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Abstract: Results from a behavioral economic laboratory experiment are used to enhance
our understanding of public health decisions made during the COVID-19 pandemic. The
identification of systematic biases from optimal decision theory found in controlled
experiments could help inform public policy design for future public health crises. The
laboratory and the shelter-in-place decisions made during COVID-19 included elements
of risk, uncertainty and ambiguity. The lab findings found individuals adopt different
decision rules depending on both personal attributes and on the context and
environment in which the decision task is conducted. Key observations to consider in the
context of the COVID-19 decision environment include the importance of past experience,
the ability to understand and calculate the odds of each action, the size and differences
in economic payoffs given the choice, the value of information received, and how past
statistical independent outcomes influence future decisions. The academic space
encompassing both public health and behavioral economics is small, yet important,
particularly in the current crisis. The objective of continued research in this area would
be to develop a more representative model of decision-making processes, particularly

during crisis, that would serve to enhance future public health policy design.
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1. Introduction

A pandemic is classified as a Public Health Event with International Consequences
(PHEIC). The International Health Regulations defines PHEIC as, “an extraordinary event
which is determined to constitute a public health risk to other States through the
international spread of disease and to potentially require a coordinated international
response” [1]. This designation for COVID-19 signaled a need for immediate action
worldwide. The statistical probabilities that were provided pertaining to the spread of the
disease and the consequences, in terms of health care resources and deaths arising from
COVID-19, were informative but imperfect. This uncertainty, i.e., lack of evidence or
confidence in the information, and ambiguity, i.e., ability to solve the issue from past
experience (unprecedented in living memory), led to various decision choices by
government officials with varying economic consequences. Fontanet & Cauchemez, [2]
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estimated that if no policies were put in place to reduce the spread of the disease, over 50%
of the world’s populations would be infected. Brazeau et al. [3], predicted that an
uncontrolled spread would lead to death for 10.6 % of the world’s population. On the
other hand, shelter-in-place orders resulted in 62,600 business closures in Canada, May
2020, up 59% from the pre-COVID-19 levels observed in February 2020 [4].

Several of these actions involved the decision to either shut down or keep open
activities that involved human interaction, and subsequently after the closures, determine
the best timing to re-open these same activities. Of most interest to this study is how key
decision-makers arrived at different open and close decisions when faced with the same
observational statistics [5]. For example, despite comparable case numbers, US states and
Canadian provinces decided to make significantly different re-opening decisions;
evidenced through a few examples here. On April 20t, Tennessee announced its plan to
re-open, with an average daily COVID-19 case rate of 3.16 new cases per 100,000 [6,7].
Georgia reopened on April 24t with a rate of 6.61 new cases per 100,000 [6,8].
Washington’s governor chose to extend the stay-at-home order beyond their May 4t
expiry date with a case rate of 3.91 new COVID-19 cases per 100,000 daily [6,9]. On May
6%, Ontario started their phase one re-opening with an average daily case rate of 2.88 new
COVID-19 cases per 100,000 [10] and Quebec started reopening on May 27t with an
average daily case rate of 6.14 new COVID-19 cases per 100,000 [11]. The decision
environments varied between the two countries for many reasons beyond the key
attributes of the individual decision-maker (e.g. PH policies, healthcare systems, political
agendas). It is the varying decisions within country, within state, and between regions
where PH policies, healthcare systems and political parties did not vary that is mostly
applicable to this study.

Behavioral economics (BE) applies insights from psychology about human behaviour
to better explain economic decision making. Field and lab experiments are methodologies
used by behavioral economists to help explain human behaviors that deviate from the
predictions of economic theory [12]. The question as to how people judge the probabilities
of uncertain events like the ones described above has been a major focus in BE research
for many years. The fact that intuitive judgments often deviate from the laws of
probability is widely accepted [13-15]. Despite this, controversy still exists surrounding
both the identification and root cause of systematic deviations from optimal statistical
inferencing behavior. Where optimal statistical inferencing would require a person to
correctly combine new data with an accurate probabilistic model of the environment [16].

The application of BE theories and ideas in public health is not a novel concept [17-
20]. Pre-COVID-19, the intersection between optimal decision theory and public health in
the literature was limited with a main focus centering on patient diagnosis decisions made
in the clinical context [21-23]. However, a few studies exist that investigated the decision-
making processes, lessons learned from previous decisions, and the development of
various guides and recommendations for health-centered decision-making [24-26].
Thompson et al. [27], explored the importance of pandemic plans and highlighted the
essentiality of not allowing frontline individuals to make critical life-saving decisions in
an emergency setting without proper policy or supporting protocols in place. Rosella et
al. [28], observed public health decisions during crisis and found some decisions were not
optimal for society but achieved the goal of conflict avoidance. Other studies highlighted
the importance of timeliness in decision-making during crises [29], as well as the effect
stress had on decision-makers [30]. Of special interest to this study is the application of
the behavioral theory coined and popularized by Thaler and Sunstein in their book
Improving Decisions About Health, Wealth and Happiness [31] known as nudge theory. Nudge
theory was positioned as an enhancement to developing public policy that has the power
to motivate behavioral change. By understanding systematic cognitive biases in decision-
making exhibited by the targeted population, mechanisms and incentives could be
implemented to nudge behavior toward best responses. Nudge theory’s application in
public health policy has been observed in risk communication, health-behavior
modification, and in public policy decisions and has begun to be used to understand
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aspects of the COVID-19 pandemic [17,32,20,23]. During COVID-19 more research has
been published in the area, however, there is still much work needed to address the
systematic cognitive biases that could be leveraged to influence public policy effectiveness
[32,33].

The questions for researchers arising from the pandemic are numerous and varied
depending on the research lens applied.

The study investigates the following research questions: What are the systematic
biases observed in a closed binary decision environment with uncertainty and ambiguity?
How might these systematic biases influence the binary choice decisions of public officials
and politicians in the current pandemic environment? To answer these questions, we: 1.
conduct an empirical inquiry of observed data from a binary-choice closed laboratory
experiment to identify systemic decision inconsistencies in environments of uncertainty
and ambiguity, 2. corroborate the findings with other studies, 3. discuss how the results
from this simple environment may be applicable to more complex decision environments
such as the COVID-19 crisis, and 4. express the limitations of our study and the potential
areas for future research. The overall objective of this investigation is to provide valuable
insights to shape future experimental designs that could layer in the additional situational
contexts not considered here (e.g., multidimensional decision environments, time
restrictions). The ultimate goal for this research would be to create a perfectly
reproducible, randomized field study in order to gain a better understanding of how crisis
decisions could be nudged towards those providing optimal benefits for society.

