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Abstract:  This  study  evaluates  three  advanced  approaches  for  3D  reconstruction  of  challenging 

transparent surfaces: conventional photogrammetry, enhanced 3D Gaussian Splatting, and novel 2D 

Gaussian  Splatting  (2DGS).  Through  a  detailed  case  study  of  a  glass  artifact,  the  research 

demonstrates 2DGSʹs superior performance in geometric reconstruction and multi‐view consistency, 

leveraging its innovative planar representation to outperform alternative methods in capturing fine 

surface details and complex internal structures. While the enhanced 3D approach shows advantages 

in  visual  rendering  quality,  it  exhibits  surface  artifacts,  and  traditional  photogrammetry  proves 

inadequate  for  complete  reconstruction.  The  comparative  analysis  highlights  2DGSʹs  balanced 

capabilities in structural accuracy and perceptual quality, albeit with higher computational demands. 

These  findings establish 2DGS as a  significant advancement  for cultural heritage documentation, 

particularly for transparent and reflective objects requiring precise digital preservation. The study 

identifies  key  directions  for  future  development,  including  performance  optimization  and 

accessibility  improvements,  to  facilitate  broader  adoption  in  heritage  conservation  and  remote 

sensing applications where accurate 3D documentation is essential. 

Keywords: 3D gaussian splatting; SuGaR; 2D gaussian splatting; 3D mesh reconstruction; MLP;   

deep learning; machine learning; NeRFs 

 

1. Introduction 

The reconstruction of three‐dimensional geometries from input data is a fundamental challenge 

in  remote  sensing  and  related  fields.  This  process  is  often  both  time‐intensive  and  complex, 

particularly when dealing with existing structures and the intricate nature of building stocks. These 

challenges are  further exacerbated  in  the context of Cultural Heritage  (CH), where structures are 

often  characterized  by  irregular  geometries,  heterogeneous materials,  and  unique  aesthetic  and 

historical values [1]. Reconstructing such geometries requires a high level of accuracy to ensure both 

the metric and visual fidelity of the 3D models. 

Photogrammetric  approaches,  such  as  Structure‐from‐Motion  and Multi‐View  Stereo  (SfM‐

MVS), are frequently employed for 3D reconstruction [2]. However, these methods often fall short in 

capturing critical surface details, especially in cases involving reflective or transparent materials [3,4], 

homogeneous textures, or non‐Lambertian surfaces. These shortcomings highlight the limitations of 

conventional techniques when applied to complex artefacts or scenes, such as those commonly found 

in CH preservation. 

Recent  advances  in  technology,  particularly  the  integration  of  Computer  Vision  (CV)  and 

Artificial Intelligence (AI) into photogrammetry, have opened up new possibilities for overcoming 

these  challenges.  Emerging methodologies,  including Neural Radiance  Fields  and  3D Gaussian‐

Splatting, offer promising pathways for enhancing the accuracy and efficiency of 3D reconstructions. 
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These  techniques aim  to address  the  limitations of  traditional methods by  leveraging data‐driven 

models that adapt to complex and variable surface properties. 

This  study  explores  these  cutting‐edge  approaches,  presenting  a  novel  workflow  that 

incorporates CV and AI advancements into photogrammetric workflows. A comparative evaluation 

of both quantitative  (metric) and qualitative  (visual) outcomes underscores  the potential of  these 

innovations for improving 3D modeling practices, particularly for CH applications. 

2. State of Art 

The field of 3D reconstruction has undergone significant transformation with the advent of AI 

and CV  techniques  [5–7]. SfM‐MVS, have served as  the cornerstone  for creating 3D models  from 

overlapping images. While these methods are highly effective for many applications, their limitations 

in handling complex materials and geometries have been well‐documented. For instance, reflective, 

transparent, or homogeneous surfaces often lead to data gaps or inaccuracies in standard workflows. 

In  recent  years,  researchers  have  increasingly  turned  to  advanced  algorithms  and machine 

learning models to address these challenges. Neural Radiance Fields (NeRFs) [8,9] have emerged as 

a promising  technology  for photorealistic 3D reconstruction, particularly  for scenes with  intricate 

lighting and material interactions [10]. NeRFs model the radiance emitted from a 3D scene using deep 

neural networks, allowing for the synthesis of novel views while maintaining high fidelity in surface 

representation. 

Similarly,  3DGS  [11]  has  gained  attention  for  its  ability  to  efficiently  approximate  complex 

surface  geometries  using  a  probabilistic  framework.  By  representing  surfaces  as  a  collection  of 

Gaussian  splats,  this  method  reduces  computational  overhead  while  maintaining  accuracy  in 

rendering, making it suitable for real‐time applications. 

2DGS  [12]  is  introduced  to  address  the  limitations  of  3DGS  in  accurately  representing  thin 

surfaces due to multi‐view inconsistencies.   

These advancements reflect a broader trend towards hybrid methodologies that combine SfM‐

MVS  with  AI‐driven  solutions.  Such  approaches  not  only  improve  the  metric  accuracy  of 

reconstructions but also enhance their visual realism, offering significant benefits for applications in 

CH and beyond. The integration of these techniques is paving the way for a new era of 3D modeling, 

where complex artefacts and challenging scenes can be accurately reconstructed with unprecedented 

detail and efficiency. 

2.1. Gaussian‐Splatting and Evaluation Metrics 

The workflow (Figure 1) commences with SfM process, which reconstructs camera poses from 

unordered images while producing sparse 3D point clouds of the scene. The input 3DGS consists of 

static images, calibrated using the camera poses from SfM, along with the sparse point clouds. 

 

Figure 1. 3D Gaussian‐Splatting methodology. 
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From these 3D points, a set of anisotropic Gaussian ellipsoids is generated, with each ellipsoid 

represented by a 3D Gaussian distribution. These ellipsoids are then projected onto 2D images from 

various  viewpoints,  using  the  recovered  camera  pose  information.  The  differentiable  Gaussian 

functions within  the camera  frustum are rendered  into  images  through rasterization. Next, a  loss 

function  is  computed  by  comparing  the  rendered  images  to  the  ground  truth  images,  and  the 

parameters  of  each  Gaussian  distribution  (such  as  position,  size,  and  orientation)  are  adjusted 

accordingly. An adaptive density control method  is also applied to optimize the properties of the 

Gaussian ellipsoids,  including  their position,  size, orientation, quantity,  color, and opacity  in  the 

scene. 

In standard settings for novel view synthesis using 3DGS, visual quality assessment metrics are 

used for benchmarking. The most widely adopted metrics in the literature include Peak Signal‐to‐

Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) [14], and Learned Perceptual Image 

Patch Similarity (LPIPS) [15]. 

PSNR is used to compare the similarity between rendered images generated by models and real 

images. A higher PSNR value indicates greater similarity and better image quality. However, PSNR 

has some limitations as it primarily focuses on mean square error, overlooking human eye sensitivity 

to different frequency components and the effects of perceptual distortions. As a result, PSNR may 

not always accurately reflect the perceived differences in image quality from a human perspective. 

SSIM is a metric for measuring the structural similarity between two images, taking into account 

brightness, contrast, and structure. SSIM values range from −1 to 1, with values closer to 1 indicating 

higher similarity between the two images.   

