

Article

Effelsberg Monitoring of a Sample of RadioAstron Blazars

Jun Liu ^{1,2,3,*}, Thomas P. Krichbaum¹, Xiang Liu ^{2,3}, Alex Kraus¹, Hayley Bignall⁴, Yuri Y. Kovalev^{5,6,1}, Kirill V. Sokolovsky^{7,8,5} and J. Anton Zensus¹

¹ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

² Xinjiang Astronomical Observatory, CAS, 150 Science 1-Street, Urumqi 830011, P. R. China

³ Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, Urumqi 830011, P. R. China

⁴ CSIRO Astronomy and Space Science, 26 Dick Perry Avenue, Kensington, WA 6151, Australia

⁵ Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow, Russia

⁶ Moscow Institute of Physics and Technology, Dolgoprudny, Institutsky per., 9, Moscow, Russia

⁷ IAASARS, National Observatory of Athens, Vas. Pavlou & I. Metaxa, 15236 Penteli, Greece

⁸ Sternberg Astronomical Institute, Moscow State University, Universitetskii pr. 13, 119992 Moscow, Russia

* Correspondence: jliu@mpifr-bonn.mpg.de

1 **Abstract:** The launch of the RadioAstron space radio telescope provides a unique opportunity to
2 study the extreme high brightness temperature of Active Galactic Nuclei (AGNs) with unprecedented
3 long baselines of up to 28 Earth diameters. A coordinated ground-based flux density monitoring of
4 RadioAstron targets is essential to determine the effect of interstellar scintillation (ISS) on the Space
5 Very Long Baseline Interferometry (SVLBI) visibilities. Moreover, a combination/comparison of
6 scintillation with SVLBI observations is expected to reveal the relative influence of source brightness
7 temperature, compactness, and properties of the interstellar medium on the observed variability at
8 centimeter wavelengths. In 2014 we started a RadioAstron target triggered flux monitoring with
9 the Effelsberg 100-m radio telescope in support of this SVLBI mission. A total of 112 targets were
10 observed during the five-session monitoring performed so far. In this paper we present a statistical
11 study on the short-term flux density variability of the sample, which is focused on the variability
12 characteristics and derived physical properties of the observed sources.

13 **Keywords:** galaxies; active – method; statistical – radio continuum; ISM

14 1. Introduction

15 The so-called ‘intra-day variability’ (IDV) is the rapid flux density variability on timescales of
16 the order of a day or less in compact extra-galactic radio sources, first discovered in the mid 1980s
17 using the Effelsberg 100-m Radio Telescope [1,2]. Variability surveys of large source samples show that
18 IDV is present in a significant fraction (~20%-50%) of flat-spectrum radio sources (eg. Quasars and
19 BL Lac objects) [3,4]. Over the past two decades, it has been established that this rapid variability is
20 predominantly caused by scattering of radio waves through turbulent ionized structures in the Milky
21 Way Galaxy [e.g. 5–10].

22 IDV sources are of astrophysical interest because the small angular sizes (no larger than tens of
23 μ as; see, e.g. [5,11,12]) they must possess in order to exhibit interstellar scintillation (ISS) requires
24 brightness temperatures (T_B) near or, in some cases, several orders of magnitude in excess of the
25 10^{12} K inverse Compton limit [13]. Thanks to the unprecedented long baseline of the RadioAstron
26 space radio telescope, we are now enabled to study the T_B of Active Galactic Nuclei (AGNs) up to
27 10^{15} - 10^{16} K. Actually the RadioAstron AGN survey has already discovered T_B well in excess of the
28 inverse-Compton limit in some sources, e.g. a measured $T_B \sim 10^{14}$ K for 3C273 [14]. The observed
29 excess may be either due to a very high Doppler boosting or to the violation of the inverse Compton
30 limit. IDV observations, which are performed close in time to RadioAstron Space Very Long Baseline

31 Interferometry (SVLBI) observations, will benefit from the source angular scale directly measured by
 32 the latter, and could thus shed further light on the relationship between high T_B and ISS.

33 Aiming at a more detailed understanding of the ultra-compact component and its extreme high
 34 brightness temperature in IDVs, in 2014 we initiated a project to monitor a sample of RadioAstron
 35 blazars with the Effelsberg 100-m radio telescope. In this paper we focus on the statistics of the
 36 short-term variability from this single dish flux density monitoring.

37 2. Sample Selection, Observations and Data Calibration

38 So far five sessions of monitoring have been performed. For each observing session, the main
 39 targets were chosen from the RadioAstron block schedule. In order to enable high precision flux
 40 density measurements, a nearby non-variable calibrator was selected for each target based on the result
 41 of an IDV survey with the Urumqi 25-m radio telescope [15, in preparation] as well as the MASIV
 42 survey [16]. A few sources of particular interest were occasionally added to the list as well. With this
 43 procedure of source selection, the final source number in each session is ~ 40 , and the final sample size
 44 for the whole campaign is 112.

