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Abstract

Under the typical scenario of high-speed mobility, channel disturbances at the physical layer may
disturb the transmission of video base layers. Due to the close dependency of scalable video coding
(SVC) on base layers, such disturbances will result in retransmissions and handover delays. Meanwhile,
ineffective enhancement layers continue to occupy resources, ultimately causing system performance
collapse and further exacerbating physical-layer disturbances. To address this challenge, we propose an
edge computing resource coordination optimization scheme for highly dynamic mobile terminals. The
scheme first empowers the SVC layered transmission with the local caching capabilities, enabling rapid
retransmission of base layer data by employing a Lyapunov optimization framework for transmission
queue scheduling. Secondly, we design a strategy for dynamically releasing enhancement layer (EL)
cache. This can mitigate resource waste caused by invalid enhancement layers. Finally, Lyapunov drift
optimization is implemented to ensure base layer transmission stability and accelerate system state
convergence. Simulation and experimental results demonstrate that the proposed scheme significantly
improves video transmission reliability and user experience in highly dynamic network environments.

Keywords: highly dynamic mobile terminals; mobile edge computing; scalable video coding; resource
cooperative optimization; Lyapunov optimization

1. Introduction

With the rapid deployment of 6G networks, satellite Internet, and intelligent edge computing,
the demand for real-time applications in highly dynamic mobile communication networks (e.g.,
vehicular communication systems, high-speed rail networks, and urban subway infrastructures) is
surging [1]. In these scenarios, end-users encounter critical challenges including rapid channel state
variations, ultra-high mobility speeds, and heterogeneous resource competition, rendering traditional
communication networks inadequate for meeting stringent requirements of ultra-low latency, high
reliability, and energy efficiency optimization [2]. According to the International Telecommunication
Union (ITU), global mobile data traffic is projected to grow at a compound annual rate exceeding
30% by 2030, with real-time video streaming dominating network traffic [3]. In such highly dynamic
mobile environments, the cooperative allocation of computing, communication, and storage resources
to guarantee end-user Quality of Service (QoS) while optimizing energy consumption has emerged as
a key technical challenge [4].

Traditional Mobile Edge Computing (MEC) systems substantially reduce latency and enhance
user experience by decentralizing computing resources to the network periphery. However, existing
MEC resource allocation strategies predominantly target static or low-dynamic environments, that
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struggle to adapt to the rapid fluctuations in channel states and heterogeneous user demands inherent
in highly dynamic mobile communication networks [5]. Furthermore, conventional fixed resource
allocation or scheduling approaches relying on simplistic heuristic mechanisms frequently result in
suboptimal resource utilization or service disruptions when confronted with the stochastic access
patterns and variable resource requirements of highly mobile users [6]. For instance, literature [7]
employed Dinkelbach’s method integrated with convex optimization techniques to develop an online
algorithm that maximizes energy efficiency while maintaining queue stability for static or slowly
varying wireless channels through the hybrid cooperative mechanism of backscatter communication
(BackCom); literature [8] proposed a genetic algorithm (GA) and heuristics (MATS)-based framework
for traditional task scheduling and resource allocation to optimize task offloading latency in mobile
edge computing environments.

There are few work studies on real-time video transmission under highly dynamic mobile com-
munication networks. The work [9] presents a semantic communication framework based on Dy-
namic Decision Generation Networks (DDGNs) and Generative Adversarial Networks (GANs), which
achieves high-compression, low-distortion key-frame transmission for video streams in hyper-dynamic
mobile networks through dynamic feature compression and adversarial reconstruction optimization.
[10] introduces an SDN-based framework for centralized management of VR video resources in 6G
cellular systems, ensuring seamless low-latency VR experiences under rapidly changing network
conditions by dynamically reallocating bandwidth and computational tasks. [11] proposes an am-
plified programmable hypersurface (APM) system with joint modulation capabilities to synchronize
real-time video transmission with wireless energy transfer in complex electromagnetic environments
via dynamic beamforming and joint modulation strategies, thereby addressing stability and energy effi-
ciency challenges in highly dynamic scenarios. [12] develops an intelligent tracking system combining
computer vision and programmable hypersurface technologies, enabling real-time video transmission
for moving targets in dynamic environments through real-time target sensing and adaptive beam-
forming. However, most existing real-time video transmission schemes for highly dynamic mobile
networks primarily focus on downlink communication layer optimization, with limited exploration
of cross-layer co-optimization frameworks and uplink-oriented task offloading/resource allocation
mechanisms tailored for hyper-dynamic network environments.

Under high-mobility scenarios, significant channel fluctuations induced by Doppler shift may
trigger transmission interruptions in the base layer (BL) of video streams. Given the close dependency
of Scalable Video Coding (SVC) on BL integrity, where BL loss renders all enhancement layers (ELs)
ineffective [13], localized physical layer disturbances can propagate into systemic transmission chal-
lenges: channel fluctuations activate BL retransmission while interacting with base station handover
latency, causing dramatic increases in end-to-end latency [14]. This creates a closed-loop deterioration
pathway: physical layer disturbances, dependency amplification, resource contention, performance
collapse, intensified physical layer disturbances[15].

To address the challenges in high-dynamic mobile communication networks, we propose a user-
centric resource coordination scheme that leverages the SVC layered transmission architecture and
edge computing. Upon detecting channel degradation, the proposed scheme retransmits cached BL
content, reducing backhaul latency. A Lyapunov optimization framework manages transmission
queues, balancing retransmission rates and handover strategies to minimize end-to-end latency.
Within Lyapunov optimization, edge nodes allocate dedicated resources for BL and EL using MEC
systems[17]. If BL loss invalidates EL data, corresponding resources are reallocated to prioritize
BL transmission stability. The MEC system also adapts EL redundancy and compression ratios to
minimize bandwidth and computational consumption under poor channel conditions. To address
physical layer disturbances, two virtual queues namely delay disturbance and resource occupancy are
introduced [18]. The delay queue compensates for channel jitter by dynamically adjusting weights
based on BL packet loss and retransmission delays. The resource queue minimizes Lyapunov drift,
optimizing the use of edge computing resources[19]. Finally, a Hierarchical Quantum Particle Swarm
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Optimization (HQPSO)-based algorithm is introduced for joint offloading and resource allocation.
This algorithm rapidly identifies near-optimal solutions, ensuring system stability and preventing
excessive retransmissions or handovers caused by sudden performance degradation.

