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Abstract

Multimodal optimization is to find multiple global and local optimal solutions of a function, rather
than a single solution. This study proposes a harmony search algorithm with iterative optimizing
operators to solve the NP-hard distributed permutation flowshop scheduling for multimodal
optimization. First, the initial solution set is constructed by using a distributed NEH operator. Second,
after generating new candidate solutions, efficient iterative optimizing operators are applied to
optimize these solutions and the worst solutions in the harmony memory(HM) are replaced. The
proposed operations are repeated until the stopping condition of the algorithm is met. Finally, the
solutions satisfying multimodal optimization in the harmony memory are obtained. The constructed
method is compared with two meta-heuristics, the iterative greedy meta-heuristic algorithm with a
bounded search strategy and the improved Jaya algorithm, on 600 newly generated datasets. The
results show that it runs stably and outperforms the two algorithms compared.

Keywords: distributed permutation flowshop; harmony search; iterative optimizing operator;
multimodal optimization; makespan

I. Introduction

Compared to the single workshop’s processing mode of traditional manufacturing system, the
distributed manufacturing system (DMS) fully utilizes the resources in the workshops of distributed
factories. By realizing effective allocation of raw materials, optimal combination of productivity,
scientific and reasonable resource sharing etc., the goal of quickly achieving product manufacturing
at reasonable costs in DMS is fulfilled.

Distributed scheduling plays a crucial role in DMS, it has the characteristics of large-scale,
nonlinear, strong constraints, multi-objective, uncertainty, and has always been a hot topic in the
fields of optimization and manufacturing. Its scientific optimization directly affects the efficiency and
long-term development of production enterprises. Therefore, developing efficient optimization
scheduling algorithms is one of the keys for improving the production efficiency, saving energy,
reducing emissions, decreasing production costs, and solving the bottleneck problem.

In DMS, the distributed flowshop scheduling problem (DFSP) is a very important problem. Due
to the presence of multiple factories, the DFSP encounters many challenges, such as the coupling
relationship between processing factories, allocation of machines within the factory, and sorting of
jobs to be processed [1]. Compared with the traditional NP-hard flowshop scheduling problem in a
single factory, the DFSP has a larger solution space, and involves greater difficulty in arriving at the
optimal solution. It imposes more stringent requirements on the accuracy and speed of the algorithm.
Therefore, research on the problem has theoretical and applicative importance.

Many researchers have proposed various algorithms for solving the DFSP in different scenarios
and under different constraints by focusing on different objectives of multimodal optimization. Li
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and Wu [2] proposed Heuristic for no-wait flow shops with makespan minimization based on total
idle-time increments. Gogos [3] addressed the DESP by using constraint programming and its special
scheduling features for makespan minimization. Hao, Li, Du, Song, Duan and Zhang [4] studied the
distributed hybrid flowshop scheduling (DHFES) problem for makespan minimization and established
a mathematical model. Geng and Li [5] studied an improved hyperplane-assisted evolutionary
algorithm to solve a distributed mixed flowshop scheduling problem in a glass manufacturing system
with two objectives: minimizing makespan and the total energy consumption. Zhang and Geng et al.
[6] proposed an effective Q-learning-based multi-objective particle swarm optimization algorithm to
solve the DESP problem, with the total completion time and total energy consumption minimization.
Bai and Liu et al. [7] studied a heterogeneous distributed permutation flowshop scheduling problem
to minimize the makespan. Zhao, Zhuang, Wang and Dong [8] investigated the distributed no-idle
permutation flowshop scheduling problem (DNIPESP) . The makespan and total tardiness are
optimized simultaneously considering the variety of scales of the problems with introducing an
improved iterative greedy (IIG) algorithm. Li, Pan, Sang, Jing, Framifidan and Li [9] addressed a
distributed permutation flowshop scheduling problem with part of jobs subject to a common
deadline, established a mathematical model and proposed a self-adaptive population-based iterated
greedy algorithm with the objective of minimizing the total completion time. Song,Lin and Chen [10]
studied the distributed assembly permutation flowshop scheduling problem with sequence
dependent setup times. An effective two-stage heuristic was proposed with the optimization
objective of minimizing makespan.

The harmony search (HS) algorithm, proposed by Geem, Kim, and Loganathan [11], is a simple
but effective meta-heuristic. It is based on the processes involved in musical performance when a
composer searches for a better musical harmony, such as during jazz improvisation. Jazz
improvisation seeks to find musically pleasing harmonies as determined by an aesthetic standard,
just as the process of optimization seeks to find a global optimal solution as determined by an
objective function. The pitch of each musical instrument determines the overall aesthetic quality, just
as the value of the objective function is determined by the set of values assigned to each decision
variable. HS has been widely applied to various optimization problems in science and engineering,
including tour planning, Internet routing, and the design of water networks and hearing aids [12].

The distributed permutation flowshop scheduling problem(DPFSP) is considered in this study,
as it is one of the most widely studied problems in the field of scheduling. Because HS is a simple but
effective meta-heuristic, a hybrid algorithm based on HS is proposed to solve this problem for
multimodal optimization with its objective of makespan minimization.

The remaining part of this paper is organized as follows: Section II provides an objective of
minimizing makespan and a mathematical model for the considered problem. Combined with
iterative optimization algorithms, Section III presents a hybrid harmony search algorithm, named
IOHS. Section IV conducts simulation experiments based on experimental data to verify the
effectiveness of the algorithm, and compares its performance with other algorithms. Section V
provides conclusions and prospects for future research contents and directions.