45 Since all the sources are point-like to the beam of the Effelsberg radio telescope at 4.85 GHz, the
 46 observations were performed in cross-scan mode, where the antenna beam pattern was driven twice in
 47 both azimuth and elevation over the source position. A duty cycle consisted of the observation of the
 48 target sources as well as their nearby non-variable secondary calibrators (e.g. 0836+710 and 0951+699).
 49 The average duty cycle is 0.4 h^{-1} in the campaign, which translates into an average time sampling of
 50 ~ 2.5 hours for each source.

51 Frequent switching between targets and calibrators allowed monitoring of the antenna gain
 52 variations with elevation and time, thus improving the subsequent flux density calibration. The
 53 data calibration was done in the well established, standard manner, and enabled to achieve high
 54 precision flux density measurements. In short, it consists of the following steps: after a Gaussian fitting,
 55 corrections are computed for antenna pointing offsets, gain-elevation and gain-time effects; then, the
 56 measured antenna temperature is converted to an absolute flux density by utilizing the frequently
 57 observed primary calibrators 3C286, 3C48 and NGC7027. The efficiency of this standard procedure
 58 can be evaluated by measuring the residual scatter, m_c , in the data of the calibrators (see definition in
 59 section 3). For most of the observation sessions, the residual scatter is 0.3 – 0.5%.

60 3. Variability Parameters

61 A number of parameters are defined to characterize the variability. For each light curve the ‘raw’
 62 modulation index m , ‘intrinsic’ modulation index \bar{m} and reduced χ^2 are derived. A brief definition
 63 and description of these quantities is given here, the reader is referred to e.g. [17,18] for more details.

64 The raw modulation index is related to the standard deviation of the flux density Δ_S and the
 65 mean value of the flux density $\langle S \rangle$ in the time series by

$$66 m[\%] = 100 \cdot \frac{\Delta_S}{\langle S \rangle} \quad (1)$$

67 and yields a measure for the strength of the observed variations. The value of raw modulation
 68 index for all the observed non-variable calibrators (m_c) usually represents the calibration accuracy. The
 69 intrinsic modulation index \bar{m} [see 18, and reference therein] is an alternative estimator to quantify the
 70 variability that would be observed in the absence of measurement errors and with ideal time sampling.
 Note that this use of ‘intrinsic’ is not referring to source-intrinsic variability, but includes any intrinsic
 and extrinsic (ISS-induced) variations in the received flux density. The definition of \bar{m} involves a
 two-dimensional maximum-likelihood function

$$\mathcal{L}(\bar{m}, S_0) = S_0 \left(\prod_{j=1}^N \frac{1}{\sqrt{2\pi (\bar{m}^2 S_0^2 + \sigma_j^2)}} \right) \exp \left(-\frac{1}{2} \sum_{j=1}^N \frac{(S_j - S_0)^2}{\bar{m}^2 S_0^2 + \sigma_j^2} \right) \quad (2)$$

where S_0 is the average source flux density, S_j the individual flux density measurements, σ_j their errors and N the number of measurements. Furthermore, as a criterion to identify the presence of variability, the null-hypothesis of a constant function is examined via a χ^2 -test

$$\chi^2 = \sum_{j=1}^N \left(\frac{S_j - \langle S \rangle}{\sigma_j} \right)^2 \quad (3)$$

and the reduced value of χ^2

$$\chi_r^2 = \frac{1}{N-1} \sum_{j=1}^N \left(\frac{S_j - \langle S \rangle}{\sigma_j} \right)^2 \quad (4)$$

71 A source is classified as variable if the χ^2 -test gives a probability of $< 0.01\%$ for the assumption of
 72 constant flux density (99.99% significance level for variability).

73 4. Results and Discussion

74 Of the 112 targets observed, 33 sources exhibited IDV in at least one observing epoch, while 79
 75 sources didn't show evident short-term variability in any epoch. This leads to an IDV detection rate of
 76 $\sim 30\%$ in our monitoring sample, consistent with earlier studies [3,4]. Of the 54 sources with a GeV
 77 detection by Fermi, 24 showed IDV, indicating that almost half of the γ -ray loud sources are variable
 78 at cm-wavelength. By contrast the ratio is $\sim 16\%$ for γ -ray quiet sources. A summary for this result is
 79 given in Table 1 and Figure 1, showing clearly the higher fraction of the occurrence of IDV in γ -ray
 80 loud sources.

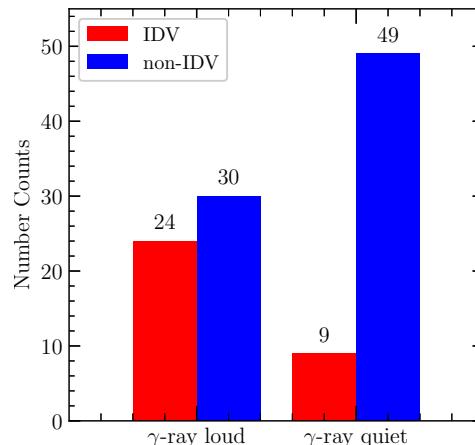


Figure 1. The occurrence of IDV and non-IDV in γ -ray loud/quiet subsamples, respectively.