2. Methods

2.1 Empirical Inquiry Rationale

The following empirical inquiry of the closed laboratory experiment involving
elements of uncertainty and ambiguity demonstrated systematic inconsistencies in
decision-making by the subjects relative to an optimal statistical inferencing rule. In the
experiment, subjects’ behavior in an individual decision task involving the choices
between two different actions was examined. Subjects were given additional information
before reaching their final decision (terminal choice). The decision environment involved
both informative but imperfect message signals. Subjects were presented with incentives
that were meant to capture features of an environment where in-field decisions are made.
Subjects’ terminal decisions were benchmarked relative to an optimal statistical
inferencing heuristic (Bayesian Expected Utility) and a WIN-STAY, LOSE-SHIFT
(reinforcement statistic adapted from Charness & Levin [34]).

Although, the decisions made in this experiment take place in a much simpler
context and with different agents, subjects were required to maximize their expected
outcomes in a binary choice decision in an environment of uncertainty and ambiguity; a
subset of similar features faced by decision-makers during COVID-19. Behavioural
economic research helps identify principles of generalized economic behavior that
deviate from predicated economic theory that could at some point be externally validated
[35]. At a minimum, the qualitative observations from this experiment provide directional
insight for future lab and field study research that could sharpen our understanding of
systematic human decision behaviors that could be used to develop public health policies
that ‘nudge’ best responses during subsequent PHEICs.

2.2 Laboratory Experimental Design

180 students were recruited by e-mail from the undergraduate Bachelor of
Commerce student population from a Canadian public university. The participants took
part in 24 rounds of an individual task consisting of two binary-choice decisions per
round, where the second binary choice decision occurred after observing an imperfect,
statistically relevant information signal. Subjects were told the objective of the experiment
was to maximize their personal earnings. Subjects were shown at the beginning of each
round two opaque bags (representing two states), each containing a combination of red
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Maker

and blue poker chips. The distribution of red to blue chips within the two bags were
asymmetric with one bag containing a greater proportion of red chips and one bag
containing a greater proportion of blue chips. A random draw determined with equal
probability which one of the two bags described above were selected for use during each
round. Participants do not learn until the end of the round which bag had been chosen.
For each round, subjects are asked to choose one of two actions (action A or action B),
where each action is associated with two different payoff amounts dependent on the bag
(state) that was randomly selected. One of the payoff lotteries, conditional on the action
choice, was always larger than the other (first-order stochastic dominates). For example,
the lotteries associated with each action for a subset of the rounds were as follows:
Pick Action A:

If the bag chosen for the round was bag 1 you receive $2.00

If the bag chosen for the round was bag 2 you receive $0.75

Pick Action B:
If the bag chosen for the round was bag 1 you receive $0.50
If the bag chosen for the round was bag 2 you receive $1.75

The first binary decision (action choice) occurred prior to receiving a message signal.
As such, there is an equal probability of the round being played with bag 1 or bag 2. The
second binary decision (action choice) occurred after observing an informative but
imperfect message signal; a colour chip is drawn and revealed to the subject and replaced.
The observation of the colour would help predict the state (bag) and assist subjects to
better maximize their payoffs. After both binary decisions are complete, the random bag
selected for the round is revealed and the consequent payoffs, given their second action
choice (after observing the colour chip), are recorded by the participant. Subjects received,
at the end of the experiment, the earnings gained over the 24 rounds played. Figure 1
illustrates the decision tree faced for each round and the decision made by the subject.
Further details of the experiment can be found in Appendix A.

P = probability
Bag 1 state

Pick Action A
(1-p) = probability

Bag 2 state

p = probability
Bag 1 state
Pick Action B

(1-p) = probability

Bag 2 state

Figure 1. Decision tree by subject at each decision point!

The subjects’ observed behaviors are benchmarked against the decision rule required
to follow the 1. Risk-neutral Bayesian Expected Utility? (BEU) maximizer; the optimal
decision rule3 and 2. a reinforcement learning (RL) theory algorithm adapted from

1 EP= expected payoff

2 A subject with a risk -neutral utility function would maximize their expected utility when maximizing expected payoffs. In this case, expected utility

is equal to expected payoffs.

3 A decision that would result to at minimum as good an expected outcome as the other available decision option.
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Charness and Levin [34]. The description of the decision rules associated with each
benchmark can be found in Appendix B.

This experiment tested the following research hypotheses:

1. The subjects” decision choices will be more reflective of optimal decision theory (BEU)
with experience. Specifically, the more rounds of the experiment played, the more
their responses will converge toward BEU.

2. When the higher economic state (first-order stochastic dominant lottery) is aligned
with the optimal choice, subjects’ behaviors will be more reflective BEU choices.

3. The subjects are more able to apply optimal decision theory when they are provided
with the odds calculation of being in either state, given the value of the message re-
ceived.

4. The more informative the imperfect message source, i.e., increased confidence level
that it is predicting one state over the other as indicated through the experimental
design, the more behavior will be reflective of BEU optimal choices.

5. When the reinforcement learning heuristic is aligned with the BEU decision choice
subjects will make fewer errors.

2.3 Empirical Inquiry Analysis

The data was analyzed using two different measurement criteria. First, subject
behavior was benchmarked relative to the action choices of a risk-neutral BEU maximizer
and that of a Reinforcement Learner (RL). In the data set, inconsistency rates described
deviations from these two behavior types. Hence, for each subject in the experiment a
BEU first and second choice inconsistency rate and an RL second choice inconsistency
rate were calculated.