LPIPS evaluates the similarity between two images based on feature representations extracted 

from a pre‐trained deep neural network. The original LPIPS paper used SqueezeNet [16], VGG [17], 

and AlexNet [18] as feature extraction backbones. LPIPS scores are more closely aligned with human 

perceptual  judgments compared  to  traditional metrics  like PSNR and SSIM. A  lower LPIPS score 

indicates higher similarity between the images.   

Unlike traditional metrics such as PSNR and SSIM, which calculate differences based on raw 

pixel values or simple transformations thereof, LPIPS  leverages deep  learning to better align with 

human visual perception. It uses the distance between features extracted by a convolutional neural 

network (CNN) pretrained on an image classification task as a perceptual metric. 

In Table 1 are shown the metric quality thresholds: 

Table 1. Metric quality thresholds. 

Metric  Range  Interpretation 

SSIM  > 0.98                          Excellent structural similarity 

  0.95 – 0.98                    High quality 

  0.90 – 0.95                    Good quality                               

  < 0.90                          Noticeable structural degradation           

PSNR  > 40                            Very high visual fidelity                     

  35 – 40                        High quality                               

  30 – 35                        Medium / acceptable quality               

  < 30                            Perceptible degradation                     

LPIPS  < 0.05                          Excellent perceptual similarity               

  0.05 – 0.10                    High perceptual quality                     

  0.10 – 0.20                    Medium quality                             

  > 0.20                          Low perceptual fidelity / perceptible error   

2.2. Optimizations from the Original Paper of 3DGS 

The  Gaussian  Splatting  technique  represents  a  particularly  promising  direction  for  3D 

reconstruction,  as  evidenced  by  the  growing  interest  within  the  scientific  community  and  the 

increasing  number  of  publications  dedicated  to  the  subject. Numerous  recent  studies  focus  on 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2025 doi:10.20944/preprints202505.2191.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2191.v1
http://creativecommons.org/licenses/by/4.0/


  4  of  21 

 

improving this methodology, addressing aspects such as computational efficiency, rendering quality, 

the  handling  of  thin  structures,  and  multi‐view  consistency.  Among  the  most  significant 

contributions are the following: 

2.2.1. Storage Reduction   

Several  storage  reduction  strategies  are  employed  in  3DGS.  The  number  of  3D  Gaussian 

primitives is reduced through masking in Compact‐3DGS [19] and HAC [20], while pruning methods 

in  LightGaussian  [21],  EAGLES  [22],  and  reduced‐3DGS  [23] minimize  Gaussian  count.  View‐

dependent color optimization is achieved by replacing spherical harmonics with grid‐based neural 

fields  in Compact‐3DGS and adjusting spherical harmonic bands  in  reduced‐3DGS. Additionally, 

quantization and compression techniques further optimize storage. 

To enhance 3D Gaussian model densification and accuracy, techniques like geometric priors and 

integration with 2D depth and normal maps are used to refine Gaussian placement and orientation. 

Frequency‐based  regularization methods  help  control  over‐reconstruction,  reducing  artifacts  like 

blurring  and  ghosting. More  uniform  and  surface‐aligned  Gaussian  splitting methods  improve 

precision, which is critical for point cloud extraction and editing tasks. 

Key  improvements  focus on  frequency control, with methods  like Mip‐Splatting minimizing 

aliasing  artifacts.  Multi‐scale  adaptation  ensures  Gaussian  primitives  dynamically  adjust  to 

resolution changes, maintaining rendering quality. Other improvements include adjusting color and 

opacity  based  on  viewpoint  changes,  implementing  simplified  shading  functions  for  reflective 

surfaces, and developing hybrid models like VDGS [24], which combine 3DGS with neural network‐

based encoding for accurate, view‐dependent color and opacity updates. 

2.2.2. Surface Mesh Extraction   

It is a crucial task in computer graphics and CV, aimed at generating a 3D mesh from various 

representations of objects or scenes. Mesh‐based representations are essential for editing, sculpting, 

animating,  and  relighting. However,  extracting  a mesh  from  the  3D Gaussian  Splatting  (3DGS) 

representation, which uses Gaussian distributions, presents significant challenges due to the lack of 

inherent structure in the Gaussians. SuGaR [25]  introduces a novel regularization term that aligns 

Gaussians with the sceneʹs surface, enabling mesh extraction via Poisson reconstruction. This method 

is fast, scalable, and preserves detail, unlike the Marching Cubes algorithm [43], typically used for 

mesh extraction  from Neural SDFs. SuGaR also offers an optional  refinement  strategy  that binds 

Gaussians to the mesh surface, jointly optimizing both the Gaussians and the mesh through Gaussian 

splatting rendering. 

GS2Mesh: Gaussian Splatting‐to‐Mesh [26] bridges the gap between noisy 3DGS and a smooth 

3D mesh by incorporating real‐world knowledge into the depth extraction process. Instead of directly 

extracting geometry from Gaussian properties, GS2Mesh uses a pre‐trained stereo‐matching model 

to guide the process. It renders stereo‐aligned image pairs, feeds them into a stereo model to obtain 

depth profiles, and fuses these profiles into a single mesh. This approach results in smoother, more 

accurate reconstructions with finer details compared to other surface reconstruction methods, with 

minimal overhead on top of the 3DGS optimization process. 

GOF: Gaussian Opacity Fields [27] proposes an efficient and high‐quality method for surface 

reconstruction  in  unbounded  scenes.  Building  on  ray‐tracing‐based  volume  rendering  of  3D 

Gaussians, GOF  directly  extracts  geometry  by  identifying  the  level  set  of Gaussians,  bypassing 

Poisson reconstruction or TSDF fusion. It approximates surface normals through the ray‐Gaussian 

intersection  plane  and  applies  regularization  to  improve  geometry  accuracy. Additionally, GOF 

introduces an efficient geometry extraction technique using marching tetrahedra, adapting to scene 

complexity. 

2DGS: 2D Gaussian‐Splatting [12] introduces a novel approach by collapsing 3D volumes into 

2D oriented planar Gaussian disks. Unlike 3D Gaussians, 2D Gaussians model surfaces consistently 

from  different  views.  2DGS  employs  a  perspective‐accurate  splatting  process  with  ray‐splat 
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intersections and rasterization to recover thin surfaces accurately. It also integrates depth distortion 

and normal consistency terms to enhance reconstruction quality.   

2DGS simplifies the 3D volume by representing it as a collection of 2D oriented planar Gaussian 

disks [32], which ensure view‐consistent geometry. To improve the quality of reconstructions, two 

regularization terms are introduced: depth distortion and normal consistency. The depth distortion 

term focuses on concentrating the 2D primitives within a narrow range along the viewing ray, while 

the normal consistency term ensures that the rendered normal map aligns with the gradient of the 

rendered depth. This method guarantees precise surface representation, delivering state‐of‐the‐art 

performance in both geometry reconstruction and novel view synthesis. 