Table 1. Overall statistics concerning the IDV detection rate in different classes of sources.

var. status	γ -ray loud	γ -ray quiet	total
IDV	24	9	33
non-IDV	30	49	79
total	54	58	112

81

4.1. the Intrinsic Modulation Index \bar{m}

82 We first investigate the distribution of the intrinsic modulation index \bar{m} , as it's essential for
 83 subsequent population studies. The probability density of \bar{m} (note a median value is taken if the source
 84 was observed in multiple epochs) is plotted in Figure 2. The distribution can be well characterized
 85 by an exponential function defined as $f(\bar{m})d\bar{m} = \frac{5}{4m_0} \exp(-\frac{5\bar{m}}{4m_0})dm$ with m_0 the mean of \bar{m} . The red
 86 dashed line represents an exponential distribution of mean $m_0 = 0.78\%$ which, as we can see, is an
 87 excellent description of the data.

88 Furthermore, by utilizing the formalism introduced in Section 6.3.3 of Richards *et al.* [18], we
 89 will be able to study the possible correlations between the intrinsic modulation index \bar{m} and physical
 90 properties in our sample. This will be done by testing whether the distributions of \bar{m} in subsets of our
 91 sample split according to some source property are consistent with each other. The applications of
 92 these population studies are presented in the following subsections.

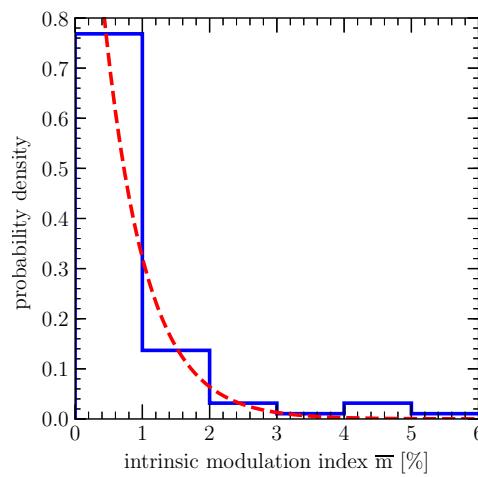
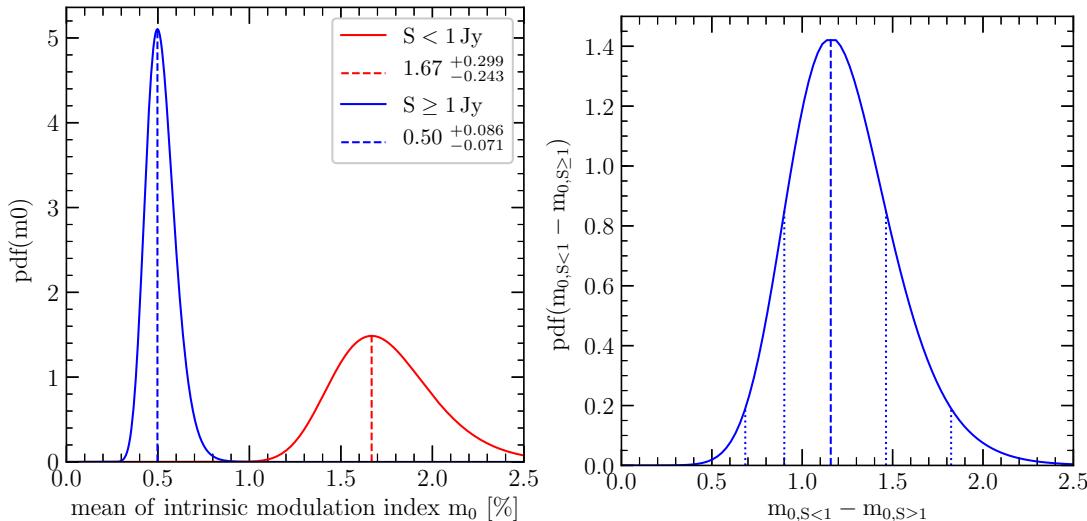


Figure 2. Probability density of the maximum-likelihood intrinsic modulation indices \bar{m} . The red dashed line represents an exponential distribution with $m_0=0.78\%$.

93


4.2. Flux Density

94 In this subsection we test the dependence of variability on source flux density, which is tightly
 95 bounded with source angular diameter, if the brightness temperature is inverse Compton limited. A
 96 population study is performed to examine subsets defined by whether the source flux density is higher
 97 or lower than 1 Jy (note a median value is taken if the source was observed in multiple epochs). The
 98 results of this test are displayed in Figure 3. In the left panel, it is obvious that the curves for these two
 99 subsamples are not consistent with each other – weaker sources have, on average, higher variability
 100 amplitude. This trend is expected for a brightness temperature limited sample, as the stronger sources
 101 have larger angular size, suppressing the ISS. This finding is verified by the right panel of Figure 3, in
 102 which the probability density of the difference between the m_0 of weak and strong sources is plotted.
 103 The most likely difference is 1.16 percentage points, and it is more than 5σ away from zero.

