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Abstract: Accurate and detailed spatial data on wind energy infrastructure is essential for renewable
energy planning, grid integration, and system analysis. However, publicly available datasets often
suffer from limited spatial accuracy, missing attributes, and inconsistent metadata. To address these
challenges, this study presents a harmonized and spatially refined dataset of wind turbines in South
Africa, combining OpenStreetMap (OSM) data with high-resolution satellite imagery, deep learning-
based coordinate correction, and manual curation. The dataset includes 1,487 turbines across 42
wind farms, representing over 3.9 GW of installed capacity as of 2025. The Geo-Coordinates were
validated and corrected using a RetinaNet-based object detection model applied to both Google and
Bing satellite imagery. Instead of relying solely on spatial precision, the curation process emphasized
attribute completeness and consistency. Through systematic verification and cross-referencing with
multiple public sources, the final dataset achieves a high level of attribute completeness and internal
consistency across all turbines, including turbine type, rated capacity, and commissioning year. The
resulting dataset is the most accurate and comprehensive publicly available dataset on wind turbines in
South Africa to date. It provides a robust foundation for spatial analysis, energy modeling, and policy
assessment related to wind energy development. The dataset is publicly available for download [1]
and can be explored interactively online [2].

Keywords: wind turbine location; renewable energy; deep learning; geo-coordinate correction;
OpenStreetMap

1. Introduction
Wind energy is one of the fastest-growing renewable energy sources worldwide. In 2023, wind

energy recorded its highest ever growth: in a single year, more than 100 GW of new onshore capacity
and over 11 GW of offshore wind capacity were added globally. Total installed capacity worldwide
exceeded the symbolic milestone of 1 TW for the first time and is expected to reach 2 TW before the
end of this decade if current growth trends continue [3]. In addition, the International Energy Agency
(IEA) forecasts scenarios in which wind energy could meet more than 20% of global electricity demand
by 2030, provided that ambitious climate protection measures are implemented [4]. The transition
to renewable energy sources presents major challenges. Accurate mapping and monitoring of wind
turbine locations and meta-information on the turbine characteristics (e. g. turbine types, nominal
power, hub height, or rotor diameter) are critical for effective integration into electricity grids and
sustainable infrastructure planning.

Despite its growing global importance, detailed and spatially accurate datasets of wind turbine
infrastructure remain scarce in many regions of the world. Existing global datasets often focus on
aggregated capacities or rough location data, lacking precision for localized planning and operational
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decision-making. Recent research efforts address these limitations through advanced remote sensing
and machine learning approaches. For instance, global offshore wind turbine locations were mapped
using Sentinel-1 radar images [5,6], while segmentation methods utilizing high-resolution aerial
images [7,8] and Sentinel-2 RGB imagery [9,10] improved the detection accuracy of onshore wind
turbines. Moreover, the integration of multimodal data sources [11,12], further enhances detection
accuracy and completeness. Even approaches to enable global detection are being researched [13,14].

In the specific context of South Africa, the national Renewable Energy Independent Power
Producer Procurement Programme (REIPPPP) plays a central role in realizing the country’s long-term
energy infrastructure goals. Launched in 2011 by the Department of Mineral Resources and Energy
in cooperation with National Treasury and the Development Bank of Southern Africa, the REIPPPP
was designed to facilitate private sector investment into grid-connected renewable energy generation
through competitive bidding. The programme has since led to the procurement of more than 6.3 GW
of renewable capacity, including wind, solar photovoltaic (PV), and other sources [15]. As part of
this programme, the Independent Power Producers (IPP) Projects Database is maintained by the
IPP Office and provides a structured overview of utility-scale renewable energy projects, including
wind farms. The database includes information such as project names, capacities, locations, and
commissioning dates. However, it does not contain detailed geospatial information on individual
turbines and typically excludes smaller or non-utility-scale developments. At the same time, it does
not provide any technical information such as turbine types, hub height, or rotor diameter [16]. Recent
regulatory changes have further expanded the landscape of wind energy development in South Africa.
In particular, the lifting of the 100 MW licensing cap for private generation in January 2023 has enabled
the construction of wind farms outside the REIPPPP framework [17].

To overcome these data limitations, this article builds upon the methodologies initially pre-
sented in the conference paper by Kleebauer et al. (2024) entitled "Enhancing Wind Turbine Location
Accuracy: A Deep Learning-Based Object Regression Approach for Validating Wind Turbine Geo-
Coordinates" [18]. Here, the original methods are further developed, combining OSM data, DL-based
object detection with RetinaNet, high-resolution satellite imagery from Google and Bing, and manual
attribute enrichment, to produce a comprehensive, spatially precise dataset of wind turbines in South
Africa. This multi-step pipeline ensures robust validation and enrichment, significantly enhancing
data quality and applicability for detailed infrastructure planning and energy modelling. Structured as
following, this study introduces a multi-step data processing pipeline that combines open data sources,
deep learning-based coordinate correction, and manual validation.

As illustrated in Figure 1, the construction of the dataset follows a multi-stage workflow. First,
training data is processed using the German Core Energy Market Data Register (ger: Marktstamm-
datenregister - MaStR) and high resolution areal imagery. A RetinaNet-based deep learning model is
trained and fine-tuned using labeled MaStR data and filtered samples to detect turbines in satellite
imagery. Preparing the South African wind turbine dataset starts with downloading, extracting and
filtering the raw wind turbine data from OSM. High-resolution satellite imagery from both Bing Maps
and Google Satellite is then integrated to provide visual context for turbine locations. The previous
trained model is applied to correct the spatial positions of turbines, improving the coordination
accuracy. Subsequently, a manual attribute enrichment step ensures the inclusion of key turbine
information such as name, turbine type, turbine capacity and total wind farm capacities. A capacity
analysis and a spatial analysis are then carried out for further description and evaluation. This leads to
the final high-quality, geo-referenced data set of wind turbines in South Africa.
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Figure 1. Overview of the dataset creation process. First, the training pipeline is described based on German
MaStR data, including preprocessing, model training, filtering, and fine-tuning. Next, the dataset for South Africa
is prepared, starting with the download, extraction and filtering of OSM data, followed by coordinate correction
using the trained model, satellite imagery from Google Satellite and Bing Maps, and manual enrichment of
attributes. Finally, the complete dataset is summarized in terms of spatial and capacity-based analyses.