II. Problem Description

The DPFSP can be described as follows: assume that a batch of sequentially numbered jobs are
first assigned to some distributed homogeneous factories, and then, the jobs in each factory are
scheduled and processed sequentially on the machines. The goal is to provide the (approximately)
optimal job—factory allocation and sequence of jobs within the factory for multimodal optimization.

The main assumptions are as follows:

e  Alljobs are ready when processing starts.

e  The number of jobs and their processing times on machines are known, and are non-negative.

e  Eachjob can be processed only on one machine in a given factory at a given time, and cannot
be pre-empted.

e  Each machine can process only one job at a time, and completes all jobs in sequence.
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e  The preparation time for each job is sequence independent, and is included in its processing
time.

The symbols and definitions used in this paper are as follows:

F: Number of factories.

f: Index for factories, f ={1,2,...,F}.

M: Number of machines in each factory.

m: Index for machines, m = {1,2, ..., M}.

Jr: Number of jobs in factory f.

J: Total number of jobs, ] =J; + ], + =+ Jp.

Jrn: The n-th job assigned to factory f, n = {1,2, ..., J¢}.

Psnm: The processing time of the n-th job in factory f on machine m.
A solution m can then be given by Equation (1):

= {0 o oo oM 20 i b Uzt oz v Jags s oo U Jis oo Jiege}} )

Equation (1) shows that m is composed of two parts: The first part shows the number of jobs
assigned to each factory while the second part displays the sequence of jobs processed in each factory.

The formulae for calculating the completion time of each job on the machines in the factory are
given by Equations (2)—(5):

C(jf,l' = Pria 2

CUrm) = Yieq Prak 3

Clipm D =) o @)
t=1

CUpmm) = max{C(snm—1),C(p 1, M)} +Dpam (5)

Equation (2) shows the completion time of the firstjob jr, on the first machine in each factory.
This is the processing time for this job on the given machine. Equation (3) shows the completion time
of the firstjob jf; on the m-th machine in each factory, and this is the sum of the processing times of
the job from the first machine to the m-th machine. Equation (4) shows the completion time of the 7-
thjob js, on the first machine in each factory. This is the sum of processing times of the previous n
jobs on the first machine. Equation (5) shows the completion time of the n-th job jr, on the m-th
machine in each factory. This is the sum of processing times of job jr, on the m-th machine, and is
the maximum value of the completion time of job j, on the (m-1)-th machine, or the completion
time of job j;,_; on the m-th machine:

() = ¢ gy M) (6)
¢(m) = max{c(1),¢(2),...C(F} (7

The makespan of factory f is the completion time of the last job j,. on the last machine M,
and is shown in Equation (6). The makespan for collaborative processing in DMS is the maximum
value among C(1),€(2), ..., C(F), and is shown in Equation (7).

The solution " in the solution space Il that has the minimum makespan, can be depicted by
Equation (8):

¢(n") = minye{C ()} ®)

Based on the above analysis and formulae, the aim of this paper is to propose an algorithm to
find multiple global and local optima of a function, thus the user can have a better knowledge about
different optimal solutions in the search space and when needed, the current solution may be
switched to a more suitable one while still maintaining the optimal system performance [13].

IIL. Proposed Algorithm
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A. Harmony Search Algorithm

The basic process for HS is shown in Algorithm 1.

Algorithm 1. Harmony search algorithm(HS)

Initialize parameters 7y, 13,5y, bw;
For (i=1 to su){
Select values within the range of the decision variable to generate a harmony solution;

Put the solution into HM;

}
Repeat
Set Tpew < ¢;
For (i=1ton){
Generate a random number 7y;
If (r; < rp)f
Select a value as the i-th decision variable of m,,,, from the historical solution of HM;
Generate a random number 7;;
If(r, <1p,)
Adjust this decision variable according to the adjustment bandwidth bw to obtain a new decision
variable;
}Else{
Select a value as the i-th decision variable of m,,, within the range of values of the decision
variable;
}
}
According to the objective function, find the worst solution my,,,s; in HM;
If (Tyew is better than m,o,s¢)
Replace ¢ With mpey;
Until (the stopping condition is satisfied);
Return;

In HS algorithm, 7, is the rate of consideration of HM, and is the probability of taking a value
from HM. 7, is the rate of pitch adjustment, and is the probability of adjusting a value. s, is the size
of HM, bw is the bandwidth of adjustment. 4 and 7, are two random numbers in range (0, 1).
The algorithm consists of three main parts: (1) initialization of HM, (2) generation of a new solution,
(3) update of HM.

(1) Initialization of HM

The initialization of HM is used to generate the initial solution set, and is the first stage of this
evolutionary computing algorithm. In HS algorithm, the initial solution set of HM is randomly
generated. In other words, s, harmony solutions are randomly generated from the solution space
with n variables, and are placed in HM. The form of HM is given in Equation (9):

T[1 T[% “ee ‘r[l
HM=|: |=|: =~ | ©)
T, g,
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(2) Generation of a New Solution

It involves two stages to generate a new solution: the construction stage and the adjustment
stage. In the construction stage, a random number r; is generated and compared with r,. If ry is
smaller than 7, a harmony variable is selected from HM, otherwise, a harmony variable is generated
from the solution space. For each harmony variable obtained from HM, another random number 7,
is generated in the adjustment stage and compared with 7,. If 7, is smaller than r,, the variable
needs to be adjusted according to the adjustment bandwidth bw to obtain a new value. Otherwise, no
adjustment is carried out. By performing this process n times, a new harmony m,,,, isobtained.