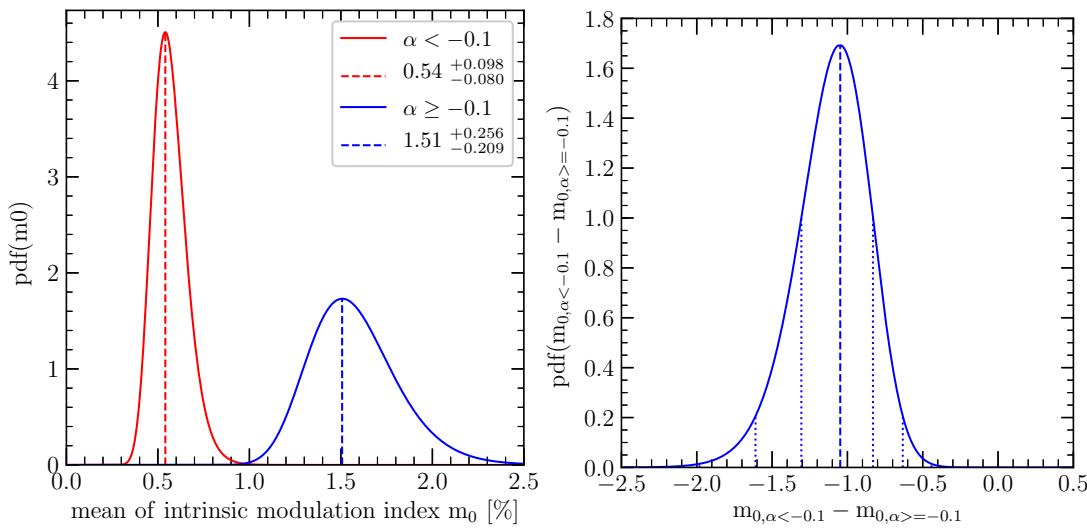
104

4.3. Spectral Index

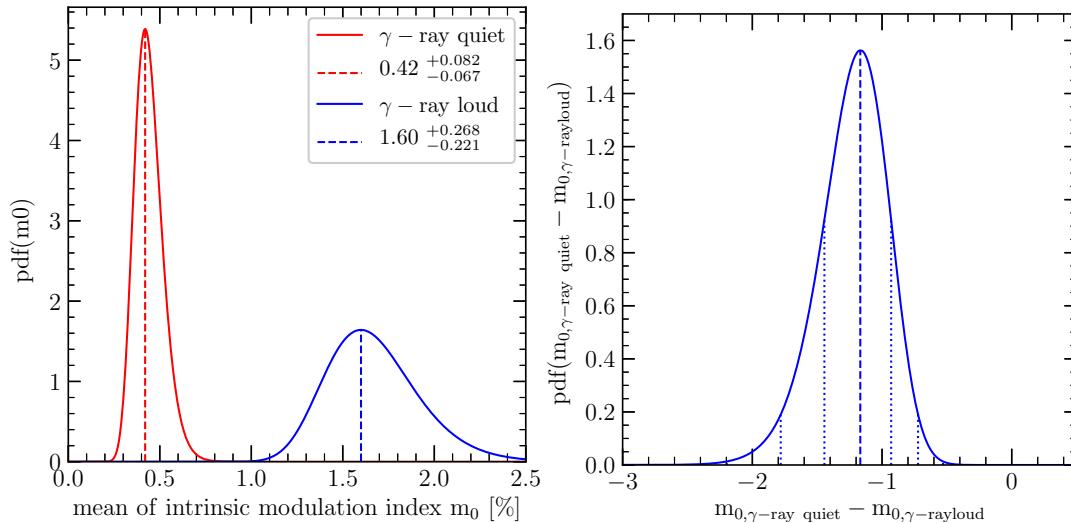
105 Early observations showed that scintillating sources tend to have flat or inverted spectra, while
 106 the steep-spectrum radio sources do not scintillate [19]. This can be understood by considering that
 107 the flat-spectrum sources are dominated by optically thick, synchrotron self-absorbed components
 108 with very high-brightness temperature, thus most of their flux density is confined to the ultra-compact
 109 core regions. In contrast, the steep-spectrum sources are dominated by optically thin, less compact
 110 emission with lower brightness temperatures, often related to an extended VLBI jet.

