
Article Not peer-reviewed version

A Hybrid Harmony Search for

Distributed Permutation Flowshop

Scheduling with Multimodal

Optimization

Hong Shen , Yuwei Cheng , Yazhi Li *

Posted Date: 3 July 2025

doi: 10.20944/preprints202507.0161.v1

Keywords: distributed permutation flowshop; harmony search; iterative optimizing operator; multimodal

optimization; makespan

Preprints.org is a free multidisciplinary platform providing preprint service

that is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This open access article is published under a Creative Commons CC BY 4.0

license, which permit the free download, distribution, and reuse, provided that the author

and preprint are cited in any reuse.

https://sciprofiles.com/profile/1845585
https://sciprofiles.com/profile/4556593

Article

A Hybrid Harmony Search for Distributed

Permutation Flowshop Scheduling with Multimodal

Optimization

Hong Shen 1, Yuwei Cheng 1 and Yazhi.Li 2,*

1 School of Computer Science, Nanjing Audit University, Nanjing, China
2 School of Software Engineering, Jinling Institute of Technology, Nanjing, China

* Correspondence: liyazhi@jit.edu.cn

Abstract

Multimodal optimization is to find multiple global and local optimal solutions of a function, rather

than a single solution. This study proposes a harmony search algorithm with iterative optimizing

operators to solve the NP-hard distributed permutation flowshop scheduling for multimodal

optimization. First, the initial solution set is constructed by using a distributed NEH operator. Second,

after generating new candidate solutions, efficient iterative optimizing operators are applied to

optimize these solutions and the worst solutions in the harmony memory(HM) are replaced. The

proposed operations are repeated until the stopping condition of the algorithm is met. Finally, the

solutions satisfying multimodal optimization in the harmony memory are obtained. The constructed

method is compared with two meta-heuristics, the iterative greedy meta-heuristic algorithm with a

bounded search strategy and the improved Jaya algorithm, on 600 newly generated datasets. The

results show that it runs stably and outperforms the two algorithms compared.

Keywords: distributed permutation flowshop; harmony search; iterative optimizing operator;

multimodal optimization; makespan

I. Introduction

Compared to the single workshop’s processing mode of traditional manufacturing system, the

distributed manufacturing system (DMS) fully utilizes the resources in the workshops of distributed

factories. By realizing effective allocation of raw materials, optimal combination of productivity,

scientific and reasonable resource sharing etc., the goal of quickly achieving product manufacturing

at reasonable costs in DMS is fulfilled.

Distributed scheduling plays a crucial role in DMS, it has the characteristics of large-scale,

nonlinear, strong constraints, multi-objective, uncertainty, and has always been a hot topic in the

fields of optimization and manufacturing. Its scientific optimization directly affects the efficiency and

long-term development of production enterprises. Therefore, developing efficient optimization

scheduling algorithms is one of the keys for improving the production efficiency, saving energy,

reducing emissions, decreasing production costs, and solving the bottleneck problem.

In DMS, the distributed flowshop scheduling problem (DFSP) is a very important problem. Due

to the presence of multiple factories, the DFSP encounters many challenges, such as the coupling

relationship between processing factories, allocation of machines within the factory, and sorting of

jobs to be processed [1]. Compared with the traditional NP-hard flowshop scheduling problem in a

single factory, the DFSP has a larger solution space, and involves greater difficulty in arriving at the

optimal solution. It imposes more stringent requirements on the accuracy and speed of the algorithm.

Therefore, research on the problem has theoretical and applicative importance.

Many researchers have proposed various algorithms for solving the DFSP in different scenarios

and under different constraints by focusing on different objectives of multimodal optimization. Li

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 2 of 18

and Wu [2] proposed Heuristic for no-wait flow shops with makespan minimization based on total

idle-time increments. Gogos [3] addressed the DFSP by using constraint programming and its special

scheduling features for makespan minimization. Hao, Li, Du, Song, Duan and Zhang [4] studied the

distributed hybrid flowshop scheduling (DHFS) problem for makespan minimization and established

a mathematical model. Geng and Li [5] studied an improved hyperplane-assisted evolutionary

algorithm to solve a distributed mixed flowshop scheduling problem in a glass manufacturing system

with two objectives: minimizing makespan and the total energy consumption. Zhang and Geng et al.

[6] proposed an effective Q-learning-based multi-objective particle swarm optimization algorithm to

solve the DFSP problem, with the total completion time and total energy consumption minimization.

Bai and Liu et al. [7] studied a heterogeneous distributed permutation flowshop scheduling problem

to minimize the makespan. Zhao, Zhuang, Wang and Dong [8] investigated the distributed no-idle

permutation flowshop scheduling problem (DNIPFSP) . The makespan and total tardiness are

optimized simultaneously considering the variety of scales of the problems with introducing an

improved iterative greedy (IIG) algorithm. Li, Pan, Sang, Jing, Framiñán and Li [9] addressed a

distributed permutation flowshop scheduling problem with part of jobs subject to a common

deadline, established a mathematical model and proposed a self-adaptive population-based iterated

greedy algorithm with the objective of minimizing the total completion time. Song,Lin and Chen [10]

studied the distributed assembly permutation flowshop scheduling problem with sequence

dependent setup times. An effective two-stage heuristic was proposed with the optimization

objective of minimizing makespan.

The harmony search (HS) algorithm, proposed by Geem, Kim, and Loganathan [11], is a simple

but effective meta-heuristic. It is based on the processes involved in musical performance when a

composer searches for a better musical harmony, such as during jazz improvisation. Jazz

improvisation seeks to find musically pleasing harmonies as determined by an aesthetic standard,

just as the process of optimization seeks to find a global optimal solution as determined by an

objective function. The pitch of each musical instrument determines the overall aesthetic quality, just

as the value of the objective function is determined by the set of values assigned to each decision

variable. HS has been widely applied to various optimization problems in science and engineering,

including tour planning, Internet routing, and the design of water networks and hearing aids [12].

The distributed permutation flowshop scheduling problem(DPFSP) is considered in this study,

as it is one of the most widely studied problems in the field of scheduling. Because HS is a simple but

effective meta-heuristic, a hybrid algorithm based on HS is proposed to solve this problem for

multimodal optimization with its objective of makespan minimization.

The remaining part of this paper is organized as follows: Section II provides an objective of

minimizing makespan and a mathematical model for the considered problem. Combined with

iterative optimization algorithms, Section III presents a hybrid harmony search algorithm, named

IOHS. Section IV conducts simulation experiments based on experimental data to verify the

effectiveness of the algorithm, and compares its performance with other algorithms. Section V

provides conclusions and prospects for future research contents and directions.

II. Problem Description

The DPFSP can be described as follows: assume that a batch of sequentially numbered jobs are

first assigned to some distributed homogeneous factories, and then, the jobs in each factory are

scheduled and processed sequentially on the machines. The goal is to provide the (approximately)

optimal job–factory allocation and sequence of jobs within the factory for multimodal optimization.