To understand the causes of the observed BEU and RL inconsistency rates, logit
regressions were run (random and fixed effects)* with the 1st and 2nd choice BEU
inconsistency and 274 choice RL inconsistency as the dependent variable to determine the
marginal effects’ of the independent variables on these three outcomes. The dependent
variable in equation (1) represented a 1st choice inconsistency from the risk neutral BEU
decision by round and subject (Table A, Appendix C). The dependent variables in
equations (2) & (3) represented a 2" choice inconsistency from the risk neutral BEU
decision and the 2d choice inconsistency from the RL decision, respectively, by round
and subject (Table B & C, Appendix C). In all three equations, the dependent variable was
a dichotomous outcome variable. There are three types of variables used to explain the
data. First, there is a group of explanatory variables that changed over the rounds but are
the same for all individuals in a given round. Second, there is a set of explanatory
variables that varied both over the rounds and between subject and session. Finally, there
were explanatory variables that vary between individuals but do not vary over the rounds.

3. Results

In total 4320 observations of subjects’ first and second action choices were collected
from 180 undergraduate students.

4 The Breusch and Pagan Lagrangian multiplier test for all three equations established that individual effects are present in the data. The Hausman
test cannot reject the null hypothesis that the coefficients for the fixed and random effects model are the same; implying that the random effects
coefficients are not correlated with the individual error terms. As an additional test, we ran a GLS regression fixed and random effects model and
performed the Hausman test and obtained the same result. Comparisons of the same coefficients from all models show the differences to be minimal;
the signs and the statistical significance on the coefficients remain the same.

5 Change in the probability of observing the dependent variable, if the independent variable changes by one unit
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3.1 Hypothesis 1 Result:

The subject’s first decisions made before observing an informative but imperfect
message signal, were more reflective of optimal decision theory (BEU) with experience.
This was not the case for the second decision made after observing the message signal.

Figure 2 illustrates the subjects’ first decision inconsistency rate relative to the BEU
benchmark over the 24 rounds. In early rounds, subjects violated BEU decision rules and
converged on optimal decisions with practice and when the difference between the higher
state lottery and the alternative state lottery were exaggerated (-0.609, p <0.001) (See Table
A, Appendix C).
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Figure 2. BEU 1+ first decision Inconsistency Rate prior to observing the informative but
imperfect message signal by round-all subjects.

However, for the second decision, when the BEU decision rule required a subject to
update their initial beliefs given the new observed information (apply Bayes law in
conjunction with expected utility theory) and when the BEU response was not aligned
with the higher payoff lottery choice, subjects” had a higher BEU inconsistency rate and
experience with the decision task had no impact (-0.115, p > 0.1) (Table A, Appendix C).

3.2. Hypothesis 2 result:

When the higher economic state (first-order stochastic dominant lottery) was aligned
with the optimal choice, subjects’ behaviors was more reflective of BEU choices.

The 2nd choice BEU inconsistency rate varied significantly depending on the message
received. On average the subjects’ behavior was reflective of the BEU sequence of
decisions more often when there was a higher payoff lottery associated with the BEU
action given the message (7.1% [95% CI: 0.070-0.072] inconsistency rate versus 27% [95%
CI: 0.268-0.274]) (See Table B, Appendix C) Figure 3 below highlights this result.
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BEU 2nd Choice Inconsistency Rate (Mean)
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Message Suggests Lower Lottery Payoff State
Message Suggests Higher Lottery Payoff State

Figure 3. BEU 2" Choice Inconsistency rates conditional on whether the message
observed aligns with a higher payoff lottery state or the lower payoff lottery state.

3.3 Hypothesis 3 Result:

The subjects were unable to apply optimal decision theory because they lacked the
‘ability to do the math” (i.e., update their prior beliefs given new statistical evidence).

Half the subjects within this experiment were informed (provided with the Bayes’
law calculations), and their responses were compared to subjects who were uninformed,
(left to calculate Bayes’ law on their own). For example, informed subjects were told prior
to receiving a message that there was an equal chance that the round was being played in
state 1 or state 2. After the message was received, they were told the new probability of
being in either state (i.e., given the message observed there is now 70 chances out of 100
that we are playing in state 1). Overall, subjects who were provided with the Bayes law
calculation (informed) once a message signal was received, did not have statistically
different inconsistency rates than subjects who were left to calculate Bayes law on their
own (uninformed) (0.29, p > 0.1) (See Table B, Appendix C).

3.4 Hypothesis 4 Result:

The more informative the imperfect message, the more behavior was reflective of
BEU optimal decisions.

Deliberate experimental design changes across the 24 rounds changed the degree of
informativeness of the imperfect message observed. These design changes allowed us to
observe two systematic decision behavior patterns that deviated from optimal BEU
decision theory that are not fully explained by the Reinforcement Learning model:

1. Behavior which is reflective of an over-weighing the informational value of the mes-
sage received (a.k.a. Over-weigh);

2. Behavior which is reflective of an under-weighing the informational value of the mes-
sage received (a.k.a. Status Quo)

Importantly, the subjects who followed the non-optimal decision of underweighting
the informational value of the message received were not the same subjects who followed
the non-optimal decision of over-weighing the informational value of the message
received. Subject behavior was most likely to be reflective of the “status quo” decision rule
when they are not math or economics students (3.7ppts increase, p < 0.05) and classified
as a RL based on the post-experiment survey (4.2ppts increase, p < 0.01). Although a
proportion of subjects had behavior reflective of over-weighing the informational value
of the message received, there were no characteristics that were statistically significant
contributions to this behavior type.
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3.5 Hypothesis 5 Result:

There is evidence that suggested that the RL and BEU heuristics are complementary
behaviors and when both are present they could either enhance or diminish optimal
decisions.

The 2nd choice RL heuristic was aligned with the 2nd choice BEU heuristic for subjects
for 39.8% of the observations. The BEU inconsistency rate is 6.6% [95% CI: 0.056-0.075]
when the RL and BEU heuristics were aligned and 35.2% [95% CI: 0.326-0.378] when the
heuristics clashed. The inconsistency rate was 13.8% [95% CI: 0.128-0.148] when no RL
heuristic existed. These results indicate that when a past BEU decision was rewarded (i.e.
a WIN) a subject had a greater propensity to apply the BEU decision rule in the future
resulting in fewer BEU inconsistencies (the RL and BEU heuristic are aligned).
Additionally, if the BEU decision was not rewarded (i.e. LOSE), potentially creating a
future decision environment where the subject’s RL and BEU heuristic clash, optimal
decision behavior was compromised. This result implied that subjects may treat
statistically independent events as interdependent (See Table C, Appendix C).