Figure 3. Left panel: Probability density of m_0 for sources with flux density lower (red solid line, maximum-likelihood value and 1σ error $m_0 = 1.67^{+0.299\%}_{-0.243\%}$) and higher (blue solid line, maximum-likelihood value and 1σ error $m_0 = 0.50^{+0.086\%}_{-0.071\%}$) than 1 Jy in our monitoring sample. The dashed vertical lines locate the peaks of probability density for the two subsamples. Right panel: Probability density of the difference between the m_0 for the two sets considered in the right panel. The dashed vertical line locates the peak of the probability density, while the dotted vertical lines represents the $1, 2$ and 3σ confidence interval. The peak of the distribution ($1.16^{+0.303\%}_{-0.259\%}$) is over 5σ away from zero.

111 To test this argument, we split the sample at $\alpha = -0.1$ (defined by $S \propto \nu^\alpha$). This criterion roughly
 112 splits our sample between flat and inverted spectrum, and produces similarly sized subsamples.
 113 Figure 4 shows the probability distributions of m_0 as well as the difference between m_0 for these two
 114 subsamples. The result, as anticipated, suggests that sources with inverted spectra are significantly (\geq
 115 6σ) stronger in short-term variability. It has to be noted, however, that the sources in the present sample
 116 are mostly compact, core-dominated sources with flat spectrum, unlike the classical steep-spectrum
 117 sources reported by Heeschen [19] which are dominated by their extended emission. Our findings
 118 indicate that even for the flat spectrum sources the presence of less compact components could in
 119 principle reduce their compact fractions thus suppressing the scintillation.


120 4.4. γ -ray Loudness

121 The connection between the radio and γ -ray emission in blazars has been extensively studied,
 122 especially in the Fermi era [e.g. 20–23]. The investigation of fast variability for the γ -ray loud sources
 123 in the radio bands is usually performed through the cross-correlation between the multi-frequency
 124 lightcurves. If such correlation is confirmed, the site of the γ -ray emitting region can be located [e.g.
 125 24]. In this study we test, through a statistical approach, the existence of a connection between the
 126 γ -ray properties and the radio compactness.

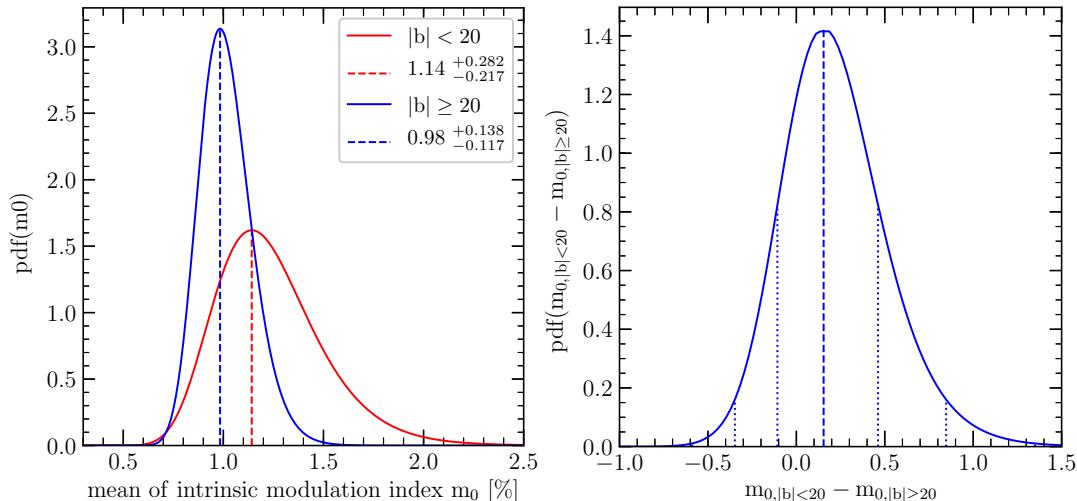

127 We thus divide our sample in two subsets, based on whether the source has been detected by
 128 Fermi LAT at a significance level high enough to warrant inclusion in the 3FGL catalog. As shown in
 129 Figure 5, these two subsamples show different properties: the γ -ray loud sources have, on average, a
 130 variability amplitude almost a factor of four higher than γ -ray quiet ones. The result is very significant
 131 statistically, with the maximum-likelihood difference being 7σ away from 0, as indicated in the right
 132 panel of Figure 5.

133 4.5. Galactic Latitude and k -index

134 We have also investigated how the galactic latitude is related to source variability. In case of ISS, a
 135 galactic latitude dependence of variability is anticipated, since the diffuse interstellar medium (ISM)

Figure 4. Similar as Figure 3 but for sources with spectral index lower (red solid line) and higher (blue solid line) than -0.1 . In the left panel the maximum-likelihood value and the associated 1σ error are indicated in the legend. In the right panel the peak of the distribution ($-1.05^{+0.217}_{-0.258}$) is over 6σ away from zero.

Figure 5. Similar as Figure 3 but for γ -ray quiet (red solid line) and γ -ray loud (blue solid line) sources. In the left panel the maximum-likelihood value and the associated 1σ error are indicated in the legend. In the right panel the peak of the distribution ($-1.17^{+0.238}_{-0.276}$) is $\sim 7\sigma$ away from zero.