The main assumptions are as follows:

• All jobs are ready when processing starts.

• The number of jobs and their processing times on machines are known, and are non-negative.

• Each job can be processed only on one machine in a given factory at a given time, and cannot

be pre-empted.

• Each machine can process only one job at a time, and completes all jobs in sequence.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 3 of 18

• The preparation time for each job is sequence independent, and is included in its processing

time.

The symbols and definitions used in this paper are as follows:

F: Number of factories.

f : Index for factories, 𝑓 = {1,2, … , 𝐹}.

M: Number of machines in each factory.

m: Index for machines, 𝑚 = {1,2, … , 𝑀}.

𝐽𝑓: Number of jobs in factory f.

J: Total number of jobs, 𝐽 = 𝐽1 + 𝐽2 + ⋯ + 𝐽𝐹.

𝑗𝑓,𝑛: The n-th job assigned to factory f, 𝑛 = {1,2, … , 𝐽𝑓}.

𝑝𝑓,𝑛,𝑚: The processing time of the n-th job in factory f on machine m.

A solution π can then be given by Equation (1):

π = {{𝐽1, 𝐽2, … , 𝐽𝐹}|{𝑗1,1, 𝑗1,2, … , 𝑗1,𝐽1
}, {𝑗2,1, 𝑗2,2, … , 𝑗2,𝐽2

}, … , {𝑗𝐹,1, 𝑗𝐹,2, … , 𝑗𝐹,𝐽𝐹
}} (1)

Equation (1) shows that π is composed of two parts: The first part shows the number of jobs

assigned to each factory while the second part displays the sequence of jobs processed in each factory.

The formulae for calculating the completion time of each job on the machines in the factory are

given by Equations (2)–(5):

𝐶(𝑗𝑓,1, 1) = 𝑝𝑓,1,1 (2)

𝐶(𝑗𝑓,1, 𝑚) = ∑ 𝑝𝑓,1,𝑘
𝑚
𝑘=1 (3)

𝐶(𝑗𝑓,𝑛, 1) = ∑ 𝑝𝑓,𝑡,1

n

𝑡=1

 (4)

𝐶(𝑗𝑓,𝑛, 𝑚) = max{𝐶(𝑗𝑓,𝑛, 𝑚 − 1) , 𝐶(𝑗𝑓,𝑛−1, 𝑚)} + 𝑝𝑓,𝑛,𝑚 (5)

Equation (2) shows the completion time of the first job 𝑗𝑓,1 on the first machine in each factory.

This is the processing time for this job on the given machine. Equation (3) shows the completion time

of the first job 𝑗𝑓,1 on the m-th machine in each factory, and this is the sum of the processing times of

the job from the first machine to the m-th machine. Equation (4) shows the completion time of the n-

th job 𝑗𝑓,𝑛 on the first machine in each factory. This is the sum of processing times of the previous n

jobs on the first machine. Equation (5) shows the completion time of the n-th job 𝑗𝑓,𝑛 on the m-th

machine in each factory. This is the sum of processing times of job 𝑗𝑓,𝑛 on the m-th machine, and is

the maximum value of the completion time of job 𝑗𝑓,𝑛 on the (m-1)-th machine, or the completion

time of job 𝑗𝑓,𝑛−1 on the m-th machine:

𝐶(𝑓) = 𝐶 (𝑗𝑓,𝐽𝑓
, 𝑀) (6)

𝐶(π) = max{𝐶(1), 𝐶(2), … , 𝐶(𝐹)} (7)

The makespan of factory f is the completion time of the last job 𝑗𝑓,𝐽𝑓
 on the last machine 𝑀,

and is shown in Equation (6). The makespan for collaborative processing in DMS is the maximum

value among 𝐶(1), 𝐶(2), … , 𝐶(𝐹), and is shown in Equation (7).

The solution π∗ in the solution space Π that has the minimum makespan, can be depicted by

Equation (8):

𝐶(π∗) = min∀π∈Π{𝐶(π)} (8)

Based on the above analysis and formulae, the aim of this paper is to propose an algorithm to

find multiple global and local optima of a function, thus the user can have a better knowledge about

different optimal solutions in the search space and when needed, the current solution may be

switched to a more suitable one while still maintaining the optimal system performance [13].

III. Proposed Algorithm

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 4 of 18

A. Harmony Search Algorithm

The basic process for HS is shown in Algorithm 1.

Algorithm 1. Harmony search algorithm(HS)

Initialize parameters 𝑟ℎ, 𝑟𝑝,𝑠ℎ, 𝑏𝑤;

For (i =1 to 𝑠ℎ){

Select values within the range of the decision variable to generate a harmony solution;

Put the solution into HM;

}

Repeat

Set 𝜋𝑛𝑒𝑤 ← ϕ;

For (i =1 to n){

Generate a random number 𝑟1;

If (𝑟1 < 𝑟ℎ){

Select a value as the i-th decision variable of 𝜋𝑛𝑒𝑤 from the historical solution of HM;

Generate a random number 𝑟2;

If(𝑟2 < 𝑟𝑝)

Adjust this decision variable according to the adjustment bandwidth bw to obtain a new decision

variable;

}Else{

Select a value as the i-th decision variable of 𝜋𝑛𝑒𝑤 within the range of values of the decision

variable;

}

}

According to the objective function, find the worst solution 𝜋𝑤𝑜𝑟𝑠𝑡 in HM;

If (𝜋𝑛𝑒𝑤 is better than 𝜋𝑤𝑜𝑟𝑠𝑡)

Replace 𝜋𝑤𝑜𝑟𝑠𝑡 with 𝜋𝑛𝑒𝑤 ;

Until (the stopping condition is satisfied);

Return;

In HS algorithm, 𝑟ℎ is the rate of consideration of HM, and is the probability of taking a value

from HM. 𝑟𝑝 is the rate of pitch adjustment, and is the probability of adjusting a value. 𝑠ℎ is the size

of HM, bw is the bandwidth of adjustment. 𝑟1 and 𝑟2 are two random numbers in range (0, 1).

The algorithm consists of three main parts: (1) initialization of HM, (2) generation of a new solution,

(3) update of HM.

(1) Initialization of HM

The initialization of HM is used to generate the initial solution set, and is the first stage of this

evolutionary computing algorithm. In HS algorithm, the initial solution set of HM is randomly

generated. In other words, 𝑠ℎ harmony solutions are randomly generated from the solution space

with n variables, and are placed in HM. The form of HM is given in Equation (9):

HM = [
π1

⋮

πsh

] = [
π1

1 ⋯ π1
n

⋮ ⋱ ⋮

πsh
1 ⋯ πsh

n
]. (9)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 5 of 18

(2) Generation of a New Solution

It involves two stages to generate a new solution: the construction stage and the adjustment

stage. In the construction stage, a random number 𝑟1 is generated and compared with 𝑟ℎ. If 𝑟1 is

smaller than 𝑟ℎ, a harmony variable is selected from HM, otherwise, a harmony variable is generated

from the solution space. For each harmony variable obtained from HM, another random number 𝑟2

is generated in the adjustment stage and compared with 𝑟𝑝. If 𝑟2 is smaller than 𝑟𝑝, the variable

needs to be adjusted according to the adjustment bandwidth bw to obtain a new value. Otherwise, no

adjustment is carried out. By performing this process n times, a new harmony 𝜋𝑛𝑒𝑤 is obtained.