4. Discussion

Generalizability of BE laboratory experiments to real world environments has long
been contested [36]. However, it has been found that for experiments that do not match
the external environment, there is an opportunity to begin developing and testing
scientific hypotheses [37]. We acknowledge that the decision environment within the
laboratory is simplistic in comparison to that of a public health crisis. It does not include
various contextual factors (i.e., politics, ego, decisions made by teams of experts).
Conversely, in both situations, decision-makers must take action with economic
consequences in an environment of uncertainty, i.e., lack of evidence or confidence with
the information provided and, in many cases lacking prior experience (ambiguity).

Despite an understanding that laboratory experiments cannot provide perfect
external validity, Herbst & Mas [35] concluded that laboratory experiments may have
more external validity than previously recognized. Therefore, it is reasonable to posit that
systematic biases relative to optimal statistical inference decision choices found in a
stripped down decision environment, could also be observed in more complex
environments. As such, the results discussed in the context of COVID-19 below should be
considered as possible explanations for why different decisions have been observed,
particularly in decision environments of close proximity with similar constraints.

Ideally, benchmarking the actual decisions during COVID-19 relative to an optimal
statistical inferencing decision rule to determine systematic biases in decision-making
would be most beneficial in better understanding the observed behavior. In the absence
of re-living this extreme public health event, researchers need to create models through
available information, inferences and prior research that better explain outcomes and use
these constructed models to predict future behavior that can be used to develop optimal
public policy or best practises[38].

The COVID-19 binary decision to impose social distance orders or not, is simplified
here to reflect the common elements of ambiguity and uncertainty also found in the
binary choice lab experiment to provide context for the discussion that follows. It is
hypothetical and, assumes that the decision-maker has been stripped of all outside
influencers. It is presented here as a base model for future enhancements.

A public leader responsible for enforcing local rulings for their organization or
jurisdiction is faced with a binary choice decision with known consequences depending
on the end state. The two potential end states, good or bad, are known with evidence-
based probabilities calculated by experts, where the good state predicts lower cases of
COVID-19 deaths than the bad state. Of course, as the leader of this organization, we all
hope for the low COVID-19 state; however, we also must prepare properly for the high
COVID-19 state based on the evidence presented. The leader must take one of two actions.
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Each action taken is associated with a known lottery (i.e., economic payoffs depending on
the actual end state). The first action is to impose no social distancing orders by leaving
businesses, schools and sporting events open to the public. If the end state is indeed the
low COVID-19 state, then this will be associated with the highest economic payoff.
However, if the end state happens to be the high COVID-19 state then the economic
payoff will be even less than if the leader had decided to close these activities initially.
The second action imposes social distancing orders; closing businesses, schools, and
sporting events. If the end state in this case is the high COVID-19 state, then the economic
payoff from closing will be greater than if the decision was made to keep these activities
open. Before taking a terminal action, decision-makers are provided message signals that
are both informative yet imperfect in the form of testing rates. Although imperfect, the
message does provide statistically relevant information on the probability of being in
either the low or high COVID-19 state. Assume, the lotteries associated with each action
are represented as follows:
Pick: No Social Distancing Orders:

If the actual end state is low COVID-19 the net benefitis  $$$$

If the actual end state is high COVID -19 the net benefitis  $$
Pick: Social Distancing Orders:

If the actual end state is low COVID-19 the net benefit is $

If the actual end state is high COVID -19 the net benefitis  $$$

P = probability

Low COVID19 stat
Pick No Social - —
Distancing Orders (1-p) = probability

High COVID19 state

Decision
Maker

p = probability

L VID1
Pick Social — —
Distancing Orders (1-p) = probability

High COVID19 state

Figure 4. illustrates the decision tree that the public official faces.

There were five systematic deviations from optimal statistical inferencing behavior
observed in the lab study discussed in the context of the COVID-19 decisions: (1) the
importance of experience, (2) the importance of understanding the odds when presented
with additional relevant statistical information, (3) the size and difference in economic
pay-off given the choice, (4) how a decision-maker values new information, and (5) past
outcomes conditional on past choices made.

3.1 Hypothesis #1: Experience Matters...To a Point.

This experiment showed experience plays a role in achieving optimal choices in
certain decision environments. Specifically, it found that for a sub-set of decisions, where
only expected payoffs of either alternative is observed, the subjects’ behavior converged
over time toward optimal decision choices (BEU). However, in more complex
environments where subjects were required to update their prior likelihood ratios of a
certain event occurring and combine it with the expected payoffs for each alternative,
experience did not lead to more optimal choices. To better understand how this finding
might apply to decisions made during COVID-19, we look to the early stages of the
pandemic where the spread of COVID-19 was largely restricted to China, and information
regarding the health of their nation was suppressed. Given no available statistically
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relevant information (similar to the sub-set of decisions described above), nations chose
actions that maximized expected payoffs (chose the higher payoff lottery) and elected to
continue business as usual. Given no reported cases or deaths occurring within their
country, the optimal BEU decision was to stay open. This could be described as a
business-as-usual strategy, the experienced choice. Additionally, we observed many
countries” decisions that elevated health initiatives while maintaining their economic
prosperity [39]. Examples included questionnaires and screening procedures for
individuals arriving from abroad, and eventually quarantine procedures for these same
travelers.

Some countries behaved as outliers, instituting early travel bans and heavy
restrictions; however, most converged on the optimal action (BEU) given the available
information [39]. As meaningful information was disseminated from reputable sources,
public officials were required to update their prior beliefs regarding the potential
probability that their country or region would either be in a low or high COVID-19 state,
and given this information re-calculate their expected payoffs with their new predictions
on the state of the nation. This represented a new decision environment, and one which
was more complex; a decision environment more representative of the second action
choice in the laboratory experiment. A balance needed to be struck between economic
costs such as job and GDP loss, with health costs such as screening, cost of treatment and
mortality rates. With the novelty of the virus and the volley of incoming information,
leaders needed to update their beliefs at nearly every decision. The inconsistencies are
seen both across publicly available data as well as the media [40,41]. Countries, states,
provinces and regions made many different decisions, even though the information
published was largely the same [42]. For example, some countries implemented full travel
bans, others full shutdowns with high levels of testing, while others remained completely
open with little to no restrictions [42]. The observed erratic decision-making could be
attributed to the complex nature of the decisions, the lack of lived experience and/or
competing political and personal interests. Ren et. al [43], found that as experience with a
decision task increased, business managers relied on past decisions when making future
choices. They further noted that when the decision environment became more
complicated this over-reliance on experience resulted in stronger biases than decision-
makers with less experience.

