2.4071E+00 2.2848E+00 6.7923E-15

F22 Ave -6.4097E+00 -3.3593E+00 -1.0401E+01 -6.8982E+00 -8.4732E+00 -1.0403E+01
Std 3.1860E+00 1.6170E+00 1.4716E-03 3.1916E+00 3.0381E+00 1.1427E-15

F23 Ave -5.7600E+00 -3.1059E+00 -1.0264E+01 -7.3546E+00 -9.6555E+00 -1.0536E+01
Std 3.4452E+00 1.2479E+00 1.4812E+00 3.3466E+00 2.3046E+00 1.8366E-15
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Table 4. Ranking of non-parametric tests of different algorithms

Algorithm Average Friedman Value Rank +/=/-

AROA 5.2985 6 23/0/0
HHO 3.4449 3 20/3/0
GWO 3.3703 2 23/0/0
WOA 3.8087 5 23/0/0
RBMO 3.7580 4 20/2/1

MRBMO 1.3196 1 -

Table 5 summarizes all performance results of MRBMO and other algorithms by a useful metric
named overall effectiveness (OE). In Table 5, w indicates win, t indicates tie and l indicates loss. The
OE of each algorithm is computed by Eq. 29 [33].

OE =
N − L

L
· 100 (29)

where N is the total number of tests; L is the total number of losing tests for each algorithm.
Results proves that MRBMO is competitive with other algorithms on the benchmark functions

with different dimensions.

Table 5. Effectiveness of MRBMO and other algorithms

AROA HHO GWO WOA RBMO RBMO
(w/t/l) (w/t/l) (w/t/l) (w/t/l) (w/t/l) (w/t/l)

Total 0/0/23 0/2/21 0/0/23 0/0/23 1/2/20 18/5/1
OE 0% 8.69% 0% 0% 13.04% 95.65%

9. Silulation Experiment
To validate the ability of MRBMO to solve real-world problems, we used four engineering design

optimzation problems to test the performance of MRBMO, in order to verify the effectiveness and
applicability of MRBMO in engineering design optimization. We also used an antenna S-parameter
suite to test the performance of MRBMO, in order to quickly validate the effectiveness and applicability
of MRBMO in antenna S-parameter optimization.

9.1. Engineering Design Optimzation
9.1.1. Pressure Vessel Design

A pressure vessel is a common mechanical structure used in fields such as chemical engineering,
aerospace, and medical applications. The pressure vessel design problem is a classic structural
optimization problem, where the goal is to minimize the manufacturing costs of the pressure vessel,
including pairing, forming, and welding processes. The design of the pressure vessel is shown in
Figure 15, with caps sealing both ends of the vessel. The cap at one end is hemispherical. x1 and x2

represent the wall thickness of the cylindrical section and the head, respectively, while x3 is the inner
diameter of the cylindrical section, and x4 is the length of the cylindrical section, excluding the head.
Thus, x1, x2, x3, and x4 are the four optimization variables of the pressure vessel design problem. The
objective function and four optimization constraints are represented as follows:

Variable:

x = [x1, x2, x3, x4]

Minimize:
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f (x) = 0.6224x1 · x3 · x4 + 1.7781x2 · x2
3 + 3.1661x2

1 · x4 + 19.84x2
1 · x3 (30)

Subject to:

g1(x) = −x1 + 0.0193x3 ≤ 0; (31)

g2(x) = −x2 + 0.00954x3 ≤ 0; (32)

g3(x) = −πx2
3 · x4 −

4
3

πx2
3 + 1296000 ≤ 0; (33)

g4(x) = x4 − 240 ≤ 0; (34)

Variable range:

0 ≤ x1 ≤ 99; 0 ≤ x2 ≤ 99; 10 ≤ x3 ≤ 200; 10 ≤ x4 ≤ 99;

In this study, we conducted comparative tests between the MRBMO and AROA, HHO, GWO,
WOA and RBMO. The parameter settings for each algorithm are provided in Table 2. The number of
iterations is set to T=500, and the population size is N=30. Each algorithm is run independently for
30 trials on the pressure vessel design problem, and the average values and standard deviations are
recorded for performance analysis. The experimental results are shown in Figure 16 and Table 6. As
shown in Table 6, MRBMO significantly outperforms the other algorithms in terms of both optimization
accuracy and stability for the pressure vessel design problem. This demonstrates that MRBMO has
superior solving capabilities when handling this type of problem.