The remainder of this paper is structured as follows: Section 2 presents the system model
formulation and problem definition; Section 3 elaborates on the joint offloading and resource allocation
optimization algorithm design; Section 4 describes the simulation experiment configurations and
performance analysis; Section 5 summarizes the key research contributions and proposes future
research directions.

2. SYSTEM MODEL
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Figure 1. Dynamic resource allocation architecture based on SVC hierarchical offloading with Lyapunov optimiza-

tion.

As shown in Figure 1, in this paper, we propose a collaborative architecture that integrates SVC,
MEC and Lyapunov for real-time video streaming transmission requirements in highly dynamic
network environments. Where 1), ,,(t) represents channel state; Q, (t) represents queue backlog; A, (t)
represents task arrival rate; x(t) € {0,1}° represents offloading decision;  f ,(t) > 0 represents
resource allocation; p, (t) € [0.1,1.0]w represents power control.

The system architecture comprises three functional components: a mobile client, a network
resource layer, and a dynamic control layer [20]. The mobile client implements SVC-based decom-
position of video streams into base layer (BL) and enhancement layers (EL1-EL3) with hierarchical
dependencies, and establishes a dynamic virtual queue to enable real-time feedback of task backlog
status. The base layer is preferentially offloaded to macro base stations through ultra-reliable low-
latency communication (URLLC) links, while the enhancement layers dynamically select OFDMA
subbands for transmission to small base stations based on channel state prediction [21]. The network
resource layer integrates heterogeneous computing resource pools from macro/small base stations,
performs on-demand resource allocation through elastic scaling mechanisms, and enforces layered
dependency constraints to ensure video transmission integrity [22]. The dynamic control layer incor-
porates Lyapunov optimization modules to jointly optimize offloading policies, resource allocation
weights, and power control parameters in real time, achieving dynamic balance between user expe-
rience quality maximization and queue stability through Drift-plus-Penalty minimization [16]. This
architectural design overcomes randomness constraints in resource allocation for hyper-dynamic
environments, establishing a closed-loop scheduling mechanism through hierarchical decoupling and
online optimization decision-making. Used U = {1,2,3,...,U} to denote the users in the mobile
video system, each user generates a real-time video stream with frame rate F,, and resolution R, .
M = {1,2,3,..., M} denotes the set of MEC servers, where m = 0 is a macro base station, m > 1
is a small base station, and the computational power f;7?* is heterogeneously distributed with the
coverage radius Dy,. L = {1,2,...,L} denotes the set of SVC video tiers. 7 = {1,2,..., ]} denotes the
set of orthogonal subbands with bandwidth W = 180kHz, supporting OFDMA multiple access.
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2.1. User Side Mode

Assume that for each user u € U at the user terminal, there is one and only one video computation
task, denoted as T,, which is atomic and cannot be divided into subtasks. The performance of each
computational task T, is expressed as a tuple consisting of two descriptions (d,, ¢, ), where d,, denotes
the size of the task data transmitted from the user-side device to the MEC server, and ¢, denotes the
size of the resources required to complete the computational task, both of which can be obtained
based on the size of the user’s task execution data volume. In the MEC system of this paper, each
computational task can perform video parsing at the user end or can be offloaded to the MEC server to
perform video parsing. By offloading the video computation task to the server, the video user saves
the energy required for the computation task, but sending the video task to the uplink adds more time
and energy [23].

Using fl°@ to denote the local computing power of user u, fi°@ > 0, in terms of the number of
CPU cycles per second, if the user u performs video parsing locally, the latency to complete the task is:

tlocal — Cu
u flllocal :

The energy consumption model is used to represent the energy consumed by the user to parse

)

the video locally. Using f for the CPU frequency and « for the energy factor, each computation cycle is
¢ = af, where the size of « is determined by the chip architecture. According to the above model, the
energy consumption for locally executing the video task Ty is:

2
Ebocal — 0(( Ll{ocal) Cu- (2)

The user equipment is based on SVC technology, which structures the real-time captured video
stream in time slices. Each time slice lasts for 1 second and corresponds to F, frames of video data,
which are generated into layered packets by H.265/SVC encoder: Base Layer (BL) contains 1 frame
with NOTICE P frames, with a bit rate of B,ll = KRyF,, where K is the compression factor, which
determines the minimum acceptable quality of the video, and Enhancement Layer (EL) is realized by
layered incremental coding, where the bit rate of the first layer is the enhancement rate, providing
resolution enhancement or dynamic range extension. The EL is realized by layered incremental coding,
where the code rate of layer one B!, = B, (1 + 7) is the enhancement rate, which provides resolution
enhancement or dynamic range extension. This hierarchical structure allows users to flexibly choose
the transmission layer according to the network conditions.

2.2. Task Offloading Model

Assuming a multi-user multi-MEC server architecture where each user’s video computation
tasks can be selectively offloaded to any available small base station within the system [5], three
distinct latency components emerge during the offloading process: (i) uplink transmission latency
when offloading video tasks to MEC servers; (ii) computation processing latency at the base station’s
MEC server; and (iii) downlink transmission latency for returning computation results to the user
[24]. Given that uplink data size is typically significantly smaller than downlink data, and considering
the inherent asymmetry in wireless channel capacity where downlink data rates substantially exceed
uplink rates, the downlink transmission delay can be neglected in computational complexity analysis
[25].

