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Abstract

Location-based services (LBS) are well-known services that provide a user’s position and deliver
tailored experiences. They are generally used for getting from one location to another, tracking,
mapping, and timing, and they are often available in smartphones, tablets, computers, and applications
such as Facebook, Twitter, TikTok, and YouTube. Aside from these, the data is collected by location-
based services, which can be provided to the data analyst for some business reasons, such as improving
marketing strategies, organizational policies, and customer services. In this situation, it can lead to
privacy violation concerns. To reduce these concerns when location-based data is provided to the data
analyst or released to be utilized outside the scope of data collecting organizations, several privacy
preservation models have been proposed, such as k-Anonymity, l-Diversity, t-Closeness, LKC-Privacy,
differential privacy, and location-based privacy preservation models. Unfortunately, to the best of our
knowledge about these privacy preservation models, they still have several vulnerabilities regarding
privacy violation concerns that must be addressed when location-based data is released, i.e., privacy
violation issues from inferring sensitive locations (e.g., specialized hospitals, pawnshops, prisons, and
safe house), privacy violation issues from considering duplicate trajectory paths (i.e., although the
user’s visited path duplicate with other paths, it still has privacy violation issues when it consists
of a sensitive location), and privacy violation issues from considering unique locations (e.g., home,
condominium, and office). Moreover, these privacy preservation models have data utility issues and
data transformation complexity that must be improved. To address these vulnerabilities, a new privacy
preservation model, (ξ, ϵ)-Privacy, is proposed in this work. It is based on data generalization and data
suppression in conjunction with data sliding windows and R-Tree, such that there are no concerns
about privacy violations in its released location-based data from using privacy violation issues from
inferring sensitive locations, privacy violation issues from considering duplicate trajectory paths,
and privacy violation issues from considering unique locations. It is highly efficient and effective in
data maintenance. Furthermore, we show that the proposed model is efficient and effective through
extensive experiments.

Keywords: privacy preservation model; sensitive location; location-based services (LBS); R-Tree; data
sliding window; data suppression; data generalization

1. Introduction
Global Positioning Systems (GPS) [1,2] are outstanding in location-based applications. They are

generally used for getting from one location to another, tracking (i.e., monitoring objects or personal
movements), mapping (i.e., creating world maps), and timing (i.e., making it possible to take precise
time measurements). They can achieve their objectives by using an appropriately specified GIS
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technology, e.g., United State’s Global Positioning System (USA’s GPS) [3], Russia’s Global Navigation
Satellite System (GLONASS) [4], China’s BeiDou Navigation Satellite System (BDS) [5,6], or so on.
Generally, they can be separated into three groups by considering the characteristics of their provided
services, i.e., personal GPS, commercial GPS, and military GPS.

The examples of using GPS technologies in personal and commercial real-life applications are
maps, trackers, transportation, and delivery services. The well-known map applications are Google
Map [7,8], Google Earth [9,10], and OpenStreetMap [11,12]. The well-known tracker applications are
portable GPS trackers [13–15], Find My on iPhone [16], and Android Find My Device [17]. The well-
known GIS transportation is logistic [18,19] and express services [20–22]. The well-known delivery
service applications are DoorDash [23], Uber Eats [24], Zomato [25], Deliveroo [26], Doordash [27],
and FoodPanda [28]. Aside from the applications mentioned above, we found that GPS technologies
are proposed to collect data about the user’s visited locations. The data collection of the user’s visited
locations is called the trajectory dataset (or sometimes it is called the location-based dataset) [29–32].
Generally, it is used to show the history of locations that are visited by users. However, we also found
that some trajectory datasets allow data analysts to access them for business reasons, such as improving
marketing strategies, improving service strategies, analyzing human behaviors, traffic analysis, or
providing insights that are valuable for related applications and urban planning. In data analysis
situations, in [33], [34], [35], [36], [37], and [38], the authors demonstrate that they have concerns about
privacy violation issues. An example of privacy violation issues in trajectory datasets is explained in
Example 1.

Example 1 (A privacy violation issue in trajectory datasets). We give Table 1 as the specified trajectory
dataset that is provided to the data analyst. We assume that the adversary receives Table 1, and the adversary
further ensures that a trajectory path (the sequence of the user’s visited locations) in Table 1 is the sequence of
Bob’s visited locations. Moreover, we suppose that the adversary strongly knows that Bob visited a2 and e5,
and he/she needs to reveal Bob’s diagnosis from Table 1. In this situation, the adversary can ensure that Bob’s
diagnosis is HIV because only t1 can be determined according to the adversary’s background knowledge about
Bob.

Table 1. An example of trajectory datasets.

Path Diagnosis

t1 < a2 → c4 → e5 > HIV
t2 < a1 → c4 → e5 > Food poisoning
t3 < c4 > Leukemia
t4 < a3 → c4 → e6 > Gerd
t5 < a3 → c4 → e6 → a7 > Cancer
t6 < a1 → b2 → e5 → a8 > Flu
t7 < a1 → b2 → e5 → a8 → a9 > Diabetes
t8 < a1 → b2 > Tuberculosis
t9 < c4 → e5 > Conjunctiva
t10 < a3 → c4 → e5 > Flu

With Example 1, we can conclude that the unique subsequence of the user’s visited locations in
trajectory datasets can have concerns about privacy violation issues. To address these issues, LKC-
Privacy [33] and its extended models [39–43] are proposed. They have the assumption of privacy
preservation in trajectory datasets that the adversary only has the background knowledge about the
subsequence of the target user’s visited locations to be at most L locations, and they are based on data
suppression [44]. That is, the trajectory datasets do not have any concerns of privacy violation issues
when all unique L-size subsequences of the user’s visited locations are suppressed to be at least K
indistinguishable paths. Furthermore, every sensitive value relates to each indistinguishable L-size

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 August 2025 doi:10.20944/preprints202508.2125.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202508.2125.v1
http://creativecommons.org/licenses/by/4.0/


3 of 24

subsequence of the user’s visited locations; it must have the confidence of data re-identification to be
at most C. An example of privacy preservation in trajectory datasets with LKC-Privacy is explained in
Example 2.

Example 2 (Privacy preservation with LKC-Privacy). We suppose that Table 1 is the specified trajectory
dataset that is provided to the data analyst. For privacy preservation, let the value of L and K be 2. Let the value
of C be 0.70. For privacy preservation with these given privacy constraints, all unique 2-size subsequences of the
user’s visited locations in Table 1 are suppressed to be at least 2 indistinguishable subsequences. Furthermore, all
diagnoses were normalized to the confidence of data re-identification to be at most 0.70. Therefore, a data version
of Table 1 does not have any concerns about privacy violation issues; it is shown in Table 2. With Table 2, we can
see that the confidence of data re-identification for every diagnosis from considering each 2-size subsequence of
the user’s visited locations is at most 0.70 (or 70%).

Table 2. A data version of Table 1 is satisfied by LKC-Privacy constraints, where L = 2, K = 2, and C = 0.70.

Path Diagnosis

t1 < c4 → e5 > HIV
t2 < c4 → e5 > Food poisoning
t3 < c4 > Leukemia
t4 < a3 → c4 → e6 > Gerd
t5 < a3 → c4 → e6 > Cancer
t6 < a1 → b2 → e5 → a8 > Flu
t7 < a1 → b2 → e5 → a8 > Diabetes
t8 < a1 → b2 > Tuberculosis
t9 < c4 → e5 > Conjunctiva
t10 < a3 → c4 > Flu

In addition, we can see that Table 2 is more secure in terms of privacy preservation than its
original (Table 1). However, it loses some meaning of data utilization. Generally, data utility and data
privacy are a trade-off. However, we found that KLC-Privacy has serious vulnerabilities that must be
considered when it is used to address privacy violation issues in trajectory datasets. The vulnerabilities
of LKC-Privacy will be explained in Section 2.

