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Article

p-adic Delsarte-Goethals-Seidel-Kabatianskii-
Levenshtein-Pfender Bound
K. Mahesh Krishna

School of Mathematics and Natural Sciences, Chanakya University Global Campus, NH-648, Haraluru Village, Devanahalli
Taluk, Bengaluru Rural District, Karnataka State, 562 110, India; kmaheshak@gmail.com

Abstract: We introduce the notion of p-adic spherical codes (in particular, p-adic kissing number
problem). We show that the one-line proof for a variant of the Delsarte-Goethals-Seidel-Kabatianskii-
Levenshtein upper bound for spherical codes, obtained by Pfender, extends to p-adic Hilbert spaces.
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1. Introduction
Let d ∈ N and θ ∈ [0, 2π). A set {τj}n

j=1 of unit vectors in Rd is said to be (d, n, θ)-spherical code

[1] in Rd if

⟨τj, τk⟩ ≤ cos θ, ∀1 ≤ j, k ≤ n, j ̸= k. (1)

Since

⟨τ, ω⟩ = 2 − ∥τ − ω∥2

2
, ∀τ, ω ∈ Rd,

we can rewrite Inequality (1) as

∥τj − τk∥ ≥
√

2(1 − cos θ), ∀1 ≤ j, k ≤ n, j ̸= k.

Fundamental problem associated with spherical codes is the following.

Problem 1.1. Given d and θ, what is the maximum n such that there exists a (d, n, θ)-spherical code {τj}n
j=1

in Rd?

The case θ = π/3 is known as the famous (Newton-Gregory) kissing number problem. With
extensive efforts from many mathematicians, it is still not completely resolved in every dimension (but
resolved in dimensions d = 1 (n = 2), d = 2 (n = 6), d = 3 (n = 12), d = 4 (n = 24), d = 8 (n = 240),
d = 24 (n = 196560)) [2–21]. We refer [22–38] for more on spherical codes. Problem 1.1 has connection
even with sphere packing [39]. Most used method for obtaining upper bounds on spherical codes is
the Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein bound which we recall. Let n ∈ N be fixed. The
Gegenbauer polynomials are defined inductively as

G(n)
0 (r) := 1, ∀r ∈ [−1, 1],

G(n)
1 (r) := r, ∀r ∈ [−1, 1],

...

G(n)
k (r) :=

(2k + n − 4)rG(n)
k−1(r)− (k − 1)G(n)

k−2(r)
k + n − 3

, ∀r ∈ [−1, 1], ∀k ≥ 2.
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Then the family {G(n)
k }∞

k=0 is orthogonal on the interval [−1, 1] with respect to the weight

ρ(r) := (1 − r2)
n−3

2 , ∀r ∈ [−1, 1].

Theorem 1.2. [22,26] (Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein Linear Programming
Bound) Let {τj}n

j=1 be a (d, n, θ)-spherical code in Rd. Let P be a real polynomial satisfying following
conditions.

i P(r) ≤ 0 for all −1 ≤ r ≤ cos θ.
ii Coefficients in the Gegenbauer expansion

P =
m

∑
k=0

akG(n)
k

satisfy

a0 > 0, ak ≥ 0, ∀1 ≤ k ≤ m.

Then

n ≤ P(1)
a0

.

In 2007, Pfender gave a one-line proof for a variant of Theorem 1.2.

Theorem 1.3. [3] (Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Bound) Let {τj}n
j=1 be

a (d, n, θ)-spherical code in Rd. Let c > 0 and ϕ : [−1, 1] → R be a function satisfying following.

i

n

∑
j=1

n

∑
k=1

ϕ(⟨τj, τk⟩) ≥ 0.

ii ϕ(r) + c ≤ 0 for all −1 ≤ r ≤ cos θ.

Then

n ≤ ϕ(1) + c
c

.

In particular, if ϕ(1) + c ≤ 1, then n ≤ 1/c.

In this paper, we introduce the notion of p-adic spherical codes. We show that Theorem 1.3, can
be easily extended for p-adic Hilbert spaces.

2. p-adic Spherical Codes
We begin from the definition of p-adic Hilbert space.

Definition 2.1. [40–42] Let K be a non-Archimedean complete valued field (with valuation | · |) and X be a
non-Archimedean Banach space (with norm ∥ · ∥) over K. We say that X is a p-adic Hilbert space if there is a
map (called as p-adic inner product) ⟨·, ·⟩ : X ×X → K satisfying following.

i If x ∈ X is such that ⟨x, y⟩ = 0 for all y ∈ X , then x = 0.
ii ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ X .
iii ⟨αx + y, z⟩ = α⟨x, z⟩+ ⟨y, z⟩ for all α ∈ K, for all x, y, z ∈ X .
iv |⟨x, y⟩| ≤ ∥x∥∥y∥ for all x, y ∈ X .

Following is the standard example which we consider in the paper.
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Example 2.2. [41] Let p be a prime. For d ∈ N, let Qd
p be the standard p-adic Hilbert space equipped with the

inner product

⟨(aj)
d
j=1, (bj)

d
j=1⟩ :=

d

∑
j=1

ajbj, ∀(aj)
d
j=1, (bj)

d
j=1 ∈ Qd

p

and norm

∥(xj)
d
j=1∥ := max

1≤j≤d
|xj|, ∀(xj)

d
j=1 ∈ Qd

p.