MVG‐Splatting:  Multi‐View  Guided  Gaussian  Splatting  with  Adaptive  Quantile‐Based 

Geometric Consistency Densification [28], It introduces a method that utilizes depth‐normal mutual 

optimization to guide a more precise densification process, enhancing the detail representation for 

scene rendering and surface extraction. Building on the 2DGS framework [12], it implements a more 

robust  technique  for  recalculating  surface  normals.  These  recalculated  normals,  combined with 

gradients  from  the original  images, help  refine  the accuracy of  the  rendered depth maps.  It  then 

proposes an efficient multi‐level densification approach based on multi‐view geometric consistency 

[29], which directs the refined depth maps to accurately project onto under‐reconstructed regions. In 

contrast to previous GS‐based geometric reconstruction methods [30–33], its approach first generates 

high‐quality, uniformly densified Gaussian point clouds. This allows  for direct surface extraction 

using the Marching Cubes method [34] on the point cloud. Additionally,  it adaptively determines 

voxel sizes for each densified Gaussian point cloud and uses multi‐view normal maps to smooth and 

optimize surface normals, resulting in high‐detail mesh surface extraction. 

5. Materials 

The  dataset  focuses  on  individual  case  studies  representing  critical  challenges  for 

photogrammetry in mesh model reconstruction, particularly when dealing with reflective surfaces, 

transparent materials, homogeneous textures, and non‐Lambertian surfaces. 

The pilot case study consists of a glass bottle (Mario Luca Giusti Transparent Bona Bottle) placed 

on a motorized turntable against a uniform neutral‐gray background.   

This  controlled  environment  was  specifically  designed  to  optimize  the  AI‐based  masking 

process  in Adobe Lightroom Classic  (Figure 2), which proved essential  for  isolating  the object of 

interest.  By  removing  background  interference  through  automated  masking,  all  subsequent 

processing software could concentrate  their analysis exclusively on  the  target object, significantly 

improving feature matching accuracy and reducing reconstruction artifacts. 
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Figure 2. Representative  image pair:  the  left panel displays  the original RAW capture, while  the right panel 

demonstrates the result after AI masking. 

To ensure the alignment of the various frames and to scale the 3D model, both single and double 

markers with scale bars are printed and located around the object. 

For the purposes of creating a ground truth useful for comparing the data processing within the 

various software, an initial acquisition was made of the glass bottle entirely lined with a paper sticker 

(of  negligible  thickness),  subsequently  painted with  artistic motifs  to  guarantee  a  complete  and 

accurate photogrammetric model reconstruction. 

To  ensure  model  scalability  and  metric  error  control,  the  photogrammetric  survey  was 

supported by a high‐precision topographic survey. During this topographic survey, the coordinates 

of 27 markers placed on the rotating platform were acquired using a total station Leica TCRP 1201, 

with  an  accuracy  of  up  to  one‐tenth  of  a millimeter.  The  acquisition was  carried  out  following 

rigorous protocols, ensuring that each marker was measured with extreme precision to guarantee 

accurate alignment and a reliable metric reconstruction of the 3D model. 

The  227  images  of  the  pilot  dataset  were  acquired  with  a  Nikon  D750  camera  with  the 

characteristics shown in Table 2. 

Table 2. Camera’s characteristics. 

Name  Image dimension  Focal lenght  Sensor dimensions 

Nikon D750  6016x4016 pixels  50 mm 
W=36.0 mm 

H=23.9 mm 

The image acquisition settings are shown in the Table 3. 

Table 3. Common settings of image acquisition. 

Aperture  Shutter speed range 

(Aperture priority mode) 

ISO  Format 

f/16  1/8 – 1/10  200  RAW 

Tests are conducted using an NVIDIA GeForce RTX 4090 GPU (24 GB VRAM) and an AMD 

Ryzen 97950X 16‐Core CPU. 

5.1. Software and Environment Employed 

 Agisoft Metashape v.2.0.0 

 Lightroom Classic v.14.0.1 

 Cloud Compare v.2.13.2 

 3D Gaussian‐Splatting (latest code update on Aug. 2024) 

 SuGaR (latest code update on Sept. 2024) 

 2D Gaussian‐Splatting (latest code update on Dec. 2024) 

 Anaconda environment v.conda 23.7.4 

6. Methodology 

The methodology adopted  in this study was designed  to compare and  integrate different 3D 

reconstruction technologies, starting from a common  input and developing through three parallel 

processes  that  employ  different  software  and  approaches.  The  ultimate  goal  is  to  obtain  a 

comparative  evaluation  of  the  results  generated  by  each  process,  both  quantitatively  (through 

objective metrics) and qualitatively (through visual analysis). 

6.1. Common Input and Initial Phase 

The  starting point of  the methodology  is  represented by a  common  input, derived  from  the 

generation of a  sparse point  cloud. This  initial phase  is  crucial, as  it  solves  the photogrammetric 
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problem by determining  the  internal and external parameters of  the cameras used  to capture  the 

images. Traditionally, this operation is performed using the open‐source software COLMAP, which 

is widely recognized for its effectiveness in 3D reconstruction based on SfM. Nonetheless, COLMAP 

struggled to align all the images correctly in our dataset, leading to incomplete reconstructions and 

inconsistencies in camera parameter estimation. In this work, we chose to use an executable script 

that leverages input data generated by the SfM analysis performed with Agisoft Metashape software. 

This choice offers a dual advantage: it ensures a complete dataset alignment and a high‐quality 

sparse point cloud, which serves as a common base for all three parallel processes. 

The common parameters for the alignment are shown in Table 4: 

Table 4. Common alignment parameters. 

Accuracy  Limit 

key 

points 

Limit 

tie 

points 

Generic 

preselection 

Reference 

preselecti

on 

Adaptive 

camera model 

fitting 

Exclude 

stationary tie 

points 

Guided image 

matching 

High  0  0  No  No  No  Yes  No 

The  implemented workflow  began with  generating  an  initial  sparse  point  cloud  using  the 

unmasked images with the automate detected markers, followed by a systematic path replacement 

operation  employing  the  ʺChange  Pathʺ  command  to  transition  to  the masked  image  set while 

meticulously preserving the established camera alignment parameters. 

6.2. Parallel Reconstruction Processes 

The methodology involves the use of three distinct approaches for 3D reconstruction, each based 

on different technologies and software (Figure 3): 

 

Figure 3. Overview of the proposed methodology. 

6.2.1. Structure from Motion (SfM) 

The  first process  is based on  the SfM  technique, which uses photogrammetric algorithms  to 

reconstruct 3D geometry  from 2D  images. This approach  is well‐established and provides a solid 

basis for comparison with the other two more innovative methods. The parameters for generate the 

model are shown in Table 5: 

Table 5. Agisoft Metashape parametrs to generate mesh model. 

Source data  Surface type  Quality  Face count  Interpolation  Depth filtering 

Depth Maps  Arbitrary  High  High  Enabled  Mild 
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6.2.2. 3D Gaussian Splatting (3DGS) + SuGaR 

The 3DGS technique uses 3D Gaussians to represent the scene. A Gaussian in this context is a 

density distribution used to model the light and energy radiated from a point  in space. However, 

3DGS has limitations: 3D Gaussians fail to accurately represent object surfaces (e.g., thin surfaces like 

edges) due to ̋ multi‐view inconsistency.ʺ In other words, surfaces may appear distorted or imprecise 

from different angles. 