The work was carried out as part of the "Long-Term Joint EU-AU Research and Innovation Part-
nership on Renewable Energy (LEAP-RE) Program" in the project “Development and Demonstration
of a Sustainable Open Access AU-EU Ecosystem for Energy System Modelling (OASES)”. As part of
the project, a comprehensive open source strategy was developed to ensure good open source access
to project results, enabling users worldwide to carry out renewable energy analyses with minimal
barriers. This ecosystem ensures transparency and supports the wider adoption of open-source tools
for energy planning and analysis. The model chain developed in OASES includes renewable energy
system detection [19], high-resolution time series generation [20], and energy system modelling with
integration into IRENA FlexTool [21].

2. Materials
2.1. OpenStreetMap

OSM is a collaborative, open-access mapping platform that provides geospatial data contributed
and maintained by a global community of volunteers [22]. Established in 2004, OSM has become a
leading source of freely available geographic information, covering diverse features such as roads,
buildings, land use, and energy infrastructure. Its community-driven model ensures that the data
is continuously updated and enriched, offering a valuable resource for research, spatial planning
and analysis. For renewable energy studies, OSM often serves as an initial source for identifying the
location and distribution of wind farms and other energy infrastructure. While OSM data provides
extensive coverage, it frequently lacks consistent accuracy in spatial precision and technical detail.
This is particularly evident for features such as wind turbine coordinates and capacity specifications,
which may be missing or imprecise [23,24]. To address these limitations, this study validates and
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refines the locational data using complementary methodologies, such as high-resolution satellite
imagery analysis and DL-based object detection approaches. To enable a comprehensive and regionally
consistent extraction of the energy-related infrastructure, the complete OSM file for South Africa
was downloaded from the Geofabrik [25]. Geofabrik offers daily updated and freely accessible OSM
extracts for all regions worldwide. The file for South Africa, was used as the base dataset to ensure
that no relevant entries were omitted due to incomplete or outdated online queries.

2.2. Google Satellite Data and Bing Image Data

Google Satellite Data and Bing Image Data provide high-resolution satellite imagery that is
widely utilized for spatial analysis across various disciplines. Google Satellite imagery is accessible
through platforms such as Google Earth Engine [26] or Google Maps [27], while Bing imagery is
accessed through the Bing Maps API [28]. Both offer detailed views of the Earth’s surface, capturing
features such as buildings, roads, and natural landscapes. For accurate validation or correction of
existing geo-datasets of renewable energy sources, Google Satellite and Bing Image Data can be used as
important resources for identifying and validating infrastructure locations, including wind farms and
individual turbines. These datasets provide high-resolution imagery with true-color (red-green-blue)
channels that provide realistic visual representations of surface features. This color channel information
facilitates the identification and distinction of objects and their properties. In addition, the two satellite
image data sets complement each other by providing additional perspectives and different dates of
acquisition, which is useful for validating results and improving coverage in areas where one source
may have better resolution or more recent data. By integrating Google and Bing satellite data with deep
learning and remote sensing techniques, the accuracy, scalability, and reliability of spatial data analysis
are significantly improved, providing a comprehensive and multiply-verified dataset for renewable
energy infrastructure analysis. They were used for the application and coordinate correction of wind
turbine locations in South Africa. In contrast, the training of the DL model was based on turbine
coordinates from the German Core Energy Market Data Register (German: Marktstammdatenregister,
MaStR) and high-resolution Digital Orthophotos (DOP).

2.3. Core Energy Market Data Register

The MaStR, administered by the Federal Network Agency for the German electricity and gas
market, serves as a comprehensive database for energy market. Commencing operations in 2019,
the register undergoes daily updates and encompasses detailed information on entities and facilities
within the grid-bound energy supply market [29]. Alongside registered electricity generation units,
the register also includes extensive listings of large-scale consumers. On the producer side, the MaStR
provides location information, performance values, and specific plant characteristics for various energy
sources, such as wind turbines, PV systems, biomass plants, hydro power plants, and conventional
plants. The register offers a wealth of information specifically tailored to wind turbines like registration
date, commissioning date, rated power, remote controllability, current operating status, manufacturer,
type designation, hub height, and rotor diameter. While freely accessible address data is generally
available for all facilities at zip code level, for most wind turbines there are even detailed coordinates
for determining the location of the individual turbines. As of November 21, 2023, out of the 32,788
listed turbines in operation, 31,892 include coordinate information.

2.4. Digital Orthophotos

The DOP of Germany, as documented by the Federal Agency for Cartography and Geodesy,
constitute georeferenced and differentially rectified aerial imagery, sourced from the surveying ad-
ministrations of Germany’s federal states [30]. These images faithfully represent the Earth’s surface,
within the confines of the Federal Republic of Germany, employing a ground resolution of 0.2 m for
the purposes of this investigation. The dataset encompasses both color images in the RGB spectrum.
The images maintain a positional accuracy of ±0.4 m standard deviation. The entire dataset covers
Germany and is presented in tiles measuring 1,000 × 1,000 m, equivalent to 5,000 × 5,000 pixels each.
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Each tile is accompanied by a file containing meta-information, notably the timestamp indicating
when the respective image was captured. The image data is updated cyclically, usually available every
3 years in site-specific overflight intervals.