(3) Update of HM

The new generated solution m,,,, is evaluated based on the objective function of optimization.
If e, is better than the worst solution m,,,,s; in HM, then the solution m,,,,s; is replaced by the
new solution m,,,,, otherwise, there is no update.

B. Harmony Search with Iterative Optimization

HS algorithm was originally developed for continuous functions of n variables, and it has the
essence of continuity [11]. However the problem studied here involves decision variables with
discrete characteristics. Therefore, a hybrid HS algorithm is proposed by modifying HS algorithm
suitable for solving the considered problem.

(1) Initialization of HM

Due to the homogeneity of DMS, whereby all factories have the same number and sequence of
machines with identical characteristics of processing, there is no need to optimize the order of
factories, and they can be arranged in numerical order. Each solution in HM consists of two parts:
The first part stores the number of jobs allocated by each factory in order, which displays the structure
of the solution. The second part deals with the jobs and their arrangement within a given factory.
Assigning different numbers of jobs to a factory and scheduling them can significantly influence the
makespan of that factory. The two factors, job—factory allocation, and job ordering within that factory,
thus influence the objectives of scheduling. These factors cannot be simply separated, and need to be
studied as a whole.

Assuming that there are 9 sequentially numbered jobs assigned to 3 distributed manufacturing
factories, Table 1 shows an example of a HM. This example contains two harmony solutions
represented as m; and m, respectively. For the second solution m,=({4,2,3}1(1,3,4,9},{2,5},{6, 7,8}},
the first part of the solution {4,2,3} indicates that there are 3 processing factories, and there are 4 jobs
in the first factory,2 jobs in the second one and 3 jobs in the third one. The second part shows in detail
that the first 4 jobs {1,3,4,9} are assigned to the first factory, the next 2 jobs {2,5} are assigned to the
second one, and the last 3 jobs {6,7,8} are assigned to the third one.

Table 1. An example of HM.

job sequence
solution
structure Processing Factory 1 Processing Factory 2 Processing Factory
3
{3,3,3} {1,34} {2,5,9) {6,7,8}
{4,2,3) {1,3,4,9} {2,5) {6,7,8}

The quality of the initial solution set is important for the evolution of the algorithm because it
determines whether the algorithm can quickly find the (approximately) optimal solution or not. The
NEH algorithm [14] is an efficient and widely used heuristic algorithm to obtain an initial solution
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for scheduling problems with makespan minimization. Its main idea is as follows: First, arrange the n
jobs in descending order according to the processing times on machines of each job. Second, pick the
first two jobs from the list and find the best sequence for these two jobs by calculating makespan for
the two possible sequences, set i=2. Third, pick the job in the (i+1)-th position of the list and find the
best sequence by placing it at all possible (i+1) positions in the partial sequence found previously.
Repeat the third step till i=n.

However, the problem considered in this paper is distributed permutation flowshop scheduling
with multiple factories, the NEH algorithm cannot be directly used to obtain the initial solution set.
Thus a distributed NEH algorithm (D-NEH) is constructed to obtain the initial solution set. It can be
obtained by the following procedure: First, generate a job sequence by arranging the | jobs in
descending order according to their processing times on the machines, and randomly generate the
other (s, —1) job sequences. Then, for each of the s, job sequences, assign the first F jobs to F
factories (each factory contains one job), pick the next job from the job sequence, and find the best
position by placing it in all possible positions in the partial sequence of each factory, repeat the pick—
find operation until all the jobs have been arranged to its proper factory and the best position in that
factory. Finally, the initial solution set HM is generated.

The D-NEH algorithm for initial solution generation is shown in Algorithm 2.

Algorithm 2. D-NEH algorithm

Initialize the parameter sy;
Generate the first job sequence m; by arranging the ] jobs in descending order according to their
processing times on the machines;
Randomly generate the other (s, — 1) job sequences;
For (i=1to s, |
Assign the first F jobs to F factories ;
For(j=F; j<J; j++){
Pick the job in the (j+1)-th position of the job sequence m;
Find the best sequence by placing it in all possible positions in the partial sequence of each
factory;
}
}

Return;

(2) Generation of New Solution

The process of generating new solutions can be divided into three stages. The first two stages
are identical to those in HS algorithm, while the third one is an optimization stage. Unlike the case in
which there is one solution sequence for only one factory, a DMS in the construction stage has at least
two factories, each of which may not necessarily contain the same number of jobs. Therefore, before
constructing a new solution sequence, the number t(0 <t <s,) of different solution structures
contained in HM should first be obtained. Then, based on the number of jobs in each factory in the
solution structure, if the random number 7, (0 < 1; < 1) is smaller than the parameter r;, a new
solution is constructed by selecting jobs from HM, otherwise, the solution is constructed by selecting
jobs from a range of possible values for each decision variable. It is clear that, in the stage of
construction of the new solution, t solutions are generated instead of one. The construction stage
essentially combines the architecture of certain meta-heuristic algorithms. For example, it preserves
the historical traces of past vectors, similarly to the taboo search algorithm [15]. It can have a varying
probability of fitness from the beginning to the end of the calculation, similarly to the simulated
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annealing algorithm [16]. At the same time, it can retain several vectors like genetic algorithms to
enable the newly generated solution to evolve.

