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Abstract: This study evaluates three advanced approaches for 3D reconstruction of challenging
transparent surfaces: conventional photogrammetry, enhanced 3D Gaussian Splatting, and novel 2D
Gaussian Splatting (2DGS). Through a detailed case study of a glass artifact, the research
demonstrates 2DGS's superior performance in geometric reconstruction and multi-view consistency,
leveraging its innovative planar representation to outperform alternative methods in capturing fine
surface details and complex internal structures. While the enhanced 3D approach shows advantages
in visual rendering quality, it exhibits surface artifacts, and traditional photogrammetry proves
inadequate for complete reconstruction. The comparative analysis highlights 2DGS's balanced
capabilities in structural accuracy and perceptual quality, albeit with higher computational demands.
These findings establish 2DGS as a significant advancement for cultural heritage documentation,
particularly for transparent and reflective objects requiring precise digital preservation. The study
identifies key directions for future development, including performance optimization and
accessibility improvements, to facilitate broader adoption in heritage conservation and remote
sensing applications where accurate 3D documentation is essential.

Keywords: 3D gaussian splatting; SuGaR; 2D gaussian splatting; 3D mesh reconstruction; MLP;
deep learning; machine learning; NeRFs

1. Introduction

The reconstruction of three-dimensional geometries from input data is a fundamental challenge
in remote sensing and related fields. This process is often both time-intensive and complex,
particularly when dealing with existing structures and the intricate nature of building stocks. These
challenges are further exacerbated in the context of Cultural Heritage (CH), where structures are
often characterized by irregular geometries, heterogeneous materials, and unique aesthetic and
historical values [1]. Reconstructing such geometries requires a high level of accuracy to ensure both
the metric and visual fidelity of the 3D models.

Photogrammetric approaches, such as Structure-from-Motion and Multi-View Stereo (SfM-
MYVS), are frequently employed for 3D reconstruction [2]. However, these methods often fall short in
capturing critical surface details, especially in cases involving reflective or transparent materials [3,4],
homogeneous textures, or non-Lambertian surfaces. These shortcomings highlight the limitations of
conventional techniques when applied to complex artefacts or scenes, such as those commonly found
in CH preservation.

Recent advances in technology, particularly the integration of Computer Vision (CV) and
Artificial Intelligence (Al) into photogrammetry, have opened up new possibilities for overcoming
these challenges. Emerging methodologies, including Neural Radiance Fields and 3D Gaussian-
Splatting, offer promising pathways for enhancing the accuracy and efficiency of 3D reconstructions.
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These techniques aim to address the limitations of traditional methods by leveraging data-driven
models that adapt to complex and variable surface properties.

This study explores these cutting-edge approaches, presenting a novel workflow that
incorporates CV and Al advancements into photogrammetric workflows. A comparative evaluation
of both quantitative (metric) and qualitative (visual) outcomes underscores the potential of these
innovations for improving 3D modeling practices, particularly for CH applications.

2. State of Art

The field of 3D reconstruction has undergone significant transformation with the advent of Al
and CV techniques [5-7]. SIM-MVS, have served as the cornerstone for creating 3D models from
overlapping images. While these methods are highly effective for many applications, their limitations
in handling complex materials and geometries have been well-documented. For instance, reflective,
transparent, or homogeneous surfaces often lead to data gaps or inaccuracies in standard workflows.

In recent years, researchers have increasingly turned to advanced algorithms and machine
learning models to address these challenges. Neural Radiance Fields (NeRFs) [8,9] have emerged as
a promising technology for photorealistic 3D reconstruction, particularly for scenes with intricate
lighting and material interactions [10]. NeRFs model the radiance emitted from a 3D scene using deep
neural networks, allowing for the synthesis of novel views while maintaining high fidelity in surface
representation.

Similarly, 3DGS [11] has gained attention for its ability to efficiently approximate complex
surface geometries using a probabilistic framework. By representing surfaces as a collection of
Gaussian splats, this method reduces computational overhead while maintaining accuracy in
rendering, making it suitable for real-time applications.

2DGS [12] is introduced to address the limitations of 3DGS in accurately representing thin
surfaces due to multi-view inconsistencies.

These advancements reflect a broader trend towards hybrid methodologies that combine SfM-
MVS with Al-driven solutions. Such approaches not only improve the metric accuracy of
reconstructions but also enhance their visual realism, offering significant benefits for applications in
CH and beyond. The integration of these techniques is paving the way for a new era of 3D modeling,
where complex artefacts and challenging scenes can be accurately reconstructed with unprecedented
detail and efficiency.

2.1. Gaussian-Splatting and Evaluation Metrics

The workflow (Figure 1) commences with SfM process, which reconstructs camera poses from
unordered images while producing sparse 3D point clouds of the scene. The input 3DGS consists of
static images, calibrated using the camera poses from SfM, along with the sparse point clouds.
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Figure 1. 3D Gaussian-Splatting methodology.
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From these 3D points, a set of anisotropic Gaussian ellipsoids is generated, with each ellipsoid
represented by a 3D Gaussian distribution. These ellipsoids are then projected onto 2D images from
various viewpoints, using the recovered camera pose information. The differentiable Gaussian
functions within the camera frustum are rendered into images through rasterization. Next, a loss
function is computed by comparing the rendered images to the ground truth images, and the
parameters of each Gaussian distribution (such as position, size, and orientation) are adjusted
accordingly. An adaptive density control method is also applied to optimize the properties of the
Gaussian ellipsoids, including their position, size, orientation, quantity, color, and opacity in the
scene.