The organization of this work is as follows. The motivation of this work is presented in Section
2. Then, the model and notation of this work will be presented in Section 3. Subsequently, the
experimental results will be discussed in Section 4. Finally, the conclusion and future work of this
work are discussed in Sections 5 and 6, respectively.

2. Motivation
Privacy violation is a serious issue when the data holder allows the data analyst to access

datasets. To address this issues, there are several privacy preservation models to be proposed such as
k-Anonymity [45], l-Diversity [46], t-Closeness [47], and their extended models that are presented in
[48–54]. The privacy preservation idea of these models is as follows.

• The attributes of datasets are separated into explicit identifier attributes, quasi-identifier attributes,
and sensitive attribute(s).

• All values in every explicit identifier attribute must be removed.
• The re-identifiable quasi-identifier values are suppressed or generalized by their less specific

values to be indistinguishable.
• In addition, some privacy preservation models (e.g., l-Diversity and t-Closeness) further consider

the characteristics of sensitive values in their privacy preservation constraints.

Although these preservation models can be used to address privacy violation issues when datasets
are released, they still have several issues that must be addressed, e.g., data utility issues and the
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high complexity in terms of data transformations. To address the vulnerabilities of these models,
the differential privacy model [55] is proposed. This privacy preservation model is based on a data
query framework in conjunction with the noise of data and data re-identification probability. That is,
the data holder does not allow the expert to utilize the dataset directly. The dataset can be utilized
by the expert via the data query framework such that the query result is accorded by the given
data re-identification probability. If an arbitrary query result does not accord with the given data re-
identification probability, they are returned with the appropriate noise. Unfortunately, the mentioned
above privacy preservation models mentioned above are often insufficient to address privacy violation
issues in trajectory datasets (or location-based datasets). That is because they are proposed to address
privacy violation issues in datasets that have each quasi-identifier attribute as a different data domain,
e.g., {Sex, Age, Education, Position}. While the quasi-identifier of trajectory datasets is the sequence of
user’s visited locations, e.g., < a2 → b2 → c3 → x4 → y5 >. To rid this vulnerability in these models,
the privacy preservation models for trajectory datasets are proposed [33–38]. One of the well-known
privacy preservation models for trajectory datasets is LKC-Privacy [33]. This privacy preservation
model uses three privacy parameters (i.e., L, K, and C) to limit privacy violation issues when the data
holder allows the data analyst to access trajectory datasets. An example of privacy preservation in
trajectory datasets with LKC-Privacy is explained in Example 2. Although LKC-Privacy can be used to
address privacy violation issues in trajectory datasets, we found that it still has serious vulnerabilities
that must be addressed, i.e., data utility issues, complexities, and data streaming issues. Moreover,
LKC-Privacy is only appropriate to address privacy violation issues in the static trajectory dataset,
which has attributes strongly separated into the sequence of the user’s visited locations and their
related sensitive values. In addition, the sensitive locations (e.g., specialized hospitals, pawnshops,
prisons, and safe houses) are not considered in the privacy preservation constraint of LKC-Privacy.
For this reason, although trajectory datasets are satisfied by LKC-Privacy constraints, they still raise
concerns about privacy violation issues from inferring sensitive locations that must be addressed. An
example of privacy violation issues from inferring sensitive locations is shown in Example 3.

Example 3 (Privacy violation issues from inferring sensitive locations). We suppose that Figure 1 is
the specified location-based graph that is proposed to represent five sequences of the users’ visited locations.
Moreover, we assume that the location x4 is a serious or sensitive location, i.e., we suppose that it represents a
cancer hospital (i.e., it is a specialized hospital). Therefore, if the adversary can indicate that users who visited
the location x4, the adversary can infer that they have symptoms of cancer.

Moreover, we found that LKC-Privacy [33] and the trajectory privacy preservation models that are
presented in [34–42] and [43], also have a vulnerability about privacy violation issues when considering
duplicate trajectory paths. It is demonstrated in Example 4.

Example 4 (Privacy violation issues from considering duplicate trajectory paths). We assume that John
is the target user of the adversary. Moreover, we assume that the adversary ensures that a sequence of locations
in Figure 1 is the sequence of John’s visited locations. The adversary further knows that John visited both
locations b2 and c3. In these situations, the adversary can see that there are both subsequences of locations
(i.e., < a2 → b2 → c3 → x4 → y5 > and < d1 → b2 → c3 → x4 >) that are according to the adversary’s
background knowledge about John. However, the adversary still ensures that a user visited the location x4 to be
John. Therefore, we can conclude that the number of satisfied subsequence occurrences of the visited locations
of the users does not have any effect on the confidence of the adversary in inferring the users who visited the
location x4.

Another vulnerability of these privacy preservation models is that they do not consider the type
of locations, such as the identifier locations, the relationship locations, and the sensitive. In addition,
the relationship locations represent the locations between the next location of the initially specified
locations and the location that is before the specific ending location. The sensitive locations are where
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the user does not need other people to know when he/she visited them because they can lead to
privacy violations, such as prisons, specialized hospitals, pawnshops, or safe houses. The starting
locations are often a (unique) private location of users such as users’ homes, condominiums, or offices.
They can be used to be the explicit identifier value for re-identifying the data owner. An example of
privacy violation issues from considering unique locations is demonstrated in Example 5.

Example 5 (Privacy violation issues from considering unique locations). We suppose that the adversary
knows that Bob’s family lives at the location a1. Moreover, we assume that the location x4 is a pawnshop, and the
location s3 is an elementary school. We assume that Bob lives with his daughter is 5 years old. In this situation,
the adversary can ensure that one of Bob’s family members goes to the pawnshop, and another person goes to the
elementary school. Therefore, the adversary can infer that Bob’s family has a financial problem, and he/she can
assure that Bob goes to the pawnshop because Bob’s daughter is prohibited by law (she is a child).

With Examples 3, 4, and 5, we can conclude that LKC-Privacy [33] and the trajectory privacy
preservation models that are presented in [34–41,43? ], they still have the vulnerabilities about privacy
violation issues that must be addressed. To address these vulnerabilities of these privacy preservation
models, a new privacy preservation model is proposed in this work; it will be presented in Section 3.

𝑎𝑎1

𝑏𝑏2

𝑐𝑐3

𝑦𝑦5

𝑒𝑒1

𝑜𝑜1

𝑝𝑝2

𝑞𝑞3
𝑧𝑧5

𝑑𝑑1

𝑟𝑟2
𝑠𝑠3

𝑥𝑥4

Figure 1. An example of a user’s visited locations

3. Model and Notation
3.1. The Graph of Users’ Visited Sequence Locations

In this section, we present the characteristics of graphs that are proposed to represent the users’
visited sequence locations. Let U = {u1, u2, . . . un} be the set of users. Let T = {t1, t2, . . . , to} be the
set of all possible timestamps that the users visited each location. Let LOC = {loc1, loc2, . . . , locm} be
the set of all possible locations. Let up[LOC] = < up[loctγ

β ] → · · · → up[loc
tζ
α ] > be the sequence of

locations that are visited by the user up ∈ U, i.e., the user up visited the locations locβ, . . . , locα ∈ LOC
from the timestamp tγ , . . . , tζ ∈ T, respectively. Let G(V, E) be a directed graph that is proposed
to represent the sequence of locations that are visited by every user up ∈ U. That is, G(V) is the set

of vertices such that each vertex represents an element of up[loc
tζ
α ] ∈ up[LOC] that does not include

user identifier data, i.e., every element up[loc
tζ
α ] of up[LOC] in G(V, E) is presented in the from of

loc
tζ
α . G(E) = {(loctγ

β , loc
tζ
α ) | loctγ

β , loc
tζ
α ∈ V and loctγ

β ̸= loc
tζ
α } be the set of edges. With every vertex

loc
tζ
α that only has the indegree(s), it must be according to the property as tγ < tζ such that tγ is the

timestamp of each connected indegree vertex of loc
tζ
α . While each vertex loc

tζ
α only has the outdegree(s),

it must satisfy the property as tγ > tζ such that tγ is the each connected outdegree vertex of loc
tζ
α .