(3) Update of HM

The new generated solution 𝜋𝑛𝑒𝑤 is evaluated based on the objective function of optimization.

If 𝜋𝑛𝑒𝑤 is better than the worst solution 𝜋𝑤𝑜𝑟𝑠𝑡 in HM, then the solution 𝜋𝑤𝑜𝑟𝑠𝑡 is replaced by the

new solution 𝜋𝑛𝑒𝑤 , otherwise, there is no update.

B. Harmony Search with Iterative Optimization

HS algorithm was originally developed for continuous functions of n variables, and it has the

essence of continuity [11]. However the problem studied here involves decision variables with

discrete characteristics. Therefore, a hybrid HS algorithm is proposed by modifying HS algorithm

suitable for solving the considered problem.

(1) Initialization of HM

Due to the homogeneity of DMS, whereby all factories have the same number and sequence of

machines with identical characteristics of processing, there is no need to optimize the order of

factories, and they can be arranged in numerical order. Each solution in HM consists of two parts:

The first part stores the number of jobs allocated by each factory in order, which displays the structure

of the solution. The second part deals with the jobs and their arrangement within a given factory.

Assigning different numbers of jobs to a factory and scheduling them can significantly influence the

makespan of that factory. The two factors, job–factory allocation, and job ordering within that factory,

thus influence the objectives of scheduling. These factors cannot be simply separated, and need to be

studied as a whole.

Assuming that there are 9 sequentially numbered jobs assigned to 3 distributed manufacturing

factories, Table 1 shows an example of a HM. This example contains two harmony solutions

represented as 𝜋1 and 𝜋2 respectively. For the second solution π2={{4,2,3}|{1,3,4,9},{2,5},{6, 7,8}},

the first part of the solution {4,2,3} indicates that there are 3 processing factories, and there are 4 jobs

in the first factory,2 jobs in the second one and 3 jobs in the third one. The second part shows in detail

that the first 4 jobs {1,3,4,9} are assigned to the first factory, the next 2 jobs {2,5} are assigned to the

second one, and the last 3 jobs {6,7,8} are assigned to the third one.

Table 1. An example of HM.

solution

structure

job sequence

Processing Factory 1 Processing Factory 2 Processing Factory

3

{3,3,3} {1,3,4} {2,5,9} {6,7,8}

{4,2,3} {1,3,4,9} {2,5} {6,7,8}

The quality of the initial solution set is important for the evolution of the algorithm because it

determines whether the algorithm can quickly find the (approximately) optimal solution or not. The

NEH algorithm [14] is an efficient and widely used heuristic algorithm to obtain an initial solution

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 6 of 18

for scheduling problems with makespan minimization. Its main idea is as follows: First, arrange the n

jobs in descending order according to the processing times on machines of each job. Second, pick the

first two jobs from the list and find the best sequence for these two jobs by calculating makespan for

the two possible sequences, set i=2. Third, pick the job in the (i+1)-th position of the list and find the

best sequence by placing it at all possible (i+1) positions in the partial sequence found previously.

Repeat the third step till i=n.

However, the problem considered in this paper is distributed permutation flowshop scheduling

with multiple factories, the NEH algorithm cannot be directly used to obtain the initial solution set.

Thus a distributed NEH algorithm (D-NEH) is constructed to obtain the initial solution set. It can be

obtained by the following procedure: First, generate a job sequence by arranging the J jobs in

descending order according to their processing times on the machines, and randomly generate the

other (𝑠ℎ − 1) job sequences. Then, for each of the 𝑠ℎ job sequences, assign the first F jobs to F

factories (each factory contains one job), pick the next job from the job sequence, and find the best

position by placing it in all possible positions in the partial sequence of each factory, repeat the pick–

find operation until all the jobs have been arranged to its proper factory and the best position in that

factory. Finally, the initial solution set HM is generated.

The D-NEH algorithm for initial solution generation is shown in Algorithm 2.

Algorithm 2. D-NEH algorithm

Initialize the parameter 𝑠ℎ;

Generate the first job sequence 𝜋1 by arranging the J jobs in descending order according to their

processing times on the machines;

Randomly generate the other (𝑠ℎ − 1) job sequences;

For (i = 1 to 𝑠ℎ){

Assign the first F jobs to F factories ;

For(j=F; j<J; j++){

Pick the job in the (j+1)-th position of the job sequence π𝑖

Find the best sequence by placing it in all possible positions in the partial sequence of each

factory;

}

}

Return;

(2) Generation of New Solution

The process of generating new solutions can be divided into three stages. The first two stages

are identical to those in HS algorithm, while the third one is an optimization stage. Unlike the case in

which there is one solution sequence for only one factory, a DMS in the construction stage has at least

two factories, each of which may not necessarily contain the same number of jobs. Therefore, before

constructing a new solution sequence, the number 𝑡(0 < 𝑡 ≤ 𝑠ℎ) of different solution structures

contained in HM should first be obtained. Then, based on the number of jobs in each factory in the

solution structure, if the random number 𝑟1(0 < 𝑟1 < 1) is smaller than the parameter 𝑟ℎ , a new

solution is constructed by selecting jobs from HM, otherwise, the solution is constructed by selecting

jobs from a range of possible values for each decision variable. It is clear that, in the stage of

construction of the new solution, 𝑡 solutions are generated instead of one. The construction stage

essentially combines the architecture of certain meta-heuristic algorithms. For example, it preserves

the historical traces of past vectors, similarly to the taboo search algorithm [15]. It can have a varying

probability of fitness from the beginning to the end of the calculation, similarly to the simulated

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 7 of 18

annealing algorithm [16]. At the same time, it can retain several vectors like genetic algorithms to

enable the newly generated solution to evolve.

The adjustment stage in this algorithm involves a certain variation based on the parameter 𝑟𝑝

while the solution is obtained by considering convergence and divergence in the generation of the

new solution by the algorithm. That is, the algorithm constructs the solution while performing

mutation on each decision variable by relying on 𝑟𝑝. The main idea of this adjustment operation is

that when it is executed, a decision variable is selected from the current solution sequence and

exchanged with a randomly selected decision variable that is close to it. The solution with the best

value of the objective function is used as the new solution. This idea is similar to that of the genetic

algorithm, which creates a small random disturbance to avoid premature convergence.