In standard settings for novel view synthesis using 3DGS, visual quality assessment metrics are
used for benchmarking. The most widely adopted metrics in the literature include Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Measure (5S5IM) [14], and Learned Perceptual Image
Patch Similarity (LPIPS) [15].

PSNR is used to compare the similarity between rendered images generated by models and real
images. A higher PSNR value indicates greater similarity and better image quality. However, PSNR
has some limitations as it primarily focuses on mean square error, overlooking human eye sensitivity
to different frequency components and the effects of perceptual distortions. As a result, PSNR may
not always accurately reflect the perceived differences in image quality from a human perspective.

SSIM is a metric for measuring the structural similarity between two images, taking into account
brightness, contrast, and structure. SSIM values range from -1 to 1, with values closer to 1 indicating
higher similarity between the two images.

LPIPS evaluates the similarity between two images based on feature representations extracted
from a pre-trained deep neural network. The original LPIPS paper used SqueezeNet [16], VGG [17],
and AlexNet [18] as feature extraction backbones. LPIPS scores are more closely aligned with human
perceptual judgments compared to traditional metrics like PSNR and SSIM. A lower LPIPS score
indicates higher similarity between the images.

Unlike traditional metrics such as PSNR and SSIM, which calculate differences based on raw
pixel values or simple transformations thereof, LPIPS leverages deep learning to better align with
human visual perception. It uses the distance between features extracted by a convolutional neural
network (CNN) pretrained on an image classification task as a perceptual metric.

In Table 1 are shown the metric quality thresholds:

Table 1. Metric quality thresholds.

Metric Range Interpretation
SSIM >0.98 Excellent structural similarity
0.95-0.98 High quality
0.90 -0.95 Good quality
<0.90 Noticeable structural degradation
PSNR > 40 Very high visual fidelity
35-40 High quality
30-35 Medium / acceptable quality
<30 Perceptible degradation
LPIPS <0.05 Excellent perceptual similarity
0.05-0.10 High perceptual quality
0.10-0.20 Medium quality
>(0.20 Low perceptual fidelity / perceptible error

2.2. Optimizations from the Original Paper of 3DGS

The Gaussian Splatting technique represents a particularly promising direction for 3D
reconstruction, as evidenced by the growing interest within the scientific community and the
increasing number of publications dedicated to the subject. Numerous recent studies focus on

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2191.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2025 d0i:10.20944/preprints202505.2191.v1

4 of 21

improving this methodology, addressing aspects such as computational efficiency, rendering quality,
the handling of thin structures, and multi-view consistency. Among the most significant
contributions are the following:

2.2.1. Storage Reduction

Several storage reduction strategies are employed in 3DGS. The number of 3D Gaussian
primitives is reduced through masking in Compact-3DGS [19] and HAC [20], while pruning methods
in LightGaussian [21], EAGLES [22], and reduced-3DGS [23] minimize Gaussian count. View-
dependent color optimization is achieved by replacing spherical harmonics with grid-based neural
fields in Compact-3DGS and adjusting spherical harmonic bands in reduced-3DGS. Additionally,
quantization and compression techniques further optimize storage.

To enhance 3D Gaussian model densification and accuracy, techniques like geometric priors and
integration with 2D depth and normal maps are used to refine Gaussian placement and orientation.
Frequency-based regularization methods help control over-reconstruction, reducing artifacts like
blurring and ghosting. More uniform and surface-aligned Gaussian splitting methods improve
precision, which is critical for point cloud extraction and editing tasks.

Key improvements focus on frequency control, with methods like Mip-Splatting minimizing
aliasing artifacts. Multi-scale adaptation ensures Gaussian primitives dynamically adjust to
resolution changes, maintaining rendering quality. Other improvements include adjusting color and
opacity based on viewpoint changes, implementing simplified shading functions for reflective
surfaces, and developing hybrid models like VDGS [24], which combine 3DGS with neural network-
based encoding for accurate, view-dependent color and opacity updates.

2.2.2. Surface Mesh Extraction

It is a crucial task in computer graphics and CV, aimed at generating a 3D mesh from various
representations of objects or scenes. Mesh-based representations are essential for editing, sculpting,
animating, and relighting. However, extracting a mesh from the 3D Gaussian Splatting (3DGS)
representation, which uses Gaussian distributions, presents significant challenges due to the lack of
inherent structure in the Gaussians. SuGaR [25] introduces a novel regularization term that aligns
Gaussians with the scene's surface, enabling mesh extraction via Poisson reconstruction. This method
is fast, scalable, and preserves detail, unlike the Marching Cubes algorithm [43], typically used for
mesh extraction from Neural SDFs. SuGaR also offers an optional refinement strategy that binds
Gaussians to the mesh surface, jointly optimizing both the Gaussians and the mesh through Gaussian
splatting rendering.

GS2Mesh: Gaussian Splatting-to-Mesh [26] bridges the gap between noisy 3DGS and a smooth
3D mesh by incorporating real-world knowledge into the depth extraction process. Instead of directly
extracting geometry from Gaussian properties, G52Mesh uses a pre-trained stereo-matching model
to guide the process. It renders stereo-aligned image pairs, feeds them into a stereo model to obtain
depth profiles, and fuses these profiles into a single mesh. This approach results in smoother, more
accurate reconstructions with finer details compared to other surface reconstruction methods, with
minimal overhead on top of the 3DGS optimization process.

GOF: Gaussian Opacity Fields [27] proposes an efficient and high-quality method for surface
reconstruction in unbounded scenes. Building on ray-tracing-based volume rendering of 3D
Gaussians, GOF directly extracts geometry by identifying the level set of Gaussians, bypassing
Poisson reconstruction or TSDF fusion. It approximates surface normals through the ray-Gaussian
intersection plane and applies regularization to improve geometry accuracy. Additionally, GOF
introduces an efficient geometry extraction technique using marching tetrahedra, adapting to scene
complexity.

