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Abstract 

Multimodal optimization is to find multiple global and local optimal solutions of a function, rather 

than a single solution. This study proposes a harmony search algorithm with iterative optimizing 

operators to solve the NP-hard distributed permutation flowshop scheduling for multimodal 

optimization. First, the initial solution set is constructed by using a distributed NEH operator. Second, 

after generating new candidate solutions, efficient iterative optimizing operators are applied to 

optimize these solutions and the worst solutions in the harmony memory(HM) are replaced. The 

proposed operations are repeated until the stopping condition of the algorithm is met. Finally, the 

solutions satisfying multimodal optimization in the harmony memory are obtained. The constructed 

method is compared with two meta-heuristics, the iterative greedy meta-heuristic algorithm with a 

bounded search strategy and the improved Jaya algorithm, on 600 newly generated datasets. The 

results show that it runs stably and outperforms the two algorithms compared. 

Keywords: distributed permutation flowshop; harmony search; iterative optimizing operator; 

multimodal optimization; makespan 

 

I. Introduction 

Compared to the single workshop’s processing mode of traditional manufacturing system, the 

distributed manufacturing system (DMS) fully utilizes the resources in the workshops of distributed 

factories. By realizing effective allocation of raw materials, optimal combination of productivity, 

scientific and reasonable resource sharing etc., the goal of quickly achieving product manufacturing 

at reasonable costs in DMS is fulfilled. 

Distributed scheduling plays a crucial role in DMS, it has the characteristics of large-scale, 

nonlinear, strong constraints, multi-objective, uncertainty, and has always been a hot topic in the 

fields of optimization and manufacturing. Its scientific optimization directly affects the efficiency and 

long-term development of production enterprises. Therefore, developing efficient optimization 

scheduling algorithms is one of the keys for improving the production efficiency, saving energy, 

reducing emissions, decreasing production costs, and solving the bottleneck problem.  

In DMS, the distributed flowshop scheduling problem (DFSP) is a very important problem. Due 

to the presence of multiple factories, the DFSP encounters many challenges, such as the coupling 

relationship between processing factories, allocation of machines within the factory, and sorting of 

jobs to be processed [1]. Compared with the traditional NP-hard flowshop scheduling problem in a 

single factory, the DFSP has a larger solution space, and involves greater difficulty in arriving at the 

optimal solution. It imposes more stringent requirements on the accuracy and speed of the algorithm. 

Therefore, research on the problem has theoretical and applicative importance.  

Many researchers have proposed various algorithms for solving the DFSP in different scenarios 

and under different constraints by focusing on different objectives of multimodal optimization. Li 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 18 

 

and Wu [2] proposed Heuristic for no-wait flow shops with makespan minimization based on total 

idle-time increments. Gogos [3] addressed the DFSP by using constraint programming and its special 

scheduling features for makespan minimization. Hao, Li, Du, Song, Duan and Zhang [4] studied the 

distributed hybrid flowshop scheduling (DHFS) problem for makespan minimization and established 

a mathematical model. Geng and Li [5] studied an improved hyperplane-assisted evolutionary 

algorithm to solve a distributed mixed flowshop scheduling problem in a glass manufacturing system 

with two objectives: minimizing makespan and the total energy consumption. Zhang and Geng et al. 

[6] proposed an effective Q-learning-based multi-objective particle swarm optimization algorithm to 

solve the DFSP problem, with the total completion time and total energy consumption minimization. 

Bai and Liu et al. [7] studied a heterogeneous distributed permutation flowshop scheduling problem 

to minimize the makespan. Zhao, Zhuang, Wang and Dong [8] investigated the distributed no-idle 

permutation flowshop scheduling problem (DNIPFSP) . The makespan and total tardiness are 

optimized simultaneously considering the variety of scales of the problems with introducing an 

improved iterative greedy (IIG) algorithm. Li, Pan, Sang, Jing, Framiñán and Li [9] addressed a 

distributed permutation flowshop scheduling problem with part of jobs subject to a common 

deadline, established a mathematical model and proposed a self-adaptive population-based iterated 

greedy algorithm with the objective of minimizing the total completion time. Song,Lin and Chen [10] 

studied the distributed assembly permutation flowshop scheduling problem with sequence 

dependent setup times. An effective two-stage heuristic was proposed with the optimization 

objective of minimizing makespan. 

The harmony search (HS) algorithm, proposed by Geem, Kim, and Loganathan [11], is a simple 

but effective meta-heuristic. It is based on the processes involved in musical performance when a 

composer searches for a better musical harmony, such as during jazz improvisation. Jazz 

improvisation seeks to find musically pleasing harmonies as determined by an aesthetic standard, 

just as the process of optimization seeks to find a global optimal solution as determined by an 

objective function. The pitch of each musical instrument determines the overall aesthetic quality, just 

as the value of the objective function is determined by the set of values assigned to each decision 

variable. HS has been widely applied to various optimization problems in science and engineering, 

including tour planning, Internet routing, and the design of water networks and hearing aids [12].  

The distributed permutation flowshop scheduling problem(DPFSP) is considered in this study, 

as it is one of the most widely studied problems in the field of scheduling. Because HS is a simple but 

effective meta-heuristic, a hybrid algorithm based on HS is proposed to solve this problem for 

multimodal optimization with its objective of makespan minimization.   

The remaining part of this paper is organized as follows: Section II provides an objective of 

minimizing makespan and a mathematical model for the considered problem. Combined with 

iterative optimization algorithms, Section III presents a hybrid harmony search algorithm, named 

IOHS. Section IV conducts simulation experiments based on experimental data to verify the 

effectiveness of the algorithm, and compares its performance with other algorithms. Section V 

provides conclusions and prospects for future research contents and directions.  

II. Problem Description 

The DPFSP can be described as follows: assume that a batch of sequentially numbered jobs are 

first assigned to some distributed homogeneous factories, and then, the jobs in each factory are 

scheduled and processed sequentially on the machines. The goal is to provide the (approximately) 

optimal job–factory allocation and sequence of jobs within the factory for multimodal optimization. 

The main assumptions are as follows: 

• All jobs are ready when processing starts. 