The immediate action requirement given the rapid spread of the disease may also
have contributed to the varying responses. According to the dual cognition processing
theory [44], decisions are subject to two cognitive processes, an implicit (automatic)
unconscious process and an explicit (controlled) conscious process. The decisions could
vary therefore, depending on which process is activated and by whom, where
improvements in decision choices in environments of uncertainty would occur with
additional time and education [45]. Specifically, time and persuasion efforts to reform the
implicit or automatic response of the decision-maker for future immediate action
requirements and time and education for explicit conscious thinking. These findings and
the aforementioned observations point to the importance of keeping a historical log of the
data provided, the decisions made, and the consequences of the decisions during COVID-
19, to proxy as experience for future complex public health crises.

3.2 Hypothesis #2: Optimal decisions are more likely to be made by decision-makers if it’s
associated with a higher economic payoff.

When the optimal decision choice aligned with the higher payoff state, the
inconsistency rates were significantly lower. With no available information regarding the
rate of spread, or mortality rates, nations and regions could easily observe the largest
economic payoffs associated with keeping businesses open and chose accordingly
aligning their choice with the optimal statistical inferencing rule. However, as statistically
relevant information became available from reputable sources, countries were required
to update their beliefs and give some consideration to the possibility of being in a high
COVID-19 state. Even if the information indicated a high state, similar to subjects in the
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experiment, admitting to this and choosing the state associated with the lower payoff
lottery was more difficult for many decision-makers [46]. Samuelson & Zeckhauser [47]
and Charness & Levin [34] in their studies identified regret avoidance and a taste for
consistency, respectively as a possible reason for this status quo behavior; theories for
status quo bias that continue to be supported by research [48-50]. The deviation from
optimal choices was a common occurrence throughout all stages of the pandemic. For
instance, within nations where COVID-19 data indicated a high COVID-19 state, many
regions still opted to keep schools open [51, 52]. Additionally, given this same data, many
businesses considered essential for some regions were not essential in other regions.
Ontario updated its list of essential businesses several times [53]. This led to public
outrage as medical professionals and the general public did not deem several of the
services on the list as essential [54].

The observed behavior indicated a bias toward decisions associated with a higher
economic payoff, regardless of accurate additional information that would suggest
otherwise. The challenge this presents for public health officials is that decision-makers
appeared to be willing to gamble on a higher payoff lottery choice, with lower odds of
being in a low COVID-19 state and a potential of more lives lost, as opposed to gambling
on a lower payoff lottery choice, with better odds of being in a high COVID-19 state
leading to more lives saved. Providing additional information to public officials who
make these high-stake decisions could be beneficial if it demonstrates how the decision
aligned with the lower economic payoff lottery in the short term, may be more optimal
and lead to higher economic payoffs in the longer term.

3.3 Hypothesis #3: Giving the Odds Won't Change Much.

Historically, the deviations from optimality in the decision-making task similar to
the experiment presented in this study were attributed to an inability to do complicated
math [55]. To test this theory, the probability of being in either state given the message
received was provided to half the subjects within the experiment and the results found
that deviations from optimal decision-making were the same as those who were not
provided this calculation. As the pandemic spread, many countries diverted away from
the economically focused decision choice toward a more health-focused choice [53,42].
With the evidence and the calculated odds for the predicted state (low vs. high COVID-
19 state) from public health officials, many countries shut down and issued stay-at-home
orders, bringing the world’s economy to a standstill. On the other hand, for other
countries provided with the same calculated odds regarding the state of the nation, the
countries chose to keep businesses and schools open [42,56]. The observed USA decisions
to close or open businesses and/or public areas (such as beaches and parks) appeared
random [42]. Given the results of the experiment, the observed behavior could suggest
that decision-makers are incapable of properly assessing the impact of the data, inhibiting
their ability to calculate the odds of being in either state, leading to non-optimal choices.
Public health officials must consider that even if perfect testing and health metrics were
being provided, inconsistencies relative to the optimal decision rule could still occur.
Bounded rational decision agents may have difficulty separating values from objective
scientific evidence [57] or rank policy aims in a logical manner [58]. Efforts to improve the
comprehensive rationality of decision-makers are important i.e., how to separate values
from facts, how to properly rank policy aims, or how to proceed with a decision by
providing a linear step-by-step processes.

3.4 Hypothesis #4: Over-valuing or Under-valuing information? BOTH.

Findings highlighted individual characteristics of the decision-maker mattered when
making decisions.. Some individuals consistently overweighed the informational value
of the statistics, while others under weighed it. In the context of the Pandemic, the
potential for this type of biased behavior was observed when information on the severity
of the virus and its potential economic impacts were released. As new COVID-19 cases,
recoveries, deaths, and symptoms were reported daily from Wuhan, China, different
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conclusions were reached by leaders, health officials, and the general public. Some
compared COVID-19 to the seasonal flu, SARS-CoV or a novel more deadly virus, while
others concluded the economic hardships far outweighed any potential health
consequences [59-61]. The observed undervaluing or overvaluing of the statistical
information provided by the message signal within the experiment had a statistically
significant finding explained by demographic and socio-cultural characteristics of the
individual decision-maker. This observation suggests that a major consideration when
developing optimal policy is proper identification and understanding of the personal and
socio-cultural characteristics that may influence decision choices.

3.5 Hypothesis #5: Optimal decision once, optimal decision again?

The reinforcement of a previous choice as an optimal decision led to lower
inconsistency rates for future decisions. Countries labeled as models for handling the
COVID-19 pandemic may have benefitted from their history [42]. South Korea's
widespread testing, and New Zealand’s early and swift closure were reaffirmed as
optimal decisions when COVID-19 cases continued to rise in other countries not
employing similar control measures [42]. Both countries given these positive outcomes
continued to implement successful COVID-19 control strategies [42,62]. Results from this
experiment also suggested that subjects treated statistically independent events as
interdependent, and this led to higher inconsistency rates. The balance between learning
from experience and recognizing the independent nature of a situation could be difficult
during a crisis. For example, upon witnessing New Zealand’s approach, other countries
such as India and Argentina followed applying the same swift shut down protocols [42].
This decision for these countries did not have the same outcomes given differences in the
social and economic environment and the healthcare capacities between the countries.