2DGS: 2D Gaussian-Splatting [12] introduces a novel approach by collapsing 3D volumes into
2D oriented planar Gaussian disks. Unlike 3D Gaussians, 2D Gaussians model surfaces consistently
from different views. 2DGS employs a perspective-accurate splatting process with ray-splat
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intersections and rasterization to recover thin surfaces accurately. It also integrates depth distortion
and normal consistency terms to enhance reconstruction quality.

2DGS simplifies the 3D volume by representing it as a collection of 2D oriented planar Gaussian
disks [32], which ensure view-consistent geometry. To improve the quality of reconstructions, two
regularization terms are introduced: depth distortion and normal consistency. The depth distortion
term focuses on concentrating the 2D primitives within a narrow range along the viewing ray, while
the normal consistency term ensures that the rendered normal map aligns with the gradient of the
rendered depth. This method guarantees precise surface representation, delivering state-of-the-art
performance in both geometry reconstruction and novel view synthesis.

MVG-Splatting: Multi-View Guided Gaussian Splatting with Adaptive Quantile-Based
Geometric Consistency Densification [28], It introduces a method that utilizes depth-normal mutual
optimization to guide a more precise densification process, enhancing the detail representation for
scene rendering and surface extraction. Building on the 2DGS framework [12], it implements a more
robust technique for recalculating surface normals. These recalculated normals, combined with
gradients from the original images, help refine the accuracy of the rendered depth maps. It then
proposes an efficient multi-level densification approach based on multi-view geometric consistency
[29], which directs the refined depth maps to accurately project onto under-reconstructed regions. In
contrast to previous GS-based geometric reconstruction methods [30-33], its approach first generates
high-quality, uniformly densified Gaussian point clouds. This allows for direct surface extraction
using the Marching Cubes method [34] on the point cloud. Additionally, it adaptively determines
voxel sizes for each densified Gaussian point cloud and uses multi-view normal maps to smooth and
optimize surface normals, resulting in high-detail mesh surface extraction.

5. Materials

The dataset focuses on individual case studies representing critical challenges for
photogrammetry in mesh model reconstruction, particularly when dealing with reflective surfaces,
transparent materials, homogeneous textures, and non-Lambertian surfaces.

The pilot case study consists of a glass bottle (Mario Luca Giusti Transparent Bona Bottle) placed
on a motorized turntable against a uniform neutral-gray background.

This controlled environment was specifically designed to optimize the Al-based masking
process in Adobe Lightroom Classic (Figure 2), which proved essential for isolating the object of
interest. By removing background interference through automated masking, all subsequent
processing software could concentrate their analysis exclusively on the target object, significantly
improving feature matching accuracy and reducing reconstruction artifacts.
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Figure 2. Representative image pair: the left panel displays the original RAW capture, while the right panel

demonstrates the result after AI masking.

To ensure the alignment of the various frames and to scale the 3D model, both single and double
markers with scale bars are printed and located around the object.

For the purposes of creating a ground truth useful for comparing the data processing within the
various software, an initial acquisition was made of the glass bottle entirely lined with a paper sticker
(of negligible thickness), subsequently painted with artistic motifs to guarantee a complete and
accurate photogrammetric model reconstruction.

To ensure model scalability and metric error control, the photogrammetric survey was
supported by a high-precision topographic survey. During this topographic survey, the coordinates
of 27 markers placed on the rotating platform were acquired using a total station Leica TCRP 1201,
with an accuracy of up to one-tenth of a millimeter. The acquisition was carried out following
rigorous protocols, ensuring that each marker was measured with extreme precision to guarantee
accurate alignment and a reliable metric reconstruction of the 3D model.

The 227 images of the pilot dataset were acquired with a Nikon D750 camera with the
characteristics shown in Table 2.

Table 2. Camera’s characteristics.

Name Image dimension Focal lenght Sensor dimensions
. . W=36.0 mm
Nikon D750 6016x4016 pixels 50 mm H=23.9 mm

The image acquisition settings are shown in the Table 3.

Table 3. Common settings of image acquisition.

Aperture Shutter speed range ISO Format
(Aperture priority mode)
£/16 1/8 -1/10 200 RAW

Tests are conducted using an NVIDIA GeForce RTX 4090 GPU (24 GB VRAM) and an AMD
Ryzen 97950X 16-Core CPU.

5.1. Software and Environment Employed

e Agisoft Metashape v.2.0.0

e Lightroom Classic v.14.0.1

¢ Cloud Compare v.2.13.2

¢ 3D Gaussian-Splatting (latest code update on Aug. 2024)
e SuGaR (latest code update on Sept. 2024)

e 2D Gaussian-Splatting (latest code update on Dec. 2024)
e Anaconda environment v.conda 23.7.4

=)

. Methodology

The methodology adopted in this study was designed to compare and integrate different 3D
reconstruction technologies, starting from a common input and developing through three parallel
processes that employ different software and approaches. The ultimate goal is to obtain a
comparative evaluation of the results generated by each process, both quantitatively (through
objective metrics) and qualitatively (through visual analysis).