• The number of jobs and their processing times on machines are known, and are non-negative. 

• Each job can be processed only on one machine in a given factory at a given time, and cannot 

be pre-empted. 

• Each machine can process only one job at a time, and completes all jobs in sequence. 
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• The preparation time for each job is sequence independent, and is included in its processing 

time. 

The symbols and definitions used in this paper are as follows: 

F: Number of factories. 

f : Index for factories, 𝑓 = {1,2, … , 𝐹}. 

M: Number of machines in each factory.  

m: Index for machines, 𝑚 = {1,2, … , 𝑀}. 

𝐽𝑓: Number of jobs in factory f.  

J: Total number of jobs, 𝐽 = 𝐽1 + 𝐽2 + ⋯ + 𝐽𝐹. 

𝑗𝑓,𝑛: The n-th job assigned to factory f, 𝑛 = {1,2, … , 𝐽𝑓}. 

𝑝𝑓,𝑛,𝑚: The processing time of the n-th job in factory f on machine m. 

A solution π can then be given by Equation (1):  

π = {{𝐽1, 𝐽2, … , 𝐽𝐹}|{𝑗1,1, 𝑗1,2, … , 𝑗1,𝐽1
}, {𝑗2,1, 𝑗2,2, … , 𝑗2,𝐽2

}, … , {𝑗𝐹,1, 𝑗𝐹,2, … , 𝑗𝐹,𝐽𝐹
}} (1) 

Equation (1) shows that π is composed of two parts: The first part shows the number of jobs 

assigned to each factory while the second part displays the sequence of jobs processed in each factory. 

The formulae for calculating the completion time of each job on the machines in the factory are 

given by Equations (2)–(5): 

𝐶(𝑗𝑓,1, 1) = 𝑝𝑓,1,1                                (2) 

𝐶(𝑗𝑓,1, 𝑚) = ∑ 𝑝𝑓,1,𝑘
𝑚
𝑘=1                     (3) 

𝐶(𝑗𝑓,𝑛, 1) = ∑ 𝑝𝑓,𝑡,1

n

𝑡=1

                            (4) 

𝐶(𝑗𝑓,𝑛, 𝑚) = max{𝐶(𝑗𝑓,𝑛, 𝑚 − 1) , 𝐶(𝑗𝑓,𝑛−1, 𝑚)} + 𝑝𝑓,𝑛,𝑚   (5) 

Equation (2) shows the completion time of the first job 𝑗𝑓,1 on the first machine in each factory. 

This is the processing time for this job on the given machine. Equation (3) shows the completion time 

of the first job 𝑗𝑓,1 on the m-th machine in each factory, and this is the sum of the processing times of 

the job from the first machine to the m-th machine. Equation (4) shows the completion time of the n-

th job 𝑗𝑓,𝑛 on the first machine in each factory. This is the sum of processing times of the previous n 

jobs on the first machine. Equation (5) shows the completion time of the n-th job 𝑗𝑓,𝑛 on the m-th 

machine in each factory. This is the sum of processing times of job 𝑗𝑓,𝑛 on the m-th machine, and is 

the maximum value of the completion time of job 𝑗𝑓,𝑛 on the (m-1)-th machine, or the completion 

time of job 𝑗𝑓,𝑛−1 on the m-th machine:  

𝐶(𝑓) = 𝐶 ( 𝑗𝑓,𝐽𝑓
, 𝑀)                                   (6) 

𝐶(π) = max{𝐶(1), 𝐶(2), … , 𝐶(𝐹)}       (7) 

The makespan of factory f  is the completion time of the last job 𝑗𝑓,𝐽𝑓
 on the last machine 𝑀, 

and is shown in Equation (6). The makespan for collaborative processing in DMS is the maximum 

value among 𝐶(1), 𝐶(2), … , 𝐶(𝐹), and is shown in Equation (7). 

The solution π∗ in the solution space Π that has the minimum makespan, can be depicted by 

Equation (8): 

𝐶(π∗) = min∀π∈Π{𝐶(π)}                      (8) 

Based on the above analysis and formulae, the aim of this paper is to propose an algorithm to 

find multiple global and local optima of a function, thus the user can have a better knowledge about 

different optimal solutions in the search space and when needed, the current solution may be 

switched to a more suitable one while still maintaining the optimal system performance [13]. 

III. Proposed Algorithm 
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A. Harmony Search Algorithm 

The basic process for HS is shown in Algorithm 1. 

Algorithm 1. Harmony search algorithm(HS) 

Initialize parameters 𝑟ℎ, 𝑟𝑝,𝑠ℎ, 𝑏𝑤; 

For (i =1 to 𝑠ℎ){ 

Select values within the range of the decision variable to generate a harmony solution; 

Put the solution into HM; 

} 

Repeat 

Set 𝜋𝑛𝑒𝑤 ← ϕ; 

For ( i =1 to n ){ 

Generate a random number 𝑟1; 

If (𝑟1 < 𝑟ℎ){ 

Select a value as the i-th decision variable of 𝜋𝑛𝑒𝑤  from the historical solution of HM; 

Generate a random number 𝑟2; 

If(𝑟2 < 𝑟𝑝)  

Adjust this decision variable according to the adjustment bandwidth bw to obtain a new decision 

variable; 

}Else{ 

Select a value as the i-th decision variable of 𝜋𝑛𝑒𝑤  within the range of values of the decision 

variable; 

} 

} 

According to the objective function, find the worst solution 𝜋𝑤𝑜𝑟𝑠𝑡 in HM; 

If (𝜋𝑛𝑒𝑤  is better than 𝜋𝑤𝑜𝑟𝑠𝑡) 

Replace 𝜋𝑤𝑜𝑟𝑠𝑡 with 𝜋𝑛𝑒𝑤 ; 

Until (the stopping condition is satisfied); 

Return; 

In HS algorithm, 𝑟ℎ is the rate of consideration of HM, and is the probability of taking a value 

from HM. 𝑟𝑝 is the rate of pitch adjustment, and is the probability of adjusting a value. 𝑠ℎ is the size 

of HM, bw is the bandwidth of adjustment. 𝑟1 and 𝑟2 are two random numbers in  range (0, 1).  