Two concepts in experimental literature affirm the observed biased behavior of
treating statistically independent events as statistical inter-dependent. The ‘hot hand’
fallacy; associated with the game of basketball; describes the belief by individuals that a
basketball player who has scored baskets several times in a row is more likely to score
again because they have a ‘hot hand’ [63]. The second concept is known as the ‘gambler’s
fallacy’. The gambler’s fallacy has been observed in casinos and card games. Opposite to
the ‘hot hand fallacy’, this observes an individual’s tendency to underestimate the odds
of winning after consistently winning several times in a row [64]. However, in both cases
when computing statistical dependencies between each event (e.g., basketball shot, hand
played) it was found that there was either no dependency or if there was a dependency,
that the likelihood of the trend (either negative or positive) was actually the opposite [64].
As such, it is pertinent that public health officials recognize the unrelated nature of
decisions made across time frames, in different contexts, and by different people.

Overall, subjects performing a relatively simple binary-decision task are adept at
selecting optimal choices over time, prior to observing additional statistically relevant
information. Although this may provide evidence that decision-makers can maximize
expected payoffs, it is also possible based on the lottery choices associated with each
action, that decision-makers choose optimally simply by properly ranking the action
associated with the first-order stochastically dominant lottery (picking the action
associated with higher payoff lottery choices). Although the results are not sufficient
evidence to confirm or refute the existence of a threshold where subjects no longer apply
BEU decision rules due to task complexity [34], it does lend further support to the notion
that learning behavior depends in part on the context and environment in which the
decision-making is conducted.

Unlike the pandemic decision environment, in the laboratory setting the economic
payoffs given each state were known, as well as the informational value of the message,
and yet mistakes were still made relative to optimal decision theory. It would seem
prudent, given the emergence of superbugs in the future, for nations/jurisdictions to do
the cost-benefit analysis for various outcomes (states of the nation) to provide timely and
accurate payoff calculations for decision-makers. This may provide an opportunity to
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eliminate significant inconsistencies in decision-making. Furthermore, uncovering
systematic biases found in experiments such as the one shown in this study could assist
in informing future field studies toward the development of policies that nudge decision-
makers to make the best decisions that result in greater well-being for all stakeholders.

A major limitation of this research is that the laboratory experiment conditions do
not represent the real context in which these pandemic decisions are made. Although we
are able to observe the systematic biases in optimal decision-making within a simple
closed experiment and can apply the findings to help explain what may have happened,
there are many other factors that may have influenced the varied decisions made given
the same information to open/close businesses and public services within the economy.
Such factors may include, egos, risk tolerance, stress, political agenda, and personal
characteristics [65-67].

Future research that applies BE to decisions made in the public health space has
tremendous potential to enhance public policy. Firstly, the lab results from this simple
experiment discussed in the context of COVID-19 should be considered as the first phase
of discovery toward a better understanding of the divergent responses by public officials
given same statistical information. In predicting outcomes, optimal statistical inferencing
results in the most accurate predictions in environments of uncertainty and ambiguity.
The second phase of discovery would be to layer on additional situational factors to build
a more representative model of the decision environment and once again observe
systematic biases relative to the optimal decision rule in both laboratory and field settings.
This iterative discovery process assists in designing decision-making models with greater
predictive value that can be used to develop future Public Health policies in a time of
crisis. Specifically, how can we use the observed systematic biases to nudge decision-
makers toward the public health defined optimal choices?

5. Conclusion

This study conducted an empirical inquiry to understand, the systematic biases that
are present in binary choice decisions and explore how they might be applicable in times
of crisis. Specifically, we asked: What are the systematic biases observed in a controlled
binary choice experiment with an uncertain and ambiguous decision environment? How
might these systematic biases have influenced the binary choice decisions of public
officials and politicians in the uncertain and ambiguous COVID-19 pandemic
environment?

The findings from this study suggest individuals adopt different decision rules
depending on both personal attributes (i.e. skillset, sex, experience) and on the context
and environment in which the decision task is conducted. A number of important
observed behaviors emerged from this simple experiment which may have influenced
and could help explain the contradictory binary choice COVID-19-related decisions,
including: (1) the importance of experience, (2) the importance of understanding the odds,
(3) the size and difference in economic pay-off given the choice, (4) how a decision-maker
values information, and (5) past outcomes conditional on choices made.

This cross-disciplinary research between BE and public health provides an
opportunity to gain a better understanding of both the situational factors, and the
systematic biases that influence decision making, within the public health environment.
The objective of continued research in this area would be to develop a more representative
model of decision-making processes, particularly during crisis, that would serve to
enhance future public health policy design.
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Appendix A. Experimental Design

We conducted 6 different treatments during 12 classroom sessions on the University
of Guelph campus, Guelph, Ontario, with 180 students recruited by e-mail from the
undergraduate Bachelor of Commerce student population. On average subjects earned
$33.60 for a 90 minute session. Each classroom session consisted of approximately 15
students who participated in 24 rounds of an individual task consisting of two (2) binary-
choice decisions per round; where the second binary choice decision occurred after
observing an imperfect statistically relevant information signal.

Upon arrival, participants were given a handout explaining the experiment set-up
and detailed instructions. The facilitator read the instructions aloud and demonstrated
the experiment. The subjects were told that the amount of money that they would earn
depends both on their individual choices and on random chance. In addition, they were
told that the objective of the experiment is to maximize their earnings. Each subject
participated in a practice round prior to commencing the rounds designated for payment.

Subjects are shown at the beginning of each round two opaque bags, each containing
a combination of red and blue poker chips. The distribution of red to blue chips within
the two bags is symmetric with one bag containing a greater proportion of red chips and
one bag containing a greater proportion of blue chips. For example, if bag 1 contains 35
red and 15 blue chips, bag 2 will contain 15 red and 35 blue chips. Subjects are told and
shown the precise number and combination of red and blue chips contained within each
bag.