6.1. Common Input and Initial Phase

The starting point of the methodology is represented by a common input, derived from the
generation of a sparse point cloud. This initial phase is crucial, as it solves the photogrammetric
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problem by determining the internal and external parameters of the cameras used to capture the
images. Traditionally, this operation is performed using the open-source software COLMAP, which
is widely recognized for its effectiveness in 3D reconstruction based on SfM. Nonetheless, COLMAP
struggled to align all the images correctly in our dataset, leading to incomplete reconstructions and
inconsistencies in camera parameter estimation. In this work, we chose to use an executable script
that leverages input data generated by the SfM analysis performed with Agisoft Metashape software.

This choice offers a dual advantage: it ensures a complete dataset alignment and a high-quality
sparse point cloud, which serves as a common base for all three parallel processes.

The common parameters for the alignment are shown in Table 4:

Table 4. Common alignment parameters.

Accuracy Limit Limit Generic Reference Adaptive Exclude  Guided image
key tie preselection preselecti camera model stationarytie = matching
points points on fitting points
High 0 0 No No No Yes No

The implemented workflow began with generating an initial sparse point cloud using the
unmasked images with the automate detected markers, followed by a systematic path replacement
operation employing the "Change Path" command to transition to the masked image set while
meticulously preserving the established camera alignment parameters.

6.2. Parallel Reconstruction Processes

The methodology involves the use of three distinct approaches for 3D reconstruction, each based
on different technologies and software (Figure 3):

Export structured

folders Point cloud 2GS
(e retionotresttivs_ Qumestiivall 0 Festeedued
sparse point cloud Ui 825! ""’t "I“s' Y generation)
(file .bin and .ply) " control

Standard
MVS Process

wd Metashape
———— ]

Export structured
folders SuGaR SuGaR

Creation of Point cloud SuGaR
real time generation from (gaussians
" rendering adaptive density optimization with
with 3DGS control surface alignment)

3D Gaussian Splatting

Figure 3. Overview of the proposed methodology.

for 3DGS with
sparse point cloud
(file .bin and .ply)

(regularized (textured mesh
gaussian) generation)

6.2.1. Structure from Motion (SfM)

The first process is based on the SfM technique, which uses photogrammetric algorithms to
reconstruct 3D geometry from 2D images. This approach is well-established and provides a solid
basis for comparison with the other two more innovative methods. The parameters for generate the
model are shown in Table 5:

Table 5. Agisoft Metashape parametrs to generate mesh model.

Source data  Surface type  Quality Face count Interpolation  Depth filtering
Depth Maps Arbitrary High High Enabled Mild
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6.2.2. 3D Gaussian Splatting (3DGS) + SuGaR

The 3DGS technique uses 3D Gaussians to represent the scene. A Gaussian in this context is a
density distribution used to model the light and energy radiated from a point in space. However,
3DGS has limitations: 3D Gaussians fail to accurately represent object surfaces (e.g., thin surfaces like
edges) due to "multi-view inconsistency." In other words, surfaces may appear distorted or imprecise
from different angles.

To address this issue, SuGaR has been introduced as an extension of 3DGS, aiming to improve
the reconstruction of surface meshes. SuGaR combines Gaussian-based representation with enhanced
surface awareness, enabling more precise and detailed reconstruction of complex geometries.
Specifically, SuGaR introduces an optimization process that aligns 3D Gaussians with the actual
surfaces of objects, reducing distortions and improving consistency across different viewpoints.

Thanks to SuGaR, it is possible to obtain more accurate meshes that adhere closely to real
surfaces, solving many of the issues related to the representation of thin edges and fine details. This
approach is particularly useful in applications such as 3D reconstruction from images, virtual reality,
and augmented reality, where surface precision is critical.

Below are the scripts executed in the Anaconda prompt for the generation of the 3DGS model
and the creation of the mesh model using SuGaR, with all other parameters left at their default values:
e python train.py -s data/bottle2025mask -r 2 --iterations 30000 [3DGS]

e python train.py -s data\bottle2025mask -c gaussian_splatting\output\bottle2025mask\ -r
dn_consistency --refinement_time long --high_poly True -i 30000 [SuGaR]

6.2.3. 2D Gaussian Splatting (2DGS)

The novel 2DGS approach overcomes this limitation by representing the scene as a set of 2D
Gaussians. Instead of using Gaussians distributed in 3D space, the Gaussians are projected onto
oriented planes (like disks) that describe the surfaces of the scene. This method is advantageous
because 2D Gaussians are more view-consistent, ensuring more accurate and stable geometry across
different views of the scene.

To achieve accurate reconstruction, the paper introduces a 2D splatting process (an operation
that projects light from 2D points onto the 3D scene) that accounts for perspective correctness and
ray-splat intersections. Furthermore, the process uses rasterization (a method for “drawing” images
on a grid) to achieve detailed visual rendering.

Additionally, two optimization terms are employed:

e Depth distortion: Corrects errors in the perceived depth between objects.
e Normal consistency: Ensures consistency in surface normals (the direction of surface planes) to
maintain coherent surface representation across views.

The main advantage of 2DGS is that it enables stable and detailed geometric reconstruction of
surfaces without visible noise. Moreover, it maintains high visual quality, ensures fast training
speeds, and allows real-time rendering. This makes it suitable for applications requiring high-quality
visualization and real-time performance.

The 3DGS method evaluates scene values using different intersection planes depending on the
viewpoint from which the scene is observed. This approach can lead to inconsistencies, as the
representation of geometry or surfaces may vary slightly when the scene is viewed from different
angles. For example, thin surfaces or edges might appear distorted or imprecise depending on the
perspective.