In the optimization stage, an iterative optimization algorithm (IOA) which is composed of RZ

and PE operators [2] is used to further search the neighborhood of the candidate solution to find more

and better solutions. RZ and PE algorithms are commonly used and relatively efficient among

heuristic algorithms. The main idea of RZ algorithm is as follows: For a given job sequence with n

jobs, select a job from the sequence and insert it into n possible positions to find the best sequence,

Repeat this select-insert operation for the next job in the job sequence until all of the jobs be

selected/optimized. The main idea of PE algorithm is as follows: For a given job sequence with n jobs,

pick a job from it and exchange this job with other n-1 jobs to find the best sequence, Repeat this pair-

wise exchange operation for the next unpicked job until all of the jobs be picked/optimized.

The IOA operator can be described as follows: For each new candidate solution 𝜋𝑖 , 𝑖 = 1,2, … , 𝑡,

select one job from the sequence with the largest makespan value (if there is more than one sequences,

select one randomly) and insert it into other possible positions to find the best sequence 𝜋𝑏𝑒𝑠𝑡
′ . For

𝜋𝑏𝑒𝑠𝑡
′ , pick this job and exchange it with other jobs to find the best sequence 𝜋𝑏𝑒𝑠𝑡

′′ . Repeat the select–

insert and pairwise-exchange operations for the next unselected job until all the jobs have been

optimized; at this point, the (approximately) optimal solution has been finally obtained. The IOA

operator used to optimize a new candidate solution 𝜋𝑖 is presented in Algorithm 3.

Algorithm 3. Iterative optimization algorithm (IOA)

Set 𝜋𝑏𝑒𝑠𝑡 ← 𝜋𝑖 ;

Repeat

Find the factory with the largest value of makespan

in 𝜋𝑏𝑒𝑠𝑡 and record it as 𝑓𝑚𝑎𝑥;

Set global ← false;

For (j=1 to 𝐽𝑓𝑚𝑎𝑥
){

For (f =1 to F){

If (f =𝑓𝑚𝑎𝑥) continue;

Insert job j into factory f ;

Apply the select–insert operation to optimize

the job sequence of factory f and get the best sequence 𝜋𝑏𝑒𝑠𝑡
′ ;

Apply the pairwise exchange operation to

further optimize the job sequence of factory f and get the best solution 𝜋𝑏𝑒𝑠𝑡
′′ ;

If(C(𝜋𝑏𝑒𝑠𝑡
′′) < C(𝜋𝑏𝑒𝑠𝑡)){

Replace 𝜋𝑏𝑒𝑠𝑡 with 𝜋𝑏𝑒𝑠𝑡
′′ ;

Set global ← true;

}

If (global=true) break;

}

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 8 of 18

If (global=true) break;

}

Until global=false;

Set 𝜋𝑖 ← 𝜋𝑏𝑒𝑠𝑡 ;

Return;

After the construction and adjustment stages as well as the optimization of the candidate

solution, 𝑡 new candidate solutions 𝜋𝑛𝑒𝑤 = {𝜋1, 𝜋2, … , 𝜋𝑡} are generated, and are sorted in

descending order according to the value of the objective function to facilitate the subsequent update

of HM.

The proposed algorithm to generate and optimize new solutions is detailed in Algorithm 4.

Algorithm 4. New solution generation algorithm (NSGA)

Initialize parameters 𝑟ℎ, 𝑟𝑝, 𝑏𝑤;

Set 𝜋𝑛𝑒𝑤 ← ϕ ;

Obtain the total number of solution structures 𝑡 of HM;

For (i =1 to 𝑡){

Let the i-th solution structure be the structure of the

new solution 𝜋𝑖;

Set 𝜋𝑖 ← ϕ;

For (j=1 to J){

Generate two random numbers 𝑟1 and 𝑟2;

If (𝑟1 < 𝑟ℎ){

Select a new job from column 𝑗 in HM and

insert it into the j-th position of the new solution 𝜋𝑖;

}Else{

Select a new job from the job set and insert it

into the j-th position of the new solution 𝜋𝑖;

 }

If (𝑟2 < 𝑟𝑝){

Adjust the job to within the range (max{0, j-

bw}, min{ j+bw, J});

}

}

Applying the IOA operator to optimize the new solution 𝜋𝑖 ;

Set 𝜋𝑛𝑒𝑤 ← 𝜋𝑛𝑒𝑤 ∪ 𝜋𝑖;

}

Sort the 𝑡 new candidate solutions in descending order according to values of the objective function,

and obtain the new solution set 𝜋𝑛𝑒𝑤 ={𝜋1, 𝜋2, … , 𝜋𝑡};

Return;

In the NSGA algorithm, the IOA operator is used to further optimize the candidate solutions for

better ones. This not only increases the diversity of solutions in HM, but also enables the algorithm

to expand the search space, and find more and better solutions. Therefore, this algorithm has a good

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 9 of 18

ability to search the solution space Π and find more (approximately) optimal solutions while

maintaining their diversity.

(3) Update of HM

The update operation enables the algorithm to obtain more and better solutions, which can guide

it to search for a better solution space and accelerate the convergence of the solution. Therefore, the

update operation plays an important role in maintaining high-quality solutions and ensuring the

convergence of the algorithm.

According to the objective function, the main idea of the update operation is as follows: For each

new generated harmony solution 𝜋𝑖 (𝑖 = 1,2, … , 𝑡) and the worst harmony solution 𝜋ℎ(ℎ =

1,2, … , 𝑠ℎ) found in HM, if 𝜋ℎ is worse than 𝜋𝑖, then replace 𝜋ℎ with 𝜋𝑖.

The update algorithm is detailed in Algorithm 5.

Algorithm 5. Update algorithm

For (i =1 to t) {

 Set pos ← -1; ms ← -1;

For (h =1 to 𝑠ℎ){

If (ms < C(𝜋ℎ)){

Set pos ← h, ms ← 𝜋ℎ;

}

}

If (pos ≠ −1 and ms > C(π𝑖)){

Replace 𝜋𝑤𝑜𝑟𝑠𝑡 with π𝑖;

}

}

Return;

(4) Algorithm Description

The algorithm proposed in this paper is a hybrid meta-heuristic based on HS and iterative

optimization, called IOHS. Following the generation of the initial solution set, the NSGA algorithm

is used in this algorithm to construct new solutions. While constructing a new solution, it may select

a new job from HM or a job set based on the parameter 𝑟ℎ, and adjusts it to avoid local convergence

based on the parameter 𝑟𝑝 . The IOA operator is used to further optimize the quality of the new

solution and obtain the final candidate solution. The worst solutions in HM are replaced if they are

poorer than the candidate solutions. The construction, optimization, and update operations are

repeated until the algorithm satisfies its stopping condition. And finally, the solutions that satisfying

the multimodal optimization are output.

IOHS algorithm is shown in Algorithm 6.