3. Methods
3.1. Training data preprocessing

The preparation of training data comprises multiple steps. Initially, all wind turbines registered
in Germanys MaStR are loaded. A pre-filtering process is then applied, focusing exclusively on
wind turbines with operational status labeled as "in operation". Additionally, the turbines must be
categorized as "onshore", and only systems with available coordinates are considered. Finally, turbines
situated outside the German federal border are excluded under the assumption that their location data
is inaccurate. Existing coordinates of the turbines are provided with a static buffer of 30 m radius in
order to obtain an area-like imprint of the point coordinates. These are required for the subsequent
regressive localization method.

Figure 2. The method of the static cutting of the training images is shown. The black lines represent the cutting
edges, the red dots the coordinates of the wind turbines.

To generate training image data, the wind turbine location data is combined with DOPs. To
align with the requirements of RetinaNet, DOP tiles, each measuring 5,000 × 5,000 pixels, are further
divided into 1,000 × 1,000 pixel tiles. For training, the cut edges are statically selected to generate 15
tiles from each original tile, as illustrated on the left side in Figure 2. This approach ensures that wind
turbines are not consistently positioned at the center of the image sections. Conversely, for application
images, the wind turbine location is designated as the centroid of the image. Approximately 12,000
images are produced, each containing at least one wind turbine.
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Figure 3. Samples based on their suitability for training. The images marked in red are unsuitable due to incorrect
position or poor image resolution, the images marked in yellow contain wind turbines that are clearly visible but
were rejected for fine-tuning due to their inaccurate position. The images marked in green contain turbines whose
tower base is located directly in the center of the respective boxes.

This dataset is utilized for the initial training. To ensure that highly suitable image data is used in
the subsequent second training session, automatically generated examples are subjected to manual
review. This process identifies and removes instances with incorrect coordinates stored in MaStR,
imprecise coordinates, and image scenes with insufficient resolution. The re-selection leads to the
reduction of a further 5,000 unsuitable images, yielding a dataset of 7,000 images for the second
training. The primary emphasis is on the precise localization of wind turbines, ensuring that the
center of the regression boxes accurately represents the tower’s exact ground location. As illustrated in
Figure 3, several samples are depicted to exemplify their suitability. The training is divided into two
parts. First, all 12,000 samples automatically derived from the data preprocessing are used, whereas
in the second training, the number of samples is reduced to 7,000 highly suitable samples by manual
filtering. All other parameters remained the same for both the first and second training: 100 epochs,
100 steps, 80 % training and 10 % independent validation, and 10 % test data set.

3.2. Deep Learning Approach

Several object detection frameworks were considered for the coordinate correction task, including
Faster R-CNN, YOLOv3, and RetinaNet. RetinaNet was selected due to its balance between high
detection accuracy and computational efficiency, particularly in scenarios with class imbalance, such
as the detection of sparsely distributed wind turbines in large aerial images. The Focal Loss mech-
anism employed by RetinaNet has proven to significantly improve detection performance for rare
objects compared to conventional cross-entropy loss in other architectures [31]. In addition, RetinaNet
achieves competitive results in common object detection benchmarks (e.g., COCO dataset), while
offering simpler training requirements compared to two-stage detectors like Faster R-CNN. RetinaNet
is an object detection model that combines classification and regression within a unified architecture. It
integrates several well-established DL techniques to enable high-precision object localization and clas-
sification. A key component is the Residual Network (ResNet) architecture, a variant of Convolutional
Neural Networks (CNNs), which utilizes skip connections between layers to facilitate residual learning
and improve gradient flow in deep networks [31,32]. To handle multi-scale object detection, a Feature
Pyramid Network (FPN) is employed on top of the backbone. The FPN uses a top-down architecture
with lateral connections to generate semantically rich feature maps at multiple scales [33]. This allows
the network to detect objects of varying sizes effectively. The classification subnetwork is trained using
the Focal Loss, which was specifically developed to address the problem of class imbalance between
foreground and background objects in dense detection tasks [31]. Unlike the standard cross-entropy
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loss, Focal Loss introduces a modulation factor to down-weight easy examples and focus training on
hard negatives. The formula for Focal Loss is:

FL(pt) = −αt(1 − pt)
γ log(pt) (1)

where pt is the model’s estimated probability for the true class, αt is the weighting factor for class
imbalance (α = 0.25), and γ is the focusing parameter (γ = 2.0). This formulation ensures that well-
classified examples receive less weight, allowing the model to focus on misclassified or more difficult
samples. The regression subnetwork is responsible for predicting bounding boxes around detected
objects. It uses the Smooth L1 Loss function, which combines the benefits of L1 and L2 losses and is
less sensitive to outliers. This loss was originally introduced in the Fast Region-based Convolutional
Network Network (Fast R-CNN) architecture [34]. The regression loss Lloc is computed for the
predicted bounding box tuple tu = (tu

x , tu
y , tu

w, tu
h) and the ground truth box v = (vx, vy, vw, vh) as:

Lloc(tu, v) = ∑
i∈{x,y,w,h}

smoothL1(t
u
i − vi) (2)

The Smooth L1 function itself is defined as:

smoothL1(x) =

0.5(σx)2 if |x| < 1
σ2

|x| − 0.5
σ2 otherwise

(3)

The smoothing parameter σ was set to its commonly used default value of 3.0. This loss formula-
tion enables stable training and effective bounding box regression even in the presence of noisy labels.
RetinaNet outputs bounding boxes with predefined aspect ratios of 1:2, 1:1, and 2:1 [31].

Model performance is evaluated using the Average Precision (AP) metric, following the Common
Objects in Context (COCO) detection benchmark, where predictions are considered correct if their
Intersection over Union (IoU) with ground truth is above 50%. To calculate AP, two basic metrics are
first needed, Precision and Recall. Precision measures the proportion of correctly identified objects
(true positives) among all identified objects (true positives and false positives):

Precision =
TP

TP + FP
(4)

Recall quantifies the proportion of correctly identified objects among all actual objects (true
positives and false negatives):

Recall =
TP

TP + FN
(5)

The AP is then obtained by calculating the area under the precision-recall curve:

AP =
∫ 1

0
Precision(Recall) dRecall (6)

The implementation is based on the open-source keras-retinanet package [35], which was
developed specifically for RetinaNet applications.