In contrast, the proposed 2DGS method solves this problem by providing consistent multi-view
evaluations. Instead of using variable intersection planes, 2DGS represents the scene through
oriented 2D Gaussian disks, maintaining a uniform and consistent representation regardless of the
viewing angle. This ensures greater accuracy in surface reconstruction and better visual coherence,
especially in applications such as novel view synthesis or 3D reconstruction.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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In summary, while 3DGS can suffer from inconsistencies due to its viewpoint dependency,
2DGS offers a more robust and reliable solution, maintaining a consistent and precise representation
from any angle (Figure 4).

Below are the scripts executed in the Anaconda prompt for the generation of the 2DGS mesh
model, with all other parameters left at their default values:

e python train.py -s data/bottle2025mask -r 2 --iterations 30000 [2DGS]
e python render.py -m output\bottle2025mask -s data\ bottle2025mask [2DGS]

2D GAUSSIAN
P1=P2

m

Figure 4. Comparison of 3DGS and 2DGS. 3DGS utilizes different intersection planes P1 and P2 for value

evaluation when viewing from different viewpoints, resulting in inconsistency. 2DGS provides multi-view

consistent value evaluations.

7. Results and Comparative Analysis

Once the three reconstruction processes are completed, the results undergo a thorough
comparative analysis with the ground truth. This phase involves the extraction of quantitative data,
such as accuracy and precision metrics, and qualitative data, obtained through a visual analysis of
the generated models. The goal is to evaluate the performance of each method in terms of
reconstruction quality, processing time, and adaptability to different types of scenes.

The results obtained through the comparison of the various outputs from parallel processes
using Cloud Compare are divided into a qualitative analysis of the generated mesh models and a
subsequent metric analysis for a more detailed evaluation of the differences.

7.1. Qualitative Analysis

The analysis was conducted by displaying different views (lateral, top, and perspective) of the
reconstructed models. Additionally, the mesh models were visualized without textures (shaded
models). This is useful for evaluating the quality of the reconstruction from various angles, avoiding
potential artifacts introduced by textures that could mislead the geometric visualization of the mesh.

As can be seen from the Figure 5, the process using Agisoft Metashape completely fails in
reconstructing the mesh model. The process based on 3DGS with SuGaR shows significant
improvement compared to the former, although it still results in a very coarse reconstruction with
evident critical issues. As previously mentioned, 3DGS can suffer from inconsistencies due to its
viewpoint dependency, which is reflected in the mesh model reconstruction in the form of
protrusions and three-dimensional blobs that distort the correct surface. Additionally, there is a
complete lack of reconstruction at the base of the bottle.

The most faithful result, which shows impressive outcomes, is based on the 2D Gaussian-
Splatting process. The glass bottle is completely reconstructed and rendered without any
heterogeneity. This significant achievement is due to the fact that, compared to 3DGS, 2DGS offers a
more robust and reliable solution, maintaining a consistent and precise representation from any
angle.

It is worth noting that, compared to the Ground Truth, the 2DGS mesh appears smoothed and
still requires improvement.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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Below, the Figure 5 shows the visual comparisons of the meshes reconstructed by the different
processes.

TOP VIEW

LATERAL VIEW

PERSPECTIVE VIEW

AGISOFT 3DGS + 2DGS GROUND
METASHAPE SUGAR TRUTH

Figure 5. Visual comparisons of the meshes reconstructed by the three different processes.

7.2. Quantitative Analysis

The quantitative analyses were conducted by performing deviation analyses in Cloud Compare
using the Cloud-to-Mesh method (C2M), with the reference mesh being the Ground Truth. To
generate point clouds from the meshes created in the three parallel processes, a sampling operation
(sampling points) was performed, with an equal number of sampling points for all processes, set at
10.000.000.

As can be seen from the Figure 6, the C2M deviation analysis once again clearly demonstrates
that the most robust reconstruction is the one produced by the 2DGS process. It is worth noting that
the data highlighted has been cleaned of outlier points falling outside the range [-3mm to +3mm].
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AGISOFT METASHAPE 3DGS + SUGAR 2DGS

C2M signed distances [m] & C2M signed distances [m] . C2M signed distances [m]
0.0030 & 0.0030 0.0030

0.15 [m]

7.2.1. Completeness Evaluation of Reconstructed Models

To assess the completeness of the reconstructed models, we compared their surface areas to the
ground truth mesh. Completeness (C) is computed as in the Formula 1:

C= (Smodel) % 100 (1)

Sgr_tr
Where S model is the total surface area of the reconstructed model after outlier removal, and

S gr_tr is the surface area of the ground truth mesh.

The 3DGS model achieved the highest completeness (99.62%), closely followed by 2DGS
(96.43%), while Agisoft Metashape exhibited significantly lower completeness (16.96%), indicating
that it reconstructed only a small portion of the reference surface.

The following Table 7 summarizes the key attributes of the ground truth mesh and the three
reconstructed models (2DGS, Agisoft Metashape, and 3DGS). The table includes the number of
triangles (both original and after outlier removal), surface area, border edges, and perimeter for each
model. These parameters provide insights into the overall geometry and completeness of the
reconstructions.

Additionally, an analysis of border edges and perimeters provides insight into the distribution
of the reconstructed surface. The 3DGS model has the largest perimeter (12,44 m), suggesting
potential artifacts or noise at the edges, whereas 2DGS has a more compact structure with a lower
perimeter (0,722 m). Agisoft Metashape shows a highly fragmented reconstruction with a large
number of border edges (4289) and an extensive perimeter (3,158 m).

These findings highlight that completeness alone is not sufficient to assess model quality, as
variations in surface distribution and boundary fragmentation must also be considered.