Algorithm 6. IOHS algorithm

Generate the initial solution set of HM by using D-NEH;

Repeat

Construct a new solution set 𝜋𝑛𝑒𝑤 = {𝜋1, 𝜋2, … , 𝜋𝑡} by

using the NSGA algorithm;

Use the Update algorithm to update HM;

Until (the stopping condition is satisfied)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 10 of 18

Calculate the objective function values based on Equation (7);

Output the solutions satisfying multimodal optimization based on Equation (8);

Return;

IV. Simulations

In this section, the test dataset used to assess the performance of the proposed method is first

described. Then Statgraphics is used to analyze the parameters 𝑟ℎ and 𝑟𝑝, and finally the simulations

are detailed. All the algorithms were coded in Java and executed on a Windows PC with an Intel® i5

core, 2.5 GHz CPU, and 4 GB RAM.

A. Test Dataset

The Taillard benchmark [17] has been widely used in scenarios involving single and multiple

manufacturing factories. However, when the number of factories increases in the application of a

distributed manufacturing system, the average number of jobs assigned to each factory may be very

small. For example, if there exists a DMS consisting of 10 factories and 200 jobs, the average job

allocation for each factory is only 10. Although the solution space is huge, the size of the problem for

each factory is relatively small. Therefore, to faithfully simulate job allocation in distributed scenarios,

a new dataset is generated which is based on the main idea of the data generation algorithm

developed by Taillard.

The stopping condition of the algorithm is described in Section 5.2. The generated dataset was

as follows: The processing time of each job on M machines was randomly generated in the interval

[5, 99]. The numbers of jobs J were set to 60, 150, 330, 510, and 600. The numbers of factories F were

set to 2, 3, 5, and 10, respectively. The numbers of machines M in each factory were set to 5, 10, and

20, respectively.

B. Parameter Analysis

The parameter 𝑠ℎ represents the size of HM, i.e., the number of solutions in HM. Based on the

total number of jobs to be sorted, 𝑠ℎ is set to 0.2 × J. The parameter 𝑏𝑤 is used to increase the range

of the search space, prevent the algorithm from prematurely converging, and improve the probability

of finding a better solution. In this paper, 𝑏𝑤 is set as 𝑏𝑤 = 𝐽 × 0.05. To evaluate the algorithm fairly

based on the number of machines and the average number of jobs per factory, the runtime of all the

algorithms considered here are set as 𝑇 = 𝑀 × (𝐽 ÷ 𝐹) × 𝑡 × 0.5 ms [18], where 𝑀 is the number of

machines in each factory, J is the total number of jobs to be processed, F is the number of factories,

and 𝑡 was set to 120.

The rates of consideration 𝑟ℎ and pitch adjustment 𝑟𝑝 are two important parameters in HS

algorithm. 𝑟ℎ determines the probability of randomly generating a solution based on the historical

variables in HM. As HM stores the best solutions obtained by the algorithm at any given time, the

algorithm tends to find more optimized solutions (leading to faster convergence) when the value of

𝑟ℎ increases. 𝑟𝑝 determines the probability of adjusting the values selected from among the historical

values in HM, which means that it determines the probability of adjusting some vectors of a solution

(probability of divergence). As the value of 𝑟𝑝 increases, the algorithm tends to generate solutions

by selecting from global variables, that is, by expanding the search range (divergence) to find more

optimized solutions. To determine appropriate values of 𝑟ℎ and 𝑟𝑝, they were tested with different

values: 𝑟ℎ was set to 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95, while 𝑟𝑝 was set to 0.10, 0.15, 0.20, 0.25, 0.30,

and 0.35. To test the parameter values fairly and quickly, M is set to 10, J to 330, and F to 5. For each

parametric combination, a total of 20 instances were generated, each of which was executed three

times, and the minimum value of the objective function was obtained. The average values of each

parameter combination are shown in Table 2.

Table 2. Comparison of parameter combinations.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 11 of 18

𝑟ℎ, 𝑟𝑝 MSave 𝑟ℎ, 𝑟𝑝 MSave 𝑟ℎ, 𝑟𝑝 MSave

0.7, 0.1 4663 0.8, 0.1 4648 0.9, 0.1 4614

0.7, 0.15 4659 0.8, 0.15 4658 0.9, 0.15 4626

0.7, 0.2 4675 0.8, 0.2 4665 0.9, 0.2 4641

0.7, 0.25 4679 0.8, 0.25 4665 0.9, 0.25 4652

0.7, 0.3 4689 0.8, 0.3 4679 0.9, 0.3 4654

0.7, 0.35 4687 0.8, 0.35 4680 0.9, 0.35 4663

0.75, 0.1 4651 0.85, 0.1 4627 0.95, 0.1 4601

0.75, 0.15 4659 0.85, 0.15 4644 0.95, 0.15 4614

0.75, 0.2 4666 0.85, 0.2 4652 0.95, 0.2 4627

0.75, 0.25 4672 0.85, 0.25 4661 0.95, 0.25 4636

0.75, 0.3 4678 0.85, 0.3 4667 0.95, 0.3 4648

0.75, 0.35 4689 0.85, 0.35 4673 0.95, 0.35 4651

The analysis of the parameter combinations listed in Table 2 yielded the results shown in Figure

1 to Figure 3.

Rh

4600

4620

4640

4660

4680

4700

m
a
k

e
s
p

a
n

0.7 0.75 0.8 0.85 0.9 0.95

Rp

0.1

0.15
0.2

0.25

0.3

0.35

Figure 1. Multivariate analysis(𝑟ℎ and 𝑟𝑝).

0.7 0.75 0.8 0.85 0.9 0.95

Rh

4620

4640

4660

4680

4700

m
a

k
es

p
a

n

Figure 2. Analysis of parameter 𝑟ℎ.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 12 of 18

0.1 0.15 0.2 0.25 0.3 0.35

Rp

4600

4620

4640

4660

4680

4700

m
a

k
es

p
a

n

Figure 3. Analysis of parameter 𝑟𝑝.

Figure 1 shows the results of a multivariate analysis of variance. As the value of 𝑟ℎ increased

and that of 𝑟𝑝 decreased, the solution obtained by the algorithm improved. This indicates that the

larger the value of 𝑟ℎ was and the smaller the value of 𝑟𝑝 was, the better was the performance of

the algorithm. It is clear from Figure 2 that when 𝑟ℎ=0.95 and 𝑟𝑝=0.1, the algorithm obtained the best

solution.

Figure 2 shows the results of a one-way analysis of variance for 𝑟ℎ. Clearly, as the value of 𝑟ℎ

increased, the solution obtained by the algorithm improved. When 𝑟ℎ was 0.95, the algorithm

achieved the best solution.

Figure 3 shows the results of a one-way analysis of variance for 𝑟𝑝, from which it is clear that as

the value of 𝑟𝑝 decreased, the solution obtained by the algorithm improved. When 𝑟𝑝 was 0.1, the

algorithm obtained the best solution.

It can be concluded that setting 𝑟ℎ = 0.95 and 𝑟𝑝 = 0.10 can enable IOHS algorithm to obtain

the best value of makespan.