The step-by-step procedure outlined in Table 1 and described below.

In step 1, a random draw determines with equal probability which one of the two
bags described above is selected for use during the round. All participants do not learn
until the end of the round which bag has been chosen. In step 2, subjects are asked to
choose one of two actions (action A or action B), where each action is associated with two
different payoff amounts dependent on the bag that was randomly selected in step 1. In
step 3, subjects are shown a sample draw of a poker chip (imperfect message) from the
selected bag. In step 4 subjects can either maintain the action choice selected in step 2
BEFORE observing the sample draw or change their action choice selection AFTER
observing the sample draw.

Table 2 provides the information that is shown and communicated to the subjects
prior to taking their first and second action choice decisions for rounds 1-4 when
performing the FREE message decision task.

In step 5 a random draw determines with equal chance whether the subjects’ first or
second action choice is used to calculate earnings. This payment mechanism incentivizes
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participants to apply effort to both action choices. In step 6, the bag that was used during
the round is revealed.

Table 1. Sequential steps for the Free Message Task

Step 1 Step 2 Step 3 Step 4

Random draw decides 1% Action Observe a 27 Action
bag to be used Choice Aor B poker chip Choice Aor B

The action that was selected (It or 2°¥) based on the random draw in step 5
determines the size of the payment received by the participant as outlined in table 3. From
table 3 for rounds 1-4, if bag 1 is revealed as the bag selected in step 1 of the experiment,
the participant will receive $2.00 if they selected action A and $0.50 if they selected action
B. However, if bag 2 is revealed as the bag selected in step 1, the participant will receive
$0.75 if they selected action A and $1.75 if they selected action B.

Table 2. Message Task Exogenous Parameters

Rounds 1-4
Bag 1 Bag 2
Red chips 35 Red Chips 15
Blue Chips 15 Blue Chips 35
Total Chips 50 Total Chips 50

Potential Earanings

Pick Action A:  If the bag chosen by participant was bag 1 you receive  $2.00
If the bag chosen by participant was bag 2 you receive ~ $0.75

Pick Action B:  If the bag chosen by participant was bag 1 you receive  $0.50
If the bag chosen by participant was bag 2 you receive ~ $1.75

Subjects are informed each round of their earnings. Subjects are asked to record their
first and second action choices, the results of each of the random draws, whether they
received payment for their first or second action choice and their actual earnings for each
round on the provided tracking sheet. The objective of the tracking sheet is to keep an
account of each subject’s history of events from past rounds to allow for the potential
manifestation of reinforcement learning behaviour.

The exogenous parameters, the distribution of red to blue chips contained within
each bag and the payoffs associated with each action choice, change every four rounds
and remain constant for 4 consecutive rounds. Given the exogenous parameters for this
experiment, the risk neutral (RN) optimal action taken prior to receiving an imperfect
message is associated with a lottery that first-order stochastically dominates the
alternative action’s lottery for all rounds. Therefore, any expected utility maximizer with
monotonic preferences should select the optimal first action regardless of risk preferences.
The rationale for this design is to assist subjects in an easy optimal first choice, allowing
for a cleaner assessment of subject behaviour when selecting a second action conditional
on an imperfect information signal.
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Similarly, the 2nd RN optimal action conditional on the red chip message is also
associated with the lottery that first order stochastically dominates the alternative action’s
lottery for all rounds. Again in this case, any expected utility maximizer with monotonic
preferences should select the optimal action regardless of risk preferences. On the other
hand, there is no first or second order stochastic dominate lottery associated with either
of the action choices conditional on a blue chip message. Although in this case it is now
possible for risk preferences to influence choice, the optimal second choice for the risk
neutral BEU maximizer continues to be the same optimal choice over a wide range of
constant relative and absolute risk aversion utility curves.! Therefore, given this
experimental design, when the message received is a blue chip versus a red chip, the
consequent action choice is more suggestive of a subject’s ability to follow the BEU
decision rules.

There is one final note on the choice of the risk neutrality assumption when
establishing the BEU benchmark for comparison with subject behaviour. Arrow [68]
demonstrates in his Essays on the Theory of Risk Bearing that expected utility maximizers
are (almost everywhere) arbitrarily close to risk neutral behaviour when stakes are
arbitrarily small. This is later verified by the Rabin Calibration [69] which shows that the
risk neutral prediction holds not only for small stakes but also for large and economically
important stakes.?

Appendix B. The BEU & RL Heuristics used as Benchmarks

The BEU Benchmark

A risk neutral® BEU participant takes an initial action given the unconditional (prior)
probability of either state with the objective of maximizing her expected earnings. In this
experiment, there are two possible states, represented by S, j € {1,2}, Let the unconditional
probability (initial belief) of playing in state j be, prob (S;), where, }; prob (S;) = 1. Let
C(a,Sj) be the payoff if action a is chosen conditional on the state (5j), where a € {A,B}. The
initial decision to choose action A or B is based on the prior probabilities of being in either
state, prob (S;), and the state contingent payoffs associated with each action, C(a,S)).
Specifically, the risk-neutral BEU will choose action A versus action B prior to an
informative but imperfect message signal when:

EPyction a = prob (S1)C(A,S,) + prob (S;)C(A,S;) = EPgctions
= prob (§,)C(B,S,) + prob (S,)C(B,S,)

The risk neutral BEU maximizer is then provided with one of two possible randomly
selected messages signals. Let the two possible messages be M, k € {1,2}, where M,is
message land M, is message 2.The participant is then required to propose a second action
choice conditional on the message received. To do this the BEU maximizer will first,
update her prior probabilities of being in either state to a new set of probabilities
(posterior) using Bayes theorem. Second, she will combine these updated probabilities to
determine the expected payoff from taking either action then choose the action with the
highest expected payoffs.