3.3. South Africa Wind Turbine Pre-Dataset

Initially, OSM is used to derive the dataset of all wind turbines in South Africa, based on down-
loading a complete set of OSM data for South Africa via the Geofabrik download service [25], followed
by filtering using the “esy-osmfilter” tool [36]. The filtering is done to extract relevant energy infrastruc-
ture, with a focus on renewable energy facilities such as wind turbines and PV systems. The filtering
process involves using predefined filter criteria to ensure that only the required energy infrastructure
elements are selected:
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• Prefilter: The ‘prefilter‘ is used to identify nodes, ways, and relations tagged with attributes like
‘"power": ["generator", "plant", "solar", "photovoltaic"]‘ to capture all relevant renewable energy
installations.

• Blackfilter: A ‘blackfilter‘ is applied to exclude certain types of infrastructure that are not of
interest, such as those associated with fossil fuels or hydro-based generation. Examples in-
clude ‘("generator:source", "gas")‘, ‘("generator:method", "combustion")‘, and ‘("generator:source",
"coal")‘.

• Whitefilter: A ‘whitefilter‘ is also used to ensure that elements explicitly tagged with ‘("power",
"generator")‘ are retained in the dataset.

This process provides a refined dataset that filters out non-relevant elements and focuses on
renewable energy facilities, improving the quality and relevance of the geospatial analysis.

3.4. South Africa’s wind turbines coordinate correction

The model is applied to high-resolution satellite images provided by Google Satellite as well as
Bing image. The initial coordinates for the images are taken from the OSM dataset, with each wind
turbine’s OSM coordinate serving as the centroid for image extraction. The prepared tiles for analysis
are each 640 × 640 pixels with a resolution of 20 × 20 cm. This allows for a focused examination of
each turbine location and subsequent adjustment based on the model’s predictions. The restriction on
the size of the images depends on the permitted options of the services. To generate the coordinates of
the final data set, the resulting coordinates with highest confidence score are adopted. If the confidence
score falls below the threshold of 0.2, an additional manual verification is applied.

3.5. Additional attribute Enrichment

The additional step of attribute enrichment was to manually add detailed information about the
wind farms, including wind farm names, turbine capacities, total farm capacities, turbine types and
commissioning years. These attributes were collected through manual enrichment, which was crucial
to ensure the accuracy and completeness of the dataset. For this purpose, the operators’ websites
or publications about the construction of the farms were searched for where possible and used our
information enrichment. In addition to the technical attributes, we assigned spatial information by
intersecting each wind farm site with administrative boundaries using the Global Administrative
Areas (GADM) dataset [37]. For each site, the corresponding country and first and second level
administrative units were identified and added to the dataset. For this purpose, the coordinates of
each wind turbine are spatially allocated to corresponding administrative polygons. If a wind farm
location was outside a defined polygon due to geometric inaccuracies, it was mapped to the nearest
administrative unit to ensure completeness. This referencing simplifies regional analysis and the
combination with other datasets.

4. Results
Initially, we briefly present the results from model training, the data extracted and processed from

OSM, followed by the results of the location correction. Finally, we present the results of the additional
attribute enrichment.

4.1. Performance and Results of Deep Learning Training

This section presents the results of the DL training, including the loss functions and the accuracy
achieved. These results provide insight into the robustness and performance of the applied RetinaNet
approach. As Training Progress Summary, the progression of the two losses from the classification and
regression networks, as well as the AP, were validated to determine the networks’ performance, as
displayed in Figure 4.
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Figure 4. The figures show the AP during training.

Shown in blue are the results of the first training session, in which all training data was used, and
in red the second training session, in which the training data was used after filtering. A consistent
upward trend can be observed in the AP. Finally, the AP is 85% for the first training and 96% for the
second training with manually post-filtered samples. In addition, the following Figure 5 shows the
losses during training phase.

Figure 5. The figures show the changing losses during training.

Both the regression loss Lloc used to localize the objects and the Smooth L1 loss used for classi-
fication decrease significantly and almost evenly in both training runs. The total loss represents the
cumulative sum of the individual losses. The training is terminated by early stopping after 17 epochs
in each case, indicating no further progress in training. Overall, the loss and AP’s curves clearly show
the strong generalization of the network based on the training examples. Incorrect recognition are
shown in Figure 6.
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Figure 6. False positive and false negative examples from the application are summarized in the following. The
top row represents incorrectly identified wind turbine, false positives. The bottom row shows turbines that have
not been detected.

This includes a construction site, a biogas plant and two churches. Secondly, some of the poorly
represented turbines are not recognized by the network. This applies to different backgrounds, so that
turbines in open fields, in the forest and also in the settlement are not recognized. However, they are
also difficult to identify during a visual inspection. Examples of correctly recognized wind turbines,
conversely, are shown in Figure 7. In addition to turbines with good resolution, poorly resolved
turbines can also be identified in the images. All images show that the regression locates the towers of
the turbines exactly in the centers of the bounding boxes. In other words, the centers of the regression
boxes can be interpreted as exact coordinates of the wind turbines.

Figure 7. True positive examples from the application using the DOPs images are presented as follows. The upper
row displays instances featuring clearly visible and accurately identified wind turbines, where the centroid of the
regression boxes serves as the base of the tower. The bottom row, shows correctly detected wind turbines, with
less accurate regressive identification on the images.

