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Abstract: Insurance companies need to calculate solvency capital requirements in order to ensure that they
can meet their future obligations to policyholders and beneficiaries. The solvency capital requirement is a risk
management tool essential for, when extreme catastrophic events occur, resulting in a high number of possibly
interdependent claims. This paper studies the problem of aggregating the risks coming from several insurance
business lines and analyses the effect of reinsurance in the level of risk. Our starting point is to use a Hierarchical
Risk Aggregation method, which was initially based on 2-dimensional elliptical copulas. We then propose
the use of copulas from the Archimedean family and a mixture of different copulas. Our results show that a
mixture of copulas can provide a better fit to the data than an individual copula and consequently avoid over
or underestimating of the capital requirement of an insurance company. We also investigate the significance
of reinsurance in reducing the insurance company’s business risk and its effect on diversification. The results
show that reinsurance does not always reduce the level of risk, but can also reduce the effect of diversification for

insurance companies with multiple business lines.

Keywords: copula; reinsurance; capital requirement; risk aggregation; value-at-risk; tail value-at-risk

1. Introduction

Determining the level of capital required for business continuity is essential for insurance compa-
nies. This capital requirement should support an insurance company minimizing the risk of insolvency
and serving its obligations to the policyholders. When extreme events happen, such as floods, earth-
quakes, hurricanes and other catastrophic events, the claims amount to be paid by an insurance
company can be extremely high. However, part of the claims can be passed to reinsurance companies.
An insurance company (cedent) can transfer some risks to another insurer (the reinsurer) exchanging
part of its unexpected future losses by the payment of a fixed premium. Typically the cedent insurance
company keeps most of the risk and when large amounts of claims occur, these can originate not just
from one business line but involve other products as well. In other words, some insurance business
lines are dependent on each other, in the sense that an increase on the claims amount being filled in
one business line is accompanied by a higher claims amount in other business lines too. Hence, there
is a need to properly model the aggregate risk of losses across a broad range of insurance products.

Aggregating the risk of losses for insurance companies is challenging. The most crucial aspect
of the aggregation process is modelling the dependence structure between the risks of losses across
different business lines. Examining linear correlations is a classic approach to model risk dependence
but fails to incorporate all possible dependence structures. The appropriate method to model the
dependence structure is using copulas, which have received increasing interest from researchers and
practitioners in recent years.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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This paper is twofold. First, we focus on modelling the aggregation of risks from different business
lines in insurance. Second, we then explore the effect of reinsurance on the level of risks and how this
relates with the dependence structure between different business lines. For aggregating the risks of an
insurance company, We use a hierarchical risk aggregation method based on two dimensional copulas.

The hierarchical risk aggregation approach recently adopted by [1] developed by [2]. The hier-
archical aggregation procedure, is based on rooted trees that include branching and leaf nodes, and
uses the elliptical copula family for each aggregation step. However, as highlighted by in [3], this
copula family has certain drawbacks, such as its inability to capture dependence structures, which are
not radially symmetric. Especially in the case of extreme events, the dependence of large losses from
different business lines cannot be modelled by the elliptical copula family (see [4]). To overcome this
problem, we propose to use copulas from the Achimedean family in the construction of the hierarchical
model. Archimedean copulas can be asymmetric and capture a variety of dependence structures. We
also include the mixture of and rotated Archimedean copulas, which are the most appropriate copulas
in some cases, based on goodness of fit tests.

For the empirical application, we use data from the Australian Prudential Regulation Authority
(APRA) as also used by [5]. However, [5] analyse 19 semi-annual gross incurred claims and earned
premiums data from December 1992 to June 2002. In contrast, we choose a more recent time horizon
and quarterly frequency in order to increase the sample size and improve the estimation of the risk
aggregation model. As a result, a total of 28 observations, consisting of quarterly premiums earned
and incurred claims, gross and net of reinsurance, for five business lines, were selected for the period
between September 2010 and June 2017. The quarterly incurred claims and premiums earned are then
used to calculate loss ratios for the five different business lines. The risk aggregation model is selected
based on the resulting loss ratios, measuring the associated risks. The gross and net of reinsurance loss
ratios are used to examine the change in the level of risk for each business line and for the aggregate
risk.

Research on risk aggregation with copulas applied to insurance was pioneered by [6]. This
research introduces the concept of copula and chooses Gaussian copula as one of the useful tools in
determining the risk aggregation of an insurance company by combining correlated loss distributions.
More specifically, the aggregate loss distribution is determined by the combination of the effect from
claim frequency and claim severity distribution. By contrast, [5] use copula models to aggregate
risks in order to determine the economic capital as well as the diversification benefits focusing on
the insurance industry. Using multiple insurance business lines data, they analyse the importance of
selecting an appropriate copula model to avoid underestimation or overestimation of capital required,
which consequently may affect the level of capital for insurance products. [7] highlight that modelling
the dependence between risks is important as it is a form of rule for risk aggregation. Their research
also consider various methods to model dependencies, which subsequently affect the diversification
benefits and show that overestimation of diversification may cause inaccurate computation of risk-
based capital (RBC). [4] use copulas to cover the loopholes of Solvency II, such as linear correlations
being used to measure the dependence structure of correlated risks. However, a linear correlation may
not be suitable for modelling dependence structure and may not be able to capture all information of
a tail distribution. To overcome this problem, the authors propose a method of risk aggregation via
copula to determine the dependence structure between risks. Nevertheless, their focus is from the
perspective of the Solvency II, rather than on the risk aggregation modelling based on real data.

Modelling risk aggregation using a dimensional copula can be very challenging and requires
more parameters to be estimated than the traditional two dimensional copula or bivariate copula
models [7]. With this in mind, we consider hierarchical aggregation as an alternative modelling
technique, based on two dimensional copula for high dimensional copulas. This model, introduced
by [2], does not requires specification of copula for all business lines. Instead, a copula and the joint
dependence between the aggregated sub-business lines will be determined in each aggregation step.
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The aggregation model is represented by a rooted tree, which consists of branching nodes and leafs
based on graph theory.