To address this issue, SuGaR has been introduced as an extension of 3DGS, aiming to improve 

the reconstruction of surface meshes. SuGaR combines Gaussian‐based representation with enhanced 

surface  awareness,  enabling  more  precise  and  detailed  reconstruction  of  complex  geometries. 

Specifically, SuGaR  introduces  an optimization process  that  aligns  3D Gaussians with  the  actual 

surfaces of objects, reducing distortions and improving consistency across different viewpoints. 

Thanks  to  SuGaR,  it  is  possible  to  obtain more  accurate meshes  that  adhere  closely  to  real 

surfaces, solving many of the issues related to the representation of thin edges and fine details. This 

approach is particularly useful in applications such as 3D reconstruction from images, virtual reality, 

and augmented reality, where surface precision is critical. 

Below are the scripts executed in the Anaconda prompt for the generation of the 3DGS model 

and the creation of the mesh model using SuGaR, with all other parameters left at their default values:   

 python train.py ‐s data/bottle2025mask ‐r 2 ‐‐iterations 30000 [3DGS] 

 python  train.py  ‐s  data\bottle2025mask  ‐c  gaussian_splatting\output\bottle2025mask\  ‐r 

dn_consistency ‐‐refinement_time long ‐‐high_poly True ‐i 30000 [SuGaR] 

6.2.3. 2D Gaussian Splatting (2DGS) 

The novel 2DGS approach overcomes this  limitation by representing the scene as a set of 2D 

Gaussians.  Instead of using Gaussians distributed  in  3D  space,  the Gaussians  are projected onto 

oriented planes  (like disks)  that describe  the  surfaces of  the  scene. This method  is advantageous 

because 2D Gaussians are more view‐consistent, ensuring more accurate and stable geometry across 

different views of the scene. 

To achieve accurate reconstruction, the paper introduces a 2D splatting process (an operation 

that projects light from 2D points onto the 3D scene) that accounts for perspective correctness and 

ray‐splat intersections. Furthermore, the process uses rasterization (a method for “drawing” images 

on a grid) to achieve detailed visual rendering. 

Additionally, two optimization terms are employed: 

 Depth distortion: Corrects errors in the perceived depth between objects. 

 Normal consistency: Ensures consistency in surface normals (the direction of surface planes) to 

maintain coherent surface representation across views. 

The main advantage of 2DGS is that it enables stable and detailed geometric reconstruction of 

surfaces without  visible  noise. Moreover,  it maintains  high  visual  quality,  ensures  fast  training 

speeds, and allows real‐time rendering. This makes it suitable for applications requiring high‐quality 

visualization and real‐time performance. 

The 3DGS method evaluates scene values using different intersection planes depending on the 

viewpoint  from which  the  scene  is  observed.  This  approach  can  lead  to  inconsistencies,  as  the 

representation of geometry or surfaces may vary slightly when the scene is viewed from different 

angles. For example, thin surfaces or edges might appear distorted or imprecise depending on the 

perspective. 

In contrast, the proposed 2DGS method solves this problem by providing consistent multi‐view 

evaluations.  Instead  of  using  variable  intersection  planes,  2DGS  represents  the  scene  through 

oriented 2D Gaussian disks, maintaining a uniform and consistent representation regardless of the 

viewing angle. This ensures greater accuracy in surface reconstruction and better visual coherence, 

especially in applications such as novel view synthesis or 3D reconstruction. 
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In  summary, while  3DGS  can  suffer  from  inconsistencies due  to  its viewpoint dependency, 

2DGS offers a more robust and reliable solution, maintaining a consistent and precise representation 

from any angle (Figure 4). 

Below are the scripts executed in the Anaconda prompt for the generation of the 2DGS mesh 

model, with all other parameters left at their default values:   

 python train.py ‐s data/bottle2025mask ‐r 2 ‐‐iterations 30000 [2DGS] 

 python render.py ‐m output\bottle2025mask ‐s data\bottle2025mask [2DGS] 

 

Figure  4. Comparison  of  3DGS  and  2DGS.  3DGS utilizes different  intersection planes P1  and P2  for  value 

evaluation when  viewing  from  different  viewpoints,  resulting  in  inconsistency.  2DGS  provides multi‐view 

consistent value evaluations. 

7. Results and Comparative Analysis 

Once  the  three  reconstruction  processes  are  completed,  the  results  undergo  a  thorough 

comparative analysis with the ground truth. This phase involves the extraction of quantitative data, 

such as accuracy and precision metrics, and qualitative data, obtained through a visual analysis of 

the  generated  models.  The  goal  is  to  evaluate  the  performance  of  each  method  in  terms  of 

reconstruction quality, processing time, and adaptability to different types of scenes. 

The  results obtained  through  the  comparison of  the various outputs  from parallel processes 

using Cloud Compare are divided into a qualitative analysis of the generated mesh models and a 

subsequent metric analysis for a more detailed evaluation of the differences. 

7.1. Qualitative Analysis 

The analysis was conducted by displaying different views (lateral, top, and perspective) of the 

reconstructed models. Additionally,  the mesh models were  visualized without  textures  (shaded 

models). This is useful for evaluating the quality of the reconstruction from various angles, avoiding 

potential artifacts introduced by textures that could mislead the geometric visualization of the mesh. 

As  can  be  seen  from  the  Figure  5,  the process using Agisoft Metashape  completely  fails  in 

reconstructing  the  mesh  model.  The  process  based  on  3DGS  with  SuGaR  shows  significant 

improvement compared to the former, although it still results in a very coarse reconstruction with 

evident critical  issues. As previously mentioned, 3DGS can  suffer  from  inconsistencies due  to  its 

viewpoint  dependency,  which  is  reflected  in  the  mesh  model  reconstruction  in  the  form  of 

protrusions  and  three‐dimensional  blobs  that distort  the  correct  surface. Additionally,  there  is  a 

complete lack of reconstruction at the base of the bottle. 

The most  faithful  result, which  shows  impressive  outcomes,  is  based  on  the  2D Gaussian‐

Splatting  process.  The  glass  bottle  is  completely  reconstructed  and  rendered  without  any 

heterogeneity. This significant achievement is due to the fact that, compared to 3DGS, 2DGS offers a 

more  robust  and  reliable  solution, maintaining  a  consistent  and precise  representation  from  any 

angle. 

It is worth noting that, compared to the Ground Truth, the 2DGS mesh appears smoothed and 

still requires improvement. 
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Below, the Figure 5 shows the visual comparisons of the meshes reconstructed by the different 

processes. 

 

Figure 5. Visual comparisons of the meshes reconstructed by the three different processes. 

7.2. Quantitative Analysis 

The quantitative analyses were conducted by performing deviation analyses in Cloud Compare 

using  the  Cloud‐to‐Mesh method  (C2M), with  the  reference mesh  being  the Ground  Truth.  To 

generate point clouds from the meshes created in the three parallel processes, a sampling operation 

(sampling points) was performed, with an equal number of sampling points for all processes, set at 

10.000.000.   