136 are mostly distributed near the galactic plane. However only weak dependence of this nature has been
 137 observed so far [16,25]. A contingency test dividing the sample into a low and high galactic latitude
 138 subsamples at $|b| = 20^\circ$ shows that the two distributions of m_0 are rather consistent with each other.
 139 The probability density for the difference between m_0 for the two subsamples is consistent with zero to
 140 within 1σ (see Figure 6). Hence our result doesn't support the previous findings mentioned above.

141 In order to verify this result, we alternatively test the role of the k -index in the fast variability. The
 142 k -index is a power-law index that describes how the source angular size scales with frequency through
 143 $\theta \propto \nu^{-k}$, $k = \frac{\beta}{\beta-2}$ [26,27, and reference therein], where β is the index of the assumed power-law
 144 spectrum of the turbulent electron density fluctuations. For turbulence with Kolmogorov spectrum,
 145 $\beta = 11/3$ is expected. In this case, the scattered angular size of a source is proportional to $\nu^{-2.2}$.
 146 While if no scattering is present, the observed angular size is expected to scale approximately as ν^{-1} .

147 The value of k -index therefore, provides an estimation of the strength of angular broadening due to
 148 interstellar scattering. A recent statistical study on AGN cores reveals a bimodal distribution of k -index
 149 for sources with galactic latitude $|b| < 10^\circ$, indicating that the angular scatter-broadening is partially
 150 present in low galactic latitude sources [28].

151 With the k values provided in Pushkarev and Kovalev [28], our sample is then subdivided into
 152 scattering and non-scattering subsets at $k=1.1$. As shown in Figure 7 the distributions of m_0 are quite
 153 consistent with each other. The most likely difference is 0.06 percentage, which is very close to zero
 154 and obviously located within the 1σ confidence interval. This confirms the result on galactic latitude.

155 The lack of correlation of short timescale variability strength with Galactic latitude and k -index
 156 could be ascribed to two competitive effects related to the distance to and path length through the
 157 ISM [4, and reference therein]. On the one hand, the increased path length makes the scintillation
 158 stronger at lower latitudes so that the intrinsic modulation index should increase. On the other hand,
 159 the increased distance slows the scintillation time, which may cause a decrease in variability strength
 160 estimation. Moreover, extreme variability usually occurs where there happens to be a relatively nearby
 161 scattering 'screen' [see, e.g. 29]. In that case, ISS is less quenched than for a more distant screen for a
 162 source of a given angular diameter.

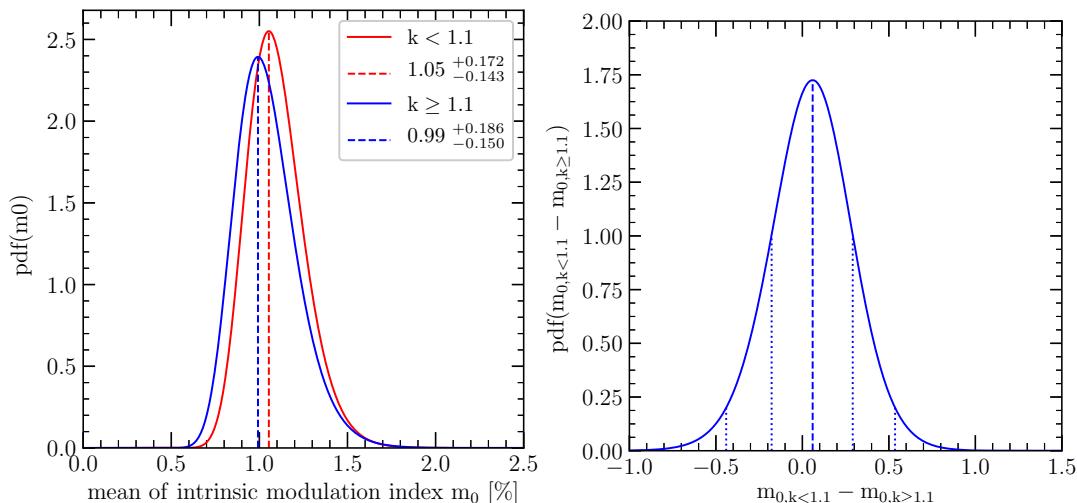


Figure 6. Similar as Figure 3 but for low (red solid line) and high (blue solid line) galactic latitude sources in our sample. In the left panel the maximum-likelihood value and the associated 1σ error are indicated in the legend. In the right panel the peak of the distribution ($0.15^{+0.312}_{-0.257}$) is consistent with zero within 1σ .

163 5. Summary and Conclusion

164 We presented the statistical results based on the five sessions of AGN monitoring with the
 165 Effelsberg 100-m radio telescope. The overall statistics showed that 33 out of 112 sources exhibited
 166 IDV, leading to an IDV detection rate of $\sim 30\%$. The IDV occurrence for γ -ray loud sources is $\sim 44\%$,
 167 which is significantly higher than that for the γ -ray quiet ones.