Every vertex loc
tζ
α has both in and out degrees; it must satisfy the properties as follows.

• Let the vertex loc
tφ

ψ connects to the vertex loc
tζ
α .

• Moreover, let the vertex loc
tζ
α connects to the vertex loctγ

β .
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• Therefore, the timestamp of the vertices loc
tφ

ψ , loc
tζ
α . loctγ

β must be according to the property as
tφ < tζ < tγ.

We found that each vertex of G(V, E) generally has a different ability to re-identify the data owner.
For this reason, we can divide each vertex into an appropriate level by considering its ability for data
re-identification when it is provided to the data analyst. Typically, the first vertex (the starting point) of
each path in G(V, E) has the ability of data re-identification to be more than other vertices in the path
because it usually represents a private location of users, e.g., a house or a condominium. Moreover, we
can see that the endpoint of each path in G(V, E) often has the ability of data re-identification to be
less than other vertices.

Definition 1 (The level of data re-identification). Let loctγ

β be a non-indegree-vertex. Let loc
tζ
α be a non-

outdegree-vertex. Let loctγ

β → loc
tγ+1
φ → · · · → loc

tζ
α be a sequence of vertices in G(V, E) from loctγ

β to loc
tζ
α .

Let dG(loctγ

β , loctγ

β ), dG(loctγ

β , loc
tγ+1
φ ), . . . , dG(loctγ

β , loc
tζ
α ) be the distance between loctγ

β and loctγ

β , between

loctγ

β and loc
tγ+1
φ , . . . , and between loctγ

β and loc
tζ
α , respectively. The level of loctγ

β → loc
tγ+1
φ → · · · → loc

tζ
α

can be denoted as L
dG(loc

tγ
β ,loc

tγ
β )

, L
dG(loc

tγ
β ,loc

tγ+1
φ )

, . . . , L
dG(loc

tγ
β ,loc

tζ
α )

, respectively.

For example, let U = {u1, u2, u3, u4, u5} be the set of all possible users. Let LOC =

{loc1, loc2, loc3, loc4, loc5, loc6} be the set of all possible locations that can be visited by the users.
Let T = {t1, t2, t3, t4, t5, t6} be the set of the possible timestamps. We suppose that the sequence of
locations was visited by u1 to be loc5, loc3, loc2, loc4, and loc6 in the timestamp that is t1, t2, t3, t4,
and t5, respectively, i.e., < u1[loct1

5 ]→ u1[loct2
3 ]→ u1[loct3

2 ]→ u1[loct4
4 ]→ u1[loct5

6 ] >. The sequence of
locations was visited by u2 to be loc5, loc3, loc2, and loc4 such that he/she visited these locations in the
timestamp that is t1, t2, t3, and t4, respectively, i.e., < u2[loct1

5 ]→ u2[loct2
3 ]→ u2[loct3

2 ]→ u2[loct4
4 ] >.

The user u3 visted the locations loc2, loc3, loc1, loc4, and loc5 in the timestamp that is t1, t2, t3, t4, and t5,
respectively, i.e., < u3[loct1

2 ]→ u3[loct2
3 ]→ u3[loct3

1 ]→ u3[loct4
4 ]→ u3[loct5

5 ] >. The locations loc6, loc5,
loc3, and loc4 in the order of the timestamp as t1, t2, t3, and t4 and the locations loc6, loc1, and loc5 in the
order of the timestamp as t1, t2, and t3 are the sequence of the u4 and u5’s visited locations, respectively,
i.e., < u4[loct1

6 ]→ u4[loct2
5 ]→ u4[loct3

3 ]→ u4[loct4
4 ] > and < u5[loct1

6 ]→ u5[loct2
1 ]→ u5[loct3

5 ] >. With
these given instances, the graph of users’ visited sequence locations is shown in Figure 2. With this
graph, we can see that the vertices loct1

5 , loct1
1 , loct1

2 , and loct1
6 do not have any indegree. Thus, they are

available at level 0. Moreover, we found that the vertices loct2
3 , loct2

5 , and loct2
1 have a distance from

their related vertex in level 0 that is less than other vertices. Thus, they are available at level 1. With
the vertices that have the distance between them and their related vertex at level 0 being 2, they are the
vertices loct3

2 , loct3
1 , and loct3

5 . Thus, these vertices are available at level 2. Only the vertex loct4
4 has the

distance between it and its related vertices in the level 0 to be 3, so only this vertex can be available in
the level 3. In addition, the unconsidered vertices (i,e., loct5

6 and loct5
5 ) are available in the level 4.
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Figure 2. The graph of the users’ visited sequence locations.

3.2. The Type of Vertices

In this section, we describe the characteristics of vertices in G(V, E) that are considered in the
proposed privacy preservation constraint, i.e., the sensitive vertex and the unique vertex. The sensitive
vertex is an arbitrary vertex that represents the sensitive location (e.g., specialized hospitals, pawnshops,
safe houses, or prisons) that is visited by the user(s). They can raise concerns about privacy violation
issues when they are utilized outside the scope of the data-collecting organization. Thus, the data
holder must ensure that when G(V, E) is provided to the data analyst, every sensitive vertex must be
protected by an appropriate privacy preservation technique. An example of privacy violation issues in
G(V, E) from considering the sensitive vertex is explained in Example 6.

Example 6 (Privacy violation issues from considering sensitive vertices). We assume Jenifer has a
diagnosis of cancer. The history of Jenifer’s visited locations is a sequence of users’ visited locations in G(V, E).
We further assume that Jennifer is a target user of the adversary, such that the adversary needs to disclose
Jenifer’s disease from G(V, E). Moreover, the adversary knows that a location in the sequence of Jenifer’s visited
locations is a specialized hospital for treating cancer. In this situation, the adversary can infer that Jennifer has a
health problem with cancer.

Another type of vertices is also considered in the proposed privacy preservation constraints, it
is the unique vertex, i.e., an arbitrary vertex of G(V, E) represents the user’s house, office, or other
unique locations. With this vertex, the adversary can use to identify the sequence of the target user’s
visited locations in G(V, E). An example of privacy violation issues in G(V, E) from considering the
unique vertex is explained in Example 7.

Example 7 (Privacy violation issues from considering unique vertices). Let Emma be the target user of
the adversary. Let Figure 2 be the G(V, E) that is provided to the data analyst. We assume that the adversary
strongly believes that the provided G(V, E) contains the sequence of Emma’s visited locations. Let the location
loct4

4 be a pawnshop (a private or sensitive location). Moreover, we assume that the adversary knows that the
location of Emma’s house is loc1. In this situation, the adversary can ensure that Emma goes to a pawnshop.
Therefore, the adversary can infer that Emma has a financial problem.
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With Examples 6 and 7, we can conclude that the sensitive vertex and the unique vertex can lead
to privacy violation issues when G(V, E) is provided to a data analyst.

3.3. Data Sliding Windows [56–59]

Generally, the location graph G(V, E) is very large or extensive. Furthermore, it is very complex.
Thus, it often uses more execution time in data processing. However, to the best of our knowledge
about the data processing of the location graph G(V, E), we found that it is often processed (or utilized)
in the form of the newest data to the oldest data or according to the specified period of times. For this
reason, we can use data sliding windows to increase the efficiency of data processing in the location
graph G(V, E). The idea of increasing the efficiency of data processing by using the data sliding
window is that the size of the location graph G(V, E) is separated to be small.

Definition 2 (Data sliding windows). Let G(V, E) be the specified location graph. Let τb and τe be the speci-
fied period times such that τb is the initial time and τe is the end time, where τb < τe. Let fDSW(G(V, E), τb, τe) :
G(V, E) →τb ,τe SUB(G(V, E))1, . . . , SUB(G(V, E))g be the data sliding window function that is pro-
posed for sliding G(V, E) to become SUB(G(V, E))1, . . . , SUB(G(V, E))g. That is, SUB(G(V, E))1, . . . ,
SUB(G(V, E))g are the subgraphs of G(V, E), i.e., SUB(G(V, E))1, . . . , SUB(G(V, E))g ⊆ G(V, E), so that
they only collect the vertices and edges of G(V, E) that are available in the timestamp between τb and τe.