In addition, we also investigate the significance of reinsurance from the risk management perspec-
tive. Insurance companies are able to transfer risks to reinsurance and as a result capital is saved from
being allocated to these risks [8]. Previous research by [9] proves that insurance companies purchase
reinsurance for the benefits of reducing the loss ratio measured by its volatility. It also provides
protection against catastrophes by limiting the liability on specific risks. The drawback of reinsurance
is that insurers’ cost for production is increased. Furthermore, reinsurance also provides other benefits,
such as capital relief as well as flexible financing.

The remaining of this paper is organized as follows. Section 2 discusses the methods for aggre-
gating risk using hierarchical copula aggregation model, copula simulations and determination of
capital requirement. Section 3 contains the estimation of the hierarchical aggregation copula model
and analysis of the results. In Section 4 we study the effects of reinsurance in the level of risk and
diversification of the portfolio of different business lines. Section 5 concludes the paper.

2. Copula-Based Hierarchical Aggregation Model

In finance and insurance popular models for problems involving a large number of random
variables have been based on copula functions. Different copula models have been proposed. These
include Archimedean and elliptical copula models [10], vine copula models ([11,12]), and hierarchical
copula models ([1,13,14]). Some of these models impose a more restrictive dependence structure than
others, implying more difficult inference. This article adopts the hierarchical copula model with the
goal of achieving a good compromise between flexibility and ease of estimation.

2.1. The Definition of Copula

Bivariate copulas are the main building block of hierarchical aggregation copula models. Here we
only provide the basic definition in order to introduce the notation and we refer the reader to [15] and
[16] for an introduction to copulas and the definition of specific copula families.

Given a d-dimensional random vector (X1, Xa, ..., Xy)/, I from [17] there exists a function C :
[0,1]4 — [0,1] such that

P(Xl S xl,Xz S xz,...,Xn S Xd) = C(Fl(xl),Fz(JQ),. . .,Fd(xd)),

where F;(x) = P(X; < x;) is the cumulative distribution function (cdf) of X; fori =1,2,...,d,and C is
a copula function. In fact, a copula is a multivariate joint cdf with uniform margins. If the univariate
cdf’s F; are continuous then the copula function C is unique.

2.2. Hierarchical Aggregation Copula Models

Hierarchical copula models draw on results from graph theory on rooted trees [18]. Following
the notation used in [2], a rooted tree T is composed by leaf nodes and branching nodes where one of
the branching nodes is the root. The subset of branching nodes is denoted by Z/(t), the subset of
leaf nodes is denoted by -{7), and the root node by @. Naturally, (1)U ~(1) = T and Z(1)n. <"
(1) = @. In order to use rooted trees to aggregate the losses of several business lines we make the
following assumptions:

e  Each leaf node in the rooted tree is associated with the loss of business line i, represented by a
random variable X;.

e  Each branching node is associated with the sum of the business lines mapped to that node’s
children.

1 The symbol ’ denote the transpose of vector.
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In Figure 1 we illustrate the mapping to a rooted tree of three insurance loss random variables
X, X ¥ and X}, representing the business lines Motor, Fire and Household, respectively. Each leaf
node corresponds to a business line and each branching node corresponds to the sum of the variables
associated with its children leaf nodes. As in [2], we assume that each branching node has two children
for simplicity, although the results on rooted trees used in this paper are valid for branching nodes
with any number of children (see [2]). By assuming that each branching node has only two children,
we can simplify the construction and estimation of the model as only bivariate copulas are involved. In
order to define the aggregation model we denote by (X;)i.; = (X1, Xa,..., X;)’ the vector of random
variables, where each X; represents the loss of the business line i. The rooted tree aggregation model
for the random vector (X;);c is determined by

i a rooted tree structure T,
e univariate cdf’s F; : R — [0,1] for all leaf nodes i in (1), and
*  bivariate copula functions C; : [0,1]? — [0,1] for the two children of each branching node j in Zz

(7).

We denote the tree aggregation model by (7, (F;),. Sy (C]')j c ) ). Using this modelling approach
we obtain the distribution of the root node which represents the aggregate total loss

Xg=X1+X+...+X3= ) X
ie Ar)

based on the univariate cdf’s for the business lines associated with the leaf nodes, and the bivariate
copulas associated with the branching nodes.

Xo = (Xm + X5) + X,

/

Xm +Xf

) / \Xf

Figure 1. Ilustration of an hierarchical loss aggregation copula model built by allocating each of the three
individual business lines, represented by Xy, X; and X}, to a leaf node of a rooted tree. The structure of the tree in
this example is determined by the assumption that the pair (X, X¢) have the strongest dependence among the
three possible pairs of individual business lines.

X

2.2.1. Existence and Uniqueness of a Joint Distribution

The existence and uniqueness of the joint distribution of the hierarchical aggregation cop-
ula model for the vector (X1, X3, ..., X;)" have been studied in [2]. Here we only summarise the
conditions and the main results necessary in this paper. Given a rooted tree aggregation model
(T, (F)je Sy (C j)]. c G T)) where each branching node j € Z(7) is the sum of its children, the random
vector (X;)er is called a mildly tree dependent. A mildly tree dependent random vector (X;)er is
called tree dependent if for each branching node i € % (t), given X;, its descendants (Xj) ie T iy
where 7 (i) is the set of descendent nodes, are conditionally independent of the remaining nodes

(X])]Eg(z) 1 (X]>]€T\§//(z) | X; foralli € L@(T)

This conditional independence condition however does not imply that (X;) e ()18 independent of
(X;) jer\ & (1) because their dependence may come from X;.
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Theorem. Given a rooted tree aggregation model (T, (F); e Ay (C]-)j c 9)‘(‘7))' a tree dependent random vector

exists and its joint distribution is unique.