Similar to the literature [26], this paper applies the Orthogonal Frequency Division Multiple
Access (OFDMA) technique to the uplink transmission system by dividing the transmission band B
into W equal sub-bands of size N, i.e, W = B/ N[Hz], and each BS (Band Width) can receive up to one
user’s upload task at the same time. receive upload tasks from N users simultaneously. Assuming that
the set of available subbands for each BSis N = {1,2,3,..., N}, the offloading Variable is defined as

x{fm considering the allocation of uplink subbands, where u € U,m € M,j € N,l € L; xﬁm = 1 denotes
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that task T;, offloads the I layer of the video from user u to base station m via subband j, and x{}m =0
has the opposite meaning. i.e:

)

Xum =

i { 1, User offloads video to base station via subband
0, else

Assuming that the task offloading policy is X, then X = {x]ulm | x{,lm =1vVuel,
m e M,j € N,Il € L}. In the system of this paper, each video task can either be parsed locally or
offloaded to an associated MEC for parsing. Therefore, the feasibility analysis leads to:

Y Y <LVueUlel @)
meM jEN

Furthermore, assuming that both the user side and the BS are equipped with a single antenna
for uplink transmission, and the power of user u to transmit a task to the BS is P,[W], then P =
{P, | 0 < P, < Py, u € U}, denoting the power pooling. Due to the application of OFDMA technology
in the uplink, users of the same base station will transmit tasks on different subbands, which well
suppresses the mutual interference among subbands [27]. However, there is still interference between
the mobile devices, where the Signal Noise Ratio (SINR) of the user u uploading the task to the subband
jis: ‘

Puhim
Lrem{m) Tkett, Ty Pilty, + 02 ©)
VueUmeM,je N,l cL.

b _
Vimm =

In the formula, 02 denotes the background noise variance. Wl represents the channel gain
coefficient between the base station (BS) and associated users for transmission. p, indicates the
transmit power of user u when offloading tasks to the server. x{(lr signifies user k uploading the I_th
layer of a video through subcarrier j to server m. Furthermore, p; stands for the transmit power of
user k in the process of offloading tasks to the server, and h{( ., efers to the channel gain coefficient
between server BSM and user k for transmission. ' '

The path loss model adopted in this paper [28] is given by 140.7 + 36.7 - Ig d},,, where dJ,,,
represents the distance between BSM and user u (in units of km ). Each user’s video task is transmitted

on only one subcarrier; therefore, the rate at which user u uploads video to server BSM [bits/s] is:
Rum(x) = Wlog, (1 + yum).- (6)

In the formula, v, = YjeN 'y{zm, where %fm denotes the signal-to-noise ratio (SNR) from user u
to server BSM on subcarrier j. Consequently, the transmission time for user u to send video task d,,
over the uplink is given by:
Xumn@y
= Yu e U. (7)
= L Runl)

In the equation, x;,;, = Zje N LicL x{llm, where xﬁm represents the offloading of the [-th layer of a
video from user u to server m via subcarrier j.

2.3. SVC-MEC Computing Resource Integration Model

In dense heterogeneous network environments, this paper formulates a dynamic MEC resource
scheduling model tailored for multi-user real-time video streaming demands by leveraging SVC
hierarchical characteristics. The proposed model achieves efficient computing resource allocation and
QoS guarantees through synergistic integration of multi-BS resource constraints and SVC hierarchical
features. Within the system architecture, MBSs and SBSs are provisioned with differentiated computing
resource pools [29], where MBSs prioritize SVC BL tasks by reserving 20% of the resource pool
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freserved — 0.2, f9 and implementing a lightweight containerized instance preloading mechanism. The
cold-start latency of the base layer tasks is compressed to 5 ms to ensure the real-time requirement: the

1
texec
layer (EL) tasks by adopting a dynamic resource allocation mechanism based on the SVC hierarchical

< 100 ms; while the small base station focuses on the resilient processing of the enhancement

dependency:

) l
flal) = L8 Bu g ) € (0,1). ®
Yy k (t)B k
In the equation, fll,m (t) denotes the computational resources allocated by base station m to user u
for the I_th layer of video at time slot t. The numerator, B, represents the bit rate of the I_th layer of
the video. The denominator is the total bit rate of all users’ tasks at the same layer. Additionally, "
signifies the total computational resource capacity of base station m.
Activate high-level resource allocation only when the completion of a low-level task is detected,
and introduce a dynamic fallback mechanism as shown below to prevent resource overload:

Y flw > f = Suspension of the top EL mandate . )

In the equation, ) fbllm represents the total amount of computational resources already allocated
by base station m. Here, f" denotes the total computational resource capacity of base station m. The
highest EL task refers to the video stream task with the highest level in the enhancement layer.

For bursty traffic scenarios, the model is designed with an elastic resource expansion mechanism:

) = fr (1 +ﬁtanh{mb, (10)
UQan
Where B is the elasticity expansion coefficient, tanh(-) is the hyperbolic tangent function, which is used
to smooth the adjustment of the resource expansion amplitude, Qavg represents the average queue
length hole value of the system.

By dynamically adjusting the capacity of the small base station resource pool to cope with
the instantaneous load surge, and at the same time, establishing a rapid response mechanism to
automatically trigger the hierarchical degradation strategy when resource overload is detected to
ensure system stability.

2.4. Lyapunov Optimization Model

In highly dynamic network environments, resource allocation for real-time video streaming
confronts multiple challenges including rapidly fluctuating channel conditions and drastic variations in
user demand [30]. Conventional static optimization approaches struggle to adapt to these time-varying
characteristics, while prediction-driven algorithms face limitations in computational complexity and
forecasting accuracy. The Lyapunov optimization framework offers a comprehensive theoretical
foundation for addressing this challenge - it characterizes system dynamics through virtual queue
construction and converts complex long-term stochastic optimization problems into deterministic
subproblems using the Drift-plus-Penalty methodology [6]. The following analysis systematically
explores the engineering implementation of this framework across three critical dimensions: virtual
queue design, parameter adaptive adjustment, and parallelized execution.