An example of utilizing G(V, E) in the form of the newest data to the oldest is that the data holder
creates a dynamic report by considering the sequence of users’ visited locations from the last ten
months to make the appropriate traveling paths for tourists. In addition, an example case of generating
reports from G(V, E) by specifying the period of times is that we suppose that the data holder needs
to build a report to show the frequency of users who visited each location between September 2024
and December 2024.

3.4. Location Hierarchy
3.4.1. Dynamic Location Hierarchy

R-Trees are tree data structures that are proposed to present and index multidimensional infor-
mation [60,61] such as geographical coordinates, rectangles, and polygons. They have been proposed
since 1984 by Antonin Guttman [62]. They are often available in real-world map applications to store
spatial objects such as restaurant locations and the polygons that typical maps are made of streets,
buildings, outlines of lakes, and coastlines, and then find answers to the specified question, e.g., find
all universities within one kilometer of the current visited location, retrieve all road segments in the
range of one kilometer from considering the visited location, or find the nearest hospital. R-Trees can
further accelerate nearest-neighbor search for various distance metrics, including great-circle distance.
That is, all the objects of interest lie within this bounding rectangle. A question that does not intersect
the bounding rectangle cannot intersect any of the contained objects.

Definition 3 (Non-overlapped R-Tree). Let R = {r0, r1, . . . , rs} be all possible rectangles that form the
boundary of G(V) in G(V, E). Every rx, where 0 < x < s, includes both of information as LABEL(rx) and
the set of the specified locations such that LABEL(rx) is the label of rx. Let R-Tree be a tree data structure such
that it is constructed from R by the conditions as follows.

• The bounding rectangle is not covered by others, it is the root of R.
• The child of rx is every ry that is only covered by rx and is not covered by others.
• The label of each vertex rx in the tree is represented by LABEL(rx).

An example of R-Trees that are constructed from the location graph G(V, E). Let each blue cycle in
Figure 3(a) represent a location that was visited by the user(s). Let all rectangles (i.e., red, blue, brown,
purple, and black rectangles) be the bounding of the specified locations such that the red rectangle is
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the largest and the black rectangle is the smallest. With these location bounds, an R-Tree version of
them is shown in Figure 3(b).
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Figure 3. An example of R-Trees.

3.4.2. Manual Location Hierarchy

The manual location hierarchy is another way that can also be used to construct the R-Tree of the
location graph G(V, E). It can be built by the location data expert, e.g., the R-Tree of locations can be
presented by urban zoning, roads, or other data utilization reasons. All locations are available in the
lower level; they must be more specific than all locations that are available in the higher level. Or we
can say that each most specific location is presented by a vertex that is available in level 0 (the leaf
vertex), and the lowest specific location is presented by the root of the hierarchy.

Definition 4 (Manual Location Hierarchy). Let fMLH(G(V)l) : G(V)l → G(V)l+1 be a manual location
function for the locations G(V) from level l to level l + 1 such that all locations in level l are more specific than
level l + 1. Moreover, the locations of every level do not overlap, i.e., ∩∀v ∈ G(V) = ∅, and ∪∀v ∈ G(V) =

G(V). With the manual location hierarchy function, the location hierarchy of G(V) can be presented as

a location sequence from level 0 to level l, G(V)0
fMLH(G(V)0)−−−−−−−→ G(V)1

fMLH(G(V)1)−−−−−−−→ . . .
fMLH(G(V)l−2)−−−−−−−−→

G(V)l−1
fMLH(G(V)l−1)−−−−−−−−→ G(V)l . In addition, after that, we call the location hierarchy of G(V) from level 0 to

level l to be MLHG(V).

3.5. Data Suppression

In this section, we propose a data suppression technique that can be used to eliminate the ability
of data re-identification in G(V, E). As we know, the level of identifiable data for the vertices in G(V, E)
can be defined by the order of the vertices available in G(V, E). An example of leveling the vertices of
G(V, E) is shown in Figure 2, i.e., the level of each vertex can be defined from the first visited location
(the starting point) to the last visited location (the endpoint). That is because the first visited location
of each sequence of the user’s visited locations generally can identify that it is higher than others,
and we further found that the last visited location of each sequence of the user’s visited locations
often has the lowest identifiability. The highly identifiable data of the first visited location is due to
its being generally unique and private; it is often the location of the user’s house or office. For this
reason, we can define the identifiable data level for every sequence of the user up’s visited locations in

G(V, E) from up[loctγ

β ] to up[loc
tζ
α ] by the order of them, i.e., up[loctγ

β ]→ · · · → up[loc
tζ
α ], where loctγ

β is

the location as the starting point and loc
tζ
α is the location as the endpoint. With this property of the

user’s visited locations is G(V, E), we can use it to address privacy violation issues (or decrease the
ability of data re-identification) in G(V, E). That is, before G(V, E) is provided to the data analyst, the
users’ data privacy in G(V, E) is maintained by suppressing the unique vertices, ξ-Suppression.
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Definition 5 (ξ-Suppression). Let G(V, E) be the specified graph of the users’ visited sequence locations
such that its vertices are separated into l levels. Let L0(G(V)), . . . , Ll(G(V)) represent the vertices that
are available in the levels L0, . . . , and Ll , respectively. Let ξ be a positive integer, and it is the suppres-
sion constraint of G(V, E). Let SUB(G(V, E))z, where 1 ≤ z ≤ g, be each specified subgraph of G(V, E).
Let fSupp(SUB(G(V, E))z, ξ) : SUB(G(V, E))z →ξ SUB(G(V, E))′1, . . . , SUB(G(V, E))′q be the func-
tion for suppressing the unique vertices of SUB(G(V, E))z to become SUB(G(V, E))′1, . . . , SUB(G(V, E))′q.
That is, SUB(G(V, E))′1, . . . , SUB(G(V, E))′q are a forest graph version of SUB(G(V, E))z such that
SUB(G(V))′1, . . . , SUB(G(V))′q are satisfied by the the properties that are as follows.

• SUB(G(V))′1 ∩ · · · ∩ SUB(G(V))′q = ∅.
• (L0(SUB(G(V))) ∪ . . . ∪Lξ−1(SUB(G(V)))) ∩ (SUB(G(V))′1 ∪ . . . ∪ SUB(G(V))′q) = ∅ such

that Ll(SUB(G(V)) is the set of the vertices in level l of SUB(G(V)), where 0 ≤ l ≤ ξ − 1.
• (L0(SUB(G(V))) ∪ . . . ∪Lξ−1(SUB(G(V)))) ∪ (SUB(G(V))′1 ∪ . . . ∪ SUB(G(V))′q) = SUB(G(V)).

For example, let Figure 2 be the specified G(V, E). If we give the value of ξ to be 1, 2, 3, and 4, the
results are shown in Figure 4(a), (b), (c), and (d), respectively.
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Figure 4. Four data versions of Figure 2 are after suppressing the vertices of levels 1, 2, 3, and 4, respectively.

3.6. Data Generalization

Aside from the identifiable data level of vertices, the proposed privacy preservation model is
further based on another major assumption about privacy violation issues: the privacy data of the
target user in G(V, E) can be violated by considering a sensitive vertex (a sensitive location), although
there are more than one user who visited this vertex. An example of privacy violation issues from
considering the specified sensitive vertex and the duplicate paths is illustrated in Examples 3 and 4,
respectively. To address these privacy violation issues, before G(V, E) is released, the sensitive vertices
are generalized by their less specified values to be indistinguishable. In addition, the less specified
values of the sensitive vertices in G(V, E) are presented by a Non-overlapped R-Tree that is satisfied
by Definition 3 or a Split-Halves R-Tree that is satisfied by Definition 6.