For the proof of this result see [2]. For the example illustrated in Figure 1 the joint distribution of
the hierarchical aggregation copula model for the vector (X, Xf, X,)" exists and is unique if and only
if

(XTHI Xf) L (le Xh) | Xm + Xf/
where Xg = X, + X r+ Xj,. This means that all the information in X, and X ¥ that influences X}, is
contained in X;;; + X f-

Under the above theorem, if all the univariate and copula distributions are absolutely continuous

then the joint density function is given by the following proposition showed in [1].

Proposition. Given a rooted tree aggregation model (T, (F;), e Sy (Cj)]. c !%T)) with d leaf nodes associated
with the vector X = (Xq, Xa, ..., Xy)', the joint density function of the vector X is given by

d-1 d
fx(xl,...,xd) = HC] Fg@(]l) Z X ’F:@(]Z) Z Xi Hfi(xi),
j=1 ie S (j1) ie LYY (j2) i=1

forall xy,...,x; € R, where S/ (ji) represents the leaf nodes in the set of descendants of child node i of the
branching node j, F o,z (%) is the cdf of the sum of the leaf nodes in /< (jk), fi, ..., fq are the univariate
density functions of X1, Xy, ..., X, respectively, and c; is the copula density function of the children of X; for

j€ %(T)

As an example, for the business lines represented by the random vector (X, X r X)) associated
with the rooted tree 7 illustrated in Figure 1 the joint density function is given by

SxCem, xg,x0) = g (Fm(xm)rFf(xf))Cm+f,h (Fm+f(xm + xf)th(xh))
S (xm) f(x5) fu(xn),

for all (xy,, x iz xy,), where F; is the cdf of the univariate random variable X; with density function f;,
Fyuy s is the cdf of Xy, + X, ¢y ¢ is the copula density function of (X, X¢) and ¢, ¢, is the bivariate
copula density function of (X + X¢), Xp,).

2.2.2. Simulation of Joint Distributions

Given the set of d business lines represented by the random variables X1, X», ..., X;, we determine
the tree structure by aggregating iteratively the pair of variables with the strongest dependence. We
use Kendall’s tau to measure the dependence between pairs of random variables in the hierarchical
aggregation procedure. For the motivation and justification for using Kendall’s tau in this setting see
[1].

After defining the structure of the tree we proceed with selecting the probability distribution
for the random variable allocated to a leaf node and the copula family for the two children of each
branching node in order to specify the hierarchical aggregation model. We use maximum likelihood
estimation to estimate the parameters, and [19,20] goodness-of-fit methods to select the best probability
distributions.

The hierarchical aggregation model allows to estimate measures of risk on the sum of the individ-
ual variables considered. We estimate these risk measures based on the simulation of observations from
the aggregation model. By generalising the algorithm introduced in [2] that consists of a numerical
approximation procedure where sample reordering induces the dependence structure, a technique
that goes back to the work of [21].
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We present below the algorithm for the case when all branching nodes have two children and the
functional that produces the aggregation is a weighted sum of the branching nodes. [22] generalize the
case when the aggregation functionals are Kendall functions.

Sample reordering numerical approximation algorithm:

1. Define the number of simulations N € N.

2. Simulate N independent samples from the univariate random variables X; (i € A (7)) associated
with d leaf nodes: Xf‘ ~ Ffork=1,...,Nandi = 1,...,d, where F; is the pre-determined
univariate cdf for X;.

3. Simulate N independent samples from the bivariate copula C; (j € Z (1)) associated with each
of the d — 1 branching nodes: U Ukl, Uk ) ~Cifork=1,...,Nandj=1,...,d -1

4. Following a bottom-up approaci1 beglnnlng at the branching nodes closer to the leaf nodes and
ending at the root node)s define the approximation for the cdf of each branching node j € % (1)
as N k k

F]N(x) = i]kzl ]l{Z(le ngl) + Wjo x;;]?) < x},
recursively, where 1 is the indicator function?, x}‘l and x}‘2 are (simulated) sample values of the
random variables associated with the two nodes children of the branching node j, wj; is the weight

(2) x(N)},izl,Zare

given to variable X ]l,r is the (componentwise) rank ofu and {x]l PXji e X

the ordered sample.

Once we have the estimate for the cdf of the total aggregate loss we proceed estimating the risk
measures of interest.

2.3. Risk Estimation of the Sggregate Loss

After building the model for the aggregate loss, using the hierarchical copula model we can
estimate the risk of the aggregate loss. As a coherent measure of risk we use the tail value at risk
(TVaR) used by [23]. The TVaR of the loss represented by the random variable X at the confidence
level «, for a € (0,1), is defined as

1
TVaR, (X) = - ! (X / VaRy (X) du,
- 14

where the VaR, of the random loss X is given by
VaR,(X) =inf{x e R: P(X < x) > a}.

Conventionally, « typically takes the values 90%, 95% or 99%. In order to estimate the TVaR we use
the following nonparametric estimator that can be found in more detail in [24]. Given 1 observations
{x1,x2,..., x4} of the variable X the TVaR estimator is given by

o 1 [n(1-a)]
TVaR = S5 ( Y Xuoipy + (n(1—a) = [n(1—a)] >x(n—tn(1—a)J)>' M

i=1

where {x(1),X(3), ..., X(y)} is the ordered sample, |v] denotes the largest integer not greater than v. In
our setting, we estimate the TVaR by applying Equation (1) to the N observations simulated by the

1, ifs; <«x
L < _ ’ i
Jl{s] <} { 0, otherwise.
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sample reordering algorithm. Given the wide use of notably in Solvency II, we also report the VaR
estimates for the three commonly used confidence levels VaR below.