It is also possible to deduce from the Table 6, based on the number of out-of-range points
(outliers), that the most critical and confusing process is the one using Agisoft Metashape. The 3DGS
process tends to "fill" the bottle with three-dimensional Gaussians (ellipsoids), while the process
based on 2DGS generates very interesting data, even regarding out-of-range points.
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Table 6. Quantitative parameters extracted from the C2M analysis.
Processes Gauss Mean  St. Deviation Points in range Outliers
Agisoft Metashape -0,0014 0,0008 2.889.373 7.110.741
3DGS+SUGAR -0,0006 0,0011 3.894.545 6.105.469
2DGS -0,0011 0,0005 6.870.297 3.129.632

Table 7. key attributes of the ground truth mesh and the three reconstructed models (2DGS, Agisoft Metashape,

and 3DGS).
Model Completene  Triangles Triangles (after Surface Border Perimete
ss (original) outliers removed) area (m?) edges r (m)
Ground Truth - 255971 - 0.080029 425 0,370151
Agisoft 16,96% 188267 76137 0.013567 4289  3,158630
Metashape
3DGS+SUGAR 99,62% 69979 33096 0,079725 5146 12,4;1365
2DGS 96,43% 206201 141498 0,077172 642 0,722261
Gauss: mean = -0.0041 / std_.dev. = 0.0058 [3163 classes]

100000

75000

50000

25000

0 L L LB T T LI T
-0.03 -0.02 -0.01 0 0.01 0.02 0.03

C2M signed distances

Figure 7. Histogram of the C2M analysis of the 2DGS model considering outliers and in range points; a bimodal

distribution curve is observed.

As visible in the exported histogram of 2DGS model in Figure 7 without the removal of outlier
points, a bimodal distribution curve is observed. Sectioning the bottle while including the outlier
points reveals the generation of an internal thickness within the bottle (Figures 8 and 9). The points
located along this thickness are out of range because the generation of the ground truth does not
include the internal surfaces but only the external shell of the bottle.
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C2M signed distances
0.0141

-0.0231

Figure 8. Section of the 2DGS bottle model (bottom view).

C2M signed distances
0.0141

-0.0231

Figure 9. Section of the 2DGS bottle model (axonometric view).

7.2.2. Completeness Evaluation of Reconstructed Models on Slice Sections

In this section, a more detailed analysis is conducted on individual slices of point clouds
generated in Cloud Compare, allowing for a more precise and practical visualization of how each
reconstruction process produces the previously discussed results. Notably, the model generated by
the 2DGS process exhibits the highest degree of conformity to the ground truth compared to the other
methods. Furthermore, as observed in the previous section, in addition to accurately reconstructing
the external surface of the bottle in alignment with the ground truth model, the 2DGS process also
captures the internal surface of the bottle, further demonstrating its robustness and completeness.
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The models generated by Agisoft Metashape remain almost entirely absent. As shown in Figures
10 and 11, the few points within the range are primarily located along the edges of the bottle's faces.

AGISOFT METASHAPE i . 3DGS + SUGAR

Figure 10. Planimetric C2M slice section of the three generated models using as reference the ground truth (black
profile).

AGISOFT METASHAPE 3DGS + SUGAR

-0.0082
-0.0135

-0.0187

-0.0114
-0.0240

0.0143

0.0135
-0.0171

-0.0344 ! 0240
| -0.0199
-0.0397 % - -0.0345

-0.0227

0.0449 B -0.0450 | -0.0255
1

Figure 11. Trasversal C2M slice section of the three generated models using as reference the ground truth (black
profile).

7.3. Rendering Metrics PSNR LLPIS and SSIM for 3DGS and 2DGS

Based on the results obtained from the evaluation of both 3DGS and 2DGS on a challenging
transparent glass bottle dataset, we can draw several important conclusions regarding their
performance also across the multiple rendering metrics (Table 8).

The SSIM score for 3DGS (0.9768) is slightly higher than that of 2DGS (0.9734), indicating that
3DGS preserves the structural integrity and local details of the reconstructed object better. Although
the difference is minimal, a change of 0.003 in SSIM can be noticeable in perceptual terms, particularly
in the preservation of fine details. This suggests that 3DGS provides a slightly superior visual
reconstruction, which is important when dealing with objects where fine details are crucial, such as
glass objects with complex reflections and refractions.

Similarly, the PSNR for 3DGS (36.06 dB) is better than that of 2DGS (34.91 dB), which implies a
superior signal-to-noise ratio and fewer pixel-wise errors in the reconstruction. A PSNR value above
35 dB is considered excellent in visual quality, and while both methods perform well, 3DGS clearly
has the edge in terms of numerical fidelity, ensuring fewer artifacts and a more precise reconstruction.

The LPIPS score further highlights the perceptual superiority of 3DGS, with a value of 0.0629
compared to 2DGS's 0.0696. Since LPIPS is a perceptual metric, this difference is significant. A lower
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LPIPS value means that 3DGS's reconstruction is visually closer to the original, making it more
faithful in terms of human perception. This difference underlines the advantage of 3DGS when it
comes to visual fidelity, particularly when assessing high-precision features like transparency and
light interaction with complex materials.

Table 8. Rendering metrics PSNR LLPIS and SSIM (visual fidelity), for 3DGS and 2DGS compared with the mesh

accuracy.
Method SSIM PSNR Visual Fidelity Mesh Accuracy
LPIPS
3DGS 0.9768 36.06 0.0629 Higher (more realistic) X Low degree of
conformity
2DGS 09734 3491 0.0696 Good, slightly worse High degree of
conformity

When considering the specific challenges posed by transparency, both methods struggle with
the inherent complexities of modeling reflections, refractions, and volumetric effects associated with
transparent materials. However, 3DGS's superior performance across all three rendering metrics
suggests that it provides a more robust model for handling the complex optical properties of
transparent objects. This is likely due to its better 3D modeling capabilities, which allow it to represent
volumetric transparency more accurately and maintain depth consistency in the reconstruction. In
contrast, 2DGS, while capable of producing solid meshes, does not inherently account for volumetric
depth and transparency, which limits its ability to model such materials with high accuracy.