As can be seen from the Figure 6, the C2M deviation analysis once again clearly demonstrates 

that the most robust reconstruction is the one produced by the 2DGS process. It is worth noting that 

the data highlighted has been cleaned of outlier points falling outside the range [‐3mm to +3mm]. 
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7.2.1. Completeness Evaluation of Reconstructed Models 

To assess the completeness of the reconstructed models, we compared their surface areas to the 

ground truth mesh. Completeness (𝐶) is computed as in the Formula 1: 

𝐶 ൌ ቀ
ௌ ௠௢ௗ௘௟

ௌ ௚௥_௧௥
ቁ ൈ 100                (1) 

Where  𝑺 𝒎𝒐𝒅𝒆𝒍  is the total surface area of the reconstructed model after outlier removal, and 

𝑺 𝒈𝒓_𝒕𝒓  is the surface area of the ground truth mesh. 

The  3DGS  model  achieved  the  highest  completeness  (99.62%),  closely  followed  by  2DGS 

(96.43%), while Agisoft Metashape exhibited significantly lower completeness (16.96%),  indicating 

that it reconstructed only a small portion of the reference surface. 

The following Table 7 summarizes the key attributes of the ground truth mesh and the three 

reconstructed models  (2DGS, Agisoft Metashape,  and  3DGS).  The  table  includes  the  number  of 

triangles (both original and after outlier removal), surface area, border edges, and perimeter for each 

model.  These  parameters  provide  insights  into  the  overall  geometry  and  completeness  of  the 

reconstructions. 

Additionally, an analysis of border edges and perimeters provides insight into the distribution 

of  the  reconstructed  surface.  The  3DGS model  has  the  largest  perimeter  (12,44 m),  suggesting 

potential artifacts or noise at the edges, whereas 2DGS has a more compact structure with a lower 

perimeter  (0,722 m). Agisoft Metashape  shows  a  highly  fragmented  reconstruction with  a  large 

number of border edges (4289) and an extensive perimeter (3,158 m). 

These  findings highlight  that completeness alone  is not sufficient  to assess model quality, as 

variations in surface distribution and boundary fragmentation must also be considered. 

It  is  also possible  to deduce  from  the Table  6,  based  on  the  number  of  out‐of‐range points 

(outliers), that the most critical and confusing process is the one using Agisoft Metashape. The 3DGS 

process  tends  to  ʺfillʺ  the bottle with  three‐dimensional Gaussians  (ellipsoids), while  the process 

based on 2DGS generates very interesting data, even regarding out‐of‐range points.   
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Table 6. Quantitative parameters extracted from the C2M analysis. 

Processes  Gauss Mean  St. Deviation  Points in range  Outliers 

Agisoft Metashape  ‐0,0014  0,0008  2.889.373  7.110.741 

3DGS+SUGAR  ‐0,0006  0,0011  3.894.545  6.105.469 

2DGS  ‐0,0011  0,0005  6.870.297  3.129.632 

Table 7. key attributes of the ground truth mesh and the three reconstructed models (2DGS, Agisoft Metashape, 

and 3DGS). 

Model  Completene

ss 

Triangles 

(original) 

Triangles (after 

outliers removed) 

Surface 

area (m²) 

Border 

edges 

Perimete

r (m) 

Ground Truth  ‐  255971  ‐  0.080029  425  0,370151 

Agisoft 

Metashape 

16,96%  188267  76137  0.013567  4289  3,158630 

3DGS+SUGAR 
99,62%  69979  33096  0,079725  5146  12,44365

1 

2DGS  96,43%  206201  141498  0,077172  642  0,722261 

 

Figure 7. Histogram of the C2M analysis of the 2DGS model considering outliers and in range points; a bimodal 

distribution curve is observed. 

As visible in the exported histogram of 2DGS model in Figure 7 without the removal of outlier 

points, a bimodal distribution curve  is observed. Sectioning  the bottle while  including  the outlier 

points reveals the generation of an internal thickness within the bottle (Figures 8 and 9). The points 

located along  this thickness are out of range because  the generation of  the ground  truth does not 

include the internal surfaces but only the external shell of the bottle.   
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Figure 8. Section of the 2DGS bottle model (bottom view). 

 

Figure 9. Section of the 2DGS bottle model (axonometric view). 

7.2.2. Completeness Evaluation of Reconstructed Models on Slice Sections 

In  this  section,  a more  detailed  analysis  is  conducted  on  individual  slices  of  point  clouds 

generated in Cloud Compare, allowing for a more precise and practical visualization of how each 

reconstruction process produces the previously discussed results. Notably, the model generated by 

the 2DGS process exhibits the highest degree of conformity to the ground truth compared to the other 

methods. Furthermore, as observed in the previous section, in addition to accurately reconstructing 

the external surface of the bottle in alignment with the ground truth model, the 2DGS process also 

captures the internal surface of the bottle, further demonstrating its robustness and completeness. 
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The models generated by Agisoft Metashape remain almost entirely absent. As shown in Figures 

10 and 11, the few points within the range are primarily located along the edges of the bottleʹs faces. 

 

Figure 10. Planimetric C2M slice section of the three generated models using as reference the ground truth (black 

profile). 

 

Figure 11. Trasversal C2M slice section of the three generated models using as reference the ground truth (black 

profile). 

7.3. Rendering Metrics PSNR LLPIS and SSIM for 3DGS and 2DGS 

Based on  the results obtained  from  the evaluation of both 3DGS and 2DGS on a challenging 

transparent  glass  bottle  dataset,  we  can  draw  several  important  conclusions  regarding  their 

performance also across the multiple rendering metrics (Table 8). 

The SSIM score for 3DGS (0.9768) is slightly higher than that of 2DGS (0.9734), indicating that 

3DGS preserves the structural integrity and local details of the reconstructed object better. Although 

the difference is minimal, a change of 0.003 in SSIM can be noticeable in perceptual terms, particularly 

in  the  preservation  of  fine  details.  This  suggests  that  3DGS  provides  a  slightly  superior  visual 

reconstruction, which is important when dealing with objects where fine details are crucial, such as 

glass objects with complex reflections and refractions. 

Similarly, the PSNR for 3DGS (36.06 dB) is better than that of 2DGS (34.91 dB), which implies a 

superior signal‐to‐noise ratio and fewer pixel‐wise errors in the reconstruction. A PSNR value above 

35 dB is considered excellent in visual quality, and while both methods perform well, 3DGS clearly 

has the edge in terms of numerical fidelity, ensuring fewer artifacts and a more precise reconstruction. 

The LPIPS score further highlights the perceptual superiority of 3DGS, with a value of 0.0629 

compared to 2DGSʹs 0.0696. Since LPIPS is a perceptual metric, this difference is significant. A lower 
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LPIPS value means  that  3DGSʹs  reconstruction  is visually  closer  to  the  original, making  it more 

faithful  in  terms of human perception. This difference underlines  the advantage of 3DGS when  it 

comes to visual fidelity, particularly when assessing high‐precision features like transparency and 

light interaction with complex materials. 

Table 8. Rendering metrics PSNR LLPIS and SSIM (visual fidelity), for 3DGS and 2DGS compared with the mesh 

accuracy. 