Bayes theorem states that the posterior probability that a risk-neutral BEU maximizer
should attach to the state after receiving a message, prob (S;|M,), is:

¢ The optimal choices for the risk neutral BEU maximizer continue to be the same optimal choice over a wide range of
constant relative and absolute risk aversion utility curves. Arrow (1971) demonstrated that expected utility maximizers
are (almost everywhere) arbitrarily close to risk neutral behavior when stakes are arbitrarily small. Rabin Calibration
(Rabin, 2000) shows that the risk neutral prediction holds not only for small stakes but also for large and economically
important stakes. These findings and the exogenous parameter choices for this experiment provide good rational for

the Risk neutral assumption.
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(prob Sj)(prob(Mg|S;) $=1,2; 7#1,2; k=1,2; (Eqn 1)

Prob (S;|My,) = ;
( ]l ©) prab(Mklsj)(prob Sj)+prob(Mk|S+j)(Prob Sxj)

Where the prob(M,|S;)represents the likelihood of the message (M,) conditional on state,
5.
Note that regardless of the message received, one of two states must persist. Therefore,

prob (S5;|M) + prob (S.;|M;) =1 (Eqn. 2)
In short-form notation let,
prob(S;) = ;i ; prob(My|S;) = qx.j; prob(S;|My) = 7.
The expected payoff of choomusing action A when message 1 is received is:
EPgction almy, = 1.1 C(A,81) + 151 C(4,53) (Eqn. 3)
The expected payoff of choosing action B when message 1 (red chip) is received is:
EPyction Blmy = 1.1 C(B,S1) + w24 C(B,S,) (Eqn. 4)

Given message (M;), the risk neutral BEU maximizer will choose action A if the expected
payoff is greater than choosing action B given the posterior probabilities conditional on
Ml .

From Eqns. 3 & 4, the risk-neutral BEU will choose action A if:

EPyction almy, = 1.1C(A,81) + m51C(A,S2) = EPuction 8lm, (Eqn. 5)
=1,,C(B,S;) + m2,C(B,S;)

The Reinforcement Learner (RL) decision rule:

The Reinforcement Learner (RL) decision rule is based on the simple WIN-STAY,
LOSE-SHIFT heuristic used by Charness and Levin (2005). If a subject is successful in the
first round of the experiment, she will STAY with this same action choice in the second
round (WIN-STAY) and if the subject is unsuccessful in the first round, she will shift to
the alternative action choice in the second round (LOSE-SHIFT); where, both RL actions
are predicated on the subject experiencing the same past history dictated by both the fixed
and random exogenous parameters set by the experiment.

It is assumed that the subject will apply the WIN-STAY heuristic for a current round
when the prior round correctly identified the state associated with the higher payoffs
(WIN-guessed the right state) and will apply the LOSE-SHIFT heuristic for a current
round when the prior round choice incorrectly identified the state associated with the
higher payoffs (LOSE-guessed the wrong state), The WIN-STAY or LOSE-SHIFT heuristic
is only in a current round if the exogenous parameter values experienced by the subject
are the same as what was experienced in a prior round. As such, there are less RL
inconsistency observations versus the BEU benchmark.

Appendix C. Results Table

Table A. A logic regression with first choice Baysian expected utility inconsistency rate as the dependant variable.

Informed

Variable Coefﬁaent Standard Error 95% CI P Value
(Marginal Effects)
Equation #1
Experience -0.609 0.114 -0.833 -0.385 <0.000

0.165 0.113 -0.056 0.385 0.144
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EXO:?:E ?ﬁifﬁ;iﬁiipiﬁdg 0.929 0.155 0.626 1.232 <0.000
Paid Second 0.206 0.111 -0.012 0.424 0.064
Sex 0.131 0.119 -0.102 0.364 0.271
English Second 0.451 0.129 0.199 0.704 <0.000
Post Survey -0.110 0.125 -0.354 0.135 0.380
Risk Aversion Score -0.037 0.020 -0.076 0.003 0.068
Highschool Math -1.143 0.525 -2.172 -0.114 0.029
University Math 0.412 0.155 0.109 0.715 0.008

Table B. A logic regression with second choice Baysian expected utility inconsistency rate as the dependant variable.

Variable Cogfflment Standard Error 95% CI P-Value
(Marginal Effects)
Equation #2
Experience -0.115 0.266 -0.635 0.406 0.666
Informed 0.293 0.264 -0.224 0.811 0.267
Informative Power of Chip Draw 0.829 0.300 0.242 1.416 0.006

Difference in Expected Payoffs
between action A and B conditional -51.578 4.520 -60.439 -42.717 <0.000
on the message received

Shift Required from 1st choice to be

-5.237 0.646 -6.502 -3.971 <0.000
BEU optimal
Chip Draw Colour 16.871 1.502 13.927 19.815 <0.000
Reinforcement Learning Error -1.219 0.281 -1.770 -0.668 <0.000
BEU and RL Agreement -2.164 0.288 -2.728 -1.600 <0.000
Paid Second 0.611 0.261 0.100 1.122 0.019
Sex 0.208 0.267 -0.316 0.732 0.437
English Second -0.542 0.347 -1.223 0.138 0.118
Post Survey 0.501 0.290 -1.070 0.067 0.084
Risk Aversion Score 0.020 0.050 -0.079 0.119 0.690

Highschool Math 0.182 0.754 -1.296 1.660 0.809
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University Math -0.030 0.415 -0.845 0.784 0.942

Table C. A logic regression with second choice reinforcement learning heuristic inconsistency rate as the dependant

variable.
Variable (Mi‘;ierflzilcliief;gcts) Standard Error 95% CI Si(%r-l‘i,filc:;ce
Equation #3

Experience -0.218 0.090 -0.394 -0.042 0.015
Informed 0.039 0.090 -0.138 0.215 0.669
Informative Power of Chip Draw 0.347 0.098 0.154 0.539 <0.000
Difference in Expected Payoffs
between Action A and B conditional -0.328 0.316 -0.947 0.291 0.299
on the message received
Shift Required from 1st choice to be

-0.166 0.123 -0.407 0.076 0.179
BEU optimal
Chip Draw Colour 0.258 0.105 0.052 0.464 0.014
Paid Second -0.078 0.089 -0.254 0.097 0.380
Sex 0.069 0.094 -0.115 0.253 0.464
English Second -0.046 0.112 -0.266 0.173 0.679
Post Survey 0.028 0.099 -0.166 0.221 0.779
Risk Aversion Score 0.0133 0.017 -0.019 0.046 0.427
Highschool Math 0.066 0.270 -0.464 0.595 0.807
University Math -0.113 0.136 -0.380 0.153 0.404
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