The choice between 3DGS and 2DGS depends on the specific requirements of the task at hand.
If the goal is to achieve the highest quality visual reconstruction, especially for complex materials like
transparent glass, 3DGS is the better option. However, for tasks involving solid mesh extraction and
multiview consistency, 2DGS, remains a highly effective solution.

7.4. Time Processing

In the Figure 12, the processing times for each individual process are shown in orange, while the
time common to all three processes—accounting for Al masking in Adobe Lightroom and the
subsequent alignment of the 277 photographic shots in Agisoft Metashape—is highlighted in blue.

TIME PROCESSING (dataset: 277 images)

250

221

200 186

158
123
63 2 63 63
6
0 —

Agisoft Metashape 3DGS+SUGAR 2DGS

[
w
=]

Time [minutes)
=
(=]
(=]

Parallel processes

B Common time processing B Individual time processing M Total time processing

Figure 12. Processing times for each parallel process.
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The results highlight that the most time-consuming processes are also the most effective in terms
of the geometric reconstruction of the 3D model. Specifically, there is a clear monotonic growth,
starting with a very low processing time for Agisoft Metashape and reaching a maximum when using
the traditional 2DGS method.

7.4.1. CPU and GPU Usage

The Table 9 provides an overview of how different computational resources are utilized by
2DGS, 3DGS, and Agisoft Metashape. Both 2DGS and 3DGS rely heavily on GPU performance since
Gaussian Splatting is a highly parallelizable process that benefits from the massive parallel
processing power of modern GPUs. The CPU plays only a minimal role in these workflows, primarily
handling data preparation and management, while the actual computation is executed on the GPU.

Table 9. Overview of the different computational resources utilized by 2DGS, 3DGS, and Agisoft Metashape.

Software/Process CPU Usage GPU Usage Notes

Agisoft Metashape Important Important - CPU used for feature matching,
mesh generation, and texturing.

- GPU accelerates depth maps, point
cloud, and rendering.

3DGS + SUGAR X Minimal Primary - Intensive GPU computation for 3D
Gaussian management.

- CPU marginally used for
coordination.

2DGS X Minimal Primary - Uses GPU for rasterization and
Gaussian optimization.

- CPU involved only in data
management.

On the other hand, Agisoft Metashape takes a more balanced approach, utilizing both the CPU
and GPU for different tasks. The CPU is crucial in feature matching, mesh generation, and texturing,
which require intensive sequential processing and memory management. However, the GPU plays a
vital role in accelerating depth map calculations, point cloud generation, and rendering, significantly
reducing processing time.

For users looking to optimize their workflow, it is essential to have a high-performance GPU
with extensive parallel processing capabilities, such as an NVIDIA RTX 3090 or 4090, when working
with Gaussian Splatting techniques. In contrast, Metashape benefits from both a powerful multi-core
CPU and a capable GPU to ensure smooth performance across all computational stages.
Understanding these distinctions allows professionals to make informed hardware choices based on
their specific computational needs and workflow requirements.

8. Discussions

This study has provided a comprehensive comparative analysis of three different 3D
reconstruction methodologies— Agisoft Metashape, 3DGS+5uGaR, and 2DGS—assessing their
performance in terms of completeness, geometric accuracy, and reconstruction consistency.
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8.1. Comparative Performance Analysis

The qualitative and quantitative evaluations highlight significant differences between the three
methods. Agisoft Metashape demonstrates the lowest reconstruction capability, with high levels of
fragmentation and an extremely limited surface reconstruction. The model generated by this
approach lacks significant portions of the scene, particularly in smooth and reflective areas such as
the bottle’s surface.

This limitation is primarily due to inherent challenges in photogrammetry when dealing with
reflective, transparent, or homogeneous-textured surfaces. StM and Multi-View Stereo (MVS)
algorithms rely on feature matching across multiple images to generate point clouds and reconstruct
surfaces. However, highly reflective objects, such as glass or polished metals, dynamically alter their
appearance depending on the viewing angle, leading to inconsistent feature detection and poor depth
estimation. Similarly, transparent objects pose a significant challenge, as photogrammetry algorithms
struggle to distinguish between actual object surfaces and the background seen through them, often
resulting in missing or distorted reconstructions.

In contrast, the 3DGS+SuGaR method achieves higher completeness (99.62%) and provides an
improved reconstruction compared to Metashape. However, the methodology suffers from multi-
view inconsistencies, leading to distortions in the reconstructed surface. This is particularly evident
in the presence of surface artifacts, protrusions, and an extensive perimeter length (12.44 m),
suggesting excessive noise and imprecise boundary definition.

The 2DGS approach emerges as the most effective method, offering high reconstruction
completeness (96.43%) while maintaining a compact and accurate surface representation. Unlike
3DGS, 2DGS ensures better view consistency and generates a more stable and homogeneous
geometry. Furthermore, the 2DGS process reconstructs not only the external surface of the bottle but
also an internal surface, a feature not present in the other methods. This demonstrates the technique’s
potential for capturing fine details and complex geometric structures.