The adjustment stage in this algorithm involves a certain variation based on the parameter 7,
while the solution is obtained by considering convergence and divergence in the generation of the
new solution by the algorithm. That is, the algorithm constructs the solution while performing
mutation on each decision variable by relying on 7,. The main idea of this adjustment operation is
that when it is executed, a decision variable is selected from the current solution sequence and
exchanged with a randomly selected decision variable that is close to it. The solution with the best
value of the objective function is used as the new solution. This idea is similar to that of the genetic
algorithm, which creates a small random disturbance to avoid premature convergence.

In the optimization stage, an iterative optimization algorithm (IOA) which is composed of RZ
and PE operators [2] is used to further search the neighborhood of the candidate solution to find more
and better solutions. RZ and PE algorithms are commonly used and relatively efficient among
heuristic algorithms. The main idea of RZ algorithm is as follows: For a given job sequence with n
jobs, select a job from the sequence and insert it into n possible positions to find the best sequence,
Repeat this select-insert operation for the next job in the job sequence until all of the jobs be
selected/optimized. The main idea of PE algorithm is as follows: For a given job sequence with 7 jobs,
pick a job from it and exchange this job with other n-1 jobs to find the best sequence, Repeat this pair-
wise exchange operation for the next unpicked job until all of the jobs be picked/optimized.

The IOA operator can be described as follows: For each new candidate solution =;,i = 1,2, ..., t,
select one job from the sequence with the largest makespan value (if there is more than one sequences,
select one randomly) and insert it into other possible positions to find the best sequence mp,;. For
Thest, Pick this job and exchange it with other jobs to find the best sequence my,,. Repeat the select—
insert and pairwise-exchange operations for the next unselected job until all the jobs have been
optimized; at this point, the (approximately) optimal solution has been finally obtained. The IOA
operator used to optimize a new candidate solution m; is presented in Algorithm 3.

Algorithm 3. Iterative optimization algorithm (IOA)

Set Myese < ;5
Repeat
Find the factory with the largest value of makespan
in . and record it as frax;
Set global « false;
For (=1to Jr N
For (f=1 to F){
If ( f=finax) continue;
Insert job j into factory f;
Apply the select-insert operation to optimize
the job sequence of factory f and get the best sequence m;
Apply the pairwise exchange operation to
further optimize the job sequence of factory f and get the best solution m,;
If(C(Ttpest) < C(pese))
Replace mpese With Ty, ;
Set global « true;

}
If (global=true) break;
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If (global=true) break;
}
Until global=false;
Set T[i < nbest;

Return;

After the construction and adjustment stages as well as the optimization of the candidate
solution, t new candidate solutions m,,, = {m,m,,..,m;} are generated, and are sorted in
descending order according to the value of the objective function to facilitate the subsequent update
of HM.

The proposed algorithm to generate and optimize new solutions is detailed in Algorithm 4.

Algorithm 4. New solution generation algorithm (NSGA)

Initialize parameters 1y, Ty, bw;
Set Tnew < ¢ ;
Obtain the total number of solution structures t of HM;
For (i =1 to t){
Let the i-th solution structure be the structure of the
new solution m;;
Set ; « &;
For (j=1to ] ){
Generate two random numbers r; and 1y;
If (ry <)
Select a new job from column j in HM and
insert it into the j-th position of the new solution m;;
}Else{
Select a new job from the job set and insert it
into the j-th position of the new solution ;;
}
If (r, < rp){
Adjust the job to within the range (max{0, j-
bw}, minf{ j+bw, J} );
}

}
Applying the IOA operator to optimize the new solution ;;

Set Tpew < Mpew U j;
}
Sort the t new candidate solutions in descending order according to values of the objective function,
and obtain the new solution set 7., ={my, 7y, ..., T:};

Return;

In the NSGA algorithm, the IOA operator is used to further optimize the candidate solutions for
better ones. This not only increases the diversity of solutions in HM, but also enables the algorithm
to expand the search space, and find more and better solutions. Therefore, this algorithm has a good
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ability to search the solution space I1 and find more (approximately) optimal solutions while
maintaining their diversity.

(3) Update of HM

The update operation enables the algorithm to obtain more and better solutions, which can guide
it to search for a better solution space and accelerate the convergence of the solution. Therefore, the
update operation plays an important role in maintaining high-quality solutions and ensuring the
convergence of the algorithm.

According to the objective function, the main idea of the update operation is as follows: For each
new generated harmony solution m; (i =1,2,..,t) and the worst harmony solution m,(h =
1,2,...,sp) found in HM, if m, is worse than m;, then replace m, with m;.

The update algorithm is detailed in Algorithm 5.

Algorithm 5. Update algorithm

For (i=1tot){
Setpos « -1, ms « -1;
For (h =1 to sp){
If (ms < C(mp)){

Set pos « h, ms « my;

}
If (pos # —1 and ms > C(m;)){

Replace my,ors¢ With m;

}

Return;

(4) Algorithm Description

The algorithm proposed in this paper is a hybrid meta-heuristic based on HS and iterative
optimization, called IOHS. Following the generation of the initial solution set, the NSGA algorithm
is used in this algorithm to construct new solutions. While constructing a new solution, it may select
a new job from HM or a job set based on the parameter 7;,, and adjusts it to avoid local convergence
based on the parameter 7,. The IOA operator is used to further optimize the quality of the new
solution and obtain the final candidate solution. The worst solutions in HM are replaced if they are
poorer than the candidate solutions. The construction, optimization, and update operations are
repeated until the algorithm satisfies its stopping condition. And finally, the solutions that satisfying
the multimodal optimization are output.