C. Experimental Verification

(1) Comparison of HS and IOHS

HS and IOHS algorithm are compared from three perspectives, i.e., job, factory and machine, to

show whether the optimization operator (named IOA) of IOHS algorithm gives the most contribution

or not. The average makespan obtained by HS and IOHS algorithms are shown in Table 3.

Table 3. Comparison of HS and IOHS.

J,M,F
MSave

J,M,F
MSave

J,M,F
MSave

HS IOHS HS IOHS HS IOHS

60, 2, 5 1847 1774 150, 5, 20 3285 2858 510, 3, 10 10483 9442

60, 2, 10 2318 2119 150, 10, 5 1203 965 510, 3, 20 11782 10365

60, 2, 20 3102 2871 150, 10, 10 1618 1333 510, 5, 5 6049 5528

60, 3, 5 1349 1237 90, 10, 20 2333 2009 510, 5, 10 6748 5837

60, 3, 10 1751 1587 330, 2, 5 9159 8866 510, 5, 20 7913 6789

60, 3, 20 2485 2284 330, 2, 10 10007 9230 510, 10, 5 3351 2834

60, 5, 5 937 817 330, 2, 20 11374 10195 510, 10, 10 3893 3200

60, 5, 10 1308 1166 330, 3, 5 6314 5932 510, 10, 20 4846 4053

60, 5, 20 1977 1810 330, 3, 10 7078 6322 600, 2, 5 16347 15977

60, 10, 5 626 525 330, 3, 20 8237 7223 600, 2, 10 17485 16365

60, 10, 10 962 838 330, 5, 5 4020 3615 600, 2, 20 19138 17279

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 13 of 18

60, 10, 20 1593 1450 330, 5, 10 4651 3974 600, 3, 5 11205 10692

150, 2, 5 4373 4214 330, 5, 20 5667 4857 600, 3, 10 12137 11008

150, 2, 10 4907 4477 330, 10, 5 2280 1881 600, 3, 20 13560 11979

150, 2, 20 5923 5293 330, 10, 10 2787 2264 600, 5, 5 7060 6478

150, 3, 5 3037 2819 330, 10, 20 3634 3039 600, 5, 10 7806 6819

150, 3, 10 3571 3137 510, 2, 5 14136 13810 600, 5, 20 9002 7745

150, 3, 20 4502 3972 510, 2, 10 14994 13997 600, 10, 5 3863 3295

150, 5, 5 1998 1733 510, 2, 20 16599 14947 600, 10, 10 4464 3687

150, 5, 10 2465 2102 510, 3, 5 9528 9057 600, 10, 20 5437 4529

Similarly, by conducting parameter analysis on the data in the Table 3, the following results can

be drawn which are shown from Figure 4 to Figure 6.

Job

0

2

4

6

8

10

12
(X 1000)

M
ak

e
s

p
a

n

60 150 330 510 600

Algorithm
HS
IOHS

Figure 4. Multivariate analysis of variance for job and algorithm.

Seen from Figure 4, it is obvious that as the number of jobs increases, the objective value obtained

by the algorithm becomes larger and larger. Under the same number of jobs, IOHS algorithm

outperforms HS algorithm.

Factory

0

2

4

6

8

10

12
(X 1000)

M
ak

e
s

p
a

n

2 3 5 10

Algorithm
HS
IOHS

Figure 5. Multivariate analysis of variance for factory and algorithm.

Figure 5 shows that, as the number of factories increases, the number of jobs in each factory

becomes smaller resulting in the fact that the objective value obtained by the algorithm becomes

smaller and smaller. Under the same number of factories, IOHS algorithm outperforms HS algorithm.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 14 of 18

Machine

5100

5500

5900

6300

6700

7100

7500

M
ak

e
s

p
a

n
5 10 20

Algorithm
HS
IOHS

Figure 6. Multivariate analysis of variance for machine and algorithm.

Seen from Figure 6, it is obvious that as the number of machines increases, the objective value

obtained by the algorithm becomes larger and larger. Under the same number of machines, IOHS

algorithm outperforms HS algorithm.

In conclusion, IOHS algorithm is better than HS algorithm by using the optimization operator,

thus the IOA operator gives a remarkable contribution to IOHS algorithm.

(2) Algorithms comparison

Many effective meta-heuristic algorithms have been developed in research, including PSO [19],

DE [20], and CMA-ES [21], that can be compared with the proposed IOHS algorithm in the context

of the DPFSP. However, only the iterative greedy meta-heuristic algorithm with a bounded search

strategy(BSIG) [22] and the improved Jaya algorithm(Jaya)[23] are suitable for solving the problem

considered here. They are implemented along with the proposed algorithm on a new dataset, with

the aim of multimodal optimization. BSIG and the improved Jaya algorithms used the stopping

condition described in Section 5.2. The average values of makespan obtained by these algorithms are

shown in Table 4.

Table 4. Comparison of algorithms.

J,F,M
MSave

J,F,M
MSave

J,F,M
MSave

BSIG Jaya IOHS BSIG Jaya IOHS BSIG Jaya IOHS

60,2,5 1828 1782 1774 150,5,20 3004 2887 2858 510,3,10 9719 9503 9442

60,2,10 2249 2144 2119 150,10,5 972 992 965 510,3,20 10761 10445 10365

60,2,20 3024 2897 2871 150,10,10 1342 1365 1333 510,5,5 5640 5556 5528

60,3,5 1248 1254 1237 90,10,20 2024 2044 2009 510,5,10 6085 5912 5837

60,3,10 1613 1618 1587 330,2,5 8941 8867 8866 510,5,20 7084 6853 6789

60,3,20 2318 2321 2284 330,2,10 9451 9244 9230 510,10,5 2940 2881 2834

60,5,5 828 841 817 330,2,20 10575 10217 10195 510,10,10 3354 3258 3200

60,5,10 1182 1193 1166 330,3,5 6036 5939 5932 510,10,20 4234 4094 4053

60,5,20 1833 1845 1810 330,3,10 6567 6363 6322 600,2,5 16042 15980 15977

60,10,5 534 544 525 330,3,20 7530 7277 7223 600,2,10 16647 16399 16365

60,10,10 855 867 838 330,5,5 3713 3641 3615 600,2,20 17773 17379 17279

60,10,20 1472 1484 1450 330,5,10 4181 4028 3974 600,3,5 10804 10707 10692

150,2,5 4270 4215 4214 330,5,20 5081 4894 4857 600,3,10 11299 11065 11008

150,2,10 4655 4482 4477 330,10,5 1973 1920 1881 600,3,20 12389 12062 11979

150,2,20 5544 5295 5293 330,10,10 2386 2308 2264 600,5,5 6601 6512 6478

150,3,5 2897 2828 2819 330,10,20 3180 3072 3039 600,5,10 7065 6894 6819

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 15 of 18

150,3,10 3325 3176 3137 510,2,5 13899 13811 13810 600,5,20 8065 7808 7745

150,3,20 4164 4008 3972 510,2,10 14225 14006 13997 600,10,5 3402 3343 3295

150,5,5 1823 1765 1733 510,2,20 15393 15016 14947 600,10,10 3871 3763 3687

150,5,10 2225 2141 2102 510,3,5 9160 9073 9057 600,10,20 4742 4580 4529

Table 4 shows that IOHS algorithm obtained the best results. For further analysis, the

performance of these algorithms based on the average relative percentage deviation (ARPD) are

compared, as defined in Equation (10):