Method   SSIM    PSNR     

LPIPS 

Visual Fidelity                Mesh Accuracy             

  3DGS    0.9768    36.06       0.0629   ✅ Higher (more realistic)     ❌ Low degree of 

conformity 

  2DGS    0.9734    34.91       0.0696   ✅ Good, slightly worse           ✅ High degree of 

conformity 

When considering the specific challenges posed by transparency, both methods struggle with 

the inherent complexities of modeling reflections, refractions, and volumetric effects associated with 

transparent materials. However,  3DGSʹs  superior performance  across  all  three  rendering metrics 

suggests  that  it  provides  a more  robust model  for  handling  the  complex  optical  properties  of 

transparent objects. This is likely due to its better 3D modeling capabilities, which allow it to represent 

volumetric transparency more accurately and maintain depth consistency in the reconstruction. In 

contrast, 2DGS, while capable of producing solid meshes, does not inherently account for volumetric 

depth and transparency, which limits its ability to model such materials with high accuracy. 

The choice between 3DGS and 2DGS depends on the specific requirements of the task at hand. 

If the goal is to achieve the highest quality visual reconstruction, especially for complex materials like 

transparent glass, 3DGS is the better option. However, for tasks involving solid mesh extraction and 

multiview consistency, 2DGS, remains a highly effective solution. 

7.4. Time Processing 

In the Figure 12, the processing times for each individual process are shown in orange, while the 

time  common  to  all  three  processes—accounting  for AI masking  in Adobe  Lightroom  and  the 

subsequent alignment of the 277 photographic shots in Agisoft Metashape—is highlighted in blue. 

 

Figure 12. Processing times for each parallel process. 
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The results highlight that the most time‐consuming processes are also the most effective in terms 

of  the geometric  reconstruction of  the 3D model. Specifically,  there  is a  clear monotonic growth, 

starting with a very low processing time for Agisoft Metashape and reaching a maximum when using 

the traditional 2DGS method. 

7.4.1. CPU and GPU Usage 

The Table  9 provides an overview of how different  computational  resources  are utilized by 

2DGS, 3DGS, and Agisoft Metashape. Both 2DGS and 3DGS rely heavily on GPU performance since 

Gaussian  Splatting  is  a  highly  parallelizable  process  that  benefits  from  the  massive  parallel 

processing power of modern GPUs. The CPU plays only a minimal role in these workflows, primarily 

handling data preparation and management, while the actual computation is executed on the GPU. 

Table 9. Overview of the different computational resources utilized by 2DGS, 3DGS, and Agisoft Metashape. 

Software/Process  CPU Usage  GPU Usage  Notes 

 

Agisoft Metashape 

 

✅ Important 

 

✅ Important  ‐  CPU  used  for  feature  matching,

mesh generation, and texturing.     

‐ GPU accelerates depth maps, point 

cloud, and rendering. 

 

3DGS + SUGAR 

 

❌ Minimal 

 

✅ Primary  ‐  Intensive GPU computation  for 3D

Gaussian management.     

‐  CPU  marginally  used  for

coordination. 

 

2DGS   

 

❌ Minimal 

 

✅ Primary  ‐  Uses  GPU  for  rasterization  and

Gaussian optimization.     

‐  CPU  involved  only  in  data

management. 

On the other hand, Agisoft Metashape takes a more balanced approach, utilizing both the CPU 

and GPU for different tasks. The CPU is crucial in feature matching, mesh generation, and texturing, 

which require intensive sequential processing and memory management. However, the GPU plays a 

vital role in accelerating depth map calculations, point cloud generation, and rendering, significantly 

reducing processing time. 

For users looking to optimize their workflow, it is essential to have a high‐performance GPU 

with extensive parallel processing capabilities, such as an NVIDIA RTX 3090 or 4090, when working 

with Gaussian Splatting techniques. In contrast, Metashape benefits from both a powerful multi‐core 

CPU  and  a  capable  GPU  to  ensure  smooth  performance  across  all  computational  stages. 

Understanding these distinctions allows professionals to make informed hardware choices based on 

their specific computational needs and workflow requirements. 

8. Discussions 

This  study  has  provided  a  comprehensive  comparative  analysis  of  three  different  3D 

reconstruction  methodologies—Agisoft  Metashape,  3DGS+SuGaR,  and  2DGS—assessing  their 

performance in terms of completeness, geometric accuracy, and reconstruction consistency. 
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8.1. Comparative Performance Analysis 

The qualitative and quantitative evaluations highlight significant differences between the three 

methods. Agisoft Metashape demonstrates the lowest reconstruction capability, with high levels of 

fragmentation  and  an  extremely  limited  surface  reconstruction.  The  model  generated  by  this 

approach lacks significant portions of the scene, particularly in smooth and reflective areas such as 

the bottle’s surface. 

This limitation is primarily due to inherent challenges in photogrammetry when dealing with 

reflective,  transparent,  or  homogeneous‐textured  surfaces.  SfM  and  Multi‐View  Stereo  (MVS) 

algorithms rely on feature matching across multiple images to generate point clouds and reconstruct 

surfaces. However, highly reflective objects, such as glass or polished metals, dynamically alter their 

appearance depending on the viewing angle, leading to inconsistent feature detection and poor depth 

estimation. Similarly, transparent objects pose a significant challenge, as photogrammetry algorithms 

struggle to distinguish between actual object surfaces and the background seen through them, often 

resulting in missing or distorted reconstructions. 

In contrast, the 3DGS+SuGaR method achieves higher completeness (99.62%) and provides an 

improved reconstruction compared to Metashape. However, the methodology suffers from multi‐

view inconsistencies, leading to distortions in the reconstructed surface. This is particularly evident 

in  the  presence  of  surface  artifacts,  protrusions,  and  an  extensive  perimeter  length  (12.44  m), 

suggesting excessive noise and imprecise boundary definition. 

The  2DGS  approach  emerges  as  the  most  effective  method,  offering  high  reconstruction 

completeness  (96.43%) while maintaining  a  compact  and  accurate  surface  representation. Unlike 

3DGS,  2DGS  ensures  better  view  consistency  and  generates  a  more  stable  and  homogeneous 

geometry. Furthermore, the 2DGS process reconstructs not only the external surface of the bottle but 

also an internal surface, a feature not present in the other methods. This demonstrates the technique’s 

potential for capturing fine details and complex geometric structures. 

3DGS demonstrates a visually and numerically superior rendering reconstruction of transparent 

objects, as evidenced by its higher SSIM, PSNR, and lower LPIPS scores. This suggests that 3DGS is 

better suited for rendering and visual fidelity tasks, where the preservation of fine details and optical 

behavior of materials  is critical. However, 2DGS has  its strengths, particularly  in mesh extraction, 

where it excels at producing compact, multiview‐consistent meshes that are suitable for downstream 

tasks such as 3D printing, CAD manipulation, and simulations. While 3DGS is optimized for realistic 

rendering, it does not perform as well in generating solid geometries due to its focus on visual depth 

rather than geometric coherence across views. This limitation makes 2DGS a better choice for tasks 

requiring solid mesh extraction, even if it sacrifices some of the visual fidelity offered by 3DGS. 