X3

X1X2

X3

X4

Figure 15. The structure of a Pressure Vessel
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Figure 16. Iteration curves in Pressure Vessel design

9.1.2. Piston Lever Design

A piston lever is a typical mechanical structure, as shown in Figure 17, and its design problem
is classified as a classical engineering optimization problem. It involves the adjustment of multiple
geometric and mechanical parameters with the aim of minimizing material usage or structural weight
while satisfying constraints such as strength and stability. This optimization seeks to achieve a
balance between economic efficiency and structural performance and is widely applied in mechanical
engineering, vehicle design, and other industrial scenarios, especially in lightweight and efficient
design of moving components.

In the Piston Lever design problem, the objective is to minimize the total material consumption of
the Piston Lever while ensuring that the structural strength and performance meet design requirements.
The geometric structure of the Piston Lever is defined by multiple design parameters that describe
the relationships between its key dimensions. In this problem, the Piston Lever consists of multiple
structural parts with the following important characteristics: one end is fixed, while the other end bears
an applied force; its mechanical properties are influenced by geometric features such as radius and
length; and the design of each geometric part is controlled by decision variables. From the geometric
relationships, the meanings of variables x1 to x4 are as follows: x1 and x2 are Primary length and width
parameters of the geometric structure, which govern the overall lever arm. x3 is cross-sectional radius
at the point of force application, affecting force distribution. x4 is Geometric dimension related to the
support point.

The objective function for the Piston Lever design problem can be described as,

Variable:

x = [x1, x2, x3, x4]
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Minimize:

f (x) = 0.25πx2
3(L2 − L1) (35)

Subject to:

g1(x) = QL cos θ − RF ≤ 0; (36)

g2(x) = Q(L − x4)− Mmax ≤ 0; (37)

g3(x) = 1.2(L2 − L1)− L1 ≤ 0; (38)

g4(x) =
x3

2
− x2 ≤ 0; (39)

Variable range:

0.05 ≤ x1 ≤ 500; 0.05 ≤ x2 ≤ 500; 0.05 ≤ x4 ≤ 500; 0.05 ≤ x3 ≤ 120;

Where:

Q = 10000; P = 1500; L = 240; Mmax = 1.8 × 106;

L1 =
√
(x4 − x2)2 + x2

1; L2 =
√
(x4 sin θ + x1)2 + (x2 − x4 cos θ)2;

R =
| − x4(x4 sin θ + x1) + x1(x2 − x4 cos θ)|√

(x4 − x2)2 + x2
1

;

F = 0.25πPx2
3;

This study compares MRBMO with AROA, HHO, GWO, WOA and RBMO, with the parameter
settings for each algorithm shown in Table 2. The number of iterations is uniformly set to T=500, and
the population size is set to N=30. Each algorithm is run independently 30 times on the Piston Lever
design problem, with the average fitness and standard deviation recorded for performance analysis.
The experimental results are shown in Figure 18 and Table 6. As shown in Table 6, in the Piston Lever
design problem, MRBMO demonstrates significantly superior optimization accuracy and stability
compared to other algorithms. This indicates that MRBMO has a substantial advantage in handling
such problems.
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Figure 17. Structure of a piston lever
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Figure 18. Iteration curves of the algorithms in Piston Lever design problem

9.1.3. Robot Gripper Design

The robot gripper design problem is a classic engineering optimization problem, widely applied
in industrial automation, medical robotics, and logistics. The goal is to maximize gripping performance
or minimize material usage under the constraints of gripping force range, structural requirements,
and geometric stability, thereby optimizing the structural efficiency and cost-effectiveness of the robot
gripper. Figure 19 is the structure of a robot gripper.

The robot gripper involves several critical parameters related to geometry, mechanics, and motion:
x1, x2, x3, x4 are geometric parameters of the gripper; x5 is the force applied to the gripper; x6 is the
length of the gripper; x7 is the angular offset of the gripper.