Definition 6 (Split-Halves R-Tree). Let W be the width of the area where the locations are available in
G(V, E). Let H be the height of the area where the locations are available in G(V, E). Let R = {r0, r1, . . . , rs}
be all possible bounding rectangles that can be constructed from G(V, E). That is, r0 is firstly the bounding
rectangle that is constructed, it has the size to be W ∗ H, i.e., it covers all locations of G(V, E). After that, rx−1

is divided half to be rx and ry, where 1 < x < s, 1 < y < s, and x ̸= y, until only one remains in a rectangle
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such that it is separated by considering the width first then the height is considered. Finally, all bounding
rectangles r0, r1, . . . , rs are presented in the form of a tree data structure, which is denoted as RTSH , such that
each bounding rectangle is a vertex and the label of each vertex is presented by the label of the bounding rectangle.
That is, r0 is the root of RTSH . The child of every rx is constructed from each ry that is covered by rx, but others
do not cover it. Each leaf vertex of RTSH is represented by a bounding rectangle that covers a location. Let
L0, . . . Ll be the possible level of RTSH . The levels of RTSH are arranged according to the data specification. That
is, the root of RTSH is available in the level Ll . All leaf vertices are available in the level L0.

An example of creating the bounding rectangles of G(V, E) with Definition 6 is shown in Figure
5. With Figure 5(a), the first bounding rectangle is created such that it covers all locations that are
available in G(V, E). With Figure 5(b), (c), and (d), the location areas are divided by considering
the width first then the height is considered such that R1, R2, . . . , R15 are the label (the name of the
specified area) of the bounding rectangle 1 to 15, respectively.

Definition 7 (ϵ-Generalization). Let ϵ be a positive integer; it is the generalization constraint such that it is
in the range between 0 and l. Let RTSH or MLHG(V) be the data structure that presents the generalized values
for each specified vertex v in G(V, E). Let loctγ

β be the specified vertex. The generalized data version of loctγ

β is

the visited time tγ and the LABEL(rx). With RTSH , the LABEL(rx)tγ of rx is the bounding rectangle of loctγ

β

in the level ϵ of RTSH . With MLHG(V), the LABEL(rx)tγ of rx is the label of rx in the level ϵ of MLHG(V).
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Figure 5. The characteristic of bounding the locations with Split-Halves R-Trees.

3.7. The Proposed Privacy Preservation Model
3.7.1. Problem Statement

Let G(V, E) be a directed graph that represents the sequence of users’ visited locations.
Let SEN ⊂ G(V) be the set of sensitive locations that are available in G(V, E). Let ϵ be the
data generalization constraint. Let RTSH or MLHG(V) be the data structure that is proposed to
present the level of locations in G(V, E) such that it is the reference of the specific location lev-
els that can be used to generalize the unique locations in G(V, E) to be indistinguishable. Let
ξ be the data suppression constraint for suppressing the unique locations in G(V, E) to be indis-
tinguishable, i.e., it is another data distortion technique that is also used to distort the unique
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locations in G(V, E) to be indistinguishable. Let τb and τe be the period time of the speci-
fied locations in G(V, E) such that τb is the initial time and τe is the end time, where τb <

τe. Let fDG( fDS( fDSW(G(V, E), τb, τe), ξ), SEN, RTSH , ϵ) : G(V, E) → fDS( fDSW (G(V,E),τb ,τe),ξ),SEN,RTSH ,ϵ
SUB(G(V, E))′1, . . . , SUB(G(V, E))′q be a privacy preservation function, i.e., it is proposed for trans-
forming G(V, E) to become SUB(G(V, E))′1, . . . , SUB(G(V, E))′q. That is, the vertices of G(V, E) are
slided by τb and τe to be SUB(G(V, E))′1, . . . , SUB(G(V, E))′q. All unique locations of G(V, E) are
suppressed by ξ. Moreover, each sensitive location sen ∈ SEN is generalized by its less specific values
that are available in the level Lϵ of RTSH or MLHG(V).

3.7.2. The Privacy Preservation Algorithm

In this section, we devote to presenting an algorithm that can be used for transforming G(V, E)
to satisfy the proposed privacy preservation constraints, which is shown in Algorithm 1. With this
algorithm, it has seven inputs, i.e., (G(V, E), SEN(G(V)), DST, τb, τe, ξ, and ϵ. That is, (G(V, E) is the
specified graph that represents the sequence of users’ visited locations. SEN is the sensitive vertices,
the sensitive locations, that are available in G(V, E). DST is RTSH or MLHG(V) that is proposed to
represent the data specification level of each sensitive vertex in SEN. τb and τe are the period time of
the specified vertices in G(V, E) such that τb is the initial time and τe is the end time, where τb < τe. ξ

is the data suppression constraint for suppressing the unique vertices in G(V, E). Another input of the
proposed algorithm is ϵ, which is the data generalization constraint for generalizing each sensitive in
G(V, E). The output of this algorithm is SUB(G(V, E))′1, . . . , SUB(G(V, E))′q that are satisfied by τb,
τe, ξ, and ϵ.

Algorithm 1 (G(V, E), SEN, DST, τb, τe, ξ, ϵ)-Privacy

Require: G(V, E) ̸= NULL, DST ̸= NULL, τb > τe, ξ ≥ 0, and ϵ ≥ 0
Ensure: SUB(G(V, E))′1, . . . , SUB(G(V, E))′q are satisfied by τb, τe, ξ, and ϵ

SUB(G(V, E))′1, . . . , SUB(G(V, E))′q ← fDS( fDSW(G(V, E), τb, τe), ξ)
for ϱ← 0 to q do

for ∀path ∈ G(V, E)′ϱ do
for ∀sen ∈ SEN do

for ∀v ∈ path do
if sen ∈ SEN is equal to v ∈ path then

path← v is generalized by fDG(v, DST, ϵ)
end if

end for
end for

end for
end for
Return SUB(G(V, E))′1, . . . , SUB(G(V, E))′q

To achieve the proposed privacy preservation constraints in G(V, E), the algorithm first slides
(or spits) the vertices of G(V, E) to be SUB(G(V, E))′1, . . . , SUB(G(V, E))′q by fDSW(G(V, E), τb, τe).
That is, the vertices of G(V, E) do not occur in the timestamp between τb and τe, they are not ignored
because they are available in the outside scope of the data collection for publishing uses. Then, the
unique vertices are available in the levels 0, . . . , ξ − 1, and ξ of G(V, E) to be suppressed. Thus,
the output of this step is a forest of SUB(G(V, E)), i.e., SUB(G(V, E))′1, . . . , SUB(G(V, E))′q. Subse-
quently, SUB(G(V, E))′1, . . . , SUB(G(V, E))′q are iterated. Furthermore, every sequence of vertices in
SUB(G(V, E))′ϱ, where 1 ≤ ϱ ≤ q, is also iterated. The vertices of SUB(G(V, E))′ϱ are further iterated.
If the algorithm found the sensitive vertex sen ∈ SEN, it is generalized by its less specific value that is
available in the level ϵ of DST. Finally, the algorithm returns SUB(G(V, E))′1, . . . , SUB(G(V, E))′q that
are satisfied by ξ and ϵ.

In addition, with the complexity of the proposed privacy preservation algorithm, if we only
consider the data distortion that is based on data suppression, we can see that only the number of
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paths and the level of the suppressed vertices can affect the data suppression processes. Therefore,
the complexity of data suppression processes of the proposed privacy preservation algorithm can be
defined by Equation 1.

O( fDS(G(V, E))) = ϵ ∗ n (1)

where,

• ϵ is the level of vertices that are suppressed.
• n is the number of the paths of G(V, E).

With the data generalization, we can see that its complexity is based on the number of forest
graphs of G(V, E), the number of sensitive locations, the number of vertices in each forest graph, and
the height of RTSH . Therefore, the complexity of data generalization for each forest graph can be
defined by Equation 2. For this reason, the data generalization complexity of the proposed privacy
preservation algorithm can be defined by Equation 3.