4.2. OSM Data Extraction

The initial data set for South Africas wind turbines, extracted from OSM, contained a total of
1,546 point features. After a manual review and refinement process, this number was reduced to 1,487
verified wind turbines. Point features with the tags generator and diesel as well as solar were excluded
and deleted. However, 55 turbines in the OSM data are not assigned to any wind farm. These are
added manually. Among the wind farms, Longyuan Mulilo de Aar 2 North has the highest number of
turbines with 96 individual units, while the smallest wind farm, Buffeljags Abalone Farm, consists
of only two turbines. For all turbines without an associated wind farm, a manual assignment to the
respective farms was carried out to ensure the completeness of the data. A capacity is given for 351 of
the 1,487 turbines, while no capacity data is available for 1,144 turbines. This ensures that all wind
turbines are assigned to a wind farm and capacity information if possible.
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4.3. Coordinate Correction

The accuracy of the neural network’s predictions heavily depends on the domain-specific charac-
teristics of the training and application datasets. To analyze this effect, we compare the confidence
scores of the predictions for onshore wind turbines in South Africa. Table 1 presents the results of the
coordinate correction process using both Bing and Google satellite imagery.

Table 1. Comparison of onshore wind turbine data distributions across South Africa using Bing images and
Google images, including count and percentage of coordinates within different confidence scores.

Confidence
Score Bing Count Bing (%) Google Count Google (%)

< 0.1 206 13.85 116 7.80
0.1 – 0.2 361 24.28 288 19.37
0.2 – 0.3 244 16.41 223 15.00
0.3 – 0.4 182 12.24 222 14.93
0.4 – 0.5 141 9.48 156 10.49
0.5 – 0.6 125 8.41 144 9.68
0.6 – 0.7 85 5.72 129 8.68
0.7 – 0.8 51 3.43 122 8.20
> 0.8 3 0.20 45 3.03
NULL 90 6.05 43 2.89

Total 1487 100.00 1487 100.00

The Table summarizes results for 1,487 wind turbines, showing that the overall distribution of
confidence scores differs considerably between Bing and Google imagery. While only a small fraction
of detections reaches confidence scores above 0.8 (0.2% for Bing and 3.0% for Google), the majority falls
below 0.5, indicating potential challenges in image consistency or domain transfer. Despite this, visual
inspection confirms the accurate detection of turbines in both datasets, as illustrated in Figures 8 and 9.

Figure 8. True positive examples from the application using the Bing images are presented as follows. The upper
row displays instances featuring clearly visible and accurately identified wind turbines, where the centroid of the
regression boxes serves as the base of the tower. The bottom row, shows correctly identified wind turbines, with
less accurate regressive delineation in the images.
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Figure 9. True positive examples from the application using the Google images are presented as follows. The
upper row displays instances featuring clearly visible and accurately identified wind turbines, where the centroid
of the regression boxes serves as the base of the tower. The bottom row, shows correctly identified wind turbines,
with less accurate regressive delineation in the images.

A total of 90 turbines (6.05%) on the Bing images and 43 turbines (2.89%) on the Google images are
not detected and thus fall into the null category. The analysis shows that 36 of the non-detected South
African wind turbines are matched by Bing and Google. All these overlaps are exclusively located
within four specific farms: San Kraal Wind Farm, Phezukomoya, Cookhouse Wind Farm, and Wolf
Wind Farm. The visual inspection of the zero category shows that there are often construction sites for
wind turbines at the locations, which means that some of the images are not up-to-date enough to show
the existing wind turbine. In addition to the accuracy of the detection, the accuracy of the regression is
examined in the following. Table 2 summarizes the distances between pre-dataset coordinates and
regression analysis.

Table 2. Comparison of wind turbine coordinate deviations in South Africa based on image sources. The
percentage of wind turbines that lie within certain distance ranges between the original OSM coordinates and the
coordinates corrected using Bing and Google satellite images are shown.

Distance Range [m] Bing (%) Google (%)

< 5 1.27 15.87
5–10 28.13 48.43

10–15 34.90 14.33
15–20 8.37 2.81
20–25 4.69 2.75
>25 16.61 12.93

Not Detected (NULL) 6.03 2.88

The Table 2 presents the distribution of coordinate deviations for wind turbines in South Africa,
comparing results derived from Bing and Google Maps. The deviations are categorized into six
distance intervals: <5 m, 5–10 m, 10–15 m, 15–20 m, 20–25 m, and >25 m. A significant portion (64.3%)
of the Google-based coordinates fall within 10 m of the reference, whereas only 29.4% of the Bing-based
coordinates achieve this accuracy. The largest deviations (>25 m) occur in 16.6% of Bing and 12.9% of
Google. To provide a visual summary of the distribution of location errors, a histogram of the distance
deviations was created, as indicated in Figure 10. It shows the proportion of turbines falling within
specific distance ranges for both Bing and Google images.
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Figure 10. Histogram of wind turbine location errors based on Bing and Google imagery. It shows the percentage
of turbines whose corrected coordinates fall within different distance ranges compared to their original OSM
positions.

4.4. Wind turbine dataset

An overview of the existing wind farms in South Africa is provided below. The summarizing
Table 3 combines spatial information with key technical attributes for each wind turbine. It includes
both operational and under-construction sites and was cross-checked and harmonized based on
multiple publicly available sources. Listed are commissioning years, the number of turbines, the total
installed capacity in MW, the rated capacity per turbine in MW and the type of turbine installed in
each wind farm.

Table 3. Summary of Wind Turbines in South Africa, including the commissioning year, number of turbines, total
capacity, capacity per turbine, and turbine type for each wind farm.