2.4. The Data

The data on general insurance are obtained from the Australian Prudential Regulation Authority
(APRA) (https://www.apra.gov.au/) as also used by [5]. However, we use a more recent time period
and quarterly data instead of annual data to increase the sample size. Australia has a large market
share in the insurance industry within developed countries. Based on the data published by OECD
[see [25]], Australia’s general insurance is above the 70th percentile in terms of total gross premiums
in 2016. In September 2010 a change in the reporting format was introduced, so the definitions of
some variables used are also modified. To avoid inconsistence, we focus on the period from September
2010 to June 2017. We are interested in four variables: gross incurred claims (including movements
in outstanding claims Liability during the period); gross earned premium; net incurred claims (net
of reinsurance recoveries revenue); net earned premium (net of outwards reinsurance expense). We
consider both the gross and the net variables as one of our goals to evaluate the effect of reinsurance
on capital requirements. As in [26,27], reinsurance is a mechanism used by an insurance company
(the reinsured, cedent or primary insurance company) to transfer all or part of its unforeseen or
extraordinary losses under a policy or policies that it has issued to another insurance company (the
reinsurer). To indemnify the reinsurer, a premium is paid to the reinsurer by the ceding company. We
source data for five insurance business lines, namely, domestic Motor vehicle (hereafter referred to as
Motor), houseowners/households (House), Fire and ISR® (Fire), Liability, and compulsory third party
Motor vehicle (CTP). According to the data collected from the APRA webpage these five business
lines make up more than 85% of the Australian general insurance market in terms of net earned
premiums as in June 2017. In the process of cleaning the data we removed the observations from two
quarters, where there are two negative observations of gross incurred claims. Our final data set has 26
observations for each business line.

2.4.1. Loss Ratios

To quantify the insurance risk, we use loss ratio (LR)4, defined as

IC; 4
EP;;’

LRi,t -

The numerator IC;; denotes the incurred claims corresponding to the earned premium EP;; (the
denominator) for business line i at time ¢ based on accident year insurance company accounting
principal; see [28] for details on the loss ratio variable. The loss ratio can be seen as a measure of claims
standardized by the risk exposure (given by the earned premium). Using loss ratios can eliminate
temporal effects of business growth and inflation, and allowing for comparisons between business
lines with different risk exposures. Individual loss ratios are added up to form the aggregated loss
ratio for capital requirement estimation.

3 ISR stands for Industrial Special Risk
¢ To simplify notations, we will use X for the LR, unless otherwise stated
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The aggregate loss ratio at time ¢, LR;, can then be written as the weighted sum of the individual
loss ratios of the d business lines as

_IG

EP;
_ Y Icy,

¢ EP;,

IC;
_ rh (El’ii 8 EP”)
¢ EPy
d
EP;

=Y LRjpx ——2— it

i-1 Y1 EPis
d

LR

LRi,t X Wi ¢, (2)
i=1

where IC; and EP; are the incurred claims and earned premium aggregated across all business lines,
and w; ; is the weight of earned premiums for business line i in period t. Below we will also examine
gross loss ratios and net (after reinsurance) loss ratios compared to the total earned premium across all
business lines. The gross loss ratio is the ratio of gross claims to gross premiums while the net loss
ratio is the ratio of net claim to net premium.

The descriptive statistics for the five business lines” loss ratio are summarise in Table 1. The column
‘Aggregate loss’ contains the quantities for the aggregate loss ratio calculated as in Equation (2). From
Table 1, we observe that for all the business lines the average loss ratios gross and net of reinsurance
are not statistically different. Although reinsurance is essentially a risk transfer (or sharing) tool, loss
distributions tend to be positively skewed and hence we would expect the average loss ratio to reduce
from gross to net of reinsurance. But reinsurance seems to have no strong effect on the average loss
ratio. We explore later in the paper how this may result from the interplay between the premium ceded
to and claim recoveries from reinsurance. The standard deviation is higher for Fire. While for House,
Motor an especially Fire standard deviation reduces, it actually increases for CTP and Liability when
reinsurance is taken into account. The values estimated for the skewness show that the loss ratios for
House and Fire do not have symmetric distributions. There is also significant excess kurtosis for House
and Fire both reducing with reinsurance. In terms of the aggregate loss ratio, reinsurance has a larger
effect on the skewness and kurtosis than on the mean and standard deviation of the loss ratio. Most
notably, reinsurance reduces the excess kurtosis of the aggregate loss ratio by 74%.

Table 1. Summary statistics of the loss ratios for the period from September 2010 to June 2017.

House  Fire Motor CTP  Liability Aggregate loss
Gross loss ratios

Mean 0.5849 0.7820 0.7211 0.8172 0.7024 0.7005
Standard deviation 0.2981 0.8334 0.0682  0.3100 0.1566 0.1971
Skewness 2.6290 3.6449 09729 -0.7432  -0.2392 2.8759
Excess kurtosis 8.0694 13.819 0.0075  0.0036 0.0671 9.6254
Average weight, ; ; 0.25 0.14 0.33 0.11 0.18 1
Weight at June 2017, w; 7 0.26 0.12 0.33 0.13 0.16 1
Net loss ratios
Mean 0.6272 0.6549 0.7394  0.8051 0.6499 0.7018
Standard deviation 0.2105 0.2639 0.0454  0.3333 0.1907 0.1659
Skewness 2.0440 1.4870 0.3835 -0.8458  -0.6556 1.3425
Excess kurtosis 56319 22074 -0.9542 0.0960 1.5980 2.4629
Average weight, ; ; 0.22 0.10 0.36 0.13 0.18 1

Weight at June 2017, w; T 0.24 0.09 0.36 0.13 0.17 1
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3. Estimation of the Hierarchical Aggregation Copula Model

In this section we implement the estimation of the hierarchical copula model for the aggregate
loss from the individual business lines as presented in Section 2.2.

3.1. Tree Structure of the Hierarchical Copula Model

The first element of the hierarchical copula model is the rooted tree T associated with random
variables X;, representing the loss ratios for individual business lines. As explained in Section 2.2
to build the tree we start by allocating the loss ratio of each business line to one leaf node and then
aggregate the two random loss ratios, with the highest dependence measured by Kandall’s tau. Table 2
shows the Kendall’s tau estimates for the gross loss ratios of each pair of business lines. At each stage
we aggregate the two loss ratio random variables with the strongest Kendall’s tau estimate.

Table 2. Sequential aggregation of the gross loss ratios for the five business lines.