8.2. Key Findings and Implications 

Completeness  and  Surface  Fidelity:  While  completeness  alone  does  not  determine 

reconstruction quality, the 2DGS method achieves an optimal balance between high completeness 

and  accurate geometric  representation. The  3DGS+SuGaR method, despite  its high  completeness 

percentage,  produces  excessive  surface  noise, while Metashape  fails  to  reconstruct  a  significant 

portion of the model, particularly in challenging areas. 

8.2.1. Challenges of Photogrammetry 

The poor performance of Metashape underscores the inherent difficulties of photogrammetry in 

reconstructing  objects with  reflective,  transparent,  or  non‐Lambertian  surfaces.  The  reliance  on 

feature  detection  and  pixel  correlation  results  in  unstable  reconstructions  when  dealing  with 

materials that do not exhibit clear, distinguishable patterns. Additionally, uniform or highly specular 

textures  lead  to  ambiguous  depth  estimation,  causing  holes,  misalignments,  and  surface 

fragmentation. 
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8.2.2. Edge and Boundary Artifacts 

The  analysis  of  border  edges  and  perimeter  measurements  indicates  that  3DGS+SuGaR 

introduces substantial irregularities, whereas 2DGS maintains a more structured and realistic surface. 

8.2.3. Internal Surface Generation 

The ability of 2DGS to reconstruct an inner surface suggests a higher level of adaptability for 

complex  object  scanning, making  it  a promising  technique  for  applications  requiring volumetric 

detail, such as CH preservation, medical imaging, and digital twin modeling. 

8.2.4. Outlier Distribution and Robustness 

The  deviation  analysis  and  histogram  evaluation  reveal  that  the  2DGS  process  produces  a 

bimodal error distribution, corresponding to the generation of an inner thickness not present in the 

ground truth. This indicates that while 2DGS provides a more complete surface representation, its 

alignment  with  the  reference model  should  be  further  refined  for  applications  where  external 

geometry is the primary concern. 

9. Limitations and Future Work 

Although 2DGS proves to be the most effective method among those analyzed, some limitations 

must be considered. The smoothing effect observed in the reconstructed mesh suggests that further 

refinements in surface sharpness and detail preservation are needed. Future research could focus on 

integrating hybrid  approaches  that  combine  the  advantages of  2DGS with  additional  refinement 

techniques to improve edge definition and geometric fidelity. Additionally, exploring optimization 

techniques for reducing computational cost while maintaining high‐quality reconstructions would 

enhance the practicality of 2DGS for real‐time applications. 

A crucial next step will be the replacement of the common alignment process currently based on 

Agisoft Metashape with a fully open‐source pipeline. This will be achieved through the integration 

of  Deep  Image Matching  techniques, which  have  demonstrated  superior  robustness  in  feature 

extraction and multi‐view alignment. By implementing Deep Image Matching, we aim to eliminate 

dependencies on proprietary software, making the entire workflow accessible to the broader research 

community and fostering further advancements in open‐source 3D reconstruction methods. 

Moreover, while  the study primarily evaluates a single  test case, extending  the analysis  to a 

broader range of objects with varying surface complexities and material properties would provide 

deeper insights into the adaptability and robustness of each method. Particular attention should be 

given to assessing the performance of these techniques on transparent and highly reflective objects, 

as these remain among the most challenging scenarios for traditional photogrammetry. 

10. Conclusion 

This  study demonstrates  the  advantages  of  2DGS  over  traditional photogrammetry  and  3D 

Gaussian‐based  approaches  for  high‐fidelity  3D  reconstruction.  The  findings  emphasize  the 

importance of completeness, boundary accuracy, and view consistency in evaluating reconstruction 

quality. The analysis also highlights the limitations of traditional photogrammetry when applied to 

objects with non‐Lambertian, reflective, or transparent surfaces, reaffirming the need for alternative 

AI‐driven  methodologies.  The  promising  results  of  2DGS  suggest  its  potential  for  further 

development and application in fields requiring precise and detailed 3D modeling. 

Future  improvements will  focus  on  enhancing  surface  refinement,  reducing  computational 

overhead, and replacing the existing alignment process with Deep Image Matching to create a fully 

open‐source  pipeline.  This  transition  will  increase  accessibility,  reproducibility,  and  scalability, 

making high‐quality 3D  reconstruction more widely available  to  researchers and professionals  in 

various domains. 
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Supplementary  Materials:  A  video  of  the  overall  study  is  available  at 

https://www.youtube.com/watch?v=d0C4YqTi1xg (accessed on 15 April 2025). The video also demonstrates the 

access to the SIBR VIEWER for 3D Gaussian Splatting via the Anaconda Prompt. 

Abbreviations 

The following abbreviations are used in this manuscript: 

SfM  Structure‐from‐Motion 

MVS  Multi View Stereo 

3DGS  3D Gaussian Splatting 

2DGS  2D Gaussian Splatting 

CH  Cultural Heritage 

AI  Artificial Intelligence 

CV  Computer Vision 

NeRF  Neural Radiance Field 

MLP  Multi‐Layer Perceptron 

LPIPS  Learned Perceptual Image Patch Similarity 

PSNR  Peak Signal‐to‐Noise Ratio 

SSIM  Structural Similarity Index Measure 

SuGaR 
Surface‐Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High‐

Quality Mesh Rendering 

GS2Mesh  Gaussian Splatting‐to‐Mesh     

GOF  Gaussian Opacity Fields 

MVG‐

Splatting 
Multi‐View Guided Gaussian Splatting 

GPU  Graphics Processing Unit 

CPU  Central Processing Unit 

References 

1. Moyano,  J.;  Nieto‐Julián,  J.E.;  Bienvenido‐Huertas,  D.;  Marín‐García,  D.  Validation  of  Close‐Range 

Photogrammetry for Architectural and Archaeological Heritage: Analysis of Point Density and 3D Mesh 

Geometry. Remote Sens. 2020, 12, 3571.   

2. Rea, P.; Pelliccio, A.; Ottaviano, E.; Saccucci, M. The Heritage Management and Preservation Using  the 

Mechatronic Survey. Int. J. Archit. Herit. 2017, 11, 1121‐1132.   

3. Karami, A.; Battisti, R.; Menna, F.; Remondino, F. 3D Digitization of Transparent and Glass Surfaces: State 

of the Art and Analysis of Some Methods. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2022, XLIII‐

B2‐2022, 695‐702. https://doi.org/10.5194/isprs‐archives‐XLIII‐B2‐2022‐695‐2022   

4. Morelli, L.; Karami, A.; Menna, F.; Remondino, F. Orientation of Images with Low Contrast Textures and 

Transparent Objects. Remote Sens. 2022, 14, 6345. https://doi.org/10.3390/rs14246345     

5. Fiorucci, M.; Khoroshiltseva, M.; Pontil, M.; Traviglia, A.; Del Bue, A.;  James, S. Machine Learning  for 

Cultural Heritage: A Survey. Pattern Recognit. Lett. 2020, 133, 102‐108. 

6. Croce, V.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. H‐BIM and Artificial Intelligence: Classification 

of Architectural Heritage for Semi‐Automatic Scan‐to‐BIM Reconstruction. Sensors 2023, 23, 2497. 

7. Condorelli, F.; Rinaudo, F. Cultural Heritage Reconstruction from Historical Photographs and Videos. Int. 

Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, XLII‐2, 259‐265. 