3DGS demonstrates a visually and numerically superior rendering reconstruction of transparent
objects, as evidenced by its higher SSIM, PSNR, and lower LPIPS scores. This suggests that 3DGS is
better suited for rendering and visual fidelity tasks, where the preservation of fine details and optical
behavior of materials is critical. However, 2DGS has its strengths, particularly in mesh extraction,
where it excels at producing compact, multiview-consistent meshes that are suitable for downstream
tasks such as 3D printing, CAD manipulation, and simulations. While 3DGS is optimized for realistic
rendering, it does not perform as well in generating solid geometries due to its focus on visual depth
rather than geometric coherence across views. This limitation makes 2DGS a better choice for tasks
requiring solid mesh extraction, even if it sacrifices some of the visual fidelity offered by 3DGS.

8.2. Key Findings and Implications

Completeness and Surface Fidelity: While completeness alone does not determine
reconstruction quality, the 2DGS method achieves an optimal balance between high completeness
and accurate geometric representation. The 3DGS+SuGaR method, despite its high completeness
percentage, produces excessive surface noise, while Metashape fails to reconstruct a significant
portion of the model, particularly in challenging areas.

8.2.1. Challenges of Photogrammetry

The poor performance of Metashape underscores the inherent difficulties of photogrammetry in
reconstructing objects with reflective, transparent, or non-Lambertian surfaces. The reliance on
feature detection and pixel correlation results in unstable reconstructions when dealing with
materials that do not exhibit clear, distinguishable patterns. Additionally, uniform or highly specular
textures lead to ambiguous depth estimation, causing holes, misalignments, and surface
fragmentation.
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8.2.2. Edge and Boundary Artifacts

The analysis of border edges and perimeter measurements indicates that 3DGS+SuGaR
introduces substantial irregularities, whereas 2DGS maintains a more structured and realistic surface.

8.2.3. Internal Surface Generation

The ability of 2DGS to reconstruct an inner surface suggests a higher level of adaptability for
complex object scanning, making it a promising technique for applications requiring volumetric
detail, such as CH preservation, medical imaging, and digital twin modeling.

8.2.4. Outlier Distribution and Robustness

The deviation analysis and histogram evaluation reveal that the 2DGS process produces a
bimodal error distribution, corresponding to the generation of an inner thickness not present in the
ground truth. This indicates that while 2DGS provides a more complete surface representation, its
alignment with the reference model should be further refined for applications where external
geometry is the primary concern.

9. Limitations and Future Work

Although 2DGS proves to be the most effective method among those analyzed, some limitations
must be considered. The smoothing effect observed in the reconstructed mesh suggests that further
refinements in surface sharpness and detail preservation are needed. Future research could focus on
integrating hybrid approaches that combine the advantages of 2DGS with additional refinement
techniques to improve edge definition and geometric fidelity. Additionally, exploring optimization
techniques for reducing computational cost while maintaining high-quality reconstructions would
enhance the practicality of 2DGS for real-time applications.

A crucial next step will be the replacement of the common alignment process currently based on
Agisoft Metashape with a fully open-source pipeline. This will be achieved through the integration
of Deep Image Matching techniques, which have demonstrated superior robustness in feature
extraction and multi-view alignment. By implementing Deep Image Matching, we aim to eliminate
dependencies on proprietary software, making the entire workflow accessible to the broader research
community and fostering further advancements in open-source 3D reconstruction methods.

Moreover, while the study primarily evaluates a single test case, extending the analysis to a
broader range of objects with varying surface complexities and material properties would provide
deeper insights into the adaptability and robustness of each method. Particular attention should be
given to assessing the performance of these techniques on transparent and highly reflective objects,
as these remain among the most challenging scenarios for traditional photogrammetry.

10. Conclusion

This study demonstrates the advantages of 2DGS over traditional photogrammetry and 3D
Gaussian-based approaches for high-fidelity 3D reconstruction. The findings emphasize the
importance of completeness, boundary accuracy, and view consistency in evaluating reconstruction
quality. The analysis also highlights the limitations of traditional photogrammetry when applied to
objects with non-Lambertian, reflective, or transparent surfaces, reaffirming the need for alternative
Al-driven methodologies. The promising results of 2DGS suggest its potential for further
development and application in fields requiring precise and detailed 3D modeling.

Future improvements will focus on enhancing surface refinement, reducing computational
overhead, and replacing the existing alignment process with Deep Image Matching to create a fully
open-source pipeline. This transition will increase accessibility, reproducibility, and scalability,
making high-quality 3D reconstruction more widely available to researchers and professionals in
various domains.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202505.2191.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2025 d0i:10.20944/preprints202505.2191.v1

19 of 21

Supplementary Materials: A video of the overall study is available at
https://www.youtube.com/watch?v=d0C4YqTilxg (accessed on 15 April 2025). The video also demonstrates the
access to the SIBR VIEWER for 3D Gaussian Splatting via the Anaconda Prompt.

Abbreviations

The following abbreviations are used in this manuscript:

SfM Structure-from-Motion
MVS Multi View Stereo
3DGS 3D Gaussian Splatting
2DGS 2D Gaussian Splatting

CH Cultural Heritage

Al Artificial Intelligence
Ccv Computer Vision

NeRF Neural Radiance Field
MLP Multi-Layer Perceptron

LPIPS Learned Perceptual Image Patch Similarity
PSNR Peak Signal-to-Noise Ratio

SSIM Structural Similarity Index Measure
Surface-Aligned Gaussian Splatting for Efficient 3D Mesh Reconstruction and High-
SuGaR . .
Quality Mesh Rendering
GS2Mesh  Gaussian Splatting-to-Mesh
GOF Gaussian Opacity Fields
MVG-

. Multi-View Guided Gaussian Splatting
Splatting

GPU Graphics Processing Unit
CPU Central Processing Unit
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