The objective function of the Robot Gripper design problem can be described as:

Variable:

x = [x1, x2, x3, x4, x5, x6, x7] (40)

Minimize:

f (x) = −
[

max
z∈[0,Zmax]

F1(x, z, 2) + min
z∈[0,Zmax]

F1(x, z, 2)
]

(41)

Subject to:

g1(x) = −Ymin + F1(x, Zmax, 1) ≤ 0; (42)

g2 = −F1(x, Zmax, 1) ≤ 0; (43)

g3(x) = Ymax − F1(x, 0, 1) ≤ 0; (44)
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g4(x) = F1(x, 0, 1)− YG ≤ 0; (45)

g5(x) = x2
6 + x2

4 − (x1 + x2)
2 ≤ 0; (46)

g6(x) = x2
2 − (x1 − x4)

2 − (x6 − Zmax)
2 ≤ 0; (47)

g7(x) = Zmax − x6 ≤ 0 (48)

Variable range:

10 ≤ x1 ≤ 150; 10 ≤ x2 ≤ 150; 100 ≤ x3 ≤ 200; 0 ≤ x4 ≤ 50;

10 ≤ x5 ≤ 150; 100 ≤ x6 ≤ 300; 1 ≤ x7 ≤ 3.14

Where:

P = 100; Zmax = 100;

Ymin = 50; Ymax = 100; YG = 150;

F1(x, z, f lag) : Calculate the grabbing force or the applied force

When Flag=1, calculate the grabbing force:

F1(x, z, 1) = 2(x5 + x4 + x3 · sin(β + x7));

When Flag=2, calculate the applied force:

F1(x, z, 2) =
Px2 · sin(α + β)

2x3
;

α = arccos

(
x2

1 + g2 − x2
2

2x1g

)
+ ϕo;

β = arccos

(
x2

2 + g2 − x2
1

2x2g

)
− ϕo;

g =
√

x2
4 + (z − x6)2;

ϕo = arctan
(

x4

x6 − z

)
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This study compares MRBMO with AROA, HHO, GWO, WOA, and RBMO. The parameter
settings for each algorithm are shown in Table 2. The iteration number T=500 and population size
N=30 were uniformly set for all experiments. Each algorithm was executed independently 30 times on
the robot gripper design problem, and the average fitness value and standard deviation were recorded
for performance analysis. The experimental results are presented in Figure 20 and Table 6.

From Table 6, it can be observed that in the Robot Gripper design problem, MRBMO significantly
outperforms other algorithms in terms of optimization accuracy and stability. This demonstrates that
MRBMO has a considerable advantage in addressing such problems..

P

x1x10

x2

x6

x3

α

β
x4

x5

F

x7

F

x7

x9

x8

Figure 19. Robot Gripper design problem
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Figure 20. Iteration curves on solving Robot Gripper design problem

9.2. Industrial Refrigeration System Design

In the chemical plant design, an industrial refrigeration system is one of the key auxiliary facilities,
widely used in chemical production processes, especially in operations such as chemical reactions, stor-
age, transportation, and refining, where temperature control and heat exchange are critical. Chemical
plants often require significant cooling and temperature control to maintain reaction stability, ensure
product quality, reduce energy consumption and emissions, and ensure the proper functioning of
equipment. Therefore, industrial refrigeration systems play a crucial role in the design of chemical
plants. The industrial refrigeration system design problem focuses on minimizing energy consumption
and cost while ensuring efficient cooling performance, as shown in Figure 21. The objective is to
configure the system components, such as compressors, condensers, and evaporators, to achieve the
lowest operating cost and optimal heat exchange efficiency. The problem includes fourteen variables:
compressor power x1 and x2, refrigerant flow rate and mass flow x3 through x6, characteristics of the
condenser and evaporator x7 and x8 , compression ratios x9 and x10, temperature parameters x11 and
x12, and flow rate parameters x13 and x14. Specifically, compressor power x1 and x2 control the cooling
capacity; refrigerant flow rate and mass flow x3 through x6 indicate the refrigerant flow through
condensers, evaporators, and receivers; x7 and x8 represent the sizing parameters of the condenser and
evaporator; x9 and x10 define the compression degree and compressor efficiency; x11 and x12 manage
the temperature differential for heat exchange; and x13 and x14 govern the flow rate of cooling water
or refrigerant, affecting overall system performance. Industrial refrigeration system design problem is
modeled below.