The algorithm consists of three main parts: (1) initialization of HM, (2) generation of a new solution, 

(3) update of HM.  

(1) Initialization of HM 

The initialization of HM is used to generate the initial solution set, and is the first stage of this 

evolutionary computing algorithm. In HS algorithm, the initial solution set of HM is randomly 

generated. In other words, 𝑠ℎ harmony solutions are randomly generated from the solution space 

with n variables, and are placed in HM. The form of HM is given in Equation (9): 

HM = [
π1

⋮

πsh

] = [
π1

1 ⋯ π1
n

⋮ ⋱ ⋮

πsh
1 ⋯ πsh

n
].           (9) 
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(2) Generation of a New Solution 

It involves two stages to generate a new solution: the construction stage and the adjustment 

stage. In the construction stage, a random number 𝑟1 is generated and compared with 𝑟ℎ. If 𝑟1 is 

smaller than 𝑟ℎ, a harmony variable is selected from HM, otherwise, a harmony variable is generated 

from the solution space. For each harmony variable obtained from HM, another random number 𝑟2 

is generated in the adjustment stage and compared with 𝑟𝑝. If 𝑟2 is smaller than 𝑟𝑝, the variable 

needs to be adjusted according to the adjustment bandwidth bw to obtain a new value. Otherwise, no 

adjustment is carried out. By performing this process n times, a new harmony 𝜋𝑛𝑒𝑤  is obtained.  

(3) Update of HM 

The new generated solution 𝜋𝑛𝑒𝑤  is evaluated based on the objective function of optimization. 

If  𝜋𝑛𝑒𝑤 is better than the worst solution 𝜋𝑤𝑜𝑟𝑠𝑡 in HM, then the solution 𝜋𝑤𝑜𝑟𝑠𝑡 is replaced by the 

new solution 𝜋𝑛𝑒𝑤 , otherwise, there is no update. 

B. Harmony Search with Iterative Optimization 

HS algorithm was originally developed for continuous functions of n variables, and it has the 

essence of continuity [11]. However the problem studied here involves decision variables with 

discrete characteristics. Therefore, a hybrid HS algorithm is proposed by modifying HS algorithm 

suitable for solving the considered problem. 

(1) Initialization of HM 

Due to the homogeneity of DMS, whereby all factories have the same number and sequence of 

machines with identical characteristics of processing, there is no need to optimize the order of 

factories, and they can be arranged in numerical order. Each solution in HM consists of two parts: 

The first part stores the number of jobs allocated by each factory in order, which displays the structure 

of the solution. The second part deals with the jobs and their arrangement within a given factory. 

Assigning different numbers of jobs to a factory and scheduling them can significantly influence the 

makespan of that factory. The two factors, job–factory allocation, and job ordering within that factory, 

thus influence the objectives of scheduling. These factors cannot be simply separated, and need to be 

studied as a whole. 

Assuming that there are 9 sequentially numbered jobs assigned to 3 distributed manufacturing 

factories, Table 1 shows an example of a HM. This example contains two harmony solutions 

represented as 𝜋1  and 𝜋2  respectively. For the second solution π2={{4,2,3}|{1,3,4,9},{2,5},{6, 7,8}}, 

the first part of the solution {4,2,3} indicates that there are 3 processing factories, and there are 4 jobs 

in the first factory,2 jobs in the second one and 3 jobs in the third one. The second part shows in detail 

that the first 4 jobs {1,3,4,9} are assigned to the first factory, the next 2 jobs {2,5} are assigned to the 

second one, and the last 3 jobs {6,7,8} are assigned to the third one.  

Table 1. An example of HM. 

solution  

structure 

job sequence 

Processing Factory 1 Processing Factory 2 Processing Factory 

3 

{3,3,3} {1,3,4} {2,5,9} {6,7,8} 

{4,2,3} {1,3,4,9} {2,5} {6,7,8} 

The quality of the initial solution set is important for the evolution of the algorithm because it 

determines whether the algorithm can quickly find the (approximately) optimal solution or not. The 

NEH algorithm [14] is an efficient and widely used heuristic algorithm to obtain an initial solution 
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for scheduling problems with makespan minimization. Its main idea is as follows: First, arrange the n 

jobs in descending order according to the processing times on machines of each job. Second, pick the 

first two jobs from the list and find the best sequence for these two jobs by calculating makespan for 

the two possible sequences, set i=2. Third, pick the job in the (i+1)-th position of the list and find the 

best sequence by placing it at all possible (i+1) positions in the partial sequence found previously. 

Repeat the third step till i=n. 

However, the problem considered in this paper is distributed permutation flowshop scheduling 

with multiple factories, the NEH algorithm cannot be directly used to obtain the initial solution set. 

Thus a distributed NEH algorithm (D-NEH) is constructed to obtain the initial solution set. It can be 

obtained by the following procedure: First, generate a job sequence by arranging the J jobs in 

descending order according to their processing times on the machines, and randomly generate the 

other (𝑠ℎ − 1) job sequences. Then, for each of the 𝑠ℎ  job sequences, assign the first F jobs to F 

factories (each factory contains one job), pick the next job from the job sequence, and find the best 

position by placing it in all possible positions in the partial sequence of each factory, repeat the pick–

find operation until all the jobs have been arranged to its proper factory and the best position in that 

factory. Finally, the initial solution set HM is generated.  

The D-NEH algorithm for initial solution generation is shown in Algorithm 2. 