IOHS algorithm is shown in Algorithm 6.

Algorithm 6. IOHS algorithm

Generate the initial solution set of HM by using D-NEH;
Repeat
Construct a new solution set m,,,, = {my, Ty, ..., T} by
using the NSGA algorithm;
Use the Update algorithm to update HM;
Until (the stopping condition is satisfied)
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Calculate the objective function values based on Equation (7);
Output the solutions satisfying multimodal optimization based on Equation (8);

Return;

IV. Simulations

In this section, the test dataset used to assess the performance of the proposed method is first
described. Then Statgraphics is used to analyze the parameters 7, and 7,, and finally the simulations
are detailed. All the algorithms were coded in Java and executed on a Windows PC with an Intel® i5
core, 2.5 GHz CPU, and 4 GB RAM.

A. Test Dataset

The Taillard benchmark [17] has been widely used in scenarios involving single and multiple
manufacturing factories. However, when the number of factories increases in the application of a
distributed manufacturing system, the average number of jobs assigned to each factory may be very
small. For example, if there exists a DMS consisting of 10 factories and 200 jobs, the average job
allocation for each factory is only 10. Although the solution space is huge, the size of the problem for
each factory is relatively small. Therefore, to faithfully simulate job allocation in distributed scenarios,
a new dataset is generated which is based on the main idea of the data generation algorithm
developed by Taillard.

The stopping condition of the algorithm is described in Section 5.2. The generated dataset was
as follows: The processing time of each job on M machines was randomly generated in the interval
[5, 99]. The numbers of jobs | were set to 60, 150, 330, 510, and 600. The numbers of factories F were
set to 2, 3, 5, and 10, respectively. The numbers of machines M in each factory were set to 5, 10, and
20, respectively.

B. Parameter Analysis

The parameter s, represents the size of HM, i.e., the number of solutions in HM. Based on the
total number of jobs to be sorted, s; is setto 0.2 x J. The parameter bw is used to increase the range
of the search space, prevent the algorithm from prematurely converging, and improve the probability
of finding a better solution. In this paper, bw issetas bw = J X 0.05. To evaluate the algorithm fairly
based on the number of machines and the average number of jobs per factory, the runtime of all the
algorithms considered here are setas T =M X (J +~ F) X t X 0.5 ms [18], where M is the number of
machines in each factory, J is the total number of jobs to be processed, F is the number of factories,
and t was set to 120.

The rates of consideration 7, and pitch adjustment 7, are two important parameters in HS
algorithm. 7, determines the probability of randomly generating a solution based on the historical
variables in HM. As HM stores the best solutions obtained by the algorithm at any given time, the
algorithm tends to find more optimized solutions (leading to faster convergence) when the value of
1, increases. 7, determines the probability of adjusting the values selected from among the historical
values in HM, which means that it determines the probability of adjusting some vectors of a solution
(probability of divergence). As the value of 7, increases, the algorithm tends to generate solutions
by selecting from global variables, that is, by expanding the search range (divergence) to find more
optimized solutions. To determine appropriate values of 7, and 7, they were tested with different
values: 1, was set to 0.70, 0.75, 0.80, 0.85, 0.90, and 0.95, while 7, was set to 0.10, 0.15, 0.20, 0.25, 0.30,
and 0.35. To test the parameter values fairly and quickly, M is set to 10, ] to 330, and F to 5. For each
parametric combination, a total of 20 instances were generated, each of which was executed three
times, and the minimum value of the objective function was obtained. The average values of each
parameter combination are shown in Table 2.

Table 2. Comparison of parameter combinations.
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Th, Ty MSave Th, Tp MSave Th, Tp MSave
0.7,0.1 4663 0.8,0.1 4648 09,01 4614
0.7,0.15 4659 0.8, 0.15 4658 0.9, 0.15 4626
0.7,0.2 4675 0.8,0.2 4665 0.9,0.2 4641
0.7,0.25 4679 0.8,0.25 4665 0.9,0.25 4652
0.7,0.3 4689 0.8,0.3 4679 0.9,0.3 4654
0.7,0.35 4687 0.8,0.35 4680 0.9,0.35 4663
0.75,0.1 4651 0.85,0.1 4627 0.95,0.1 4601
0.75,0.15 4659 0.85, 0.15 4644 0.95, 0.15 4614
0.75,0.2 4666 0.85,0.2 4652 0.95,0.2 4627
0.75,0.25 4672 0.85,0.25 4661 0.95, 0.25 4636
0.75,0.3 4678 0.85,0.3 4667 0.95,0.3 4648
0.75, 0.35 4689 0.85,0.35 4673 0.95, 0.35 4651

The analysis of the parameter combinations listed in Table 2 yielded the results shown in Figure

1 to Figure 3.

4700

4680

p
0.1
0.15

0.2
0.25

Ftittts

o s 1= 03

4600
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Figure 1. Multivariate analysis(r, and 7).
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Figure 2. Analysis of parameter 7;,.
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Figure 3. Analysis of parameter 7,.

Figure 1 shows the results of a multivariate analysis of variance. As the value of 7, increased
and that of 7, decreased, the solution obtained by the algorithm improved. This indicates that the
larger the value of 7, was and the smaller the value of 71, was, the better was the performance of
the algorithm. It is clear from Figure 2 that when 7,=0.95 and 7,=0.1, the algorithm obtained the best
solution.