ARPD = ∑

𝐹𝑖(𝐻)
𝐵𝑖

⁄ − 1

𝑁

𝑁

𝑖=1

 × 100% (10)

where 𝑁 is the number of instances of the same size, 𝐹𝑖(𝐻) is the makespan value obtained by

solving instance 𝑖 by using algorithm 𝐻, and 𝐵𝑖 is the minimum value of makespan obtained by

solving instance i by using all the other algorithms. The larger the value of the ARPD was, the worse

was the average performance of the algorithm. Table 4 lists the values of ARPD obtained by BSIG,

Jaya, and IOHS algorithms.

Table 5 shows that BSIG algorithm delivered the worst performance, and that IOHS algorithm

was slightly better than Jaya algorithm. To facilitate comparison, and visually display the trends of

the solutions to the DPFSP obtained by different algorithms at different scales, the results of the multi-

factor ANOVA are shown from Figure 7 to Figure 9.

Table 5. Comparison of algorithms based on ARPD.

J,F,M
ARPD (%)

J,F,M
ARPD (%)

J,F,M
ARPD (%)

BSIG Jaya IOHS BSIG Jaya IOHS BSIG Jaya IOHS

60,2,5 5.04 2.37 1.12 150,5,20 0.90 0.19 0.06 510,3,10 1.15 0.53 0.16

60,2,10 7.69 2.15 0.37 150,10,5 3.12 0.23 0.06 510,3,20 0.79 0.49 0.18

60,2,20 0.87 0.24 0.10 150,10,10 2.15 0.21 0.08 510,5,5 1.77 0.88 0.29

60,3,5 2.14 0.13 0.04 150,10,20 1.52 0.19 0.07 510,5,10 1.43 0.66 0.18

60,3,10 2.32 0.24 0.10 330,2,5 4.14 1.60 0.35 510,5,20 0.70 0.44 0.16

60,3,20 1.61 0.17 0.06 330,2,10 2.31 0.63 0.20 510,10,5 0.82 0.54 0.20

60,5,5 3.67 0.22 0.07 330,2,20 1.09 0.51 0.20 510,10,10 0.86 0.56 0.26

60,5,10 2.78 0.26 0.09 330,3,5 2.62 0.84 0.27 510,10,20 0.56 0.35 0.15

60,5,20 2.01 0.18 0.05 330,3,10 2.04 0.62 0.20 600,2,5 1.23 0.59 0.21

60,10,5 4.72 0.25 0.09 330,3,20 1.10 0.52 0.19 600,2,10 1.04 0.55 0.18

60,10,10 3.87 0.21 0.05 330,5,5 3.18 0.87 0.30 600,2,20 0.66 0.41 0.17

60,10,20 2.66 0.17 0.07 330,5,10 2.28 0.76 0.28 600,3,5 1.31 0.83 0.30

150,2,5 1.64 0.28 0.07 330,5,20 1.24 0.57 0.21 600,3,10 1.17 0.64 0.24

150,2,10 1.33 0.87 0.28 330,10,5 1.31 0.59 0.20 600,3,20 0.69 0.49 0.20

150,2,20 1.06 0.79 0.26 330,10,10 1.00 0.50 0.18 600,5,5 1.58 0.78 0.30

150,3,5 0.62 0.39 0.15 330,10,20 0.99 0.37 0.12 600,5,10 1.29 0.71 0.24

150,3,10 0.66 0.30 0.07 510,2,5 1.56 0.68 0.23 600,5,20 0.79 0.49 0.17

150,3,20 0.55 0.19 0.07 510,2,10 1.29 0.66 0.27 600,10,5 1.45 0.77 0.25

150,5,5 1.94 0.40 0.11 510,2,20 0.78 0.50 0.17 600,10,10 1.27 0.64 0.23

150,5,10 1.44 0.22 0.07 510,3,5 1.39 0.55 0.13 600,10,20 0.67 0.41 0.15

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 16 of 18

Job

0

1

2

3

4

A
R

P
D

60 150 330 510 600

Algorithm
BSIG
IOHS
JAYA

Figure 7. The multi-factor ANOVA(Job and algorithm).

Figure 7 shows that as the number of jobs increased, the values of the objective function obtained

by IOHS and Jaya algorithms both slightly increased, while the values obtained by BSIG algorithm

decreased. This is because as the number of jobs increased, BSIG algorithm expanded its search range

and found better solutions. However, owing to its significant randomness in searching for the

(approximately) optimal solution, BSIG algorithm still delivered the worst results. It is clear that

IOHS algorithm delivered the best performance of the three algorithms, regardless of the number of

jobs.

Factory

0

0.4

0.8

1.2

1.6

2

2.4

A
R

P
D

2 3 5 10

Algorithm
BSIG
IOHS
JAYA

Figure 8. The multi-factor ANOVA(Factory and algorithm).

Figure 8 shows that as the number of factories increased, the values of the objective function

obtained by IOHS and Jaya algorithms both exhibited a downward trend, while those obtained by

BSIG algorithm fluctuated. This is because as the number of factories increased, the number of jobs

per factory decreased, and this enabled IOHS and Jaya algorithms to find better solutions. It is clear

that IOHS algorithm delivered the best performance of the three algorithms, regardless of the number

of factories.

Machine

0

0.4

0.8

1.2

1.6

2

2.4

A
R

P
D

5 10 20

Algorithm
BSIG
IOHS
JAYA

Figure 9. The multi-factor ANOVA(Machine and algorithm).

Figure 9 shows that as the number of machines increased, the values of the objective function

obtained by all three algorithms exhibited a decreasing trend. This is because the processing time for

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 17 of 18

each job increased with the number of machines. It is clear that IOHS algorithm delivered the best

performance of the three algorithms, regardless of the number of machines.

An analysis of the results shown in Figure 7 to Figure 9 yields the following conclusions:

• Although the ARPD values obtained by BSIG algorithm fluctuated, they generally showed a

downward trend. The ARPD values obtained by Jaya and IOHS algorithms both slightly

decreased.

• Jaya algorithm was superior to BSIG algorithm, while the results obtained by IOHS algorithm were

slightly better than those of Jaya algorithm.

• The results obtained by IOHS algorithm, shown in Table 5 and the corresponding figures, reveal

that it delivered the best and most stable performance in solving the DPFSPs at all scales.