Algorithm 2. D-NEH algorithm 

Initialize the parameter 𝑠ℎ;  

Generate the first job sequence 𝜋1 by arranging the J jobs in descending order according to their 

processing times on the machines; 

Randomly generate the other (𝑠ℎ − 1) job sequences; 

For (i = 1 to 𝑠ℎ ){ 

Assign the first F jobs to F factories ; 

For(j=F; j<J; j++){ 

Pick the job in the (j+1)-th position of the job sequence π𝑖 

Find the best sequence by placing it in all possible positions in the partial sequence of each 

factory; 

} 

} 

Return; 

(2) Generation of New Solution 

The process of generating new solutions can be divided into three stages. The first two stages 

are identical to those in HS algorithm, while the third one is an optimization stage. Unlike the case in 

which there is one solution sequence for only one factory, a DMS in the construction stage has at least 

two factories, each of which may not necessarily contain the same number of jobs. Therefore, before 

constructing a new solution sequence, the number 𝑡(0 < 𝑡 ≤ 𝑠ℎ) of different solution structures 

contained in HM should first be obtained. Then, based on the number of  jobs in each factory in the 

solution structure, if the random number 𝑟1(0 < 𝑟1 < 1) is smaller than the parameter 𝑟ℎ , a new 

solution is constructed by selecting jobs from HM, otherwise, the solution is constructed by selecting 

jobs from a range of possible values for each decision variable. It is clear that, in the stage of 

construction of the new solution, 𝑡 solutions are generated instead of one. The construction stage 

essentially combines the architecture of certain meta-heuristic algorithms. For example, it preserves 

the historical traces of past vectors, similarly to the taboo search algorithm [15]. It can have a varying 

probability of fitness from the beginning to the end of the calculation, similarly to the simulated 
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annealing algorithm [16]. At the same time, it can retain several vectors like genetic algorithms to 

enable the newly generated solution to evolve.  

The adjustment stage in this algorithm involves a certain variation based on the parameter 𝑟𝑝 

while the solution is obtained by considering convergence and divergence in the generation of the 

new solution by the algorithm. That is, the algorithm constructs the solution while performing 

mutation on each decision variable by relying on 𝑟𝑝. The main idea of this adjustment operation is 

that when it is executed, a decision variable is selected from the current solution sequence and 

exchanged with a randomly selected decision variable that is close to it. The solution with the best 

value of the objective function is used as the new solution. This idea is similar to that of the genetic 

algorithm, which creates a small random disturbance to avoid premature convergence.  

In the optimization stage, an iterative optimization algorithm (IOA) which is composed of RZ 

and PE operators [2] is used to further search the neighborhood of the candidate solution to find more 

and better solutions. RZ and PE algorithms are commonly used and relatively efficient among 

heuristic algorithms. The main idea of RZ algorithm is as follows: For a given job sequence with n 

jobs, select a job from the sequence and insert it into n possible positions to find the best sequence, 

Repeat this select-insert operation for the next job in the job sequence until all of the jobs be 

selected/optimized. The main idea of PE algorithm is as follows: For a given job sequence with n jobs, 

pick a job from it and exchange this job with other n-1 jobs to find the best sequence, Repeat this pair-

wise exchange operation for the next unpicked job until all of the jobs be picked/optimized. 

The IOA operator can be described as follows: For each new candidate solution 𝜋𝑖  , 𝑖 = 1,2, … , 𝑡, 

select one job from the sequence with the largest makespan value (if there is more than one sequences, 

select one randomly) and insert it into other possible positions to find the best sequence 𝜋𝑏𝑒𝑠𝑡
′ . For 

𝜋𝑏𝑒𝑠𝑡
′ , pick this job and exchange it with other jobs to find the best sequence 𝜋𝑏𝑒𝑠𝑡

′′ . Repeat the select–

insert and pairwise-exchange operations for the next unselected job until all the jobs have been 

optimized; at this point, the (approximately) optimal solution has been finally obtained. The IOA 

operator used to optimize a new candidate solution 𝜋𝑖 is presented in Algorithm 3.   

Algorithm 3. Iterative optimization algorithm (IOA) 

Set 𝜋𝑏𝑒𝑠𝑡 ←  𝜋𝑖 ; 

Repeat 

Find the factory with the largest value of makespan  

in 𝜋𝑏𝑒𝑠𝑡  and record it as 𝑓𝑚𝑎𝑥;  

Set global ← false; 

For (j=1 to 𝐽𝑓𝑚𝑎𝑥
){  

For (f =1 to F){ 

If ( f =𝑓𝑚𝑎𝑥) continue; 

Insert job j into factory f ; 

Apply the select–insert operation to optimize  

the job sequence of factory f and get the best sequence 𝜋𝑏𝑒𝑠𝑡
′ ; 

Apply the pairwise exchange operation to  

further optimize the job sequence of factory f and get the best solution 𝜋𝑏𝑒𝑠𝑡
′′ ; 

If(C(𝜋𝑏𝑒𝑠𝑡
′′ ) < C(𝜋𝑏𝑒𝑠𝑡)){ 

Replace 𝜋𝑏𝑒𝑠𝑡  with 𝜋𝑏𝑒𝑠𝑡
′′  ;  

Set global ← true; 

} 

If (global=true) break; 

} 
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If (global=true) break; 

} 

Until global=false;  

Set 𝜋𝑖 ←  𝜋𝑏𝑒𝑠𝑡 ; 

Return; 

After the construction and adjustment stages as well as the optimization of the candidate 

solution, 𝑡  new candidate solutions 𝜋𝑛𝑒𝑤 = {𝜋1, 𝜋2, … , 𝜋𝑡}  are generated, and are sorted in 

descending order according to the value of the objective function to facilitate the subsequent update 

of HM.  

The proposed algorithm to generate and optimize new solutions is detailed in Algorithm 4. 

Algorithm 4. New solution generation algorithm (NSGA) 

Initialize parameters 𝑟ℎ, 𝑟𝑝, 𝑏𝑤; 

Set 𝜋𝑛𝑒𝑤 ← ϕ ; 

Obtain the total number of solution structures 𝑡 of HM; 

For (i =1 to 𝑡){ 

Let the i-th solution structure be the structure of the  

new solution 𝜋𝑖; 

Set 𝜋𝑖 ← ϕ; 

For (j=1 to J ){ 

Generate two random numbers 𝑟1 and 𝑟2; 

If (𝑟1 < 𝑟ℎ){ 

Select a new job from column 𝑗 in HM and  

insert it into the j-th position of the new solution 𝜋𝑖; 

}Else{ 

Select a new job from the job set and insert it  

into the j-th position of the new solution 𝜋𝑖; 

      } 

If (𝑟2 < 𝑟𝑝){ 

Adjust the job to within the range (max{0, j- 

bw}, min{ j+bw, J} ); 

} 

} 

Applying the IOA operator to optimize the new solution 𝜋𝑖 ; 

Set 𝜋𝑛𝑒𝑤 ← 𝜋𝑛𝑒𝑤 ∪ 𝜋𝑖; 

} 

Sort the 𝑡 new candidate solutions in descending order according to values of the objective function, 

and obtain the new solution set 𝜋𝑛𝑒𝑤 ={𝜋1, 𝜋2, … , 𝜋𝑡}; 

Return; 

In the NSGA algorithm, the IOA operator is used to further optimize the candidate solutions for 

better ones. This not only increases the diversity of solutions in HM, but also enables the algorithm 

to expand the search space, and find more and better solutions. Therefore, this algorithm has a good 
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ability to search the solution space Π  and find more (approximately) optimal solutions while 

maintaining their diversity. 