O( fDS(G(V, E)′ϱ)) = n ∗ |SEN| ∗ |PATH| ∗ (l − 1) (2)

where,

• n is the number of users’ visited location in G(V, E).
• |SEN| is the number of sensitive locations that must be protected in G(V, E).
• |PATH| is the number of the paths that are available in G(V, E)′ϱ of G(V, E).
• l is the high of RTSH .

O(G(V, E)′1, . . . , G(V, E)′q) =
q

∑
ϱ=1

fDS(G(V, E)′ϱ) (3)

where,

• G(V, E)′1, . . . , G(V, E)′q are the forest graphs of G(V, E).

Therefore, the complexity of the proposed privacy preservation algorithm can be defined from its
data suppression and data generalization processes, i.e., it can be defined by Equation 4.

O(G(V, E)) = O( fDS(G(V, E))) + O(G(V, E)′1, . . . , G(V, E)′q) (4)

3.7.3. Utility Measurement

With the proposed privacy preservation algorithm that is presented in Section 3.7.2, we can see
that G(V, E) can achieve privacy preservation constraints by suppressing and generalizing the unique
vertices and the sensitive vertices to be indistinguishable. For this reason, a metric is necessary to
measure the utility of the data.

With data suppression, the unique vertices in G(V, E) are removed until they satisfy the proposed
privacy preservation constraint. Generally, each removed vertex directly affect the data utility of
G(V, E). Therefore, the data utility or the penalty cost (or the data loss) of G(V, E) can be defined by
Equation 5. More penalty cost of Equation 5 leads to the low data utility in G(V, E).

SuppLoss(G(V, E)) =
|PATH| · (ξ + 1)

|G(V)| − |SUPP(G(V))|+ (|PATH| · (ξ + 1))
(5)

where,

• |PATH| is the number of paths in G(V, E).
• |G(V)| is the number of vertices in G(V, E).
• |SUPP(G(V))| is the number of suppressed vertices in G(V, E).
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With data generalization, sensitive vertices are distorted by their less specific values to satisfy the
proposed privacy preservation constraint. In addition, generalized vertices affect the data utility of
G(V, E). Thus, a data utility metric is necessary to measure the data utility of the generalized G(V, E)
is necessary; it is shown in Equation 6. The higher penalty cost of Equation 6 leads to the low utility of
the data in G(V, E).

GenLoss(G(V, E)) =
∑
|G(V)|
α=1

L(vα)
H(RTSH)

G(V)
(6)

where,

• L(vα) represents the level of generalization of the data of the vertex vα.
• H(RTSH) is the highest of RTSH .

Therefore, the utility of the data or the penalty cost of G(V, E) can further be defined by Equation
7. The low penalty cost of Equation 7 for G(V, E) is desired.

TotalLoss(G(V, E)) = SuppLoss(G(V, E)) + GenLoss(G(V, E)) (7)

In addition to Equation 7, the utility of the data of G(V, E) can be measured using a relative
error metric [63]. With this metric, the utility of the data or the penalty cost of G(V, E) is based on the
difference between the original query result and the result of the related experiment query. The higher
cost of the relative errors means that G(V, E) has low data utility. The relative error of G(V, E) can be
defined by Equation 8.

RelativeError(v, v0) =
v− v0

v
(8)

where,

• v is the original query result.
• v0 is the result of the related experiment query.

4. Experiment
In this section, we present the experiments conducted to evaluate the proposed algorithm in

terms of both effectiveness and efficiency. The effectiveness is assessed using two measures, utility
loss and relative error. Utility loss, measured by the TotalLoss, evaluates the quality of data after the
anonymization process. The relative error was evaluated between the original query results and the
experimental query results with different query types, including full scan, partial scan, and range scan.
Efficiency is evaluated based on the total execution time required for the anonymization process.

4.1. Experimental Setup

We evaluated our proposed framework using two well-established trajectory datasets, City80k
and Metro100k, which have been widely adopted in trajectory data privacy research [64],[65],[66].

The City80k dataset simulates the movement trajectories of 80,000 citizens navigating through a
metropolitan area. It records movements across 26 city blocks over a 24-hour period, reflecting realistic
urban mobility patterns. Each trajectory is represented as a sequence of visited locations in the format
location_id, where locations are denoted by alphanumeric codes such as f 1, e2, and c3. The dataset also
contains five disease categories as sensitive attributes, namely HIV, Cancer, SARS, Flu, and Diabetes.
These sensitive attributes were not utilized in this research.

The Metro100k dataset is designed to represent the transit patterns of 100,000 passengers traveling
within the Montreal subway system. Passenger movements are recorded across 65 stations within a
60-minute time window, resulting in 3,900 possible spatio-temporal combinations derived from 65
locations and 60 time units. Each point in a trajectory is presented in the form of L28.T1 indicates
location 28 at timestamp T1. Five employment status categories are included as sensitive attributes,
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namely On-welfare, Full-time, Retired, Part-time, and Self-employed, but these sensitive attributes
were not used in this investigation.

Our experiments were carried out on an Intel Core i7-6700 3.40GHz PC with 16GB RAM while
following the experimental setup described in related trajectory privacy research. The experimental
evaluation focused on the trade-off between privacy protection and data utility preservation under
different parameter configurations, including the number of suppressed timestamps (ξ), the number
of generalized locations (ϵ), the level of Manual Location Hierarchy (MLH), and the dataset size.

4.1.1. Effectiveness

In the first part of the experiment, we examine the effectiveness of the algorithms by varying the
numbers of ξ, ϵ, and the level of MLH. Effectiveness is evaluated using utility loss and results are
presented on a logarithmic scale. To enhance robustness, each data point in the plots represents the
average value obtained from three independent random trials.

In Figure 6(a) and (b), we examine how increasing privacy-preserving parameters affects utility
loss. In Figure 6(a), we vary the number of ξ from 1 to 5 timestamps while keeping the number of ϵ

at 1, the level of MLH at 1, and using the complete dataset. In Figure 6(b), we vary the number of ϵ

from 1 to 5 locations while fixing the number of ξ at 0, the level of MLH at 1, and using the complete
dataset (100%).
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Figure 6. Effect of the ϵ, ξ, MLH, and dataset size on the utility loss.

Both experiments demonstrate a consistent pattern where utility loss increases as privacy-
preserving parameters increase. This occurs because uniform frequency distributions across different
locations, where each location exhibits similar occurrence counts, and suppressing multiple timestamps
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from the dataset leads to increased data distortion and reduced dataset utility for analysis. These
findings confirm the expected trade-off between privacy protection and data utility.

In Figure 6(c), we analyze the effect of MLH on utility loss in the context of ξ at 0, ϵ at 1, and using
the complete dataset (100%). In this experiment, MLH is varied from level 1 to the maximum level 4.
The MLH represents the Manual Location Hierarchy, which is another way to construct the R-Tree
of the location graph G(V, E) and is typically designed by location data experts. It can be organized
according to criteria such as urban zoning, road networks, or other application-specific considerations,
and is structured into multiple levels, where the lower levels represent more specific locations and
the higher levels represent more general locations, with Level 0 corresponding to the raw data. More
general locations improve privacy preservation but reduce spatial granularity.

The results indicate that the utility loss increases when the level of MLH increases for both
datasets (City80k and Metro100k). This is expected because generalizing locations to higher levels
in the hierarchy reduces the resolution of the data, making it less useful for fine-grained analysis.
Moreover, the City80k dataset shows consistently higher utility loss compared to Metro100k, probably
due to its more diverse distribution of individual movements.