Variable:

x = [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14]
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Minimize:

y = f (x) (49)

Subject to:

g1 =
1.524

x7
− 1 ≤ 0; (50)

g2 =
1.524

x8
− 1 ≤ 0; (51)

g3 = 0.07789 · x1 −
2 · x9

x7
− 1 ≤ 0; (52)

g4 =
7.05305 · x2

1 · x10

x9 · x8 · x2 · x14
− 1 ≤ 0; (53)

g5 =
0.0833 · x14

x13
− 1 ≤ 0; (54)

g6 =
47.136 · x0.333

2 · x12

x10
− 1.333 · x8 · x2.1195

13 +
62.08 · x2.1195

13 · x0.2
8

x12 · x10
− 1 ≤ 0; (55)

g7 = 0.04771 · x10 · x1.8812
8 · x0.3424

12 − 1 ≤ 0; (56)

g8 = 0.0488 · x9 · x1.893
7 · x0.316

11 − 1 ≤ 0; (57)

g9 =
0.0099 · x1

x3
− 1 ≤ 0; (58)

g10 =
0.0193 · x2

x4
− 1 ≤ 0; (59)

g11 =
0.0298 · x1

x5
− 1 ≤ 0; (60)

g12 =
0.056 · x2

x6
− 1 ≤ 0; (61)

g13 =
2
x9

− 1 ≤ 0; (62)

g14 =
2

x10
− 1 ≤ 0; (63)

g15 =
x12

x11
− 1 ≤ 0; (64)

Where:

f (x) = 63098.88 · x2 · x4 · x12 + 5441.5 · x2
2 · x12 + 115055.5 · x1.664

2 · x6

+6172.27 · x2
2 · x6 + 63098.88 · x1 · x3 · x11 + 5441.5 · x2

1 · x11

+115055.5 · x1.664
1 · x5 + 6172.27 · x2

1 · x5 + 140.53 · x1 · x11

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2025 doi:10.20944/preprints202502.0188.v1

https://doi.org/10.20944/preprints202502.0188.v1


35 of 42

+281.29 · x3 · x11 + 70.26 · x2
1 + 281.29 · x1 · x3 + 281.29 · x2

3

+14437 · x1.8812
8 · x0.3424

12 · x10 · x2
1 ·

x7

x14 · x9

+20470.2 · x2.893
7 · x0.316

11 · x12

Variable range:

0.001 < x1 < 5; 0.001 < x2 < 5; 0.001 < x3 < 5; 0.001 < x4 < 5;

0.001 < x5 < 5; 0.001 < x6 < 5; 0.001 < x7 < 5; 0.001 < x8 < 5;

0.001 < x9 < 5; 0.001 < x10 < 5; 0.001 < x11 < 5; 0.001 < x12 < 5;

0.001 < x13 < 5; 0.001 < x14 < 5;

A comparative test was also conducted between MRBMO and AROA, HHO, GWO, WOA, and
RBMO, with parameters as specified in Table 2. Each algorithm ran independently for 30 trials,
maintaining a maximum iterations of T=500 and a population size of N=30. The experimental results,
presented in Figure 22 and Table 6. The results demonstrate that MRBMO consistently escapes local
optima, continuously searching for better solutions even when other algorithms are trapped in sub-
optimal states. Compared with other algorithms, MRBMO shows exceptional stability and accuracy in
solution-seeking. Therefore, MRBMO proves to be a highly robust and outstanding optimization tool
for handling complex design optimization tasks.
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Figure 21. The structure of an industrial refrigeration system
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Figure 22. Iteration curves of the algorithms in Industrial Refrigeration System design problem

Table 6. Results of different algorithms on various engineering design optimization problems

Problems Index AROA HHO GWO WOA RBMO MRBMO

Pressure vessel Ave 1051.497457 1131.127862 903.228152 1209.015966 817.427522 774.810116
Std 284.348170 279.641639 275.992023 547.039872 195.056827 96.712573

Piston lever Ave 237.669131 374.504869 51.098610 41.949668 17.698731 1.057175
Std 165.924633 203.438416 80.569535 83.949697 52.625219 0.000000

Robot gripper Ave 10.245274 12.850251 2.634413 7.488088 2.360270 1.940320
Std 10.434973 23.741498 1.835745 18.086681 0.833777 0.549999

Industrial refrigeration Ave 25855.679209 1351.066268 646.177525 861.821754 6987.501406 7.900666
system Std 19798.951282 4597.977707 3496.391366 4161.740403 9330.060337 0.814027