(3) Update of HM 

The update operation enables the algorithm to obtain more and better solutions, which can guide 

it to search for a better solution space and accelerate the convergence of the solution. Therefore, the 

update operation plays an important role in maintaining high-quality solutions and ensuring the 

convergence of the algorithm. 

According to the objective function, the main idea of the update operation is as follows: For each 

new generated harmony solution 𝜋𝑖  (𝑖 = 1,2, … , 𝑡)  and the worst harmony solution 𝜋ℎ(ℎ =

1,2, … , 𝑠ℎ) found in HM, if 𝜋ℎ is worse than 𝜋𝑖, then replace 𝜋ℎ with 𝜋𝑖.  

The update algorithm is detailed in Algorithm 5. 

Algorithm 5. Update algorithm 

For (i =1 to t) { 

   Set pos ← -1; ms ← -1; 

For (h =1 to 𝑠ℎ){ 

If (ms < C(𝜋ℎ)){ 

Set pos ← h, ms ← 𝜋ℎ; 

} 

} 

If (pos ≠ −1 and ms > C(π𝑖)){ 

Replace 𝜋𝑤𝑜𝑟𝑠𝑡 with π𝑖; 

} 

} 

Return; 

(4) Algorithm Description 

The algorithm proposed in this paper is a hybrid meta-heuristic based on HS and iterative 

optimization, called IOHS. Following the generation of the initial solution set, the NSGA algorithm 

is used in this algorithm to construct new solutions. While constructing a new solution, it may select 

a new job from HM or a job set based on the parameter 𝑟ℎ, and adjusts it to avoid local convergence 

based on the parameter 𝑟𝑝 . The IOA operator is used to further optimize the quality of the new 

solution and obtain the final candidate solution. The worst solutions in HM are replaced if they are 

poorer than the candidate solutions. The construction, optimization, and update operations are 

repeated until the algorithm satisfies its stopping condition. And finally, the solutions that satisfying 

the multimodal optimization are output. 

IOHS algorithm is shown in Algorithm 6.  

Algorithm 6. IOHS algorithm 

Generate the initial solution set of HM by using D-NEH; 

Repeat 

Construct a new solution set 𝜋𝑛𝑒𝑤 = {𝜋1, 𝜋2, … , 𝜋𝑡} by  

using the NSGA algorithm; 

Use the Update algorithm to update HM; 

Until (the stopping condition is satisfied) 
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Calculate the objective function values based on Equation (7); 

Output the solutions satisfying multimodal optimization based on Equation (8); 

Return; 

IV. Simulations 

In this section, the test dataset used to assess the performance of the proposed method is first 

described. Then Statgraphics is used to analyze the parameters 𝑟ℎ and 𝑟𝑝, and finally the simulations 

are detailed. All the algorithms were coded in Java and executed on a Windows PC with an Intel®  i5 

core, 2.5 GHz CPU, and 4 GB RAM. 

A. Test Dataset 

The Taillard benchmark [17] has been widely used in scenarios involving single and multiple 

manufacturing factories. However, when the number of factories increases in the application of a 

distributed manufacturing system, the average number of jobs assigned to each factory may be very 

small. For example, if there exists a DMS consisting of 10 factories and 200 jobs, the average job 

allocation for each factory is only 10. Although the solution space is huge, the size of the problem for 

each factory is relatively small. Therefore, to faithfully simulate job allocation in distributed scenarios, 

a new dataset is generated which is based on the main idea of the data generation algorithm 

developed by Taillard.  

The stopping condition of the algorithm is described in Section 5.2. The generated dataset was 

as follows: The processing time of each job on M machines was randomly generated in the interval 

[5, 99]. The numbers of jobs J were set to 60, 150, 330, 510, and 600. The numbers of factories F were 

set to 2, 3, 5, and 10, respectively. The numbers of machines M in each factory were set to 5, 10, and 

20, respectively.  

B. Parameter Analysis 

The parameter 𝑠ℎ represents the size of HM, i.e., the number of solutions in HM. Based on the 

total number of jobs to be sorted, 𝑠ℎ is set to 0.2 × J. The parameter 𝑏𝑤 is used to increase the range 

of the search space, prevent the algorithm from prematurely converging, and improve the probability 

of finding a better solution. In this paper, 𝑏𝑤 is set as 𝑏𝑤 = 𝐽 × 0.05. To evaluate the algorithm fairly 

based on the number of machines and the average number of jobs per factory, the runtime of all the 

algorithms considered here are set as  𝑇 = 𝑀 × (𝐽 ÷ 𝐹) × 𝑡 × 0.5 ms [18], where 𝑀 is the number of 

machines in each factory, J is the total number of jobs to be processed, F is the number of factories, 

and 𝑡 was set to 120.  