Stage 1
House Fire Motor CTP
Fire 0.5262 1 - -
Motor 0.4338  0.2308 1 -
CTP 0.0154 -0.0523 -0.1815 1
Liability 0.0585 -0.1323 0.1446 0.3662
Stage 2
House + Fire Motor CTP
Motor 0.3169 1 -
CTP -0.0400 -0.1815 1
Liability -0.0338 0.1446  0.3662
Stage 3
House + Fire Motor
Motor 0.3169 1
CTP+Liability 0.0154 -0.0523

After allocating each business line to a leaf node, as in the bottom row of the tree depicted in
Figure 2, we aggregate the two business lines with the strongest dependence. From Table 2 we observe
that House and Fire have the largest Kendall’s tau. Hence, at this first stage, we aggregate these two
business lines. In stage 2, the largest Kendall’s tau observed is between CTP and Liability. We then
aggregate CTP and Liability. In stage 3 the strongest dependence is between Motor and Fire + House,
leading to the aggregate between them. In the fina stage, we aggregate together the two resulting loss
ratios, namely Motor + Fire + House and Liability + CTP. This is illustrated in Figure 2.

Xo = [Xm + (Xf + X;,)] + (X; + X.) (Final stage)

/

X + (X + Xp) (Stage 3)

I

Xr+ X (Stage 1) X; + X (Stage 2)
X Xy X, X X

Figure 2. Hierarchical loss aggregation copula model for the gross (and net) loss ratio of the the five business lines
Motor, Fire, House, Liability and CTP, represented by X,,;, X 0 Xns X and X, respectively. The structure of the tree
is determined by aggregating iteratively the two nodes with the strongest dependence.
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Table 3 contains the Kendall tau values for the case of the net (after reinsurance) loss ratio for the
five business lines. The variables more strongly dependent, at the different stages of the construction
of the tree, are the same as for the gross loss ratios case. As a consequence the structure of the rooted
tree for the net loss ratios hierarchical copula model is the same as for the gross loss ratios shown in
Figure 2. In the last stage of the aggregation model the Kendall’s tau between the net loss ratios for
House, Fire, Motor, CTP and Liability together is -0.0892.

Table 3. Sequential aggregation of the net loss ratios for the five business lines.

Stage 1
House Fire Motor CTP
Fire 0.5446 1 - -
Motor 0.4338  0.2492 1 -
CTP -0.0154 -0.0031 -0.2369 1
Liability 0.0092  -0.0646 -0.0523 0.4954
Stage 2
House + Fire Motor CTP
Motor 0.3969 1 -
cTP -0.0400 -0.2369 1
Liability -0.0523 -0.0523  0.4954
Stage 3
House + Fire Motor
Motor 0.3969 1
CTP+Liability -0.0523 -0.2123

3.2. Fitting the Univariate Probability Distributions

Next, we will fit the probability distributions for individual loss ratios, based on the maximum
likelihood estimation and Anderson and Darling (A-D) goodness of fit test. As we are primarily
interested in estimating the measures of risk, which are based on the tail of the distributions, it is
important to use an appropriate test. It is known that the A-D test is more powerful and sensitive
to the tails of the distribution (see [29]) than other alternative tests such as the commonly used
Kolmogorov-Smirnov® goodness-of-fit test. Hence, we choose the distribution that produces the
highest p-value according to the A-D test. For each business line we fit the following families of
distributions: lognormal, gamma, Weibull, loglogistic, Pareto and Burr. The results for the distribution
with the highest A-D test p-value and corresponding parameter estimates are listed in Table 4. The
fitted distributions for the loss ratios are log-logistic, Burr and Weibull distributions. These fitted
distributions are also visualised in Figures 3 and 4 for gross and net loss ratios, respectively.

5 ([30,31)).
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Table 4. Family of distributions selected for each business line gross and net loss ratios. The parameter and
corresponding standard errors estimates are listed for each business line together with the Anderson and Darling
(A-D) statistic and p-value. For the purpose of comparison the table also has the estimates for the aggregate loss
ratio with the weights fixed as at June 2017. *In the case of the Burr distribution the value listed in the table as being
the scale is in fact the estimate for the rate which is 1/scale.

House Fire Motor CTP  Liability Aggregate loss
Gross loss ratios
Distribution  Log-logistic Burr Burr Weibull Burr Burr
Shape 1 4.76266 0.19159 0.04799 3.00527  7.70166 0.3732
(s.e.) (0.776) (0.122) (0.042) (0.505)  (22.63) (0.199)
Shape 2 - 8.11427 189.928 - 5.64960 15.8580
(s-e.) - (4.012) (155.0) - (1.555) (5.441)
Scale™ 0.52243 3.04747 1.55319 0.90936  0.92955 1.70254
(s-e.) (0.037) (0.415) (0.014) (0.061)  (0.604) (0.095)
A-D statistic 0.294 0.147 0.335 1.417 0.270 0.230
A-D p-value 0.942 0.998 0.909 0.197 0.958 0.979
Net loss ratios

Distribution = Log-logistic Log-logistic Log-logistic Weibull =~ Weibull Burr
Shape 1 6.37499 4.96750 27.9840 2.53352  3.87399 0.50244
(s-e.) (1.031) (0.801) (4.469) (0.439)  (0.599) (0.269)
Shape 2 - - - - - 18.4406
(s.e.) - - - - - (5.898)
Scale* 0.59180 0.59840 0.73616 0.89199  0.71298 1.55857
(s-e.) (0.031) (0.041) (0.009) (0.071)  (0.037) (0.073)
A-D statistic 0.246 0.455 0.371 1.962 0.602 0.197
A-D p-value 0.971 0.791 0.875 0.097 0.643 0.991
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Figure 3. Fitted probability distributions (in blue) vs observed cumulative distribution functions (CDF) for the
gross loss ratios.
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Figure 4. Fitted probability distributions (in blue) vs observed cumulative distribution functions (CDF) for the net
loss ratios..