9.3. Antenna S-Parameter Optimization

The optimization of antenna S-parameters (scattering parameters) is a critical aspect of the design
of wireless communication systems, radar, and other electronic devices, serving as a key factor in
ensuring the efficient operation of wireless systems. S-parameters describe the reflection and transmis-
sion characteristics of antennas, primarily including S11 (reflection coefficient) and S21 (transmission
coefficient). Optimizing these parameters can enhance antenna performance, reduce signal loss, and
improve radiation efficiency. metaheuristic algorithms are capable of finding optimal or near-optimal
solutions within complex design spaces. When integrated with electromagnetic simulation software,
they create an iterative optimization workflow. Designers can effectively optimize the S-parameters of
antennas, thereby enhancing their performance and reliability, by selecting appropriate algorithms,
configuring suitable parameters, and utilizing relevant objective functions. However, validating
the suitability of algorithms for optimizing antenna S-parameters through simulation can be time-
consuming and resource-intensive.Therefore, Zhen Zhang et al. developed a benchmark test suite for
antenna S-parameter optimization [11] to intuitively and rapidly assess the performance of metaheuris-
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tic algorithms in antenna design. This benchmark suite simulates the characteristics of electromagnetic
simulations and addresses common antenna issues, ranging from single antennas to multiple antennas,
thereby tackling the structural design challenges for both types. They demonstrated that the test suite
they proposed has the same effect as the electromagnetic simulation of antenna S-parameters, that
is, if an algorithm performs well on the test suite, it is suitable for antenna S-parameter optimization.
Details of the benchmark functions of the test suite is listed below and Figure 23 is the landscapes of
the functions.

Figure 23. Landscapes of eight benchmark functions in the test suite for antenna S-parameter optimization

F1 = 20log(2(
n

∑
i=1

|sin(
xi
8
)2|+

n

∑
i=1

|sin(
xi
8
)|) + 1) (65)

where F1 is a uni-modal function characterized by a rose-shaped valley, with a minimum value of 0 and
a dimension of 8. It is continuous, differentiable, and non-separable for single antenna optimization.

F2 = 20log(10(
n

∑
i=1

x2
i )

2 + 1) (66)

where F2 is a uni-modal function with a steep narrow valley, having a minimum value of 0 and a
dimension of 8. It is continuous, differentiable, separable, and scalable, for multi-antenna design
optimization.

F3 = 20log(10(
n

∑
i=1

0.01i5x2
i )

2 + 1) (67)

where F3 is a uni-modal function featuring a long narrow valley, with a minimum value of 0 and a
dimension of 8. It is continuous, differentiable, separable, and scalable, for both single and multiple
antenna optimization.

F4 = 20log((
n

∑
i=1

(100(xi+1 − x2
i )

2 − (xi − 1)2)) + 1) (68)

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 February 2025 doi:10.20944/preprints202502.0188.v1

https://doi.org/10.20944/preprints202502.0188.v1


38 of 42

where F4 is a uni-modal function characterized by steep and banana-shaped curved valleys, with a
minimum value of 0 and a dimension of 8. It is continuous, differentiable, non-separable, and scalable,
for multi-antenna design optimization.

F5 = 100
√
|x2 + 1 − 0.01(x1 − 10)2|+ 0.01|x1| (69)

where F5 is a multi-modal function with long narrow valleys, having a minimum value of 0 and a
dimension of 2. It is continuous, non-differentiable, non-separable, and non-scalable, for multi-antenna
design optimization.

F6 = 20log((0.01(
n

∑
i=1

|xi|)2(sin(0.8x1) + 2)2 + 1) (70)

where F6 is a multi-modal function with long narrow valleys that intersect, featuring a minimum
value of 0 and a dimension of 8. It is continuous, scalable, non-differentiable, and non-separable, for
multi-antenna optimization.

F7 = 20log((
n−1

∑
i=1

(100(xi+1 − x2
i ))

2 − (xi − 1)2)) + 1)

+20log(0.01(
n

∑
i=1

|xi|)2(sin(0.8x1) + 2)2 + 1)

(71)

where F7 is a multi-modal compositional function with long narrow and intersecting valleys, with a
minimum value of 0 and a dimension of 8. It is continuous, non-differentiable, non-separable, and
scalable, for multi-antenna design optimization.

F8 = 100
√
|x2 + 1 − 0.01(x1 − 10)2|+ 0.01|x1|

+20log(0.01(
n

∑
i=1

|xi|)2(sin(0.8x1) + 2)2 + 1)
(72)

where F8 is a multi-modal function characterized by long narrow and intersecting valleys, with a
minimum value of 0 and a dimension of 8. It is continuous, non-differentiable, non-separable, and
scalable, for multi-antenna optimization.