The rates of consideration 𝑟ℎ  and pitch adjustment 𝑟𝑝  are two important parameters in HS 

algorithm. 𝑟ℎ determines the probability of randomly generating a solution based on the historical 

variables in HM. As HM stores the best solutions obtained by the algorithm at any given time, the 

algorithm tends to find more optimized solutions (leading to faster convergence) when the value of 

𝑟ℎ increases. 𝑟𝑝 determines the probability of adjusting the values selected from among the historical 

values in HM, which means that it determines the probability of adjusting some vectors of a solution 

(probability of divergence). As the value of 𝑟𝑝 increases, the algorithm tends to generate solutions 

by selecting from global variables, that is, by expanding the search range (divergence) to find more 

optimized solutions. To determine appropriate values of 𝑟ℎ and 𝑟𝑝, they were tested with different 

values: 𝑟ℎ  was set to 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95, while 𝑟𝑝 was set to 0.10, 0.15, 0.20, 0.25, 0.30, 

and 0.35. To test the parameter values fairly and quickly, M is set to 10, J to 330, and F to 5. For each 

parametric combination, a total of 20 instances were generated, each of which was executed three 

times, and the minimum value of the objective function was obtained. The average values of each 

parameter combination are shown in Table 2. 

Table 2. Comparison of parameter combinations. 
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𝑟ℎ, 𝑟𝑝 MSave 𝑟ℎ, 𝑟𝑝 MSave 𝑟ℎ, 𝑟𝑝 MSave 

0.7, 0.1 4663  0.8, 0.1 4648  0.9, 0.1 4614  

0.7, 0.15 4659  0.8, 0.15 4658  0.9, 0.15 4626  

0.7, 0.2 4675  0.8, 0.2 4665  0.9, 0.2 4641  

0.7, 0.25 4679  0.8, 0.25 4665  0.9, 0.25 4652  

0.7, 0.3 4689  0.8, 0.3 4679  0.9, 0.3 4654  

0.7, 0.35 4687  0.8, 0.35 4680  0.9, 0.35 4663  

0.75, 0.1 4651  0.85, 0.1 4627  0.95, 0.1 4601  

0.75, 0.15 4659  0.85, 0.15 4644  0.95, 0.15 4614  

0.75, 0.2 4666  0.85, 0.2 4652  0.95, 0.2 4627  

0.75, 0.25 4672  0.85, 0.25 4661  0.95, 0.25 4636  

0.75, 0.3 4678  0.85, 0.3 4667  0.95, 0.3 4648  

0.75, 0.35 4689  0.85, 0.35 4673  0.95, 0.35 4651  

The analysis of the parameter combinations listed in Table 2 yielded the results shown in Figure 

1 to Figure 3. 
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Figure 1. Multivariate analysis(𝑟ℎ and 𝑟𝑝). 
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Figure 2. Analysis of parameter 𝑟ℎ. 
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Figure 3. Analysis of parameter 𝑟𝑝. 

Figure 1 shows the results of a multivariate analysis of variance. As the value of 𝑟ℎ increased 

and that of 𝑟𝑝 decreased, the solution obtained by the algorithm improved. This indicates that the 

larger the value of 𝑟ℎ was and the smaller the value of 𝑟𝑝 was, the better was the performance of 

the algorithm. It is clear from Figure 2 that when 𝑟ℎ=0.95 and 𝑟𝑝=0.1, the algorithm obtained the best 

solution. 

Figure 2 shows the results of a one-way analysis of variance for 𝑟ℎ. Clearly, as the value of 𝑟ℎ 

increased, the solution obtained by the algorithm improved. When 𝑟ℎ  was 0.95, the algorithm 

achieved the best solution. 

Figure 3 shows the results of a one-way analysis of variance for 𝑟𝑝, from which it is clear that as 

the value of 𝑟𝑝 decreased, the solution obtained by the algorithm improved. When 𝑟𝑝 was 0.1, the 

algorithm obtained the best solution. 

It can be concluded that setting 𝑟ℎ = 0.95 and 𝑟𝑝 = 0.10 can enable IOHS algorithm to obtain 

the best value of makespan.  

C. Experimental Verification 

(1) Comparison of HS and IOHS 

HS and IOHS algorithm are compared from three perspectives, i.e., job, factory and machine, to 

show whether the optimization operator (named IOA) of IOHS algorithm gives the most contribution 

or not. The average makespan obtained by HS and IOHS algorithms are shown in Table 3. 

Table 3. Comparison of HS and IOHS. 

J,M,F 
MSave 

J,M,F 
MSave 

J,M,F 
MSave 

HS IOHS HS IOHS HS IOHS 

60, 2, 5 1847  1774  150, 5, 20 3285  2858  510, 3, 10 10483  9442  

60, 2, 10 2318  2119  150, 10, 5 1203  965  510, 3, 20 11782  10365  

60, 2, 20 3102  2871  150, 10, 10 1618  1333  510, 5, 5 6049  5528  

60, 3, 5 1349  1237  90, 10, 20 2333  2009  510, 5, 10 6748  5837  

60, 3, 10 1751  1587  330, 2, 5 9159  8866  510, 5, 20 7913  6789  

60, 3, 20 2485  2284  330, 2, 10 10007  9230  510, 10, 5 3351  2834  

60, 5, 5 937  817  330, 2, 20 11374  10195  510, 10, 10 3893  3200  

60, 5, 10 1308  1166  330, 3, 5 6314  5932  510, 10, 20 4846  4053  

60, 5, 20 1977  1810  330, 3, 10 7078  6322  600, 2, 5 16347  15977  

60, 10, 5 626  525  330, 3, 20 8237  7223  600, 2, 10 17485  16365  

60, 10, 10 962  838  330, 5, 5 4020  3615  600, 2, 20 19138  17279  
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60, 10, 20 1593  1450  330, 5, 10 4651  3974  600, 3, 5 11205  10692  

150, 2, 5 4373  4214  330, 5, 20 5667  4857  600, 3, 10 12137  11008  

150, 2, 10 4907  4477  330, 10, 5 2280  1881  600, 3, 20 13560  11979  

150, 2, 20 5923  5293  330, 10, 10 2787  2264  600, 5, 5 7060  6478  

150, 3, 5 3037  2819  330, 10, 20 3634  3039  600, 5, 10 7806  6819  

150, 3, 10 3571  3137  510, 2, 5 14136  13810  600, 5, 20 9002  7745  

150, 3, 20 4502  3972  510, 2, 10 14994  13997  600, 10, 5 3863  3295  

150, 5, 5 1998  1733  510, 2, 20 16599  14947  600, 10, 10 4464  3687  

150, 5, 10 2465  2102  510, 3, 5 9528  9057  600, 10, 20 5437  4529  

Similarly, by conducting parameter analysis on the data in the Table 3, the following results can 

be drawn which are shown from Figure 4 to Figure 6. 
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Figure 4. Multivariate analysis of variance for job and algorithm. 