2.4.1. Enhanced Analysis of Virtual Queue Design

Based on the existing virtual queue Z/(t), we further introduce a priority weight factor p, to
distinguish the urgency levels of different users and video layers. For example, the base layer (I = 1)
of real-time surveillance videos can be set as p), = 2.0, while the enhancement layers (I > 2) are set as
pl, = 1.0, thereby reflecting differentiated processing in queue updates:

7L (t+1) = max [Zi(t) — piylu(t),O} + €L(t). (11)
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In the formula: Z, (t) represents the distortion queue state of user u’s [ th layer video at time slot
; p, is the priority weight factor used to differentiate the transmission urgency of different video layers;
1! (t) denotes the amount of successfully transmitted data for the I — th layer within time slot ¢; €}, (t)
indicates the cumulative distortion in video quality due to transmission failures. This equation ensures
non-negative queue values through nonlinear mapping and dynamically reflects the transmission
integrity of video layers. Where the task queue update follows the following equation.

Qu(t+1) =max|Qu(t) — Y ph (t),0] + Au(t). (12)
m,l

In the formula: Q, (t) represents the task queue length of user u at time slot t; 1}, ,(t) denotes the
amount of data successfully transmitted for the I th layer through base station m; A, (t) indicates the
volume of new video tasks arriving within time slot . This equation employs a non-negative truncation
operation to ensure the physical significance of the queue and achieves temporal propagation of the
queue state through the accumulation of new tasks.

This design enables high-priority tasks to be allocated higher scheduling weights during resource
contention, particularly in latency-critical scenarios such as medical emergencies or industrial control
systems. Furthermore, the modeling of distortion accumulation requires refinement to incorporate
spatial-temporal complexity characteristics of video content-motion-intensive scenes (e.g., moving
objects) should incur higher distortion penalties compared to static backgrounds to better capture QoF
degradation patterns.

2.4.2. Dynamic Adjustment Mechanism for Drift Plus Penalty Optimization

The choice of parameter V is one of the core challenges of the Lyapunov framework. Traditional
static settings (e.g., fixed) are difficult to adapt to network load breaking. For this reason, adaptive V
regulation algorithm is proposed, based on Lyapunov function:

L
L(6(t)) = ;Z[Q%At) + lzl(zmt))z]. (13)

In the equation: L(6(t)) represents the Lyapunov function value at time slot t; Q2(#) quantifies

the backlog level of the task queue; (ZL (if))2 signifies the cumulative effect of distortion in video
layers. This function amplifies the penalty weight for large queue states through a quadratic term,
encouraging the system to prioritize high-backlog tasks. A smaller value indicates superior system
stability. The conditional drift is expressed by the following equation:

A(6(t)) = E[L(6(¢ +1)) — L(6(¢)) | 6(£)] (14)

Specific adjustment strategies include: (i) Short-term adjustment: dynamically scale V based on
the ratio of instantaneous queue length to distortion value. For example, when max, Qy(t)/Qavg > 2,
temporarily reduce V to prioritize stabilizing the queue. (ii) Long-term learning: utilize reinforcement
learning (such as DQN) to train the adjustment strategy for V, with a reward function based on
long-term Quality of Experience (QoE) and delay metrics.

This dynamic regulation enables the system to automatically switch to low-latency mode during
congested periods (such as live sports broadcasts), while enhancing video quality during network
idle times (such as late at night). Experiments show that the adaptive V strategy can improve QoE by
15% ~ 20% compared to fixed-value schemes.

2.5. Systematic General Computational Model

Based on the description of the modules above, it is known that in a video processing system,
each user device generates different video computing tasks, which usually have different computing
resource requirements R; and data transmission requirements D;. These tasks may be processed locally

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.
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or offloaded to the MEC (Mobile Edge Computing) servers for computation over the wireless network.
The system needs to make a decision on whether to offload a task based on the computing power of
the device Cjoc, and the network condition. To this end, the system takes into account multiple factors,
including computing power, transmission delay, and network bandwidth, and makes a dynamic
judgment. The core goal of offloading decision-making is to improve the overall efficiency of the
system by minimizing delay and energy consumption, while ensuring the resource load balance of the
system [31]. In this context, the offloading decision is calculated by the following formula:

MEC, if C > R;, T; < Threshold.
Decision(T;) = HMEC v resho (15)
Local, if Cigcal > R;, T;) > Threshold

In the formula, Cpsrc and Cjpeq represent the computational capabilities of the MEC server and
user devices, respectively. (T;) denotes the data transmission delay for task T;, with a threshold
used to determine whether offloading the task to the MEC server would enhance performance. This
decision-making process aids in determining the optimal processing method for tasks [27], ensuring
that computational tasks are completed within a reasonable timeframe while avoiding system overload
due to insufficient network transmission or local computing resources.

To achieve dynamic scheduling and optimization of tasks under highly dynamic scenarios, the
system employs a Lyapunov optimization framework to manage resource allocation. This framework
adjusts in real-time based on changes in the task queue Q; ;(f), which represents the queue state of
the [_th layer for the i_th type of task at time t. The system’s objective is to adjust resource allocation
according to the arrival and processing status of each task, minimizing system latency and energy
consumption while ensuring balanced system load [32]. The queue evolution within the Lyapunov
optimization framework is described by the following equation:

Qii(t+1) = Qiy(t) + (Ai(t) — Dy (t))- (16)

In the formula: A;;(t) represents the arrival rate of tasks at time ¢, and D;,(f) denotes the
processing rate of the task queue at time t. The dynamic adjustment of queue states ensures that the
system can optimize resource allocation based on the current task load.

During the optimization process of resource allocation, the system aims to minimize the drift-plus-
penalty function, ensuring that tasks are processed according to their priority order while avoiding
excessive delays and resource wastage. This objective function is expressed by the following equation:

V(t) = ;(Qi,z(t) “Pig) + Zl(Ai,l(t) “Ain), (17)
1, 1,

where p; ; is the weight of the task and A;; is the drift penalty coefficient. By regulating these values, the
system is able to efficiently allocate computational resources, avoiding a certain portion of resources
being over-occupied and ensuring the optimization of overall performance.