Name of Farm Comm.
Year

Turbines Tot. Cap.
(MW)

Cap./Turbine
(MW)

Turbine Type

Amakhala Emoyeni 2016 56 134.4 2.4 Nordex N117/2400
Buffeljags Abalone 2012 2 0.13 0.065 Horizontal Axis Turbine
Chaba Wind Farm 2015 7 21.5 3.075 Vestas V112-3.075
Coega Wind Farm 2010 2 3.6 1.8 General Electric GE2.5XL
Cookhouse Wind Farm 2014 66 138.6 2.1 Suzlon S88/2100
Copperton Wind Farm 2021 34 102 3.15 Acciona AW-3150/125
Darling Wind Farm 2008 4 5.2 1.3 Fuhrländer FL 1250/62
Dassieklip 2015 9 27 3 Sinovel SL 3000/90
Dorper Wind Farm 2014 40 100 2.5 Nordex N100/2500
Excelsior Energy Facility 2020 13 32.5 2.5 Goldwind GW121/2500
Garob Wind Farm 2021 46 145 3.15 Nordex AW125/3150
Golden Valley Wind 2020 48 120 2.5 Goldwind GW121/2500
Gouda Wind Facility 2015 46 138 3 Acciona AW-3000/100
Grassridge Wind Farm 2016 20 60 3 Vestas V112/3000
Hopefield Farm 2014 37 66.6 1.8 Vestas V100-1.8
Jeffreys Bay Wind Farm 2014 60 138 2.3 Siemens SWT-2.3-101
Kangnas Wind Farm 2020 61 140 2.3 Siemens SWT-2.3-108
Karusa Wind Farm 2021 35 147 4.2 Vestas V136-4.2
Khobab Wind Farm 2017 61 140 2.3 Siemens SWT-2.3-108
Loeriesfontein 2 2017 61 140 2.3 Siemens SWT-2.3-108
Longyuan Mulilo De Aar 2
North 2017 96 144 1.5 Guodian UP86/1500

Longyuan Mulilo De Aar
Maanh. 2016 67 100 1.5 Guodian UP86/1500

Noblesfontein Wind Farm 2014 41 73.8 1.8 Vestas V100-1.8
Nojoli Wind Farm 2016 44 88 2 Vestas V100-2.0
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Table 3. Cont.

Name of Farm Comm.
Year

Turbines Tot. Cap.
(MW)

Cap./Turbine
(MW)

Turbine Type

Noupoort Mainstream 2016 35 80.5 2.3 Siemens SWT-2.3-108
Nxuba Wind Farm 2020 47 140 3 Nordex AW 125/3150
Oyster Bay Wind Farm 2021 41 140 3.45 Vestas V117-3.45
Perdekraal East Wind Farm 2020 48 110 2.3 Siemens SWT-2.3-108
Phezukomoya 2025* 35** 140 4 Vestas V136-4.0
Red Cap - Gibson Bay 2017 37 111 3 Nordex N117/3000
Red Cap Kouga - Oyster Bay 2015 32 80 2.5 Nordex N90/2500
Roggeveld Wind Farm 2022 47 147 3.15 Nordex AW125/3150
San Kraal Wind Farm 2025* 35** 140 4 Vestas V136-4.0
Sere Wind Farm 2015 46 105.8 2.3 Siemens SWT-2.3-108
Silo District’s Sustainable
Design 2024 4 0.1 0.025 Vertical Axis Turbine

Soetwater Wind Farm 2022 35 147 4.2 Vestas V136-4.2
Tsitsikamma Community
Farm 2016 31 95.325 3.075 Vestas V112-3.0

Van Stadens Wind Farm 2014 9 27 3 Sinovel SL 3000/113
Waainek Wind Farm 2016 8 24.6 3.075 Vestas V112-3.075
Wesley-Ciskei Farm 2021 10 34.5 3.45 Vestas V126-3.45
West Coast One Farm 2015 47 94 2 Vestas V90-2.0
Wolf Wind Farm 2024 17 85 5 Vestas V162/V163

* under construction. ** not all wind turbines have been built yet, thus do not match the detailed dataset.

Two wind farms, Phezukomoya and San Kraal, are still under construction. In these cases, not all
turbines have yet been built or identified, which explains deviations from the detailed point-based
turbine dataset. A more detailed graphical evaluation is summarized in Figure 11. Boxplots illustrate
three key parameters from left to right: the number of turbines per wind farm, the total installed
capacity, and the specific capacity per turbine.

Figure 11. Summary statistics of key parameters of South African wind farms. Number of turbines per wind farm
(left side), total installed capacity (MW) per wind farm (in the middle), and capacity per turbine (MW) (on the
left). The boxplots contains the median, interquartile range, and outliers in the dataset

The number of turbines varies significantly, ranging from small farms with only 2 to 4 turbines to
large-scale farms hosting up to 96 turbines. However, the majority of wind farms contain between
around 15 and under 50 turbines. On average, there are 37 turbines within a farm. The total installed
capacity per wind farm ranges from as little as 0.1 MW to 147 MW. The majority of projects lie within
the interquartile range of 35 to 140 MW, the median is 100 MW. The nominal capacity per turbine spans
a wide range, from small-scale units with 25 kW to modern high-capacity turbines rated at 4.5 MW.
Most turbines, however, fall within the interquartile range of 2.3 to 3.1 MW, with mean capacity of a
turbine is 2.5 MW, typical for recent onshore turbine installations.

Figure 12 shows the development of wind power capacity in South Africa over time, starting with
the first installations in 2008 through to 2025. To illustrate the growth trend in recent years, the left
panel shows the annual installed capacity between 2008 and 2025 based on the commissioning years
of the individual wind farms. At least three different phases of capacity growth can be observed: an
initial phase with isolated installations between 2008 and 2012, a first strong expansion phase from
2014 to 2021 with significant annual growth and a second expansion phase since 2022. The largest
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annual increases were in 2016 with around 580 MW and in 2021 with almost 570 MW of newly installed
capacity. The right panel shows the cumulative installed capacity over the same period. By 2025, the
total installed capacity will reach over 3.9 MW.

Figure 12. Development of wind power capacity in South Africa by year. The annual installed wind power capacity
from 2008 to 2025 is shown on the left-hand side, and the cumulative installed capacity on the right-hand side.