Seen from Figure 4, it is obvious that as the number of jobs increases, the objective value obtained 

by the algorithm becomes larger and larger. Under the same number of jobs, IOHS algorithm 

outperforms HS algorithm.  
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Figure 5. Multivariate analysis of variance for factory and algorithm. 

Figure 5 shows that, as the number of factories increases, the number of jobs in each factory 

becomes smaller resulting in the fact that the objective value obtained by the algorithm becomes 

smaller and smaller. Under the same number of factories, IOHS algorithm outperforms HS algorithm. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/


 14 of 18 

 

Machine

5100

5500

5900

6300

6700

7100

7500

M
ak

e
s

p
a

n
5 10 20

Algorithm
HS
IOHS

 

Figure 6. Multivariate analysis of variance for machine and algorithm. 

Seen from Figure 6, it is obvious that as the number of machines increases, the objective value 

obtained by the algorithm becomes larger and larger. Under the same number of machines, IOHS 

algorithm outperforms HS algorithm. 

In conclusion, IOHS algorithm is better than HS algorithm by using the optimization operator, 

thus the IOA operator gives a remarkable contribution to IOHS algorithm. 

(2) Algorithms comparison 

Many effective meta-heuristic algorithms have been developed in research, including PSO [19], 

DE [20], and CMA-ES [21], that can be compared with the proposed IOHS algorithm in the context 

of the DPFSP. However, only the iterative greedy meta-heuristic algorithm with a bounded search 

strategy(BSIG) [22] and the improved Jaya algorithm(Jaya)[23] are suitable for solving the problem 

considered here. They are implemented along with the proposed algorithm on a new dataset, with 

the aim of multimodal optimization. BSIG  and the improved Jaya algorithms used the stopping 

condition described in Section 5.2. The average values of makespan obtained by these algorithms are 

shown in Table 4. 

Table 4. Comparison of algorithms. 

J,F,M 
MSave 

J,F,M 
MSave 

J,F,M 
MSave 

BSIG Jaya IOHS BSIG Jaya IOHS BSIG Jaya IOHS 

60,2,5 1828  1782  1774  150,5,20 3004  2887  2858  510,3,10 9719  9503  9442  

60,2,10 2249  2144  2119  150,10,5 972  992  965  510,3,20 10761  10445  10365  

60,2,20 3024  2897  2871  150,10,10 1342  1365  1333  510,5,5 5640  5556  5528  

60,3,5 1248  1254  1237  90,10,20 2024  2044  2009  510,5,10 6085  5912  5837  

60,3,10 1613  1618  1587  330,2,5 8941  8867  8866  510,5,20 7084  6853  6789  

60,3,20 2318  2321  2284  330,2,10 9451  9244  9230  510,10,5 2940  2881  2834  

60,5,5 828  841  817  330,2,20 10575  10217  10195  510,10,10 3354  3258  3200  

60,5,10 1182  1193  1166  330,3,5 6036  5939  5932  510,10,20 4234  4094  4053  

60,5,20 1833  1845  1810  330,3,10 6567  6363  6322  600,2,5 16042  15980  15977  

60,10,5 534  544  525  330,3,20 7530  7277  7223  600,2,10 16647  16399  16365  

60,10,10 855  867  838  330,5,5 3713  3641  3615  600,2,20 17773  17379  17279  

60,10,20 1472  1484  1450  330,5,10 4181  4028  3974  600,3,5 10804  10707  10692  

150,2,5 4270  4215  4214  330,5,20 5081  4894  4857  600,3,10 11299  11065  11008  

150,2,10 4655  4482  4477  330,10,5 1973  1920  1881  600,3,20 12389  12062  11979  

150,2,20 5544  5295  5293  330,10,10 2386  2308  2264  600,5,5 6601  6512  6478  

150,3,5 2897  2828  2819  330,10,20 3180  3072  3039  600,5,10 7065  6894  6819  
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150,3,10 3325  3176  3137  510,2,5 13899  13811  13810  600,5,20 8065  7808  7745  

150,3,20 4164  4008  3972  510,2,10 14225  14006  13997  600,10,5 3402  3343  3295  

150,5,5 1823  1765  1733  510,2,20 15393  15016  14947  600,10,10 3871  3763  3687  

150,5,10 2225  2141  2102  510,3,5 9160  9073  9057  600,10,20 4742  4580  4529  

Table 4 shows that IOHS algorithm obtained the best results. For further analysis, the 

performance of these algorithms based on the average relative percentage deviation (ARPD) are 

compared, as defined in Equation (10): 

ARPD = ∑

𝐹𝑖(𝐻)
𝐵𝑖

⁄ − 1

𝑁

𝑁

𝑖=1

 × 100%          (10) 

where 𝑁 is the number of instances of the same size, 𝐹𝑖(𝐻) is the makespan value obtained by 

solving instance 𝑖 by using algorithm 𝐻, and 𝐵𝑖  is the minimum value of makespan obtained by 

solving instance i by using all the other algorithms. The larger the value of the ARPD was, the worse 

was the average performance of the algorithm. Table 4 lists the values of ARPD obtained by BSIG, 

Jaya, and IOHS algorithms. 

Table 5 shows that BSIG algorithm delivered the worst performance, and that IOHS algorithm 

was slightly better than Jaya algorithm. To facilitate comparison, and visually display the trends of 

the solutions to the DPFSP obtained by different algorithms at different scales, the results of the multi-

factor ANOVA are shown from Figure 7 to Figure 9. 

Table 5. Comparison of algorithms based on ARPD. 