Figure 2 shows the results of a one-way analysis of variance for r,. Clearly, as the value of 7,
increased, the solution obtained by the algorithm improved. When 1, was 0.95, the algorithm
achieved the best solution.

Figure 3 shows the results of a one-way analysis of variance for 7,, from which it is clear that as
the value of 7, decreased, the solution obtained by the algorithm improved. When 7, was 0.1, the
algorithm obtained the best solution.

It can be concluded that setting 7, = 0.95 and 7, = 0.10 can enable IOHS algorithm to obtain
the best value of makespan.

C. Experimental Verification

(1) Comparison of HS and IOHS

HS and IOHS algorithm are compared from three perspectives, i.e., job, factory and machine, to
show whether the optimization operator (named IOA) of IOHS algorithm gives the most contribution
or not. The average makespan obtained by HS and IOHS algorithms are shown in Table 3.

Table 3. Comparison of HS and IOHS.

IME MSave IME MSave IME MSave

HS IOHS HS IOHS HS IOHS
60,2,5 1847 | 1774 150, 5, 20 3285 2858 510, 3, 10 10483 9442
60, 2,10 2318 | 2119 150, 10, 5 1203 965 510, 3, 20 11782 10365
60, 2,20 3102 | 2871 150, 10, 10 1618 1333 510, 5,5 6049 5528
60, 3,5 1349 | 1237 90, 10, 20 2333 2009 510, 5, 10 6748 5837
60, 3, 10 1751 | 1587 330,2,5 9159 8866 510, 5, 20 7913 6789
60, 3, 20 2485 | 2284 330, 2, 10 10007 | 9230 510,10, 5 3351 2834
60, 5,5 937 817 330, 2, 20 11374 | 10195 | 510, 10, 10 3893 3200
60, 5, 10 1308 | 1166 330, 3, 5 6314 5932 510, 10, 20 4846 4053
60, 5, 20 1977 | 1810 330, 3, 10 7078 6322 600, 2,5 16347 15977
60, 10, 5 626 525 330, 3, 20 8237 7223 600, 2, 10 17485 16365
60, 10, 10 962 838 330,5,5 4020 3615 600, 2, 20 19138 17279
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60, 10, 20 1593 | 1450 330, 5, 10 4651 3974 600, 3, 5 11205 10692
150, 2, 5 4373 | 4214 330, 5, 20 5667 4857 600, 3, 10 12137 11008
150, 2, 10 4907 | 4477 330, 10, 5 2280 1881 600, 3, 20 13560 11979

150, 2, 20 5923 | 5293 330, 10, 10 2787 2264 600, 5, 5 7060 6478
150, 3,5 3037 | 2819 330, 10, 20 3634 3039 600, 5, 10 7806 6819
150, 3, 10 3571 | 3137 510,2,5 14136 | 13810 | 600, 5, 20 9002 7745

150, 3, 20 4502 | 3972 510, 2, 10 14994 | 13997 | 600, 10, 5 3863 3295
150, 5,5 1998 | 1733 510, 2, 20 16599 | 14947 | 600, 10, 10 4464 3687
150, 5, 10 2465 | 2102 510, 3,5 9528 9057 600, 10, 20 5437 4529

Similarly, by conducting parameter analysis on the data in the Table 3, the following results can
be drawn which are shown from Figure 4 to Figure 6.

(X 1000)
12

Algorithm
- HS
10 — ——_IOHS

N

Makespan
FN-

60 150 330 510 600
Job

Figure 4. Multivariate analysis of variance for job and algorithm.

Seen from Figure 4, it is obvious that as the number of jobs increases, the objective value obtained
by the algorithm becomes larger and larger. Under the same number of jobs, IOHS algorithm
outperforms HS algorithm.

(X 1000)
12

Algorithm
1|-=— HS

1>~ IoHs

y
///

2 3 5 10
Factory

Figure 5. Multivariate analysis of variance for factory and algorithm.

Figure 5 shows that, as the number of factories increases, the number of jobs in each factory
becomes smaller resulting in the fact that the objective value obtained by the algorithm becomes
smaller and smaller. Under the same number of factories, IOHS algorithm outperforms HS algorithm.
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Figure 6. Multivariate analysis of variance for machine and algorithm.

Seen from Figure 6, it is obvious that as the number of machines increases, the objective value
obtained by the algorithm becomes larger and larger. Under the same number of machines, IOHS
algorithm outperforms HS algorithm.

In conclusion, IOHS algorithm is better than HS algorithm by using the optimization operator,
thus the IOA operator gives a remarkable contribution to IOHS algorithm.

(2) Algorithms comparison

Many effective meta-heuristic algorithms have been developed in research, including PSO [19],
DE [20], and CMA-ES [21], that can be compared with the proposed IOHS algorithm in the context
of the DPFSP. However, only the iterative greedy meta-heuristic algorithm with a bounded search
strategy(BSIG) [22] and the improved Jaya algorithm(Jaya)[23] are suitable for solving the problem
considered here. They are implemented along with the proposed algorithm on a new dataset, with
the aim of multimodal optimization. BSIG and the improved Jaya algorithms used the stopping
condition described in Section 5.2. The average values of makespan obtained by these algorithms are
shown in Table 4.

Table 4. Comparison of algorithms.