3.3. Determining Joint Distribution through Copulas

Having determined the best fit univariate distribution for each business loss ratio, we can estimate
the joint distributions for each pair of loss ratios at each branching node in Figure 2, by coupling the
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corresponding univariate probability distributions. We start with the most commonly used copulas,
such as, Gaussian copula, the Student-t, the Frank, the Clayton, the Gumbel, the mixtures of Clayton
and Gumbel copulas and corresponding survival copulas. We calculate and report in Table 5, the
non-parametric estimates of the upper and lower tail dependence coefficients (see [32,33]) for each pair
of loss ratios associated with the children of each branching node. As the risk of extreme events is one
of the main concerns when it comes to capital requirements, it is important to pay particular attention
to the tails of the copula distributions in the modelling process. Table 5 summarizes the results of the
selected copulas for the four branching nodes for both gross and net loss ratios.

Table 5. Upper (Ay;) and lower (A}) tail coefficient non-parametric estimates for the pairs of children of each
branching node of the copula hierarchical model tree. The best fitting copula, corresponding goodness of fit test
p-value, and parameter estimates (with standard errors in parenthesis) are also listed. For the mixture copulas 6; is
the parameter estimate of the first component of the mixture and 6, corresponds to the second component of the
mixture. For the last pair of net loss ratios, (X + X f+ Xy, Xc + X)), AL measures the tail coefficient in the second
quadrant of the sample space and Ay; measures the tail coefficient in the fourth quadrant.

AL Au Copula p-value 01 0>
(s.e.) (s.e.)
Gross loss ratios
(Xn, Xr) 0.5218  0.5694 0.4 Clayton + 0.6 SurvClayton 0.4640 4.886 2.148
(4.161) (1.966)
(Xe, X)) 0.1496  0.2742 0.25 Clayton + 0.75 SurvClayton 0.5410 1.022 1.482
(3.194) (1.596)
(X, X5+ Xp) 0.2772  0.4383 0.1 Clayton + 0.9 SurvClayton 0.8986 1.160 1.029
(5.796) (0.548)
(Xm + Xf + Xp, Xe +X;)  0.0000  0.0000 Gaussian 09815  0.013036
(0.285)
Net loss ratios
(Xn, X5) 0.5390  0.5401 0.6 Gumbel + 0.4 SurvGumbel 0.7298 2.126 2.801
(1.265) (2.083)
(Xe, X)) 02772 0.1070 Student-t 0.5549 0.7376 1.2910
(0.115) (0.593)
(Xm, X5 + Xp) 0.3977  0.4038 0.7 SurvGumbel + 0.3 SurvClayton  0.7607 1.750 1.047
(0.954) (2.884)
(Xm + X5+ Xp, Xe + X;) 0.0143 0.1531 90° Rotated Gumbel 0.5569 1.0865
(0.186)

For the gross loss ratios the first node is Fire and House (X + X},), as shown in Figure 2. From
Table 5 we can see that both lower (A;) and upper (Ay) tail coefficient estimates are different from
zero. The copula with the highest p-value (using the goodness of fit test statistic 5, from [20]) is a
mixture of 40% Clayton and 60% survival Clayton copulas. As the Clayton copula allows for tail
dependence the mixture model seems to be a reasonable choice. The p-value of the S, goodness of
fit test, the parameters and standard errors estimates are also listed Table 5. For the business lines
CTP and Liability the best copula is a mixture of 25% Clayton and 75% survival Clayton copulas. The
same copula mixture is again the best for Motor and Fire plus House but with only 10% weight on the
Clayton component of the mixture. The estimates for the tail coefficients for the two root node children,
Motor plus Fire plus House and CTP plus Liability, are zero. Indeed the best copula, according to the
goodness of fit test, is the Gaussian copula which has no tail dependence.

For the net loss ratios the best copula for the House and Fire pair is 60% Gumbel plus 40% survival
Gumbel. The resulting copula has both upper and lower tail dependence witch is in line with the
non-parametric estimates. CTP and Liability is best modelled by a Student-t which also allows for
both upper and lower tail dependence. A mixture of 70% survival Gumbel with 30% survival Clayton
has the higher p-value for Motor and Fire plus House. The estimate for the Kendall’s tau for the pair
Motor plus Fire plus House and CTP plus Liability is close to zero but negative. Hence we flip the
variable Motor plus Fire plus House after transforming it into the zero one interval. By flipping we
mean subtract the variable from one. The best copula for the resulting pair is then a Gumbel copula
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which allows for tail dependence between low values of Motor plus House plus Fire and high values
of CTP and Liability.

3.4. Simulation of the Aggregate Loss Ratios

In order to estimate VaR and TVaR from the hierarchical copula aggregation model we can now
simulate observations of aggregate loss ratios using the model constructed in the previous sections.
We implement the sample reordering algorithm from Section 2.2.2 for the gross and net loss ratios
using N = 1,000. Using the estimator from Equation (1) we estimate the TVaR for each business line,
gross and net, loss ratios for the confidence levels of 90%, 95% and 99%. The VaR estimate for a given
confidence level is the corresponding empirical quantile. The results are presented in Table 6 and its
analysis follows in the next sections.

Table 6. VaR and TVaR estimates for the five business lines. The values in square brackets are 95% confidence
intervals. The column labelled “Weighted Sum of risk measures’ corresponds to the weighted sum of the risk
measures (VaR or TVaR) from each business line with weights as at June 2017. The column labelled ‘Risk measure
of aggregate loss” has the values obtained from the hierarchical aggregation copula model with weights for each
business line as at June 2017.