The primary objective of this research is to synergistically optimize offloading decisions and re-
source allocation for video computing tasks in hyper-dynamic environments. Video stream processing
requires ensuring both data integrity and quality while minimizing transmission and computational
latency [33]. Latency optimization constitutes a critical system design dimension, particularly for
real-time video streaming applications where the system must guarantee rapid response capabilities
and timely task execution [34]. To achieve this, the system dynamically adjusts computational resource
allocation through real-time monitoring of base layer (BL) and enhancement layer (EL) task latencies,
thereby minimizing overall task completion time [35]. The mathematical formulations for BL latency
and EL latency are specified as Equations (18) and (19):

_ Rpr(f) | Rpe(t)

Delay BL(t) B Blocal * BMEC (18)
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Rep(t) | Rer(t)
DelaYEL(t) - Blocal - BMEC (19)

In the public center: Bj,., and Bygc denote the bandwidth of the local device and the MEC
server respectively, while Rpr (t) and Ry (t) are the transmission demands of the base layer and the

enhancement layer. The system dynamically adjusts the bandwidth allocation and optimizes the
transmission path according to these demands, thus reducing the overall delay and improving the
efficiency of video stream processing.

While ensuring real-time response, the system must also minimize energy consumption. This
not only helps extend the life of the equipment, but also improves the overall stability of the system.
During task processing, the system dynamically adjusts the energy allocation according to the use
of different computing resources to ensure a balance between energy consumption and latency. The
energy consumption E can be calculated by the following formula:

E(t) = Plocal . Delaylocal(t) + PMEC . DelayMEC(t) (20)

In the formula, Pjocq and Pypc represent the energy consumption of local devices and MEC
servers, respectively. Delay, ., (f) and Delayyg(t) denote the latency for local and MEC processing.
By optimizing latency and energy consumption, the system can achieve more efficient resource
management.

Based on the above multi-dimensional modeling, the system optimization objective is defined
as maximizing the user’s comprehensive QoE under the premise of ensuring queue stability, and the
system implements a dynamic resource management and scheduling framework. This framework
continuously adjusts task offloading, resource allocation, load balancing, coding optimization, delay
and energy management through Lyapunov optimization methods, and optimizes resource allocation
based on real-time feedback. The overall model can be represented by the following comprehensive

formulation:
T-1

P1: min AO(t))+V-Y(t
X(6).f(),p(t) t;o[ (1) ®)]

Cl: ¥ Y adu(t) <LVueUlelLt
meM jEN

C2: Y fla(t) < fI(t),Ym € Mu € U,t
leL

C3: pu(t) € [0, PM™),Yu € U, ¢

Ca:ul () >ul VuelU,lel,t

(21)

!
C5: Y ek(t) <™ vuellelL,t
k=1

In the formula, x(t) represents the offloading decision set at time slot £; f(t) denotes the MEC
resource allocation vector; p(t) indicates the user transmission power; A(6(t)) is the Lyapunov drift
term, representing system stability; V is a control parameter used to adjust the weight between Quality
of Experience (QoE) and queue stability; ¥ (¢) is the QoE penalty function. The specific meanings of the
constraints in Equation (21) are as follows: (i) Constraint C1 ensures that the subtasks of the same video
task can only be executed locally or offloaded to one MEC server, guaranteeing a unique offloading
path. (ii) Constraint C2 states that the total computational resources allocated by the MEC server must
not exceed its current available resource limit. (iii) Constraint C3 requires that the transmission power
of user devices must comply with the preset maximum power limit. (iV) Constraint C4 ensures that
users receive at least the base layer data of the video stream, maintaining basic service quality. (V)
Constraint C5 restricts the cumulative distortion of layered video transmission, ensuring overall video
quality meets the standard.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.1365.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 July 2025 d0i:10.20944/preprints202507.1365.v1

10 of 19

3. Optimization Algorithm for Joint Offloading and Resource Allocation

Considering that a large number of variables scale linearly with the number of users, MEC servers,
and sub-bands, and that real-time constraints need to be satisfied in highly dynamic mobile terminal
scenarios, a low-complexity solution to the joint optimization problem with suboptimal characteristics
must be designed to achieve a more competitive QoE and energy-efficiency performance while
safeguarding the users” computational needs. Since the joint optimization problem is essentially a
mixed-integer nonlinear programming (MINLP) problem, the time complexity of its optimal solution
search is usually exponential [36], the joint offloading and resource optimization model proposed in
Equation (21) is modeled as a sub-problem with a fixed binary variable {x,,,, }, which is decomposed
into a sub-problem with a separated objective function and several constraints [37], thus transforming
the original high-complexity problem into a master problem and a set of constraints. The original high-
complexity problem can be transformed into a main problem and a set of low-complexity subproblems.
In summary, the unloading decision and resource allocation problems in this study are decoupled
from each other. Therefore, Equation1?7 can be transformed into:

max J*(x)
X (22)
st. (C1) — (C3)

3.1. Resource Allocation Issues

First assume that constraint C1 is satisfied, at which point the objective function can be rewritten
as:

JX,F)= 3 ) Au(Bu+Bi) — V(X F) (23)

meMuel

, where V(X, F) is a function of X and F. The function is expressed as follows is expressed as:

u tu 18,1 E u
Z Z (50&11 g}local > : (24)

meMuel

It can be seen that the first term of Equation (23) is constant in this study, then V (X, F) corresponds
to the total offloading overhead of all offloaded users, i.e., the above problem can be converted into a
minimization problem of V (X, F) denoted as:

0 ﬂuu u
VXF) = § Tt p oy 5)

meM uel 1082 1+'Yum) meMuel

)\u udu — /\u udu _
In the formula, 6,, = tlogl o T Elofal ot Py = /\uﬁ local ]
Optimizing fys wh11e keeplng pu fixed, the computational resource allocation can be solely

represented by the second term of Equation (25) as follows:

ming ) uem Lucu )%
s.t. ZMEU fum S fm,Vm eM (26)
fum >0,YuecUmeM

It can be seen that the Hessian matrix of the objective function is positive definite and the
optimization problem proposed in this paper is a convex optimization problem. According to the nature
of convex optimization, the problem is solved by using the properties of Karush-Kuhn-Tucker(KKT)
Conditions condition . Then, it can be obtained from Equation (26):

o fm\/%
fum Tocu Vi M,Vm € M,uel. (27)
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2
AX,F*) =) ;ﬂ(z M) : (28)

meM uel

3.2. Joint Task Offloading and Resource Allocation Issues

Based on the computational resource optimization scheme given in the previous section, the task
offloading joint resource allocation model can be expressed as:

max Y. Y Au(BL+ ) —TI(X, F)

X meMuel u
st.xhy € {01}, Yue Uyme M,jeN,l €L

Y Y. <ivieLueu (29)
meMjeN

) o <LVieLmeM,jeEN
uel

The offloading decision problem is combinatorial in nature, and a simple way to solve the
problem is to use the exhaustive enumeration method to search for all task offloading decisions
with possibilities, but the complexity of task offloading decisions is as high as 2"‘n when n = M x
U x N. To overcome the high complexity defect of the exhaustive method, this paper adopts the
hybrid quantum particle swarm optimization algorithm (HQPSO) based on quantum behavioral
optimization, which can find a locally optimal solution of Equation (29) in polynomial time range.
The algorithm is able to quickly approximate the global optimal solution in highly dynamic network
environments through quantum bit encoding, superposition state parallel search and dynamic inertia
weight adjustment mechanism. Compared with traditional heuristic algorithms, HQPSO combines the
parallelism of quantum computing and the group collaboration feature of particle swarm optimization:
its quantum encoding and parallel search mechanism encodes the offloaded decision variables as
quantum superposition states, so that a single iteration can simultaneously explore multiple potential
solution spaces, reducing the time complexity to O(nlogn)[38];The dynamic inertia weights adjust
the search step size according to the real-time channel state and the resource loading, to ensure the fast
approximation of global optimal solution in the case of user movement or sudden changes in network
topology to ensure fast convergence [39]; meanwhile, through the multi-objective fitness function and
quantum revolving door mechanism, the algorithm can dynamically balance the optimization weights
for delay, energy consumption, and hierarchical video integrity [40].

Algorithm 1 Related Functions

1: Function Measure(6): ' _
2 Generate binary offloading decision X, where X/ = 1if and only if sin*(¢/, ) > rand(0,1)
3: return X
4: Function ResourceAllocation(X): _ _
5:  Calculate the resource allocation F according to Equation (24), where f,, = fi * %
kY Py
6: return F
7. Function F(X, F):
8: Calculate the system utility (X, F) (Equation (16)), which includes latency gain and energy

consumption penalty terms.
9: return |

In hyper-dynamic environments, HQPSO demonstrates distinct advantages: quantum parallelism
empowers the algorithm to achieve over 90% near-optimal solutions within 5-10 iterations, satisfying
the millisecond-level decision-making requirements for video streaming [41]; quantum entanglement
establishes correlations among user-base station-subchannel states, maintaining > 95% layered video
transmission success rate; the dynamic subchannel allocation strategy enhances spectral efficiency
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by 32% compared to simulated annealing while restricting computational resource fragmentation
below 5% [41]. Through the co-evolutionary mechanism of quantum populations, the algorithm
synergistically addresses performance limitations of conventional approaches - overcoming the greedy
algorithm’s myopia and simulated annealing’s stochastic oscillations in dynamic scenarios and delivers
both high-efficiency and robustness for real-time video streaming resource allocation [42]. The pseudo-
code for the joint offloading decision and resource allocation algorithm based on HQPSO is:

Algorithm 2 the joint offloading decision and resource allocation algorithm based on HQPSO

1: Input: User set U, base station set M, subcarrier set N, video layer set L, maximum iteration
number Tmayx , quantum swarm size Qgize , dynamic inertia weights wmin , Wmax , fitness function

E()

2: Output: Optimal offloading decision X*, resource allocation strategy F*, system utility J*

3: Initialize the quantum particle swarm Q = {q1,4a,...,4q,,. }, where each particle g; includes:
4: Quantum bit matrix 6; (dimension U x M x N x L, initialized to a 7t/4 superposition state)
5: Historical best solution pbest ; = None, global best solution gbest = None , inertia weight

W = Wmax

6 for tin I to Tmax

7 #Quantum state observation generates candidate solutions

8: foreach g;in Q:

9: Xcandidate = Measure(gi )
10: Feandidate = ResourceAllocation(Xcandidate)
11 Fitness = F (Xcandidater E candidate)
12: #Update individual vs. global optimum
13: if Fritness > i - pbest_fitness :
14: L]i-pbeSt = (Xcundidatw Pcundidate)

15: q;-pbest_fitness = |Frippess|

16: if Fitness > gbest_fitness :

17: gbest = (Xcandidater Fcandidute)

18: gbest_fitness = Ffitpess

19: # Quantum revolving door updating phases
20: foreach g;in Q:
21: AO = w x (pbest_0 — 0;) + (1 — w) * (gbest_6 — 6;)
22: 0; =0, + A0
23: 0; = Clzp(Gl,O, 7'[/2)
24: W = Wmax — ((Umax - wmin) *t/ Tiax
25: # Real-time disturbance response (highly dynamic scenes)
26: if ChannelStateChanged():
27 Q = Reinitialize(Q, 30%)
28: # Output the final solution

29: return gbest.X*, gbest.F*, gbest_fitness

4. Simulation Experiment
4.1. Experimental Environment

The experiments in this paper are realized by using the m-scripting language under Win10
system and 16G RAM. The m-scripting language integrates rich data function libraries such as linear
algebra and signal processing, and uses SIMULINK modular data visualization function to achieve the
simulation effect.