168 Moreover, with a maximum-likelihood approach we investigated the variability dependence
 169 of our sample. We found significant difference in variability strength when regarding the source
 170 flux density, spectral index and γ -ray loudness. In more detail, weak ($S < 1\text{Jy}$), inverted spectrum
 171 ($\alpha > -0.1$) or γ -ray loud sources, on average, show significantly stronger short timescale variability.
 172 The most likely differences in mean m_0 are at least 5σ away from zero. On the other hand, however
 173 we didn't find evident dependence of variability on galactic latitude and k -index. This might suggest
 174 that sources dominated by scatter-broadening effect are more likely to show refractive ISS, which is on
 175 timescales significantly longer than a few days.

Figure 7. Similar as Figure 3 but for sources with k -index lower (red solid line) and higher (blue solid line) than 1.1 in our sample. In the left panel the maximum-likelihood value and the associated 1σ error are indicated in the legend. In the right panel the peak of the distribution ($0.06^{+0.231}_{-0.238}$) is consistent with zero within 1σ .

176 By testing the variability strength in different subsets, the current study indicates a source
 177 compactness dependent variability in the sample. Future studies on this issue are needed, and these
 178 will doubtless well benefit from the VLBI core angular size and core dominance directly measured by
 179 the RadioAstron SVLBI observations.

180 **Acknowledgments:** The authors thank Dr. Biagina Boccardi for reviewing the manuscript and providing helpful
 181 comments. This paper made use of data obtained with the 100-m telescope of the MPIfR (Max-Planck-Institut
 182 für Radioastronomie) at Effelsberg. This research was partially supported by the program of the Light in
 183 China's Western Region (Grant No. 2015-XBQN-B-01, YBXM-2014-02, XBBS201324), the National Natural Science
 184 Foundation of China (NSFC, Grant No. 11503071, 11503072), the National Basic Research Program of China (973
 185 program, Grant No. 2015CB857100), Xinjiang Key Laboratory of Radio Astrophysics (Grant No. 2016D03020) and
 186 the China Scholarship Council (CSC, Grant No. 201704910392). YYK acknowledges support by the government of
 187 the Russian Federation (agreement 05.Y09.21.0018) and the Alexander von Humboldt Foundation.

188 **Conflicts of Interest:** The authors declare no conflict of interest.

189 References

1. Witzel, A.; Heeschen, D.S.; Schalinski, C.; Krichbaum, T. Kurzzeit-Variabilität extragalaktischer Radioquellen. *Mitteilungen der Astronomischen Gesellschaft Hamburg* **1986**, *65*, 239.
2. Heeschen, D.S.; Krichbaum, T.; Schalinski, C.J.; Witzel, A. Rapid variability of extragalactic radio sources. *AJ* **1987**, *94*, 1493–1507.
3. Quirrenbach, A.; Witzel, A.; Kirchbaum, T.P. et al. Statistics of intraday variability in extragalactic radio sources. *A&A* **1992**, *258*, 279–284.
4. Lovell, J.E.J.; Rickett, B.J.; Macquart, J.P. et al. The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey. II. The First Four Epochs. *ApJ* **2008**, *689*, 108–126, [[0808.1140](#)].
5. Kedziora-Chudczer, L.; Jauncey, D.L.; Wieringa, M.H. et al. PKS 0405-385: The Smallest Radio Quasar? *ApJ* **1997**, *490*, L9–L12, [[astro-ph/9710057](#)].
6. Jauncey, D.L.; Macquart, J.P. Intra-day variability and the interstellar medium towards 0917+624. *A&A* **2001**, *370*, L9–L12, [[astro-ph/0102194](#)].
7. Dennett-Thorpe, J.; de Bruyn, A.G. Interstellar scintillation as the origin of the rapid radio variability of the quasar J1819+3845. *Nature* **2002**, *415*, 57–60, [[astro-ph/0201061](#)].
8. Bignall, H.E.; Jauncey, D.L.; Lovell, J.E.J. et al. Rapid Variability and Annual Cycles in the Characteristic Timescale of the Scintillating Source PKS 1257-326. *ApJ* **2003**, *585*, 653–664, [[astro-ph/0211451](#)].

206 9. Bignall, H.E.; Macquart, J.P.; Jauncey, D.L. et al. Rapid Interstellar Scintillation of PKS 1257-326: Two-Station
207 Pattern Time Delays and Constraints on Scattering and Microarcsecond Source Structure. *ApJ* **2006**,
208 652, 1050–1058, [[astro-ph/0608619](#)].

209 10. Liu, B.R.; Liu, X.; Marchili, N. et al. Two-year monitoring of intra-day variability of quasar 1156+295 at 4.8
210 GHz. *A&A* **2013**, 555, A134, [[arXiv:astro-ph.HE/1305.5612](#)].