Weighted Sum of Risk measure of
House Fire Motor CTP Liability risk measures aggregate loss, LR;
Gross loss ratios
90% VaR 0.8284 1.4422 0.8283 1.1991 0.8915 0.9603 0.8806
[0.800,0.856] [1.301,1.60] [0.814,0.843]  [1.172,1.225]  [0.879,0.903] [0.940,0.981] [0.859,0.902]
95% VaR 0.9693 2.2516 0.8931 1.3088 0.9417 1.1377 1.0184
[0.925,1.024] [1.959,2.593]  [0.872,0916]  [1.278,1.341]  [0.926,0.957] [1.099,1.182] [0.979,1.064]
99% VaR 1.365 6.2017 1.0602 1.5049 1.0346 1.8101 1.5937
[1.227,1.534]  [4.463,8.642]  [1.008,1.122]  [1.451,1.56]  [1.008,1.061] [1.603,2.095] [1.385,1.891]
90%TVaR 1.063 4.1271 0.9299 1.3413 0.9576 1.4060 1.2644
[1.007,1.128] [2.873,6.202]  [0.906,0.957] [1.313,1.37] [0.944,0.972] [1.256,1.652] [1.118,1.518]
95%TVaR 1.2353 6.4776 1.0026 1.4322 1.0003 1.7755 1.5895
[1.144,1.341]  [4.096,10.578]  [0.966,1.042]  [1.397,1.466]  [0.983,1.019] [1.488,2.276] [1.304,2.094]
99%TVaR 1.7244 18.4861 1.1898 1.6042 1.0836 3.4412 3.1437
[1459,2.074]  [8.037,37.647]  [1.1,1.299] [1.54,1.669]  [1.051,1.118] [2.178,5.761] [1.897,5.461]
Net loss ratios
90% VaR 0.835 0.9313 0.7961 1.2386 0.8843 0.8821 0.801
[0.813,0.857] [0.9,0.965] [0.791,0.801]  [1.207,1.273]  [0.869,0.899] [0.874,0.89] [0.792,0.81]
95% VaR 0.9383 1.0821 0.8177 1.3737 0.9462 0.9563 0.844
[0.904,0.973] [1.033,1.134]  [0.811,0.825]  [1.334,1.414]  [0.927,0.965] [0.945,0.967] [0.832,0.857]
99% VaR 1.2087 1.4985 0.8662 1.6234 1.0549 1.1271 0.9443
[1.124,1.311] [1.366,1.668]  [0.851,0.883] [1.56,1.693] [1.026,1.083] [1.101,1.156] [0.916,0.976]
90%TVaR 0.9987 1.1803 0.8273 1.4158 0.9638 0.9916 0.8651
[0.959,1.04] [1.121,1.246]  [0.821,0.835]  [1.379,1.453]  [0.948,0.981] [0.979,1.004] [0.853,0.878]
95%TVaR 1.1164 1.3622 0.8487 1.5303 1.0144 1.0674 0.9098
[1.055,1.183]  [1.266,1.468]  [0.839,0.859]  [1.483,1.579]  [0.995,1.034] [1.049,1.087] [0.891,0.93]
99%TVaR 1.4311 1.8778 0.8983 1.7503 1.1077 1.2516 1.021
[127,1.636]  [1.6052216]  [0.876,0924]  [1.664,1.837]  [1.074,1.146] [1.201,1.312] [0.976,1.075]

3.4.1. Analysis of the Results

From Table 6 we can see that Fire has the largest VaR and TVaR among the five business lines for
the gross loss ratios, followed by CTP except for the 99% TVaR, where House has the second largest.
When we consider reinsurance, by analysing the net loss ratios, CTP has the largest risk measure
values while Fire has the second largest except for the 99% TVaR where Fire still has the largest value.
Nevertheless the 99% TVaR for Fire has a staggering reduction after reinsurance. Overall Motor has
the lowest values for the risk measures in terms of both gross and net loss ratios, implying the least
risky business line. The VaR and TVaR 95% confidence intervals for gross and net losses overlap in
the cases of House, CTP and Liability. For Fire, Motor and (copula) aggregate losses the confidence
intervals for gross and net losses do not overlap. We conclude that reinsurance is effectively reducing
the level of risk only for Fire and Motor. And this reduction is strong enough to carry on to the (copula)
aggregate loss. The effect of reinsurance in changing the risk level for House, CTP and Liability is
much less pronounced. We come back to this point later in this article. It is worthwhile recalling here
that the average loss is also not significantly different with and without reinsurance.
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Comparing the two right columns of Table 6 we can see that the weighted sum of the risk measures,
VaR and TVaR, is larger than the value obtained using the hierarchical aggregation copula model.
This is true both for VaR and TVaR at all the probability levels considered, and for gross and net loss
ratios. The risk measures obtained using the hierarchical copula model incorporate the dependence
between the different business lines while the weighted sum of VaR and TVaR does not. Hence, the
result obtained is clear evidence that there is a risk reduction effect in the tails when combining the
five business lines. This reduction of risk by pooling different business lines (risks) corresponds to the
notion of diversification well known in financial portfolio selection and asset allocation.

4. The Effect of Reinsurance

Our goal now is to explore the effect of reinsurance on the diversification of the portfolio composed
by the different business lines. Conceptually we are here drawing some parallel between a portfolio of
financial assets and the set of business lines. When addressing diversification in terms of portfolio
selection we can think of two aspects. First, diversification is affected by the weights of each component
of the portfolio. Second, diversification can also be affected by the sources of risk and the interaction
between the different business lines. We address these two cases below separately.

4.1. Reinsurance and Weighted Premiums Diversification

Here we evaluate the effect of reinsurance on the diversification due to changing the proportion
of underwritten premiums (weights) for the different business lines. Insurance companies cede risk to
the reinsurer in different proportions for the different business lines. As a result the weights of each
business line, corresponding to the proportion of underwritten premiumes, in the insurers portfolio
before and after considering reinsurance are different. For the data analysed in this paper, the weights
as of June 2017 are reported in Table 1, we can see that reinsurance reduces the proportion of the
business lines of Fire and House, and increases the weight of Motor.

A measure of diversification which concentrates on the weights of each portfolio component is
derived from the concept of Shannon’s entropy, introduced in [34] for information theory. Within a
financial portfolio setting, Shannon’s entropy measures diversification as

N
H(w) = — Zwilnwi,
i=1

where YN w; = 1, w; > 0and N is the number of portfolio components. According to this measure
equal weights correspond to the highest diversification. The background idea is that equal weights
correspond to maximum information. We refer to [35] for a study on the (superior) out-of-sample
performance of an equally weighted financial portfolio.