MSave MSave MSave
JEM J,EM J,F,M

BSIG [Jaya [[OHS BSIG [Jaya [IOHS BSIG [Jaya [[OHS
60,25  [1828 (1782 |1774 (150,520 (3004 [2887 [2858 |510,3,10 [9719 (9503 [9442
60,2,10 2249 [2144 [2119 |150,10,5 (972 992 965 |510,3,20 |10761 (10445 [10365
60,220 3024 [2897 2871 [150,10,10 (1342 (1365 (1333 |[510,55  [5640 [5556 [5528
60,35 (1248 |[1254 (1237 (90,1020 2024 2044 009 |510,510 6085 [5912 |5837
60,3,10 (1613 [1618 (1587 [330,2,5 8941 8867 8866 510,520  [7084 |6853 |6789
60,320 2318 [2321 2284 [330,2,10 (9451 (9244 (9230 |[510,10,5 2940 [2881 [2834
60,55 828 [841 817 330,220 [10575 (10217 (10195 [510,10,10 [3354 [3258 (3200
60,510 (1182 (1193 (1166 [330,3,5 6036 |5939 5932 |510,10,20 |4234 4094 4053
60,520 (1833 [1845 [1810 [330,3,10 [6567 [6363 [6322 [600,2,5 16042 (15980 (15977
60,105 [534 |544 525 330,3,20 [7530 [7277 [7223 [600,2,10 (16647 (16399 (16365
60,10,10 855 (867 838 [330,5,5 3713 3641 3615 [600,2,20 (17773 17379 (17279
60,10,20 (1472 [1484 [1450 (330,510 [4181 (4028 [3974 [600,3,5 10804 {10707 |10692
150,2,5 4270 4215 4214 330,520 |5081 14894 14857 600,3,10  [11299 [11065 [11008
150,2,10 4655 [4482 4477 [330,10,5 (1973 (1920 (1881 600,3,20  [12389 (12062 (11979
150,2,20 5544 [5295 [5293 [330,10,10 [2386 [2308 [2264 |600,5,5 6601 6512 6478
150,3,5 [2897 [2828 [2819 [330,10,20 3180 (3072 [3039 600,510  [7065 |6894 |6819

© 2025 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202507.0161.v1
http://creativecommons.org/licenses/by/4.0/

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 July 2025

15 of 18

150,3,10 |3325 3176 (3137 1510,2,5 13899 [13811 |13810 |600,5,20 8065 [7808 |7745
150,3,20 4164 4008 (3972 [510,2,10  |14225 |14006 (13997 |600,10,5 3402 (3343 (3295
150,5,5 |1823 (1765 |1733 |510,2,20 (15393 |15016 (14947 [600,10,10 3871 |3763 |3687
150,5,10 |2225 (2141 2102 [510,3,5 9160 (9073 9057 [600,10,20 4742 4580 4529

Table 4 shows that IOHS algorithm obtained the best results. For further analysis, the
performance of these algorithms based on the average relative percentage deviation (ARPD) are
compared, as defined in Equation (10):

N Fi(H) B~ 1
ARPD = ZTL x100%  (10)
i=1

where N is the number of instances of the same size, F;(H) is the makespan value obtained by
solving instance i by using algorithm H, and B; is the minimum value of makespan obtained by
solving instance 7 by using all the other algorithms. The larger the value of the ARPD was, the worse
was the average performance of the algorithm. Table 4 lists the values of ARPD obtained by BSIG,
Jaya, and IOHS algorithms.

Table 5 shows that BSIG algorithm delivered the worst performance, and that IOHS algorithm
was slightly better than Jaya algorithm. To facilitate comparison, and visually display the trends of
the solutions to the DPFSP obtained by different algorithms at different scales, the results of the multi-
factor ANOVA are shown from Figure 7 to Figure 9.

Table 5. Comparison of algorithms based on ARPD.