J,F,M 
ARPD (%) 

J,F,M 
ARPD (%) 

J,F,M 
ARPD (%) 

BSIG Jaya IOHS BSIG Jaya IOHS BSIG Jaya IOHS 

60,2,5 5.04  2.37  1.12  150,5,20 0.90  0.19  0.06  510,3,10 1.15  0.53  0.16  

60,2,10 7.69  2.15  0.37  150,10,5 3.12  0.23  0.06  510,3,20 0.79  0.49  0.18  

60,2,20 0.87  0.24  0.10  150,10,10 2.15  0.21  0.08  510,5,5 1.77  0.88  0.29  

60,3,5 2.14  0.13  0.04  150,10,20 1.52  0.19  0.07  510,5,10 1.43  0.66  0.18  

60,3,10 2.32  0.24  0.10  330,2,5 4.14  1.60  0.35  510,5,20 0.70  0.44  0.16  

60,3,20 1.61  0.17  0.06  330,2,10 2.31  0.63  0.20  510,10,5 0.82  0.54  0.20  

60,5,5 3.67  0.22  0.07  330,2,20 1.09  0.51  0.20  510,10,10 0.86  0.56  0.26  

60,5,10 2.78  0.26  0.09  330,3,5 2.62  0.84  0.27  510,10,20 0.56  0.35  0.15  

60,5,20 2.01  0.18  0.05  330,3,10 2.04  0.62  0.20  600,2,5 1.23  0.59  0.21  

60,10,5 4.72  0.25  0.09  330,3,20 1.10  0.52  0.19  600,2,10 1.04  0.55  0.18  

60,10,10 3.87  0.21  0.05  330,5,5 3.18  0.87  0.30  600,2,20 0.66  0.41  0.17  

60,10,20 2.66  0.17  0.07  330,5,10 2.28  0.76  0.28  600,3,5 1.31  0.83  0.30  

150,2,5 1.64  0.28  0.07  330,5,20 1.24  0.57  0.21  600,3,10 1.17  0.64  0.24  

150,2,10 1.33  0.87  0.28  330,10,5 1.31  0.59  0.20  600,3,20 0.69  0.49  0.20  

150,2,20 1.06  0.79  0.26  330,10,10 1.00  0.50  0.18  600,5,5 1.58  0.78  0.30  

150,3,5 0.62  0.39  0.15  330,10,20 0.99  0.37  0.12  600,5,10 1.29  0.71  0.24  

150,3,10 0.66  0.30  0.07  510,2,5 1.56  0.68  0.23  600,5,20 0.79  0.49  0.17  

150,3,20 0.55  0.19  0.07  510,2,10 1.29  0.66  0.27  600,10,5 1.45  0.77  0.25  

150,5,5 1.94  0.40  0.11  510,2,20 0.78  0.50  0.17  600,10,10 1.27  0.64  0.23  

150,5,10 1.44  0.22  0.07  510,3,5 1.39  0.55  0.13  600,10,20 0.67  0.41  0.15  
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Figure 7. The multi-factor ANOVA(Job and algorithm). 

Figure 7 shows that as the number of jobs increased, the values of the objective function obtained 

by IOHS and Jaya algorithms both slightly increased, while the values obtained by BSIG algorithm 

decreased. This is because as the number of jobs increased, BSIG algorithm expanded its search range 

and found better solutions. However, owing to its significant randomness in searching for the 

(approximately) optimal solution, BSIG algorithm still delivered the worst results. It is clear that 

IOHS algorithm delivered the best performance of the three algorithms, regardless of the number of 

jobs. 
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Figure 8. The multi-factor ANOVA(Factory and algorithm). 

Figure 8 shows that as the number of factories increased, the values of the objective function 

obtained by IOHS and Jaya algorithms both exhibited a downward trend, while those obtained by 

BSIG algorithm fluctuated. This is because as the number of factories increased, the number of jobs 

per factory decreased, and this enabled IOHS and Jaya algorithms to find better solutions. It is clear 

that IOHS algorithm delivered the best performance of the three algorithms, regardless of the number 

of factories. 
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Figure 9. The multi-factor ANOVA(Machine and algorithm). 

Figure 9 shows that as the number of machines increased, the values of the objective function 

obtained by all three algorithms exhibited a decreasing trend. This is because the processing time for 
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each job increased with the number of machines. It is clear that IOHS algorithm delivered the best 

performance of the three algorithms, regardless of the number of machines. 

An analysis of the results shown in Figure 7 to Figure 9 yields the following conclusions: 

• Although the ARPD values obtained by BSIG algorithm fluctuated, they generally showed a 

downward trend. The ARPD values obtained by Jaya and IOHS algorithms both slightly 

decreased. 

• Jaya algorithm was superior to BSIG algorithm, while the results obtained by IOHS algorithm were 

slightly better than those of Jaya algorithm. 

• The results obtained by IOHS algorithm, shown in Table 5 and the corresponding figures, reveal 

that it delivered the best and most stable performance in solving the DPFSPs at all scales. 

In summary, the proposed IOHS algorithm is an efficient and effective method, and it should be 

used to solve DPFSPs. 

V. Conclusion 

This study analyzed distributed permutation flowshop scheduling, provided a detailed 

description of the problem, and proposed a hybrid harmony search for multimodal optimization. The 

proposed algorithm initializes HM, continuously constructs and adjusts new solutions while 

optimizing them, and updates HM until the stopping condition is met. A comparison between this 

method, and two classic and recently developed algorithms showed that it is suitable for solving 

DPFSPs. 

The development and empirical evaluations of the algorithm reported in this paper also reveal 

some fruitful directions for future research in the scheduling field. First, researchers should seek to 

enhance the capability of the proposed algorithm to search large-scale problem spaces. Second, as 

novel kinds of bionic algorithms, such as PSO, DE, and CMA-ES, are developed, devising effective 

and efficient algorithms for the DPFSP should persist as the major aim of research in the area. Third, 

the performance of the algorithms considered in this study should be compared by considering other 

criteria than those provided here, particularly criteria involving different production environments 

with varying purposes, on various DMS-related scheduling problems. The DPFSP that involves more 

realistic issues, such as no wait, parallel batching, and set-up and transmission times, is a more 

complex problem that is commonly encountered in production environments. Therefore, assessing 

the performance of the relevant methods on such scheduling problems is important in future 

research. Finally, researchers should consider a number of problems in different production 

environments, including the flowshop, open-shop, and job-shop. This is a promising opportunity to 

explore the development and application of scheduling theory in DMS and services. 
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