Figure 13 shows the total installed capacity per wind farm in descending order, distributed across
42 different wind farms with capacities ranging from 147 MW to 0.1 MW. The bar lengths provide a
quick indication of the relative capacity of the individual wind farms. This ranking makes it easier to
identify the wind farms in South Africa with the highest rated capacity. The largest farms - such as
Roggeveld, Karusa, Nxuba or Soetwater - reach around 140-150 MW. The smallest wind farms such as
Coega, Buffeljags Abalone Farm and Silo Distict’s Sustainable Design have significantly lower total
capacities of less than 2 MW.

Figure 13. The total installed capacity (MW) of the individual wind farms is shown. The wind farms are listed by
size, starting with the largest.

Alongside the total installed capacity, the Figure 14 shows the number of wind turbines installed
in the individual wind farms in descending order. The order provides a quick overview of the locations
with a particularly high amount of turbines. Longyuan Mulilo De Aar 2 North stands out with 96
turbines, while Longyuan Mulilo De Aar Maanhaarberg with 67 turbines and Cookhouse Wind Farm
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with 66 turbines are the next largest farms. Coega Wind Farm has only two turbines. In combination
with the capacity data, this also gives an indication of the average turbine size in each wind farm.

Figure 14. This figure shows the number of wind turbines per wind farm. Wind farms with more turbines are
shown at the top, while smaller farms with fewer turbines are listed further down.

The Figure 15 shows the nominal capacity per wind turbine at each wind farm. This overview can
be used to determine which sites mainly use smaller turbines and which rely on turbines with a higher
rated capacity. The frequent use of turbines with a capacity of 2.3 MW (here with Siemens SWT-2.3
turbines) in the Jeffreys Bay Wind Farm, Kangnas Wind Farm, Khobab Wind Farm, Loeriesfontein 2,
Noupoort Mainstream, and Perdekraal East Wind Farm is particularly evident. However, turbines
with a capacity of 3 MW are also widely used in Dassieklip, Chaba Wind Farm, Copperton Wind Farm,
Gouda Wind Facility, Red Cap - Gibson Bay, and Van Stadens Wind Farm. The lower end of the scale
includes turbines with relatively small capacities, such as those at Buffeljags Abalone Farm or the
vertical axis turbines in the Silo District. Higher bars correspond to larger capacity turbines, such as
the Vestas V136 and V162 models with capacities with up to 5 MW.

The following section of the results focuses on the spatial distribution of wind turbines in South
Africa. The installed wind power capacity is concentrated in just three of the country’s nine provinces,
Northern Cape, Eastern Cape, and Western Cape. Table 4 provides a summary of wind energy
infrastructure at the provincial level.

Table 4. Overview of wind farms in South Africa by province. The number of different wind farms, the total
number of turbines and the aggregated installed capacity are shown.

Province Wind Farms Turbines Total Capacity (MW)

Eastern Cape 18 575 1,571
Northern Cape 14 656 1,670
Western Cape 10 256 575
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Figure 15. The capacity per wind turbine in megawatts (MW) for the wind farms in South Africa is shown. The
values are sorted in ascending order so that wind farms with a lower capacity per turbine are shown at the bottom
and wind farms with a higher capacity at the top.

The majority of capacity is located in the Northern Cape and Eastern Cape, which together host 32
wind farms and 1,231 turbines. The Western Cape follows with 10 wind farms. Together, the Eastern
Cape and the Northern Cape account for 1,571 MW and 1,670 MW of installed capacity, respectively.
The Western Cape contributes 575 MW, bringing the total installed capacity in these three provinces
to more than 3,800 MW. The Roggeveld Wind Farm represents a special case, as it spans across two
provinces. Since the majority of its 42 turbines are located in the Northern Cape and only five fall
within the Western Cape, the entire wind farm is attributed to the Northern Cape for consistency in
the provincial analysis.

Figure 16 illustrates the spatial distribution of all 42 existing wind farms in South Africa. It clearly
shows that the facilities are exclusively located in the southwestern provinces, particularly in the
Northern Cape, Eastern Cape, and Western Cape. To supplement the analysis at provincial level, a
more detailed spatial aggregation was carried out at district municipality level. This approach enables
a finer resolution of the spatial distribution and highlights the differences within the provinces in
the expansion of wind energy. Figure 17 shows the total installed capacity on the one hand and the
number of wind turbines per municipality on the other. The results show a very uneven distribution,
with a limited number of municipalities hosting the majority of turbines and installed capacity. In
contrast, many regions are still completely undeveloped, indicating a significant spatial concentration
of wind energy infrastructure.
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Figure 16. Spatial distribution of all existing wind turbines in South Africa, marked in blue, highlighting their
locations across the country.

Figure 17. Spatial distribution of wind energy infrastructure by municipality. Map (on the left side) displays
the number of wind turbines, while map (on the right side) shows the total installed wind capacity (MW). The
patterns reveal significant regional clustering, with a small number of municipalities concentrating the majority of
infrastructure.

5. Discussion
This study presents a comprehensive and spatially validated dataset of wind power infrastructure

in South Africa. With 1,487 turbines across 42 wind farms and a total installed capacity exceeding
3.9 GW, the dataset offers both spatial and technical detail. Most turbines are concentrated in the
Northern Cape, Eastern Cape, and Western Cape provinces, reflecting the regional clustering of wind
development in the country. In addition to the spatial information, the dataset includes harmonized
metadata such as commissioning year, turbine type, wind farm capacity, and per-turbine capacity.
These attributes were manually collected and cross-checked from various sources.
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Although labor-intensive, this enrichment process significantly increases the usability and reli-
ability of the dataset—enabling advanced applications in energy system modelling, infrastructure
planning, and policy design. However, manually collecting turbine-specific information also revealed
common challenges regarding the availability and quality of public data. The information on operators’
websites was often unstructured, inconsistently formatted, or partially incomplete. In several cases,
additional sources such as press releases, freely accessible news articles, and energy-related databases
were consulted. While these secondary sources were useful for cross-checking, they sometimes con-
tained unverifiable or contradictory data, highlighting the limitations of public reporting on renewable
energy infrastructure. These challenges underline the crucial role of manual processing within the
overall pipeline, which, despite advances in automation, remains indispensable for ensuring technical
completeness and high data quality.