ARPD (%) ARPD (%) ARPD (%)
JLEM J.EEM J,FE.M
BSIG |Jaya [IOHS BSIG [Jaya [IOHS BSIG |Jaya [IOHS
60,2,5 5.04 237 |1.12  |150,5,20 090 0.19 |0.06 |510,3,10 1.15 |0.53 |0.16
60,210 |7.69 215 |0.37 |150,10,5 312 |0.23 |0.06 |510,3,20 0.79 10.49 |0.18
60,220 |0.87 |0.24 |0.10 |150,10,10 |2.15 |0.21 |0.08 |510,5,5 1.77 |0.88 [0.29
60,3,5 2.14 |0.13 |0.04 |150,10,20 |1.52 |0.19 (0.07 |510,5,10 143 |0.66 [0.18
60,3,10 232 |0.24 |0.10 330,25 414 [1.60 |0.35 510,520 0.70 |0.44 |0.16
60,3,20 |1.61 |0.17 |0.06 |330,2,10 231 |0.63 |0.20 |510,10,5 0.82 10.54 |0.20
60,5,5 3.67 0.22 10.07 |330,2,20 1.09 (051 [0.20 |510,10,10 |0.86 |0.56 |0.26
60,510 278 10.26 |0.09 |330,3,5 2.62 (0.84 |0.27 |5610,10,20 |0.56 |0.35 [0.15
60,520 201 |0.18 |0.05 [330,3,10 2.04 |0.62 [0.20 [600,2,5 123 |0.59 (0.21
60,105 472 |0.25 |0.09 [330,3,20 1.10 |0.52 (0.19 |600,2,10 1.04 |0.55 |0.18
60,10,10 [3.87 10.21 |0.05 330,55 3.18 |0.87 |0.30 |600,2,20 0.66 [0.41 |0.17
60,10,20 2.66 |0.17 |0.07 (330,510 2.28 |0.76 |0.28 1600,3,5 1.31 0.83 |0.30
150,2,5  |1.64 |0.28 (0.07 |330,5,20 1.24 ]0.57 (0.21  |600,3,10 1.17  |0.64 (0.24
150,2,10 |1.33  |0.87 |0.28 |330,10,5 131 |0.59 (0.20 |600,3,20 0.69 10.49 |0.20
150,2,20 |1.06 0.79 10.26  |330,10,10 |1.00 [0.50 |0.18 |600,5,5 1.58 0.78 |0.30
150,3,5 |0.62 |0.39 |0.15 |330,10,20 |0.99 |0.37 (0.12 |600,5,10 1.29 0.71 (0.24
150,3,10 0.66 [0.30 |0.07 |510,2,5 1.56 |0.68 (0.23 |600,5,20 0.79 1049 (0.17
150,3,20 |0.55 |0.19 (0.07  |510,2,10 1.29 10.66 [0.27 [600,10,5 145 |0.77 [0.25
150,5,5 |1.94 |0.40 |0.11 |510,2,20 0.78 10.50 [0.17 |600,10,10 [1.27 |0.64 |0.23
150,5,10 |1.44 |0.22 |0.07 |510,3,5 1.39 (055 [0.13 |600,10,20 |0.67 |0.41 |0.15
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Figure 7. The multi-factor ANOVA(Job and algorithm).

Figure 7 shows that as the number of jobs increased, the values of the objective function obtained
by IOHS and Jaya algorithms both slightly increased, while the values obtained by BSIG algorithm
decreased. This is because as the number of jobs increased, BSIG algorithm expanded its search range
and found better solutions. However, owing to its significant randomness in searching for the
(approximately) optimal solution, BSIG algorithm still delivered the worst results. It is clear that
IOHS algorithm delivered the best performance of the three algorithms, regardless of the number of

jobs.
24 Algorithm
-=— BSIG
2 N —— IOHS
—— JAYA
1.6
8 N
© 12
" \//"\
o )‘\K—/"‘\—x
0
2 3 5 10

Factory
Figure 8. The multi-factor ANOVA(Factory and algorithm).

Figure 8 shows that as the number of factories increased, the values of the objective function
obtained by IOHS and Jaya algorithms both exhibited a downward trend, while those obtained by
BSIG algorithm fluctuated. This is because as the number of factories increased, the number of jobs
per factory decreased, and this enabled IOHS and Jaya algorithms to find better solutions. It is clear
that IOHS algorithm delivered the best performance of the three algorithms, regardless of the number
of factories.

24 Algorithm
\ —=— BSIG
2 —— |OHS
\ —— JAYA
1.6
g
© 12
< N
0.8
0.4 9\6\
s
(]
5 10 20

Machine

Figure 9. The multi-factor ANOVA(Machine and algorithm).

Figure 9 shows that as the number of machines increased, the values of the objective function
obtained by all three algorithms exhibited a decreasing trend. This is because the processing time for
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each job increased with the number of machines. It is clear that IOHS algorithm delivered the best

performance of the three algorithms, regardless of the number of machines.

An analysis of the results shown in Figure 7 to Figure 9 yields the following conclusions:

e Although the ARPD values obtained by BSIG algorithm fluctuated, they generally showed a
downward trend. The ARPD values obtained by Jaya and IOHS algorithms both slightly
decreased.

¢ Jaya algorithm was superior to BSIG algorithm, while the results obtained by IOHS algorithm were
slightly better than those of Jaya algorithm.

o The results obtained by IOHS algorithm, shown in Table 5 and the corresponding figures, reveal
that it delivered the best and most stable performance in solving the DPFSPs at all scales.

In summary, the proposed IOHS algorithm is an efficient and effective method, and it should be
used to solve DPFSPs.

V. Conclusion

This study analyzed distributed permutation flowshop scheduling, provided a detailed
description of the problem, and proposed a hybrid harmony search for multimodal optimization. The
proposed algorithm initializes HM, continuously constructs and adjusts new solutions while
optimizing them, and updates HM until the stopping condition is met. A comparison between this
method, and two classic and recently developed algorithms showed that it is suitable for solving
DPFSPs.

The development and empirical evaluations of the algorithm reported in this paper also reveal
some fruitful directions for future research in the scheduling field. First, researchers should seek to
enhance the capability of the proposed algorithm to search large-scale problem spaces. Second, as
novel kinds of bionic algorithms, such as PSO, DE, and CMA-ES, are developed, devising effective
and efficient algorithms for the DPFSP should persist as the major aim of research in the area. Third,
the performance of the algorithms considered in this study should be compared by considering other
criteria than those provided here, particularly criteria involving different production environments
with varying purposes, on various DMS-related scheduling problems. The DPFSP that involves more
realistic issues, such as no wait, parallel batching, and set-up and transmission times, is a more
complex problem that is commonly encountered in production environments. Therefore, assessing
the performance of the relevant methods on such scheduling problems is important in future
research. Finally, researchers should consider a number of problems in different production
environments, including the flowshop, open-shop, and job-shop. This is a promising opportunity to
explore the development and application of scheduling theory in DMS and services.
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