We selected AROA, HHO, GWO, WOA, RBMO, and MRBMO to evaluate their performance
on the antenna S-parameter optimization through the benchmark test suite. Both the number of
iterations T=500 and the population size N=30 were kept consistent across all tests. Each algorithm
was executed independently for 30 runs on eight benchmark functions from the suite, and we recorded
average fitness, standard deviation, p-value from the Wilcoxon rank-sum test, and Friedman value
for comprehensive performance analysis.Based on the experimental results, MRBMO excels in the
antenna S-parameter optimization benchmark suite, significantly outperforming the other algorithms.
MRBMO exhibits rapid convergence speeds and high accuracy across many functions. In particular,
MRBMO showcases robust optimization capabilities in the benchmark functions. Additionally, the
Wilcoxon rank-sum test and Friedman test confirm that MRBMO’s performance in various aspects is
significantly superior to that of the other algorithms, highlighting its overall excellence.
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Figure 24. Iteration curves on antenna S-parameter optimization

Table 7. Comparative results of each algorithm in antenna S-parameter optimization

Functions Index AROA HHO GWO WOA RBMO MRBMO

F1 Ave 1.7007E+00 9.2124E-08 8.6647E-01 1.4631E-02 5.2133E-01 0.0000E+00
Std 1.5126E+00 4.6530E-07 1.2638E+00 3.5044E-02 5.5072E-02 0.0000E+00

F2 Ave 4.2205E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 1.2381E-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

F3 Ave 3.6173E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 6.4519E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

F4 Ave 1.8043E+01 9.0489E+00 1.4741E+01 1.5110E+01 4.1788E+00 1.0350E-12
Std 2.1884E-01 9.0112E+00 1.1248E+00 3.2140E+00 6.2593E+00 3.6532E-12

F5 Ave 1.1390E-01 3.9068E-02 1.1857E-01 3.2537E-02 2.1036E-02 0.0000E+00
Std 1.0944E-01 8.1350E-02 9.1713E-02 1.5953E-02 1.5856E-02 0.0000E+00

F6 Ave 1.6116E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
Std 3.2889E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

F7 Ave 3.8973E+01 1.1164E+01 2.4949E+01 2.5166E+01 1.4856E+01 8.5536E-07
Std 3.0862E+00 1.6702E+01 3.9713E+00 8.1446E+00 2.4862E-05 4.3045E-06

F8 Ave 3.6929E+01 0.0026409 1.6150E+01 50.6156 2.7344E+01 0.0000E+00
Std 1.5096E+01 6.6231E-03 1.6858E+01 1.9452E+01 1.6428E+01 0.0000E+00

Table 8. Ranking of non-parametric tests of different algorithms on antenna S-parameter optimization

Algorithm Average Friedman Value Rank +/=/-

AROA 5.6625 6 8/0/0
HHO 2.8375 2 5/3/0
GWO 3.2167 3 5/3/0
WOA 3.6792 4 5/3/0
RBMO 3.8542 5 5/3/0

MRBMO 1.7500 1 -

10. Disciussion
The evaluation of MRBMO, as detailed in this study, demonstrates its potential as a powerful tool

for solving complex optimization problems. The algorithm’s hybrid nature, combining probabilistic
and bio-inspired techniques, allows it to effectively navigate large and multidimensional search spaces,
achieving superior performance on the benchmark functions.
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The experimental results indicate that MRBMO excels in balancing exploration and exploitation,
a critical aspect for ensuring comprehensive search and convergence to optimal solutions. This paper
uses a series of benchmark functions to evaluate MRBMO, including uni-modal, multi-modal, and
compositional problems. The experimental results show that MRBMO is superior to the selected
algorithm in terms of convergence speed and solving accuracy, especially in high-dimensional search
space, it shows faster convergence speed, robustness and adaptability. In the simulation experiments,
MRBMO performed best in four engineering design optimization problems and antenna S-parameter
optimization. These results validate the effectiveness and advantages of MRBMO in handling complex
optimization tasks, providing a new perspective for the research and application of optimization
algorithms.

Future research directions include the adaptation of MRBMO to specific real-world applications,
such as solving TSP problems, financial modeling and machine learning hyper-parameter optimization.
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