The values obtained for the Shannon’s entropy measure for the insurance data are listed in Table 7.
We find that the diversification of the portfolio considering reinsurance is lower than the diversification
of the portfolio without reinsurance. The change in the weights between the business lines is largely
due to the higher cession rate on Fire. We can see that there is a link here between a higher cession
rate (mainly) on the business line Fire through reinsurance and a reduction in the diversification of
the portfolio. The value for the Shannon’s entropy of an equally weighted portfolio is 1.61. So the
equally weighted portfolio is 6% more diversified than the portfolio without reinsurance and 8% more
diversified than the portfolio after considering reinsurance.
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Table 7. Shannon’s entropy measure of diversification for the insurance portfolio of the five business lines using
the weights as at June 2017.

House Fire Motor CTP Liability Shannon’s entropy

Gross loss ratio weights 026 012 033  0.13 0.16 1.52

Net loss ratio weights 0.24 0.09 0.36 0.13 0.17 1.49

4.2. Reinsurance and Source of Risk Diversification

One goal of diversification is to reduce the risk in the portfolio by taking advantage of the relation
between the different components. One way of measuring portfolio diversification taking the sources
of risk into account is by calculating the diversification ratio (DR) from [36]. This measure uses both
the weights and the risk of each component of the portfolio producing a weighted average of the
components risk. The expression for the diversification ratio is given by

DR — LR widi
Ap

where Zfil w; =1, w; > 0, A; is the risk of component i, and N is the number of portfolio components.
In the denominator of the diversification ratio, Ap is the portfolio risk and hence the relation between
the different components of the portfolio is taken into account by the diversification ratio. Using
standard deviation, VaR and TVaR as measures of risk, we obtain the diversification ratio values. The
VaR and TVaR risk measures for the weighted sum of business lines loss ratios are the ones obtained
by the hierarchical aggregation copula model. The weights are fixed and based on the premiums as at
June 2017. The results are reported in Table 8.

Table 8. Weighted sum of risk measures for the five business lines compared with the risk measure of the weighted
sum of business lines obtained by the hierarchical copula model. The last column of the table gives the values for
the diversification ratio from [36].

Weighted Sum of Risk measure of DR
risk measures aggregate loss, LRy
Gross loss ratios
o 0.2654 0.1956 1.35
90% VaR 0.9603 0.8806 1.09
95% VaR 1.1377 1.0184 1.12
99% VaR 1.8101 1.5937 1.14
90%TVaR 1.4060 1.2644 1.11
95%TVaR 1.7755 1.5895 1.12
99%TVaR 3.4412 3.1437 1.09
Net loss ratios

o 0.1752 0.1040 1.68
90% VaR 0.8821 0.8010 1.10
95% VaR 0.9563 0.8440 1.13
99% VaR 1.1271 0.9443 1.19
90%TVaR 0.9916 0.8651 1.15
95%TVaR 1.0674 0.9098 1.17
99%TVaR 1.2516 1.0210 1.23

The results show that the diversification ratio increases with reinsurance, most strikingly when
we use standard deviation as measure of risk, where the diversification ratio increases by 24%. This
indicates that reinsurance increases diversification for the smaller more frequent claims to a larger
extent than for the larger less frequent claims. For the VaR and TVaR the increase in diversification is
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modest, around 3%, with the exception of TVaR at the 99% level to which reinsurance implies 12%
increase of the diversification ratio. This indicates that, from a multivariate or portfolio point of view,
by reducing the high upper tail dependence of some of the loss ratios across the different business
lines (the estimates for Ay in Table 5 do not contradict this assertion), reinsurance is increasing the
diversification ratio. Considering the results from Shannon’s entropy measure, we conclude that
although reinsurance is reducing the (weights) diversification, this is compensated by the reduction
in risk producing higher diversification ratios. As far as we know these effects of reinsurance on the
multivariate overall portfolio of business lines has not been previously found in the literature.

5. Conclusion

It is important for every insurance company to determine and maintain the right amount of capital
to keep as a solvency margin against the risk of not being able of covering the insurance company’s
liabilities. This calls for adequate methods of aggregating all risks and the use of appropriate risk
measures to determine the capital requirement. In this article we use a hierarchical aggregation copula
model to address the dependence structure of the different insurance business lines. We use several
copula families to model the aggregated loss with particular emphasis on capturing the tail dependence.
We consider a range of copulas asymmetric, symmetric, with and without tail dependence as the
Gaussian and Student-t, and Archimedian copulas Clayton, Gumbel, and Frank. Selecting the best
copula families for the hierarchical aggregation model is crucial as it influences the estimated level of
risk and consequently avoids over or underestimation of the capital required.

A very important tool for risk management is reinsurance. Insurance companies diversify away
part of its underwriting risk to reinsurance companies. In this paper we investigate the effect and
relevance of reinsurance on the risk of individual business lines and importantly on the aggregate
risk. These effects are measured in this paper by considering both gross and net loss ratios, where
gross loss ratios are used to measure the insurance risk without considering the reinsurance business,
while the net loss ratios are used to determine the insurance risk taking into account reinsurance. For
most business lines reinsurance reduces the risk, especially Fire and Motor, but it can also increase the
risk even when measured by the standard deviation as we can see in Tables 1 and 6 for the CTP and
Liability business lines.

Another aspect of reinsurance has to do with diversification. Reinsurance increases the diversifi-
cation ratio (that uses both weights and source of risk) due to the dependence between the business
lines. On the other hand, reinsurance reduces Shannon’s entropy diversification (which considers only
the weights). As a consequence, we conclude that reinsurance reduces the sensitivity of the aggregate
risk to changes in the proportions of the different business lines. Hence, if the goal is to manage risk
by changing the proportion of underwriting between business lines, reinsurance might mitigate the
reduction of the aggregate risk. Hence, a risk management strategy must consider the three aspects of
weights, dependence between the business lines, and reinsurance cession rates in order to successfully
reduce the insurance portfolio aggregate risk, when the primary insurer is transferring risk through
reinsurance.
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