8. Mildenhall, B.;  Srinivasan, P.P.; Tancik, M.; Barron,  J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing 

Scenes as Neural Radiance Fields for View Synthesis. arXiv 2020, arXiv:2003.08934. 

9. Barron,  J.T.; Mildenhall, B.; Verbin, D.; Srinivasan, P.P.; Hedman, P. Mip‐NeRF 360: Unbounded Anti‐

Aliased Neural Radiance Fields.  In Proceedings of  the  IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, New Orleans, LA, USA, 19‐24 June 2022; pp. 5470‐5479. 

10. Croce, V.; Billi, D.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. Comparative Assessment of Neural 

Radiance Fields and Photogrammetry  in Digital Heritage:  Impact of Varying  Image Conditions on 3D 

Reconstruction. Remote Sens. 2024, 16, 301. https://doi.org/10.3390/rs16020301   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2025 doi:10.20944/preprints202505.2191.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2191.v1
http://creativecommons.org/licenses/by/4.0/


  20  of  21 

 

11. Kerbl, B.; Kopanas, G.; Leimkühler, T.; Drettakis, G. 3D Gaussian Splatting for Real‐Time Radiance Field 

Rendering. arXiv 2023, arXiv:2308.04079. 

12. Huang, B.; Yu, Z.; Chen, A.; Geiger, A.; Gao, S. 2D Gaussian Splatting for Geometrically Accurate Radiance 

Fields. In Proceedings of the SIGGRAPH ʹ24 Conference Papers, Denver, CO, USA, 28 July‐1 August 2024; 

pp. 1‐11. https://doi.org/10.1145/3641519.3657428   

13. Fei, B.; Xu, J.; Zhang, R.; Zhou, Q.; Yang, W.; He, Y. 3D Gaussian Splatting as New Era: A Survey. IEEE 

Trans. Vis. Comput. Graphics 2024, [volume], [page range]. 

14. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to 

Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600‐612. 

15. Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features 

as  a  Perceptual  Metric.  In  Proceedings  of  the  IEEE  Conference  on  Computer  Vision  and  Pattern 

Recognition, Salt Lake City, UT, USA, 18‐22 June 2018; pp. 586‐595.   

16. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet‐Level 

Accuracy with 50x Fewer Parameters and <0.5MB Model Size. arXiv 2016, arXiv:1602.07360. 

17. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large‐Scale Image Recognition. arXiv 

2014, arXiv:1409.1556. 

18. Krizhevsky, A.;  Sutskever,  I.; Hinton,  G.E.  ImageNet  Classification with Deep  Convolutional Neural 

Networks. In Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 

3‐6 December 2012; pp. 1097‐1105. 

19. Lee, J.C.; Rho, D.; Sun, X.; Ko, J.H.; Park, E. Compact 3D Gaussian Representation for Radiance Field. arXiv 

2023, arXiv:2311.13681.   

20. Chen, Y.; Wu, Q.; Cai, J.; Harandi, M.; Lin, W. HAC: Hash‐Grid Assisted Context for 3D Gaussian Splatting 

Compression. arXiv 2024, arXiv:2403.14530. 

21. Fan,  Z.;  Wang,  K.;  Wen,  K.;  Zhu,  Z.;  Xu,  D.;  Wang,  Z.  LightGaussian:  Unbounded  3D  Gaussian 

Compression with 15x Reduction and 200+ FPS. arXiv 2023, arXiv:2311.17245.   

22. Girish,  S.; Gupta,  K.;  Shrivastava, A.  EAGLES:  Efficient Accelerated  3D  Gaussians with  Lightweight 

Encodings. arXiv 2023, arXiv:2312.04564. 

23. Papantonakis, P.; Kopanas, G.; Kerbl, B.; Lanvin, A.; Drettakis, G. Reducing the Memory Footprint of 3D 

Gaussian Splatting. Proc. ACM Comput. Graph. Interact. Tech. 2024, 7, 1‐17.   

24. Malarz, D.; Smolak, W.; Tabor, J.; Tadeja, S.; Spurek, P. Gaussian Splatting with NeRF‐Based Color and 

Opacity. arXiv 2024, arXiv:2312.13729. 

25. Guédon, A.; Lepetit, V. SuGaR: Surface‐Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction 

and High‐Quality Mesh Rendering. arXiv 2023, arXiv:2311.12775. 

26. Wolf, Y.; Bracha, A.; Kimmel, R. Surface Reconstruction from Gaussian Splatting via Novel Stereo Views. 

arXiv 2024, arXiv:2404.01810. 

27. Yu,  Z.;  Sattler,  T.;  Geiger,  A.  Gaussian  Opacity  Fields:  Efficient  High‐Quality  Compact  Surface 

Reconstruction in Unbounded Scenes. arXiv 2024, arXiv:2404.10772. 

28. Li, Z.; Yao, S.; Chu, Y.; García‐Fernández, Á.F.; Yue, Y.; Lim, E.G.; Zhu, X. MVG‐Splatting: Multi‐View 

Guided Gaussian  Splatting with Adaptive Quantile‐Based Geometric Consistency Densification.  arXiv 

2024, arXiv:2407.11840.   

29. Yao, Y.; Luo, Z.; Li, S.; Fang, T.; Quan, L. MVSNet: Depth Inference for Unstructured Multi‐View Stereo. In 

Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8‐14 September 

2018; pp. 767‐783. 

30. Cheng, K.; Long, X.; Yang, K.; Yao, Y.; Yin, W.; Ma, Y.; Wang, W.; Chen, X. GaussianPro: 3D Gaussian 

Splatting with  Progressive  Propagation.  In  Proceedings  of  the  Forty‐first  International Conference  on 

Machine Learning, Vienna, Austria, 21‐27 July 2024.   

31. Liu, T.; Wang, G.; Hu, S.; Shen, L.; Ye, X.; Zang, Y.; Cao, Z.; Li, W.; Liu, Z. Fast Generalizable Gaussian 

Splatting Reconstruction from Multi‐View Stereo. arXiv 2024, arXiv:2405.12218.   

32. Wolf, Y.; Bracha, A.; Kimmel, R. Surface Reconstruction from Gaussian Splatting via Novel Stereo Views. 

arXiv 2024, arXiv:2404.01810. 

  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2025 doi:10.20944/preprints202505.2191.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2191.v1
http://creativecommons.org/licenses/by/4.0/


  21  of  21 

 

33. Chen, Y.; Xu, H.; Zheng, C.; Zhuang, B.; Pollefeys, M.; Geiger, A.; Cham, T.‐J.; Cai, J. MVSplat: Efficient 3D 

Gaussian Splatting from Sparse Multi‐View Images. arXiv 2024, arXiv:2403.14627. 

34. Lorensen, W.E.; Cline, H.E. Marching Cubes: A High Resolution 3D Surface Construction Algorithm. In 

Seminal Graphics: Pioneering Efforts That Shaped the Field; ACM: New York, NY, USA, 1998; pp. 347‐353. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 May 2025 doi:10.20944/preprints202505.2191.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202505.2191.v1
http://creativecommons.org/licenses/by/4.0/