211 11. Savolainen, T.; Kovalev, Y.Y. Serendipitous VLBI detection of rapid, large-amplitude, intraday variability
212 in QSO 1156+295. *A&A* **2008**, 489, L33–L36, [[0809.0451](#)].

213 12. Liu, J.; Liu, X. Rapid variability of BL Lac 0925+504: interstellar scintillation induced? *Ap&SS* **2015**,
214 357, 165.

215 13. Kellermann, K.I.; Pauliny-Toth, I.I.K. The Spectra of Opaque Radio Sources. *ApJ* **1969**, 155, L71.

216 14. Kovalev, Y.Y.; Kardashev, N.S.; Kellermann, K.I. et al. RadioAstron Observations of the Quasar 3C273: A
217 Challenge to the Brightness Temperature Limit. *ApJ* **2016**, 820, L9, [[arXiv:astro-ph.HE/1601.05806](#)].

218 15. Liu, J.; Liu, X.; Krichbaum, T.P. et al. UNSS: The Urumqi Northern Sky Survey for Rapid Variability in
219 Compact Radio Sources. *ApJ* **2017**.

220 16. Lovell, J.E.J.; Jauncey, D.L.; Bignall, H.E. et al. First Results from MASIV: The Microarcsecond
221 Scintillation-induced Variability Survey. *AJ* **2003**, 126, 1699–1706, [[astro-ph/0306484](#)].

222 17. Fuhrmann, L.; Krichbaum, T.P.; Witzel, A. et al. Testing the inverse-Compton catastrophe scenario in
223 the intra-day variable blazar S5 0716+71. III. Rapid and correlated flux density variability from radio to
224 sub-mm bands. *A&A* **2008**, 490, 1019–1037, [[0809.2227](#)].

225 18. Richards, J.L.; Max-Moerbeck, W.; Pavlidou, V. et al. Blazars in the Fermi Era: The OVRO 40 m Telescope
226 Monitoring Program. *ApJS* **2011**, 194, 29, [[arXiv:astro-ph.CO/1011.3111](#)].

227 19. Heeschen, D.S. Flickering of extragalactic radio sources. *AJ* **1984**, 89, 1111–1123.

228 20. Ghirlanda, G.; Ghisellini, G.; Tavecchio, F.; Foschini, L. Correlation of Fermi Large Area Telescope
229 sources with the 20-GHz Australia Telescope Compact Array radio survey. *MNRAS* **2010**, 407, 791–803,
230 [[arXiv:astro-ph.HE/1003.5163](#)].

231 21. Ackermann, M.; Ajello, M.; Allafort, A. et al. The Radio/Gamma-Ray Connection in Active Galactic Nuclei
232 in the Era of the Fermi Large Area Telescope. *ApJ* **2011**, 741, 30, [[arXiv:astro-ph.CO/1108.0501](#)].

233 22. Migliori, G.; Siemiginowska, A.; Kelly, B.C. et al. Jet Emission in Young Radio Sources: A Fermi Large
234 Area Telescope Gamma-Ray View. *ApJ* **2014**, 780, 165, [[arXiv:astro-ph.HE/1311.7647](#)].

235 23. Richards, J.L.; Hovatta, T.; Max-Moerbeck, W. et al. Connecting radio variability to the characteristics of
236 gamma-ray blazars. *MNRAS* **2014**, 438, 3058–3069, [[arXiv:astro-ph.HE/1312.3634](#)].

237 24. Fuhrmann, L.; Larsson, S.; Chiang, J. et al. Detection of significant cm to sub-mm band radio and γ -ray
238 correlated variability in Fermi bright blazars. *MNRAS* **2014**, 441, 1899–1909, [[arXiv:astro-ph.HE/1403.4170](#)].

239 25. Lazio, T.J.W.; Ojha, R.; Fey, A.L. et al. Angular Broadening of Intraday Variable AGNs. II. Interstellar and
240 Intergalactic Scattering. *ApJ* **2008**, 672, 115–121, [[0707.1778](#)].

241 26. Rickett, B.J. Interstellar scattering and scintillation of radio waves. *ARA&A* **1977**, 15, 479–504.

242 27. Pushkarev, A.B.; Kovalev, Y.Y.; Lister, M.L. et al. VLBA observations of a rare multiple quasar imaging
243 event caused by refraction in the interstellar medium. *A&A* **2013**, 555, A80, [[arXiv:astro-ph.CO/1305.6005](#)].

244 28. Pushkarev, A.B.; Kovalev, Y.Y. Milky Way scattering properties and intrinsic sizes of active galactic nuclei
245 cores probed by very long baseline interferometry surveys of compact extragalactic radio sources. *MNRAS*
246 **2015**, 452, 4274–4282, [[arXiv:astro-ph.HE/1507.02459](#)].

247 29. Walker, M.A.; Tuntsov, A.V.; Bignall, H. et al. Extreme Radio-wave Scattering Associated with Hot Stars.
248 *ApJ* **2017**, 843, 15, [[1705.00964](#)].