In Figure 6(d) and (e), we investigate how the size of the dataset affects utility loss under different
privacy configurations. In Figure 6(d), we vary the dataset size from 20% to the complete dataset
while keeping the number of ξ at 0, the number of ϵ at 1, and MLH at 1. In Figure 6(e), we conduct a
similar experiment but with ξ increased to 1, while maintaining the number of ϵ at 1 and the MLH
at 1. The comparison shows that when ξ increases from 0 to 1 in Figure 6(e), a higher value of utility
loss is observed compared with Figure 6(d), due to the suppression of one timestamp. However,
both experiments show relatively stable utility loss as the dataset size increases. This stability can
be explained by the stratified sampling approach that preserves the proportional structure of the
dataset. Despite applying privacy-preserving techniques such as timestamp suppression or location
generalization, the uniform frequency distributions across different locations are preserved across all
sizes of the dataset.

4.1.2. Efficiency

After the characteristics of the proposed algorithm in terms of effectiveness have been demon-
strated, subsequently, the efficiency of the algorithm, i.e., the execution time, is considered. We
investigated efficiency with regard to the numbers of ξ, ϵ, the level of MLH, and dataset size. To ensure
robustness, each plotted data point represents the mean value computed from three independent
random trials.

In Figure 7(a), we vary the number of ξ from 1 to 5 timestamps while fixing the number of ϵ at 1,
the level of MLH at 1, and using the complete dataset. The results indicate that the execution time
increases when the value of the number of ξ increases. This occurs because each additional timestamp
requires separate suppression processing. The algorithm must identify and remove all data entries for
each suppressed timestamp and this leads to increased computational overhead. The effect is more
evident in the Metro100k dataset, in which the larger scale and higher dimensionality substantially
increase the computational burden when compared with the smaller City80k dataset.
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Figure 7. Effect of the ϵ, ξ, MLH, and dataset size on the execution time.

In Figure 7(b), we vary the number of ϵ from 1 to 5 locations while fixing the number of suppressed
timestamp = 0 timestamps, and using the complete dataset (100%). The results show that execution
time gradually increases when the value of ϵ increases. This behavior occurs because each additional
generalized location introduces further computational requirements for the generalization algorithm.
As a consequence, the overall processing overhead rises and the execution time becomes longer.

In Figure 7(c), the level of MLH is varied from level 1 to level 4 while fixing the number of
ξ at 0, the number of ϵ at 1, and using the complete dataset. The results demonstrate that the
execution time remains relatively stable when the level of MLH increases. This stability occurs because
our algorithm performs direct mapping from original values to specified target MLH level without
requiring sequential traversal through intermediate levels. As a result, transforming the data from the
original values to Level 1 requires the same computational effort as transforming directly to Level 4,
leading to consistent processing time regardless of the chosen MLH level.

In Figure 7(d) and (e), the impact of dataset size on execution time is examined under different
privacy configurations. In Figure 7(d), we vary the dataset size from 20% to complete dataset while
keeping the number of ξ at 0, the number of ϵ at 1, and the level of MLH at 1. Similarly, in Figure
7(e), we conduct the same experimental setup except that ξ is fixed at 1 while ϵ and MLH remain
unchanged.

The results from both experiments show that execution time increases with the growth of dataset
size. This outcome arises because larger datasets contain a greater number of records that must
be individually processed by our algorithm, thereby leading to proportionally longer execution
times. The introduction of timestamp suppression does not substantially affect this trend. Whether
no suppression is applied (ξ = 0) as in Fig.7(d) or a single timestamp is suppressed (ξ = 1) as in
Fig.7(e), the difference in execution time is negligible. This observation indicates that the computational
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complexity is primarily determined by the dataset size rather than the presence or absence of timestamp
suppression.

4.2. Relative Error Across Query Types

The experimental evaluation compares the relative error of differential privacy, used as the
baseline, with our proposed algorithm across three query types, which are full scan Queries, partial
scan queries, and multi-timestamp scan queries. The experiments were conducted on two real-world
location datasets, City80k and Metro100k, and the results are summarized in Figure 8.

Differential privacy operates as a black-box mechanism, where users are restricted from accessing
raw data and can only obtain statistical outputs through predefined queries. In contrast, our algorithm
follows a white-box approach. By combining data generalization and suppression with sliding
windows and an R-Tree structure, it provides users who access to transformed datasets that preserve
privacy while maintaining analytical utility.

The first parameter shown in the legend is actually ε, which denotes the privacy budget in the
differential privacy baseline method. The value of ε is varied as 0.5, 1.0, and 1.5, where a smaller ε value
corresponds to stronger privacy protection but lower relative error, and a larger ε value represents
weaker privacy protection but higher relative error. In our proposed algorithm, ξ represents the
number of suppressed timestamps and ϵ refers to the number of generalized locations.
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Figure 8. Effect of the relative error across query types.

4.2.1. Full Scan Queries

For full scan operations, which involve counting the total number of cells in the dataset, we
evaluate the performance of different configurations of our proposed algorithm. The results reveal
performance differences that reflect the underlying characteristics of each privacy preservation ap-
proach. The configuration ξ = 0 and ϵ = 1 achieves perfect accuracy with zero relative error (0.0000)
for both the City80k (Figure 8(a)) and Metro100k (Figure 8(b)) datasets. This result occurs because
the method only generalizes specific locations (for example, L7 becomes L7*) without removing any
timestamp data, thereby preserving the complete cell structure required for accurate full scan counts.
Since the counting operation measures the number of cells containing any data, generalization does
not affect the results. However, if the counting were instead limited to cells containing only original
(non-generalized) values, the generalization process in our algorithm would reduce the count and
consequently increase the relative error. Furthermore, the proportion of data that is anonymized is
extremely small compared to the total number of cells in the dataset, which minimizes its impact on
the query results.

Differential privacy methods also perform exceptionally well in full scan queries, maintaining
extremely low relative errors across all ε values. For City80k, the errors range from 0.0000011 to
0.0000149, while Metro100k shows even better performance with errors between 0.00000058 and
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0.0000078. This strong performance is due to the fact that differential privacy introduces statistical
noise to query results. However, in large aggregate counts typical of full scan operations, the relative
effect of this noise becomes negligible compared to the overall cell count.

In contrast, suppression-based variants exhibit significantly degraded performance with much
higher relative errors. In the City80k dataset, suppressing the two timestamps, which correspond to ξ

= 2, results in an error of 0.249, and in the Metro100k data set the error is 0.0013. This large difference
can be explained by the distribution of data within the first two timestamps. In City80k, the first two
timestamps are highly dense, containing approximately 24.9% of all cells in the dataset. Therefore,
removing them causes a substantial reduction in the total cell count, leading to a large relative error. In
contrast, the first two timestamps in Metro100k contain only about 0.13% of the total dataset cells, so
their removal has a minimal impact on the full scan count, resulting in a much lower relative error.
Eliminating complete timestamps in either case reduces the total cell count, but the effect is magnified
when those timestamps contain a significant portion of the dataset.

4.2.2. Partial Scan Queries

For partial scan operations, which retrieve counts for specific locations within a subset of times-
tamps, the results reveal more complex and nuanced performance patterns compared to full scan
queries. These queries are more sensitive to both timestamp suppression (ξ) and location generalization
ϵ, as they focus on localized subsets of the dataset rather than global aggregates. In this experiment,
partial scans are performed using queries such as

Query 1: SELECT COUNT(*) FROM city80k WHERE Timestamp1 = L14;
Query 2: SELECT COUNT(*) FROM city80k WHERE Timestamp1 = L3;
Query 3: SELECT COUNT(*) FROM city80k WHERE Timestamp1 = L24;
These are example queries for the City80k dataset, and the same procedure is applied to the

Metro100k dataset with its corresponding location identifiers. One location (L14) is randomly selected
for generalization, while the other two locations (L3 and L24) remain in their original form. The relative
errors from these three queries are then averaged to produce the final metric for each configuration.
This setup allows us to observe the effect of generalizing a single location on query accuracy while
keeping other locations unchanged.