While most of the data processing, including the localization of the turbines for coordinate
correction using DL methods, was automated, manual steps were essential to ensure the technical com-
pleteness and reliability of the dataset. In particular, turbine attributes such as turbine type, capacity
and year of commissioning were manually enriched by comparing several publicly available sources
(e.g. operator website, project reports, press releases). This manual effort was necessary because the
detailed technical metadata in open data sets such as OSM or national databases is almost completely
missing, incomplete or inconsistent. If the pipeline were transferred to other countries or regions, a
similar manual enrichment step would probably be required due to the heterogeneous availability
of data and the different reporting standards worldwide. Automated extraction of attributes from
semi-structured text sources (e.g. using natural language processing methods) could be investigated as
a future extension to partially automate this step. However, full automation is currently only possible
to a limited extent due to the lack of standardized and structured publication of turbine metadata.
Furthermore, regular updates of the dataset (e.g. every 1-2 years) would require re-verification of new
wind farm projects and updating of technical attributes, meaning that some level of manual verification
and enrichment will still be essential to maintain data quality. Nevertheless, further improvements,
such as the integration of automated web scraping techniques combined with manual quality checks,
could significantly reduce the manual workload while ensuring high standards of data accuracy.

The dataset was systematically checked against several external sources to ensure its completeness.
A comparison with the official database of the South African IPP Database [16] confirms that all 34
large wind farms currently in operation are included in this dataset. In addition, two projects under
construction and several smaller wind farms that are not listed in the official database have been
included. The dataset thus shows that it not only covers large infrastructure, but also takes into account
smaller and newly emerging projects. The dataset therefore provides a more comprehensive picture of
the national wind energy landscape than existing centralized sources.

The coordinate correction process based on RetinaNet was trained on German aerial imagery
and applied to South African wind turbine locations using both Bing and Google satellite data. The
application resulted in a notable drop in confidence scores, which can be attributed to the domain shift
between training and application imagery—a typical challenge in DL when transferring models across
data sources. Despite this, the visual and statistical evaluation confirms a high localization accuracy.
More than 60% of Google-based predictions and 29% of Bing-based predictions fall within a 10 m
range from the reference coordinates. The model’s ability to correctly identify turbine locations across
different landscapes and image types confirms its practical value as a scalable validation tool.

However, some aspects of the detection and correction process could be improved in future
applications. First, the exclusive use of a RetinaNet architecture could limit performance in more
complex or visually diverse environments. Alternative approaches—such as modern transformer-
based detection models—could offer greater robustness and accuracy, particularly under conditions
of visual ambiguity or clutter. Second, the image data itself could be further diversified. The current
approach is limited to single time frames from Bing and Google images, which may not capture
seasonal variations or recent changes in infrastructure. The use of time series images or higher-
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resolution commercial data could improve model generalization and enable the detection of newer or
smaller installations.

From a methodological perspective, the study highlights the importance of combining open
spatial data, deep learning, and manual curation to overcome the usual limitations of public datasets.
OSM offers broad coverage but lacks standardization and, in some cases, location accuracy. The
integration of DL fills this gap by refining the location data, while manual enrichment ensures the
completeness and technical detail required for meaningful application. Together, these components
form a transferable and reproducible workflow for the creation of high-quality renewable energy
datasets in data-poor regions.

6. Conclusions
This study presents the most accurate, comprehensive, and up-to-date dataset on wind turbines

and wind farms currently available for South Africa. By integrating publicly available OSM data,
high-resolution satellite imagery, and advanced DL-based coordinate correction using RetinaNet, the
spatial accuracy of turbine locations has been significantly improved. The dataset has been further
enhanced through manual enrichment with important technical and temporal attributes such as wind
farm names, turbine types, capacities, and commissioning years—information that is often missing or
inconsistent in existing sources. Spatial metadata has been mapped to administrative boundaries from
the GADM database, enabling regional analysis and integration with other relevant datasets.

This dataset thus provides accurate turbine coordinates, technical specifications, and harmonized
metadata. It includes not only all large wind farms currently listed in the South African IPP project
database, but also smaller and emerging wind farms that are not covered by official sources. The
result is a high-quality, freely accessible dataset that provides a solid foundation for research, energy
system modelling, infrastructure planning, and policy evaluation. It makes an important contribution
to the open energy data landscape and provides a transferable methodology for creating similarly
detailed datasets in other countries and for other renewable energy technologies. The dataset is freely
available for download [1] and can be used interactively [2]. We strongly encourage its reuse and
further development by the broader research and planning community.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Average Precision
AU African Union
CNN Convolutional Neural Network
COCO Common Objects in Context
DL Deep Learning
DOP Digital Orthophotos
EU European Union
Fast R-CNN Fast Region-based Convolutional Neural Network
FPN Feature Pyramid Network
GADM Global Administrative Areas
IoU Intersection over Union
IPP Independent Power Producers
IRENA International Renewable Energy Agency
LEAP-RE Long-Term Joint EU-AU Research and Innovation Partnership on Renewable Energy
MaStR Marktstammdatenregister (Core Energy Market Data Register)
MDPI Multidisciplinary Digital Publishing Institute
OASES Open Access AU-EU Ecosystem for Energy System Modelling
OSM OpenStreetMap
PV Photovoltaic
QGIS Quantum Geographic Information System
REIPPPP Renewable Energy Independent Power Producer Procurement Programme
ResNet Residual Network
RGB Red, Green, Blue
Zenodo Open-access repository for archiving research outputs
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