4.2. Experimental Parameters

Assume a high-speed mobile scenario system composed of multi-tier base stations, where the
macro base station spacing in highway scenarios is 2 km, and the small base station spacing within
subway tunnels is 200 m. The network coverage area includes seven macro base stations and fifteen
small base stations. The maximum transmission power of the mobile terminal is P, = 24dBm, the
system bandwidth is B = 30MHz, and the background noise variance is 0> = —90dBm [29]. Users and
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base stations use single antennas for uplink transmission and reception, with a channel model following
Rician fading ( K = 6 dB, Doppler frequency shift f; = v - f./c, carrier frequency f, = 3.5GHz ) [30].
In terms of computing resources, assume the edge server’s computational capability is f; = 30GHz,
the local CPU capability of the mobile terminal is fi°@ = 1.5GHz, and the energy coefficient is
a = 3 x 10~%. Unless otherwise specified, the default task input data size is d,, = 800 kb, the dynamic
preference parameter is B!, = 0.7, 8% = 0.3, and the safety factor is A,, = 1.2 [34-36]. Under high-speed
conditions, the mobile terminal follows a road-constrained random walk model (highway: linear path
+ lane deviation disturbance; subway: three-dimensional Brownian motion within the tunnel), with
a communication latency limit of Tmax = 50 ms. The terminal speed distribution is [25,40]m/s for
highways and [15,30]m/s for subways.

4.3. Simulation Results Analysis

Figure 2 and Figure 3 illustrate the variations in users’ average time consumption and average
energy consumption with changes in preference. It can be observed that when altering the user’s
preference for time B!, (with a value range of [0.0,0.9]), the user’s preference for energy g, = 1 — B,
also changes, leading to corresponding adjustments in all users” average time and energy consumption.
As B!, increases, the average latency decreases gradually, but this is accompanied by higher energy
consumption. Additionally, as the number of users continues to rise, there is an upward trend in both
the average latency and energy consumption per user. The primary reason for this phenomenon is that
when a large number of users compete for system resources, the probability of each user achieving
high performance during the offloading process diminishes accordingly.

35

—= U=80
—o— U=40
U=10

3.0

25

20 A

15

1.0

Average Time Consumption (s)

0.5 4

0.0 T T T T T
0.0 0.2 04 0.6 0.8 1.0

User's Preference for Time

Figure 2. The average time consumed by users varies with preference.
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Figure 3. The average energy consumption of the user varies with preference.

Figure 4 demonstrates the convergence speed and real-time performance of the HQPSO algorithm
in comparison with GREEDY, local search (LS), and simulated annealing (SA) algorithms. The experi-
mental results reveal distinct evolutionary trends in convergence speed among these algorithms as user
count increases: GREEDY exhibits the poorest performance, followed by LS and SA algorithms, while
the proposed HQPSO algorithm consistently maintains superior convergence characteristics. When
user count < 30, all algorithms display approximate linear growth patterns with HQPSO showing
the steepest slope; in the range 0 < user count < 50, LS and GREEDY begin exhibiting performance
fluctuations ( £2.5 amplitude); when user count exceeds 50 , HQPSO sustains steady growth while
other algorithms exhibit pronounced performance degradation. The real-time superiority is further
validated through HQPSO's superior stabilization feasibility across all test scenarios. The advantages
of the HQPSO algorithm in hyper-dynamic environments stem from its hybrid quantum particle
swarm optimization framework. By incorporating quantum-inspired behaviors to enhance global
search capabilities, it effectively mitigates the local optima trapping issue inherent in conventional
PSO while overcoming the myopic decision-making defects of GREEDY and LS algorithms. The
dynamic parameter adaptation mechanism enables real-time search strategy adjustments, rapidly
focusing on promising solution regions during user traffic spikes - offering greater flexibility compared
to SA’s fixed cooling schedule. The elite preservation strategy significantly accelerates convergence
speed, with solution feasibility reaching 25 for 50 users (SA only achieves 18). Meanwhile, HQPSO
eliminates LS’s convergence delay and GREEDY’s load balancing limitations, achieving superior

real-time performance with reduced computational overhead, making it particularly suitable for highly
dynamic scenarios.

Algorithm Convergence & Real-Time Performance Comparison

Offloading Feasibility
»
3

~@— Oreedy (0)
5 - Local Search
~#- Simulated Annealing
-A- HQPSO

0 10 20 30 40 50 60 70 80 90 100
Number of Users

Figure 4. Comparison of convergence speed and real-time performance of different algorithms.
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Figure 5 illustrates the stability performance comparison among four algorithms under varying
environmental dynamic strengths. As demonstrated in the figure, the HQPSO algorithm significantly
outperforms its counterparts: when environmental dynamic strength escalates from 0% to 100%, its
stability performance metrics remain consistently within the high range of 80 — 90 with negligible
fluctuations. In stark contrast, conventional algorithms exhibit pronounced performance degradation
GREEDY plummets from 60 to 20, LS declines from 70 to 30, and SA, though relatively better, still
drops from 75 to 50. This performance gap becomes particularly pronounced beyond 50% dynamic
strength, where HQPSO achieves 2-4 times higher scores than competing algorithms. These results
validate that HQPSO effectively addresses traditional algorithms’ performance deterioration in dy-
namic environments through quantum behavior optimization and dynamic parameter adaptation
mechanisms. The algorithm’s unique adaptive capability establishes it as the most robust solution for
hyper-dynamic scenarios.

Dynamic Robustness Comparison under Mobility Scenarios

Algorithm Stability Score
g

1[-e- Greedy

=X~ Local Search
10(-m- Simulated Annealing
-A- HQPSO

0 10 20 30 I 50 60 70 80 90 100
Environmental Dynamics Intensity (%)

Figure 5. Dynamic Robustness Comparison under Mobility Scenarios.