Differential privacy methods achieve the best performance across both datasets, with accuracy
improving as the privacy budget ε increases. For the City80k dataset (Figure 8(a)), relative errors
range from 0.600 at ε = 0.5 to 0.067 at ε = 1.5. The Metro100k dataset (Figure 8(b)) shows even better
performance, with errors decreasing from 0.111 at ε = 0.5 to 0.014 at ε = 1.5. This pattern occurs because
differential privacy introduces carefully calibrated noise that, when applied to location-specific queries,
still allows reasonably accurate results as long as there is sufficient supporting data. The black box
nature of differential privacy ensures that users interact only through predefined query interfaces
and receive statistical summaries, which helps maintain accuracy while protecting sensitive location
information.

Our configuration ϵ = 1 and ξ = 0 delivers moderate performance, producing a consistent relative
error of 0.333 for both City80k and Metro100k. This uniform value suggests that generalizing one
specific location introduces a predictable, systematic loss of accuracy of approximately one-third for
partial scan queries. The underlying reason is that when a location is generalized, for example L14
becomes L14*, a query targeting the original location no longer matches its generalized equivalent.
Since partial scans operate over specific timestamps and locations, this mismatch directly reduces
the count by a constant proportion across all queries. While the white box nature of this approach
provides transparency by allowing users to directly examine and query the transformed dataset, it
also exposes the altered structure, making the trade-off between transparency and accuracy clear. We
focus on protecting locations that could lead to re-identification or privacy breaches, so higher relative
error in such cases reflects intentional privacy preservation. Conversely, if the query targets a location
without privacy risk and thus not generalized, the relative error becomes 0, indicating high query
accuracy. For example, if the queries target L22, L3, and L24 instead of L14, which was generalized to
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preserve privacy, the resulting relative error will be 0 because all queried locations match the original
dataset exactly.

Suppression-based variants perform the worst, producing relative errors of exactly 1.0 for both
datasets and both suppression levels. For ξ = 1, suppression removes the first timestamp (T1), and
for ξ = 2, both T1 and T2 are removed. In this experiment, Query 1 searches specifically for data in
timestamp 1. Since both suppression settings remove all data from the targeted timestamp(s), the query
returns zero results, causing the relative error to reach 1.0 in all cases. This approach is intentional
to preserve privacy, as timestamp T1 often contains sensitive information such as home locations.
Our algorithm therefore deletes this data to prevent potential re-identification, while still allowing
flexibility to adjust the level of privacy according to requirements. Moreover, if the analysis uses data
from other timestamps that are not T1 or T2, the returned results will match the original dataset exactly,
providing full data utility for non-sensitive temporal segments.

4.2.3. Multi-Timestamp Scan Queries

For range scan operations, which count the number of records for specific locations across multiple
consecutive timestamps, the results exhibit performance characteristics between full scan and partial
scan queries. These queries are affected by both location generalization ϵ and timestamp suppression
(ξ), but the magnitude of the impact depends on how much of the scanned range overlaps with
generalized or suppressed data. In this experiment, the range scan for the City80k dataset is performed
using queries such as

Query 4: SELECT COUNT(*) FROM city80k WHERE T1 = ’L14’ OR T2 = ’L14’ OR T3 = ’L14’;
Query 5: SELECT COUNT(*) FROM city80k WHERE T1 = ’L3’ OR T2 = ’L3’ OR T3 = ’L3’;
Query 6: SELECT COUNT(*) FROM city80k WHERE T1 = ’L24’ OR T2 = ’L24’ OR T3 = ’L24’;
These are example queries for City80k, and the same procedure is applied to Metro100k using its

corresponding location identifiers. In each run, one location (L14) is randomly selected for generaliza-
tion, while the other two locations (L3 and L24) remain in their original form. The relative errors from
these three queries are averaged to obtain the final metric for each configuration.

Differential privacy methods achieve the best performance across both datasets, with accuracy
improving as the privacy budget ε increases. For the City80k dataset (Figure 8(a)), relative errors
decrease from 0.745 at ε = 0.5 to 0.089 at ε = 1.5. In the Metro100k dataset (Figure 8(b)), performance is
even better, with errors ranging from 0.122 at ε = 0.5 to 0.016 at ε = 1.5. This occurs because the noise
introduced by differential privacy has less proportional impact when aggregating results over multiple
timestamps, as the larger aggregated counts dilute the effect of the added noise.

Our configuration ξ = 0 and ϵ = 1 produces moderate performance, with relative errors of 0.333
for both City80k and Metro100k. This outcome is similar to the partial scan case, where generalizing
one location, such as L14 becoming L14*, causes queries targeting that location to miss the generalized
records, leading to a consistent undercount of about one-third. We focus on protecting locations with
high privacy risk, so higher relative error in these cases reflects intentional privacy preservation. If the
query targets only non-generalized locations, for example L22, L3, and L24 instead of L14, the relative
error is 0 and the results match the original dataset.

When the configuration is ξ = 1 and ϵ = 1, all data in timestamp 1 are removed, and when the
configuration is ξ = 2 and ϵ = 1, both timestamp 1 and timestamp 2 are removed. This approach is
applied to protect sensitive periods, such as those containing home location data, and can be adjusted
for the desired privacy level. Suppression-based variants show notable accuracy degradation, with
the extent of loss depending on how many suppressed timestamps fall within the query range. For ξ

= 1, suppression removes T1, and for ξ = 2, both T1 and T2 are removed. When the scanned range
includes these suppressed timestamps, the absence of data significantly lowers the counts, pushing the
relative error higher, though not reaching 1.0 as in partial scans because T3 remains unsuppressed and
contributes to the counts. If the range scan targets only timestamps outside the suppressed set, results
match the original dataset exactly. In range scans, the SQL statements cover timestamps 1 through 3,
so removing earlier timestamps directly impacts the query results.
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The query accuracy results for full, partial and range scans illustrate the balance between privacy
protection and data utility in our generalization–suppression method compared with differential
privacy. Full scans show minimal impact from anonymization, while partial scans reveal that our
method achieves perfect accuracy for non-sensitive locations but lower accuracy for sensitive ones
by design. Range scans yield intermediate results, with suppression reducing accuracy based on the
number of removed timestamps. Unlike differential privacy, which only returns statistical outputs
from allowed queries, our approach provides full access to the transformed dataset, enabling flexible
analysis while still protecting sensitive data.

In addition, the privacy domain includes several well-known models such as k-anonymity, l-
diversity, t-closeness, and LKC-privacy, which are commonly used as benchmarks. However, the
strategy and data characteristics addressed in this research differ in terms of privacy leak conditions
and structural properties. Therefore, while those models are valuable in their respective contexts, they
are not directly aligned with the objectives and constraints of the approach proposed in this study.

5. Conclusions
This work enumerates and explains the vulnerabilities of privacy preservation models (k-

Anonymity, l-Diversity, t-Closeness, LKC-Privacy, differential privacy, and location-based privacy
preservation models) to privacy violation issues from inferring sensitive locations, privacy violation
issues from considering duplicate trajectory paths, and privacy violation issues from considering
unique location attacks when location-based data is independently released. Moreover, reducing data
utility issues and data transformation complexity are also the achievements of this work. To address
the vulnerabilities of privacy preservation models, we propose a new model that can address privacy
violations caused by privacy violation issues from inferring sensitive locations, privacy violation issues
from considering duplicate trajectory paths, and privacy violation issues from considering unique
location attacks on location-based data. Moreover, our experimental results indicate that the released
location-based data are satisfied by the proposed model, which is found to be more secure in terms of
privacy preservation and better in terms of maintaining the data utility of datasets compared to the
other models.

6. Future Work
Although the proposed model can address privacy violation issues resulting from privacy vio-

lation issues from inferring sensitive locations, privacy violation issues from considering duplicate
trajectory paths, and privacy violation issues from considering unique location attacks on indepen-
dently released location-based data, adversaries will discover new approaches to compromising the
privacy of location-based data. Thus, an appropriate privacy preservation model that can address
newly discovered privacy violation issues should be proposed.
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