We introduce p-adic spherical codes as follows.

Definition 2.3. Let d ∈ N and θ ∈ [0, 2π). A set {τj}n
j=1 of vectors in Qd

p is said to be p-adic (d, n, θ)-

spherical code in Qd
p if following conditions hold.

i ∥τj∥ = 1 for all 1 ≤ j ≤ n.
ii ⟨τj, τj⟩ = 1 for all 1 ≤ j ≤ n.
iii

|2 − 2⟨τj, τk⟩| ≥ 2(1 − cos θ), ∀1 ≤ j, k ≤ n, j ̸= k. (2)

We call the case θ = π/3 as the p-adic kissing number problem.

Let {τj}n
j=1 be a p-adic (d, n, θ)-spherical code in Qd

p. Since

∥τj − τk∥2 ≥ |⟨τj − τk, τj − τk⟩| = |2 − 2⟨τj, τk⟩|, ∀1 ≤ j, k ≤ n,

Inequality (2) gives

∥τj − τk∥ ≥
√

2(1 − cos θ), ∀1 ≤ j, k ≤ n, j ̸= k. (3)

However, note that Inequality (3) may not give Inequality (2). Note that we can formulate the definition
of general p-adic (d, n, θ)-spherical code by replacing Inequality (2) with Inequality (3) in Definition
2.3. It is also possible to consider Definition 2.3 by removing conditions (i) or (ii). Following is the
p-adic version of Theorem 1.3.

Theorem 2.4. (p-adic Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Spherical Codes
Bound) Let {τj}n

j=1 be a p-adic (d, n, θ)-spherical code in Qd
p. Let c > 0 and ϕ : [0, ∞) → R be a function

satisfying following.

i ∑1≤j,k≤n ϕ(|2 − 2⟨τj, τk⟩|) ≥ 0.
ii ϕ(r) + c ≤ 0 for all r ∈ [2(1 − cos θ), ∞).

Then

n ≤ ϕ(0) + c
c

.

In particular, if ϕ(0) + c ≤ 1, then n ≤ 1/c.
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Proof. Define ψ : [0, ∞) ∋ r 7→ ψ(r) := ϕ(r) + c ∈ R. Then

∑
1≤j,k≤n

ψ(|2 − 2⟨τj, τk⟩|) =
n

∑
j=1

ψ(|2 − 2⟨τj, τj⟩|) + ∑
1≤j,k≤n,j ̸=k

ψ(|2 − 2⟨τj, τk⟩|)

=
n

∑
j=1

ψ(0) + ∑
1≤j,k≤n,j ̸=k

ψ(|2 − 2⟨τj, τk⟩|)

= n(ϕ(0) + c) + ∑
1≤j,k≤n,j ̸=k

(ϕ(|2 − 2⟨τj, τk⟩|+ c)

≤ n(ϕ(0) + c) + 0 = n(ϕ(0) + c).

We also have

∑
1≤j,k≤n

ψ(ϕ(|2 − 2⟨τj, τk⟩|)) = ∑
1≤j,k≤n

(ϕ(|2 − 2⟨τj, τk⟩|) + c) = ∑
1≤j,k≤n

ϕ(|2 − 2⟨τj, τk⟩|) + cn2.

Therefore

cn2 ≤ ∑
1≤j,k≤n

ϕ(|2 − 2⟨τj, τk⟩|) + cn2 ≤ n(ϕ(0) + c).

Corollary 2.5. (p-adic Delsarte-Goethals-Seidel-Kabatianskii-Levenshtein-Pfender Kissing Number
Bound) Let {τj}n

j=1 be a p-adic (d, n, π/3)-spherical code in Qd
p. Let c > 0 and ϕ : [0, ∞) → R be a function

satisfying following.

i ∑1≤j,k≤n ϕ(|2 − 2⟨τj, τk⟩|) ≥ 0.
ii ϕ(r) + c ≤ 0 for all r ∈ [1, ∞).

Then

n ≤ ϕ(0) + c
c

.

In particular, if ϕ(0) + c ≤ 1, then n ≤ 1/c.

Following generalization of Theorem 2.4 is easy.

Theorem 2.6. Let {τj}n
j=1 be a p-adic (d, n, θ)-spherical code in Qd

p. Let c > 0 and

ϕ : {|2 − 2⟨τj, τk⟩| : 1 ≤ j, k ≤ n} → R

be a function satisfying following.

i ∑1≤j,k≤n ϕ(|2 − 2⟨τj, τk⟩|) ≥ 0.
ii ϕ(r) + c ≤ 0 for all r ∈ {|2 − 2⟨τj, τk⟩| : 1 ≤ j, k ≤ n, j ̸= k}.

Then

n ≤ ϕ(0) + c
c

.

In particular, if ϕ(0) + c ≤ 1, then n ≤ 1/c.

Note that, in the paper, we can replace Qd
p by any p-adic Hilbert space.
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