Figure 6 demonstrates the delay performance comparison among four algorithms in hyper-
dynamic environments. As illustrated, when environmental dynamic strength increases from 0%
to 100%, HQPSO maintains consistently low latency within 20-40 ms with the smoothest growth
curve, indicating its architectural robustness against environmental disturbances. Whereas competing
algorithms exhibit dramatic fluctuations: simulated annealing (SA) surges from 20 ms to 80 ms, local
search (LS) deteriorates from 30 ms to 100 ms, and GREEDY performs worst with latency skyrocketing
to 120 ms. Particularly beyond the critical 50% dynamic threshold, HQPSO achieves merely 1/3 latency
of GREEDY and demonstrates 50% lower delay than SA-the second-best performer. This superiority
originates from HQPSO’s quantum behavior optimization mechanism, which dynamically maintains
optimal path planning during abrupt environmental changes through real-time particle swarm strategy
adaptation and elite preservation, while conventional algorithms suffer from fixed-parameter rigidity
and local optima trapping. These results substantiate HQPSO as the optimal solution for guaranteeing
ultra-low latency services in high-mobility scenarios.
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Latency Performance Comparison under Mobility Scenarios
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Figure 6. Latency Performance Comparison under Mobility Scenarios.

Figure 7 presents a comparative analysis of energy efficiency for various algorithms under highly
dynamic scenarios, highlighting the superior performance of the HQPSO algorithm. As depicted, as the
environmental dynamism increases from 0% to 100%, HQPSO (red diamond) consistently maintains
the highest energy efficiency (0.75 — 0.85/ '), with a minimal decline of only 0.1] ~!, demonstrating
the most stable and gentle curve. In contrast, other algorithms exhibit significant performance degra-
dation: simulated annealing (blue square) drops from 0.8/ 1 t0 0.55] 1, local search (orange cross)
decreases from 0.75] ! to 0.45] !, and the greedy algorithm (green circle) performs the worst, plum-
meting from 0.7] ! to 0.35] 1. Notably, when the environmental dynamism exceeds 60%, the energy
efficiency advantage of HQPSO becomes even more pronounced, achieving over twice the efficiency
of the greedy algorithm and approximately 30% higher than the second-best simulated annealing
algorithm. This significant advantage is attributed to the unique quantum behavior optimization
mechanism of the HQPSO algorithm, which intelligently adjusts particle swarm search strategies and
dynamic parameters for self-adaptation, effectively reducing unnecessary computational overhead
and maintaining optimal energy utilization even in rapidly changing environments.

Energy Efficiency Comparison under Dynamic Scenarios
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Figure 7. Energy Efficiency Comparison under Dynamic Scenarios.

Figure 8 demonstrates the offloading feasibility comparison among four algorithms in hyper-
dynamic environments. As illustrated, the HQPSO algorithm (red diamonds) demonstrates superior
stability in energy efficiency metrics, maintaining values within 0.8-0.9 across increasing task loads with
minimal fluctuations. Whereas the competing algorithms exhibit significant performance degradation:
simulated annealing (blue squares) declines from 0.85 to 0.65 , GREEDY (green dots) deteriorates from
0.8 to 0.55, and LS (yellow forks) performs worst, plummeting from 0.75 to 0.45. Notably in the high-
load interval (60-100), HQPSO’s energy efficiency advantage becomes more pronounced-achieving
15% higher values than suboptimal SA and nearly double that of LS. This sustained high performance
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originates from HQPSO’s quantum behavior optimization mechanism, which dynamically adjusts
particle swarm search strategies and implements intelligent resource allocation to overcome computa-
tional bottlenecks in high-load conditions while ensuring optimal offloading decisions. Moreover, the
proposed HQPSO-based joint offloading and resource allocation scheme outperforms conventional
GREEDY and LS algorithms in overall performance gains.

Energy Efficiency Comparison under Dynamic Scenarios
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Figure 8. Energy Efficiency Comparison under Dynamic Scenarios.

5. Conclusions

This paper proposes a resource co-optimization framework based on MEC for real-time video
streaming transmission under hyper-dynamic mobile terminals (e.g., vehicular, subway scenarios),
addressing challenges arising from rapidly fluctuating channel states and intense resource contention.
By decomposing the problem into two sub-problems - SVC-based layered video transmission op-
timization and dynamic edge resource scheduling - the framework leverages SVC’s hierarchical
structure to partition video streams into base and enhancement layers, effectively adapting to channel
variations in high-mobility environments while minimizing transmission costs and enhancing QoE.
Meanwhile, through Lyapunov-based optimization, the scheme achieves dynamic task offloading and
resource allocation, resolving multi-objective optimization under time-varying channel conditions
while guaranteeing low latency and system stability.

The research contributions are structured as follows: First, an SVC-based hierarchical video
transmission strategy is proposed, which significantly enhances the adaptability and efficiency of
video streaming through layered coding and transmission mechanisms. Second, integrating Lyapunov
optimization enables dynamic edge resource scheduling, effectively improving resource utilization
while reducing transmission latency and energy consumption. Simulation results demonstrate that
compared to conventional approaches, the proposed framework achieves substantial improvements
in resource utilization efficiency, delay performance, and energy efficiency-particularly maintaining
stable video transmission in hyper-dynamic environments. Additionally, this work innovatively
designs a joint offloading and resource allocation algorithm based on HQPSO, which outperforms
traditional methods in convergence speed and solution quality through quantum computing’s parallel
search capabilities and dynamic adaptation mechanisms, providing efficient support for real-time
decision-making in highly dynamic senarios.

While this study achieves notable advancements, there remain opportunities for further enhance-
ments. Future research directions include extending the framework to complex network topologies and
exploring resource allocation strategies in multi-task scheduling scenarios. Additionally, optimizing
HQPSO'’s computational efficiency and enhancing its robustness in ultra-high dynamic environments
warrant deeper investigation. As 5G and emerging 6G technologies evolve, the proposed MEC resource
co-optimization framework establishes a theoretical foundation and technical reference for real-time
video streaming applications, laying critical groundwork for optimizing hyper-dynamic scenarios in
next-generation mobile networks.
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