In summary, the proposed IOHS algorithm is an efficient and effective method, and it should be

used to solve DPFSPs.

V. Conclusion

This study analyzed distributed permutation flowshop scheduling, provided a detailed

description of the problem, and proposed a hybrid harmony search for multimodal optimization. The

proposed algorithm initializes HM, continuously constructs and adjusts new solutions while

optimizing them, and updates HM until the stopping condition is met. A comparison between this

method, and two classic and recently developed algorithms showed that it is suitable for solving

DPFSPs.

The development and empirical evaluations of the algorithm reported in this paper also reveal

some fruitful directions for future research in the scheduling field. First, researchers should seek to

enhance the capability of the proposed algorithm to search large-scale problem spaces. Second, as

novel kinds of bionic algorithms, such as PSO, DE, and CMA-ES, are developed, devising effective

and efficient algorithms for the DPFSP should persist as the major aim of research in the area. Third,

the performance of the algorithms considered in this study should be compared by considering other

criteria than those provided here, particularly criteria involving different production environments

with varying purposes, on various DMS-related scheduling problems. The DPFSP that involves more

realistic issues, such as no wait, parallel batching, and set-up and transmission times, is a more

complex problem that is commonly encountered in production environments. Therefore, assessing

the performance of the relevant methods on such scheduling problems is important in future

research. Finally, researchers should consider a number of problems in different production

environments, including the flowshop, open-shop, and job-shop. This is a promising opportunity to

explore the development and application of scheduling theory in DMS and services.

Author Contributions: Validation, Yuwei Cheng; Writing – original draft, Yazhi Li; Writing – review &

editing, Hong Shen.

Acknowledgment: The authors would like to thank Jiangsu Key Laboratory of audit information engineering

for their support and anyone who supported the publication of this paper.

References

1. J. Zheng, L.Wang, and J.J.Wang, A cooperative coevolution algorithm for multi-objective fuzzy distributed

hybrid flowshop[J],Knowledge-Based Systems,2020,194: 105536.

2. X.P. Li, C. Wu. Heuristic for no-wait flow shops with makespan minimization based on total idle-time

increments[J], Science in China Series F: Information Sciences, 2008,51(7): 896–909.

3. C. Gogos. Solving the distributed permutation flow-shop scheduling problem using constrained

programming [J]. Applied Sciences, 2023, 13(23): 12562.

4. J.H. Hao, J.Q. Li, Y. Du, M.X. Song, P. Duan, Y.Y. Zhang. Solving distributed hybrid flowshop scheduling

problems by a hybrid brainstorm optimization algorithm[J]. IEEE Access, 2019, 7: 66879-66894.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

 18 of 18

5. Y. Geng, J. Li. An improved hyperplane assisted multiobjective optimization for distributed hybrid

flowshop scheduling problem in glass manufacturing systems[J]. CMES-Computer Modeling in

Engineering & Sciences, 2023, 134(1):241-266.

6. W. Zhang, H. Geng, C. Li, M. Gen, G. Zhang, M. Deng. Q-learning-based multi-objective particle swarm

optimization with local search within factories for energy-efficient distributed flow-shop scheduling

problem[J]. Journal of Intelligent Manufacturing, 2023: 1-24.

7. D. Bai, T. Liu, Y. Zhang, F. Chu, H. Qin, L. Gao, Y. Su, M. Huang. Scheduling a Distributed Permutation

Flowshop With Uniform Machines and Release Dates[J].IEEE Transactions on Automation Science and

Engineering,2024.

8. F. Zhao, C. Zhuang, L. Wang, C. Dong. An Iterative Greedy Algorithm With Q-Learning Mechanism for

the Multiobjective Distributed No-Idle Permutation Flowshop Scheduling[J].IEEE Transactions on

Automation Science and Engineering,2024,54(5):3207-3219.

9. Q.Y. Li, Q.K. Pan, H.Y. Sang, X.L. Jing, J.M. Framiñán, W.M. Li. Self-Adaptive Population-Based Iterated

Greedy Algorithm for Distributed Permutation Flowshop Scheduling Problem with Part of Jobs Subject to

a Common Deadline Constraint[J].Expert Systems with Applications,2024, 248:123278.

10. H.B.Song, J. Lin, Y.R.Chen. An effective two-stage heuristic for scheduling the distributed assembly

flowshops with sequence dependent setup times [J].Computers&Operations Research,2024,173:106850.

11. Z.W. Geem, J.H. Kim, G.V. Loganathan. A new heuristic optimization algorithm: Harmony search.

Simulation 2001, 76(2): 60–68.

12. T.H.Zhang, Z.W.Geem. Review of harmony search with respect to algorithm structure[J].Swarm and

Evolutionary Computation,2019,48:31-43.

13. B.Y.Qu , P.N. Suganthan, S.Das .A distance-based locally informed particle swarm model for multi-modal

optimization[J].IEEE Transactions on Evolutionary Computation, 2013, 17(3):387-402.

14. M. Nawaz, J.E.E. Enscore, I. Ham. A heuristic algorithm for the m-machine, n-job flow shop sequencing

problem[J]. OMEGA:International Journal of Management Science, 1983,11(1): 91–95.

15. Q.C. Ta, P.M. Pham. Integrated flowshop and vehicle routing problem based on tabu search algorithm[J].

International Journal of Computers (IJC), 2022, 43(1): 24-35.

16. Y. Zhou, W. Xu, Z.H. Fu, M.C. Zhou. Multi-neighborhood simulated annealing-based iterated local search

for colored traveling salesman problems[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,

23(9): 16072-16082.

17. E.Taillard, Benchmarks for basic scheduling problems[J] European Journal of Operational Research,

1993,64(2):278-285.

18. Y.Z. Li, X.P. Li, J.N.D. Gupta. Solving the multi-objective flowline manufacturing cell scheduling problem

by hybrid harmony search[J]. Expert Systems with Applications, 2015, 42(3):1409-1417.

19. J. Kennedy and R. Eberhart, Particle swarm optimization[J] Proceedings of ICNN'95 - International

Conference on Neural Networks, Perth, WA, Australia, 1995, 4: 1942-1948.

20. R. Storn, K. Price. Differential evolution – A simple and efficient heuristic for global optimization over

continuous spaces[J]. Journal of Global Optimization 1997,11: 341–359.

21. N. Hansen, S.D. Müller, and P. Koumoutsakos. Reducing the time complexity of the derandomized

evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18,

2003.

22. F.V. Victor; J.M. Framinan,. A bounded-search iterated greedy algorithm for the distributed permutation

flowshop scheduling problem[J]. International Journal of Production Research, 2015,53(4):1111–1123.

23. Y. Pan, K .Gao, Z. Li and N. Wu, Solving biobjective distributed flow-shop scheduling problems with lot-

streaming using an improved Jaya algorithm[J], IEEE Transactions on Cybernetics, 2023,53(6):3818-3828.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025 doi:10.20944/preprints202507.0161.v1

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

